JP2000195533A - Warming-up system of fuel cell - Google Patents

Warming-up system of fuel cell

Info

Publication number
JP2000195533A
JP2000195533A JP10372101A JP37210198A JP2000195533A JP 2000195533 A JP2000195533 A JP 2000195533A JP 10372101 A JP10372101 A JP 10372101A JP 37210198 A JP37210198 A JP 37210198A JP 2000195533 A JP2000195533 A JP 2000195533A
Authority
JP
Japan
Prior art keywords
fuel cell
air
temperature
passage
warm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10372101A
Other languages
Japanese (ja)
Inventor
Tomoji Yamada
知司 山田
Mitsuo Inagaki
稲垣  光夫
Yasushi Araki
康 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP10372101A priority Critical patent/JP2000195533A/en
Publication of JP2000195533A publication Critical patent/JP2000195533A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To exert sufficient warming performance in a warming-up system of a fuel cell. SOLUTION: This warming-up system is provided with an air pump 5 that compresses the air from an intake passage 41 into which an new air is sucked and feeds it to a fuel cell 1, a circulating passage 65 that branches from an exhaust passage 42 for releasing the air exhausted from the fuel cell 1 to join to the intake passage 41, and thus circulates the air from the fuel cell 1 to the air pump 5, and a switching valve 6 for switching the opening of. the circulating passage 65; and is so structured that the circulating passage 65 is opened by controlling the switch valve 6 with a control means 9 before feeding the fuel and the air, the air pump 5 is set to work and thereby, the fuel cell 1 is warmed by the circulated air that is compressed and heated when flowing through the circulating passage 65 and passing the air pump 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃料電池の暖機シス
テムに関する。
The present invention relates to a fuel cell warm-up system.

【0002】[0002]

【従来の技術】近年、環境、特に大気に対する配慮から
自動車の分野においては電気自動車が注目されており、
電源として蓄電池を搭載した電気自動車にあっては既に
実用化の段階に入っている。しかし、蓄電池式電気自動
車は、蓄電能力との関係で走行距離が比較的短く、また
充電時間が長い等の解決に困難な問題を有しているた
め、これを解消し得る電気自動車として、蓄電池に代え
て、水素等の燃料と酸素等の酸化性ガスとの電気化学的
酸化還元反応により発電する燃料電池を搭載した燃料電
池式電気自動車の実用化が待たれている。
2. Description of the Related Art In recent years, attention has been paid to electric vehicles in the field of automobiles in consideration of the environment, particularly the atmosphere,
Electric vehicles equipped with storage batteries as power sources are already in the stage of practical use. However, the storage battery type electric vehicle has a problem that it is difficult to solve such as a relatively short traveling distance and a long charging time in relation to the power storage capacity. Instead, a fuel cell electric vehicle equipped with a fuel cell that generates power by an electrochemical oxidation-reduction reaction between a fuel such as hydrogen and an oxidizing gas such as oxygen is expected to be put to practical use.

【0003】燃料電池は、温度が低いと電気化学的酸化
還元反応が効率よく行われず十分に発電されず、また、
エネルギー変換効率すなわち発電効率が高いことから発
電ロスによる発熱が少ないために自己で暖機する能力が
小さいという特性を有する。かかる特性のため、燃料電
池の起動時、特に冷機状態においては、燃料電池の温度
が低いために燃料と酸素の反応が活発に行われず、未燃
の水素が排出されてしまったり、始動直後に十分な車両
の動力を得るのが困難であるという問題があった。
[0003] In a fuel cell, when the temperature is low, the electrochemical oxidation-reduction reaction is not performed efficiently and the power is not sufficiently generated.
Since the energy conversion efficiency, that is, the power generation efficiency is high, the heat generation due to the power generation loss is small, and the ability to warm up by itself is small. Due to such characteristics, when the fuel cell is started, particularly in a cold state, the reaction between the fuel and oxygen is not actively performed due to the low temperature of the fuel cell, and unburned hydrogen is discharged, or immediately after the start. There was a problem that it was difficult to obtain sufficient vehicle power.

【0004】特開平7−94202号公報には、燃料電
池の冷却系の、冷却水が貯められる貯水タンク内に電気
ヒータを設け、これに蓄電池または燃料電池から電気ヒ
ータに通電することで冷却水を加熱し、燃料電池の暖機
を行うようにした燃料電池の暖機システムが提案されて
いる。
Japanese Patent Application Laid-Open No. Hei 7-94202 discloses that an electric heater is provided in a water storage tank of a fuel cell cooling system for storing cooling water, and the cooling water is supplied to the electric heater from the storage battery or the fuel cell. There has been proposed a fuel cell warm-up system for heating a fuel cell to warm up the fuel cell.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記特
開平7−94202号公報記載の暖機システムでは、熱
を輸送する作動流体として冷却水を用いるため、次の問
題がある。すなわち、冷却系を循環する冷却水は、必要
な冷却能力を確保するには大きな熱容量が必要であり、
また、上記貯水タンクには多量の冷却水が貯められる。
このため、膨大なヒータ電力を消費することになる上、
ヒータ能力の大きなものを用いないと、暖機に時間がか
かったり、外気温が低いときに十分に暖機できない。
However, in the warming-up system described in Japanese Patent Application Laid-Open No. 7-94202, cooling water is used as a working fluid for transporting heat. In other words, the cooling water circulating through the cooling system needs a large heat capacity to secure the required cooling capacity,
Also, a large amount of cooling water is stored in the water storage tank.
This consumes enormous amount of heater power,
If a heater having a large heater capacity is not used, it takes a long time to warm up or cannot sufficiently warm up when the outside air temperature is low.

【0006】本発明は上記実情に鑑みなされたもので、
十分な暖機性能を発揮し、しかも電力消費の少ない燃料
電池暖機ジステムを提案することを目的とする。
The present invention has been made in view of the above circumstances,
It is an object of the present invention to propose a fuel cell warm-up system that exhibits sufficient warm-up performance and consumes less power.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明で
は、暖機システムは、新気が吸入される吸気流路からの
空気を圧縮し燃料電池に供給するエアポンプと、燃料電
池から排出される空気を外部に放出する排気流路から分
岐して上記吸気流路に合流し燃料電池からの排出空気を
エアポンプに還流せしめる還流路と、還流路の開度を切
り換える還流路開度切り換え手段と、燃料および空気の
供給を制御する制御手段とを具備せしめる。上記制御手
段は、燃料電池への燃料の供給に先立ち還流路開度切り
換え手段を制御して還流路を開くとともにエアポンプを
作動するように設定し、還流路を流通しエアポンプ通過
時に圧縮昇温する循環空気により燃料電池を暖機する。
According to the first aspect of the present invention, there is provided a warm-up system comprising: an air pump for compressing air from an intake passage through which fresh air is sucked and supplying the compressed air to a fuel cell; A return path that branches from an exhaust flow path that discharges air to the outside, merges with the intake flow path, and returns exhaust air from the fuel cell to an air pump, and a return path opening degree switching unit that switches the degree of opening of the return path. , Control means for controlling the supply of fuel and air. The control means controls the recirculation path opening degree switching means to open the recirculation path and operate the air pump prior to the supply of fuel to the fuel cell. Warm up the fuel cell with circulating air.

【0008】還流路により形成される循環路を流通する
空気の全熱容量は、燃料電池の冷却水よりもはるかに小
さい。しかして本発明では、電気ヒータ等に膨大な電力
を投入することなく、燃料電池の暖機に供される空気は
速やかに昇温し、燃料電池において効率よく熱交換がな
され十分に燃料電池の暖機を行うことができる。
[0008] The total heat capacity of the air flowing through the circulation path formed by the return path is much smaller than the cooling water of the fuel cell. Thus, in the present invention, the air used for warming up the fuel cell quickly rises without inputting an enormous amount of electric power to the electric heater and the like, and heat exchange is efficiently performed in the fuel cell, and the fuel cell is sufficiently cooled. Warm up can be performed.

【0009】請求項2記載の発明では、吸気流路の上記
還流路との分岐部よりも上流部に、吸気流路の開度を切
り換える吸気流路開度切り換え手段を設け、排気流路の
上記還流路との分岐部よりも下流部に、排気流路の開度
を切り換える排気流路開度切り換え手段を設け、上記制
御手段は、燃料電池への燃料の供給に先立ち、吸気流路
開度切り換え手段および排気流路開度切り換え手段を制
御して、吸気流路および排気流路を閉じるように設定す
る。
According to the second aspect of the present invention, an intake passage opening degree switching means for switching the opening degree of the intake passage is provided upstream of the branch of the intake passage with the recirculation passage. An exhaust flow path opening degree switching means for switching the degree of opening of the exhaust flow path is provided downstream of the branch from the recirculation path, and the control means opens the intake flow path before supplying fuel to the fuel cell. The degree switching means and the exhaust path opening degree switching means are controlled so that the intake path and the exhaust path are closed.

【0010】発電作動前の暖機において吸気流路および
排気流路を閉じるようにすることで、循環空気のみが燃
料電池に暖機用として供給され、さらに効率よく燃料電
池を暖機できる。
By closing the intake passage and the exhaust passage during warm-up before the power generation operation, only the circulating air is supplied to the fuel cell for warming-up, and the fuel cell can be warmed up more efficiently.

【0011】請求項3記載の発明では、上記燃料電池の
温度を検出する温度センサを具備せしめ、上記制御手段
は、検出温度が予め設定した発電開始基準温度を越える
と燃料電池への燃料の供給を開始するように設定する。
According to a third aspect of the present invention, a temperature sensor for detecting the temperature of the fuel cell is provided, and the control means supplies the fuel to the fuel cell when the detected temperature exceeds a preset power generation start reference temperature. Set to start.

【0012】検出温度から燃料電池の暖機が十分になさ
れたか否かを判断でき、暖機が十分になされ次第、速や
かに発電作動に移行することができる。
[0012] It can be determined from the detected temperature whether the fuel cell has been sufficiently warmed up, and as soon as the fuel cell has been sufficiently warmed up, it is possible to immediately shift to the power generation operation.

【0013】請求項4記載の発明では、上記制御手段
を、発電作動中に検出温度が予め設定した定常時基準温
度となるように上記還流路の開度を切り換えるように設
定する。
[0013] In the invention described in claim 4, the control means is set so as to switch the opening degree of the return path so that the detected temperature becomes a preset steady state reference temperature during the power generation operation.

【0014】還流路開度の切り換えにより、新気よりも
温度の高い燃料電池からの排出空気の燃料電池への還流
量が調整されて、外気温が低く発電作動中に燃料電池温
度が下がるような場合でも燃料電池温度を維持すること
ができ、発電効率の低下を防止することができる。
By switching the recirculation path opening degree, the recirculation amount of the exhaust air from the fuel cell having a higher temperature than the fresh air to the fuel cell is adjusted, so that the outside air temperature is low and the fuel cell temperature is lowered during the power generation operation. In such a case, the fuel cell temperature can be maintained, and a decrease in power generation efficiency can be prevented.

【0015】[0015]

【発明の実施の形態】(第1実施形態)図1に本発明の
燃料電池の暖機システムの第1実施形態を示す。燃料電
池1のセル1aは電解質板11の一方の面に燃料極12
を、他方の面に空気極13を密着せしめてなり、このセ
ル1aをカーボン等を板状に成形したセパレータ14,
15が挟持している。セパレータ14,15の燃料極1
2または空気極13側の面に形成した凹部により、燃料
極12側のセパレータ14と燃料極12とを室壁面とし
て燃料室101が形成され、空気極13側のセパレータ
15と空気極13を室壁面とする空気室102が形成さ
れている。
(First Embodiment) FIG. 1 shows a first embodiment of a fuel cell warm-up system according to the present invention. The cell 1 a of the fuel cell 1 has a fuel electrode 12 on one surface of an electrolyte plate 11.
The air electrode 13 is brought into close contact with the other surface, and the cell 1a is formed into a plate-like separator 14 made of carbon or the like.
15 are pinched. Fuel electrode 1 of separators 14 and 15
The fuel chamber 101 is formed with the separator 14 on the fuel electrode 12 side and the fuel electrode 12 as a chamber wall surface by the concave portion formed on the surface on the side of the cathode 2 or the air electrode 13. An air chamber 102 serving as a wall surface is formed.

【0016】燃料室101には切り換えバルブ3を介し
て燃料である水素が導入され、空気室102にはエアポ
ンプ5から空気が導入される。エアポンプ5には、新気
が吸入される吸気流路41からの空気が取り入れられ
る。エアポンプ5には、燃料電池への空気供給用として
一般的な無潤滑式の電動ポンプが用いられ、取り入れた
空気を圧縮、吐出してオイル等の異物を含まないクリー
ンな状態で燃料電池1内に供給する。そして燃料極1
2、空気極13のそれぞれにおける水素および空気中の
酸素の電気化学的酸化還元反応により燃料極12と空気
極13間に電圧が発生し、負荷2に給電するようになっ
ている。また空気室102には排気流路42が接続さ
れ、上記電気化学的酸化還元反応の生成ガスを外部に放
出するようになっている。
Hydrogen as fuel is introduced into the fuel chamber 101 via the switching valve 3, and air is introduced from the air pump 5 into the air chamber 102. The air from the intake passage 41 into which fresh air is sucked is introduced into the air pump 5. As the air pump 5, a general non-lubricated electric pump for supplying air to the fuel cell is used. The air pump 5 compresses and discharges the taken-in air to keep the inside of the fuel cell 1 clean and free from oil and other foreign matter. To supply. And fuel electrode 1
2. A voltage is generated between the fuel electrode 12 and the air electrode 13 by an electrochemical oxidation-reduction reaction of hydrogen in the air electrode 13 and oxygen in the air to supply power to the load 2. An exhaust passage 42 is connected to the air chamber 102 so as to discharge a gas generated by the electrochemical oxidation-reduction reaction to the outside.

【0017】暖機システムは上記エアポンプ5や吸気流
路41等の基本的な燃料電池1の付設物を含み構成され
る。吸気流路41および排気流路42の途中には切り換
え弁6が設けてある。この空気用の切り換え弁6は、吸
気流路41の上流部および下流部のそれぞれと連通する
2つの吸気流路用ポート61,62と、排気流路42の
上流部および下流部のそれぞれと連通する2つの排気流
路用ポート63,64とを有し、暖機状態と通常状態と
の2つの状態に切り換え可能としてある。この切り換え
弁6の切り換え状態を説明すると、両状態いずれにおい
ても、吸気流路41の上流部と下流部とが連通し、かつ
排気流路42の上流部と下流部とが連通するようになっ
ている。かつ、暖機状態(図の状態)では、切り換え弁
6内部に形成した還流路65により吸気流路41と排気
流路42とが連通し、通常状態では吸気流路41と排気
流路42とは遮断する。すなわち、切り換え弁6は、吸
気流路41と排気流路42とを接続する還流路65を開
閉するものである。
The warm-up system includes the basic components of the fuel cell 1 such as the air pump 5 and the intake passage 41. The switching valve 6 is provided in the intake passage 41 and the exhaust passage 42. The air switching valve 6 communicates with two intake passage ports 61 and 62 communicating with the upstream and downstream portions of the intake passage 41, and with the upstream and downstream portions of the exhaust passage 42, respectively. And two exhaust passage ports 63 and 64 for switching between a warm-up state and a normal state. The switching state of the switching valve 6 will be described. In both states, the upstream part and the downstream part of the intake passage 41 communicate with each other, and the upstream part and the downstream part of the exhaust passage 42 communicate with each other. ing. In the warmed-up state (the state shown in the figure), the intake passage 41 and the exhaust passage 42 communicate with each other through the return passage 65 formed inside the switching valve 6, and in the normal state, the intake passage 41 and the exhaust passage 42 communicate with each other. Shuts off. That is, the switching valve 6 opens and closes the recirculation passage 65 that connects the intake passage 41 and the exhaust passage 42.

【0018】吸気流路41には、空気用の切り換え弁6
の上流に絞り弁71が設けてあり、吸気流路41の開度
を調整可能としてある。また、排気流路42には、切り
換え弁6の下流に絞り弁72が設けてあり、排気流路4
2の開度を調整可能としてある。
A switching valve 6 for air is provided in the intake passage 41.
A throttle valve 71 is provided upstream of the intake passage 41 so that the opening degree of the intake passage 41 can be adjusted. A throttle valve 72 is provided in the exhaust passage 42 downstream of the switching valve 6.
2 is adjustable.

【0019】エアポンプ5、切り換え弁3,6、絞り弁
71,72の制御を行う制御装置9が設けられ、燃料電
池1の起動および停止、燃料電池1の暖機を行うように
なっている。制御装置9はマイクロコンピュータ等で構
成される。
A control device 9 for controlling the air pump 5, the switching valves 3 and 6, and the throttle valves 71 and 72 is provided to start and stop the fuel cell 1 and warm up the fuel cell 1. The control device 9 is configured by a microcomputer or the like.

【0020】また、吸気流路41の最下流部である燃料
電池1の空気室102の入り口付近には温度センサ8が
設けてあり、空気室102に流入する空気の温度を検出
し、検出信号が制御装置9に入力するようになってい
る。温度センサ8による検出温度は燃料電池1の空気室
102入り口付近の温度であるが、電解質板11、燃料
極12、空気極13は、これらを機械的に挟持するセパ
レータ14,15に比してはるかに薄いので、熱容量が
小さく空気極13の熱伝導もよく、検出温度はセパレー
タ14,15に温度センサを設けた場合に比して、応答
性よくセル1aの温度に追随する。このように吸気流路
41の最下流部に設けた温度センサ8により実質的にセ
ル1aの温度を検出できる。エアポンプ5と温度センサ
8との間には、このポンプ5から吐出される空気を加湿
する加湿器73が配置されている。この加湿器73は制
御装置9により制御され、ポンプ5から吐出された空気
の温度が所定値(低温起動時ではなくなったとき)に到
達したときに制御装置9からの信号により予め定められ
た量の水が加湿器73から空気に供給される。これによ
り、ポンプ5から吐出された空気が加湿される。空気を
加湿する理由としては、燃料電池1のセル1aは例えば
イオン導電性の高分子膜で構成されており、この高分子
膜中に水分が含まれていないと、高分子膜がイオン導電
体として機能しないためである。なお、ポンプ5から吐
出された空気の温度が所定値を下回るときには加湿器7
3からの水の供給を行わないのは、空気の温度が下が
り、暖機促進効果が低下するのを抑制するためである。
A temperature sensor 8 is provided near the entrance of the air chamber 102 of the fuel cell 1, which is the most downstream part of the intake passage 41, and detects the temperature of the air flowing into the air chamber 102, and outputs a detection signal. Is input to the control device 9. The temperature detected by the temperature sensor 8 is the temperature near the entrance of the air chamber 102 of the fuel cell 1. The electrolyte plate 11, the fuel electrode 12, and the air electrode 13 are compared with the separators 14, 15 that mechanically sandwich them. Since it is much thinner, the heat capacity is small and the heat conduction of the air electrode 13 is good, and the detected temperature follows the temperature of the cell 1a with a higher responsiveness than when the temperature sensors are provided on the separators 14 and 15. As described above, the temperature of the cell 1a can be substantially detected by the temperature sensor 8 provided at the most downstream portion of the intake passage 41. A humidifier 73 for humidifying the air discharged from the pump 5 is arranged between the air pump 5 and the temperature sensor 8. The humidifier 73 is controlled by the control device 9, and is controlled by a signal from the control device 9 when the temperature of the air discharged from the pump 5 reaches a predetermined value (when the temperature has stopped at the time of low-temperature startup). Is supplied from the humidifier 73 to the air. Thereby, the air discharged from the pump 5 is humidified. The reason for humidifying the air is that the cell 1a of the fuel cell 1 is made of, for example, an ionic conductive polymer film, and if the polymer film does not contain water, the polymer film becomes an ionic conductor. It does not function as When the temperature of the air discharged from the pump 5 falls below a predetermined value, the humidifier 7
The reason for not supplying the water from 3 is to suppress a decrease in the temperature of the air and a decrease in the warm-up promoting effect.

【0021】図2に本暖機システムの起動から発電まで
のシステム各部の作動を示すタイムチャートを示す。
(A)は温度センサ8の検出温度であり、(B)は絞り
弁71,72の開度であり、(C)はエアポンプ5から
吐出され燃料電池1に供給される空気量であり、(D)
は燃料電池1に供給される水素量である。これと上記図
1により、制御装置9において実行される制御手順とと
もに本暖機システムの作動を説明する。制御装置9は、
燃料電池1の起動時には、燃料用の切り換え弁3を
「開」にする前に、すなわち燃料電池1に水素の供給を
開始するに先立ち、「閉」とした状態(図1の状態)に
おいて次のように燃料電池1の暖機を行う。先ず、両絞
り弁71,72を全閉とし、空気用の切り換え弁6を、
吸気流路41と排気流路42とが還流路65を介して接
続される図1の状態に設定する。そして、この状態でエ
アポンプ5を起動する。エアポンプ5から吐出された空
気は燃料電池1〜排気流路42の上流部〜切り換え弁6
〜吸気流路41の下流部に到りエアポンプ5に戻る循環
路を循環する。なお、エアポンプ5への駆動電圧は理論
効率が最高となる回転域で作動するように設定して最大
量の空気が燃料電池1の空気室102内を流通するよう
にする。
FIG. 2 is a time chart showing the operation of each part of the system from the start of the warm-up system to the generation of electricity.
(A) is the temperature detected by the temperature sensor 8, (B) is the opening degree of the throttle valves 71 and 72, (C) is the amount of air discharged from the air pump 5 and supplied to the fuel cell 1, D)
Is the amount of hydrogen supplied to the fuel cell 1. The operation of the warm-up system will be described with reference to FIG. 1 and the control procedure executed in the control device 9. The control device 9
When the fuel cell 1 is started, before the fuel switching valve 3 is opened, that is, before the supply of hydrogen to the fuel cell 1 is started, the fuel cell 1 is closed (the state shown in FIG. 1). The fuel cell 1 is warmed up as follows. First, both the throttle valves 71 and 72 are fully closed, and the air switching valve 6 is
The state shown in FIG. 1 in which the intake passage 41 and the exhaust passage 42 are connected via the recirculation passage 65 is set. Then, the air pump 5 is started in this state. The air discharged from the air pump 5 flows from the fuel cell 1 to the upstream part of the exhaust passage 42 to the switching valve 6.
Circulate a circulation path that reaches the downstream of the intake passage 41 and returns to the air pump 5. The driving voltage to the air pump 5 is set so as to operate in the rotation range where the theoretical efficiency is the highest, so that the maximum amount of air flows through the air chamber 102 of the fuel cell 1.

【0022】エアポンプ5は作動時に圧縮損失および機
械損失により熱を発生し、特に無潤滑式のものでは相当
量の熱を発生する。しかしてエアポンプ5通過時に空気
は昇温し、次いで燃料電池1のセル1aに空気極13に
て放熱する。ここで、空気室102には上記のごとく最
大量の空気が流通するから、空気室102内における空
気の流速はきわめて速く空気とセル1aの間の熱交換は
効率よく行われる。そして、空気が流通する上記循環路
は閉じたループを形成しているので空気の入れ換えがな
く、また、循環路中にはタンク等の、熱容量を大きくす
る部分がない。しかも、作動流体である空気は水に比し
て比熱が小さい。このように循環路に存在する空気の熱
容量は小さいので、循環空気は瞬く間に100°C近く
まで昇温する。
The air pump 5 generates heat during operation due to compression loss and mechanical loss. Particularly, a non-lubricated type generates a considerable amount of heat. When the air passes through the air pump 5, the temperature of the air rises, and then the air is radiated to the cell 1a of the fuel cell 1 by the air electrode 13. Here, since the maximum amount of air flows through the air chamber 102 as described above, the flow velocity of the air in the air chamber 102 is extremely high, and the heat exchange between the air and the cell 1a is efficiently performed. Since the circulation path through which the air flows forms a closed loop, there is no exchange of air, and there is no portion in the circulation path such as a tank that increases the heat capacity. In addition, air as a working fluid has a lower specific heat than water. As described above, since the heat capacity of the air existing in the circulation path is small, the temperature of the circulation air instantaneously rises to nearly 100 ° C.

【0023】検出温度が予め設定した発電開始基準温度
である100°C近くになったら両絞り弁71,72を
徐々に開放して新気の吸入および排出空気の燃料電池1
外部への排出を少しづつ行い循環する空気の量の割合を
減らし、最後には絞り弁71,72を全開とする。そし
てエアポンプ5の駆動電圧を下げて空気量を減らし発電
作動に備える。なおこれらエアポンプ5等の制御は、検
出温度が上記発電開始基準温度に向けて上昇するように
行う。
When the detected temperature becomes close to a preset power generation start reference temperature of 100.degree. C., the throttle valves 71 and 72 are gradually opened to open the fuel cell 1 for intake of fresh air and exhaust air.
By gradually discharging the air to the outside, the ratio of the amount of circulating air is reduced, and finally, the throttle valves 71 and 72 are fully opened. Then, the drive voltage of the air pump 5 is reduced to reduce the amount of air and prepare for a power generation operation. The control of the air pump 5 and the like is performed so that the detected temperature increases toward the power generation start reference temperature.

【0024】そして、検出温度が発電開始基準温度に達
したら、燃料用の切り換え弁3を「開」として水素を燃
料電池1の燃料室101に供給し、発電を開始する。
When the detected temperature reaches the power generation start reference temperature, the fuel switching valve 3 is opened to supply hydrogen to the fuel chamber 101 of the fuel cell 1 to start power generation.

【0025】発電作動に入った後、エアポンプ5から吐
出される空気の温度が上昇して検出温度が定常時基準温
度に達したら、空気用の切り換え弁6を通常状態側に切
り換えて吸気流路41と排気流路42とを遮断しエアポ
ンプ5から燃料電池1への供給空気を全て吸気流路41
の最上流部から吸入された新気とする。
When the temperature of the air discharged from the air pump 5 rises and the detected temperature reaches the steady-state reference temperature after the start of the power generation operation, the air switching valve 6 is switched to the normal state to change the intake passage. 41 and the exhaust flow path 42 are shut off, and all air supplied from the air pump 5 to the fuel cell 1 is supplied to the intake flow path 41.
It is assumed that fresh air is inhaled from the uppermost stream of the.

【0026】なお、寒冷地等において極端に外気温が低
く検出温度が定常時基準温度に達しないときは、空気用
の切り換え弁6を暖機状態側すなわち還流路65を開い
たままとし、燃料電池1への供給空気に排気流路42か
ら還流する高温の空気を混入せしめ、燃料電池1に流入
する空気の温度が定常時基準温度になるようにする。こ
れにより、セル1a温度の低下による発電効率の低下を
防止することができ、負荷2への供給電力を確保するこ
とができる。
When the outside air temperature is extremely low in a cold region or the like and the detected temperature does not reach the steady-state reference temperature, the air switching valve 6 is kept warm, that is, the recirculation path 65 is kept open, and the fuel The high-temperature air flowing back from the exhaust passage 42 is mixed with the supply air to the battery 1 so that the temperature of the air flowing into the fuel cell 1 becomes the reference temperature in the steady state. As a result, it is possible to prevent a decrease in the power generation efficiency due to a decrease in the temperature of the cell 1a, and it is possible to secure power supply to the load 2.

【0027】(第2実施形態)本発明の暖機システムの
第2の実施形態を図3に示す。図1の構成において、排
気流路42から吸気流路41に空気を還流せしめるため
の構成を別の構成に代えたものであり、図中、図1と同
じ番号を付した部分については実質的に同じ作動をする
ので図1の構成の暖機システムとの相違点を中心に説明
する。絞り弁6Aは一端が吸気流路41と、吸気用の絞
り弁71の下流部にて接続し、他端が排気流路42と、
排気用の絞り弁72の上流部にて接続している。この還
流用の絞り弁6Aは開度調整可能に構成されたもので、
開度は制御装置9により調整される。
(Second Embodiment) FIG. 3 shows a second embodiment of the warming-up system according to the present invention. In the configuration of FIG. 1, the configuration for recirculating air from the exhaust flow path 42 to the intake flow path 41 is replaced with another configuration. In the figure, portions denoted by the same reference numerals as those in FIG. Since the operation is the same as that of the warm-up system shown in FIG. The throttle valve 6A has one end connected to the intake passage 41 at a downstream portion of the intake throttle valve 71, the other end connected to the exhaust passage 42,
It is connected at the upstream of the exhaust throttle valve 72. This recirculation throttle valve 6A is configured so that the opening can be adjusted.
The opening is adjusted by the control device 9.

【0028】制御装置9は絞り弁6Aを全開とすること
で、第1実施形態において切り換え弁6(図1)を暖機
状態にした場合のように燃料電池1からの排出空気を吸
気流路41を介してエアポンプ5に還流せしめ、絞り弁
6Aを全閉とすることで、切り換え弁6を通常状態にし
た場合のように吸気流路41と排気流路42とを遮断す
ることができる。さらに、絞り弁6Aは開度を全閉から
全開まで連続的に変えることができるので、吸気用絞り
弁71および排気用絞り弁72を全開とした後、還流路
である絞り弁6Aの開度を徐々に小さくしながら閉じる
ように制御することで、温度センサ8による検出温度が
スムーズに定常時温度となるようにすることができる。
By opening the throttle valve 6A fully, the control device 9 transfers the exhaust air from the fuel cell 1 to the intake passage as in the case where the switching valve 6 (FIG. 1) is warmed up in the first embodiment. By causing the air to return to the air pump 5 via 41 and fully closing the throttle valve 6A, the intake flow path 41 and the exhaust flow path 42 can be shut off as in the case where the switching valve 6 is in the normal state. Further, since the opening degree of the throttle valve 6A can be continuously changed from the fully closed state to the fully opened state, after the intake throttle valve 71 and the exhaust throttle valve 72 are fully opened, the opening degree of the throttle valve 6A which is the recirculation path is changed. Is controlled so that the temperature is gradually reduced, so that the temperature detected by the temperature sensor 8 can be smoothly set to the steady-state temperature.

【0029】なお、暖機システムの構成は上記各実施形
態に限定されるものではなく、本発明の趣旨に反しない
限り任意であり、例えば、吸入流路、排気流路の絞り弁
に代えて、燃料供給開始前の暖機時に閉じる単純な開閉
弁とすることもできる。また、これらの絞り弁や開閉弁
は、暖機の立ち上がりに対する要求によっては省略し
て、新気と暖機用の還流空気とが混合して燃料電池に流
入するようにしてもよい。
The configuration of the warming-up system is not limited to the above embodiments, and may be any configuration as long as it does not contradict the spirit of the present invention. Alternatively, a simple on-off valve that closes during warm-up before starting fuel supply can be used. In addition, these throttle valves and on-off valves may be omitted depending on the demand for startup of warm-up, and fresh air and return air for warm-up may be mixed and flow into the fuel cell.

【0030】また、燃料電池の容量が大きくセル数も多
い場合等、吸気流路に設けた温度センサの検出温度とセ
ル温度との対応関係が十分でない場合には、予め実験で
吸気流路の最下流部における空気温度とセル温度との関
係を求めておき、その結果をマップとして制御装置に入
力しておけばよい。また、暖機が十分であるか否かを正
確に知る必要がなければ温度センサは省略し、例えば簡
単に暖機期間をタイマで設定してもよい。
If the correspondence between the detected temperature of the temperature sensor provided in the intake passage and the cell temperature is not sufficient, for example, when the capacity of the fuel cell is large and the number of cells is large, it is necessary to conduct an experiment in advance to determine the intake passage. The relationship between the air temperature and the cell temperature at the most downstream portion may be determined, and the result may be input to the control device as a map. If it is not necessary to know whether the warm-up is sufficient or not, the temperature sensor may be omitted, and the warm-up period may be simply set by a timer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料電池の暖機システムの構成図であ
る。
FIG. 1 is a configuration diagram of a fuel cell warm-up system of the present invention.

【図2】本発明の燃料電池の暖機システムの作動を説明
するタイムチャートである。
FIG. 2 is a time chart for explaining the operation of the fuel cell warm-up system of the present invention.

【図3】本発明の別の燃料電池の暖機システムの構成図
である。
FIG. 3 is a configuration diagram of another fuel cell warm-up system of the present invention.

【符号の説明】[Explanation of symbols]

1 燃料電池 1a セル 11 電解質板 12 燃料極 13 空気極 14,15 セパレータ 2 負荷 3 切り換え弁 41 吸気流路 42 排気流路 5 エアポンプ 6 切り換え弁(還流路開度切り換え手段) 65 還流路 6A 絞り弁(還流路、還流路開度切り換え手段) 71 絞り弁(吸気流路開度切り換え手段) 72 絞り弁(排気流路開度切り換え手段) 8 温度センサ 9 制御装置(制御手段) Reference Signs List 1 fuel cell 1a cell 11 electrolyte plate 12 fuel electrode 13 air electrode 14, 15 separator 2 load 3 switching valve 41 intake flow path 42 exhaust flow path 5 air pump 6 switching valve (return path opening degree switching means) 65 return path 6A throttle valve (Reflux path, recirculation path opening degree switching means) 71 Throttle valve (intake path opening degree switching means) 72 Throttle valve (exhaust path opening degree switching means) 8 Temperature sensor 9 Control device (control means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲垣 光夫 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 荒木 康 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 5H027 AA06 BC19 KK46 MM03 MM04 5H115 PA11 PG04 PI18  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mitsuo Inagaki 14 Iwatani, Shimowakaku-cho, Nishio-shi, Aichi Prefecture Inside Japan Automotive Parts Research Institute Co., Ltd. F term in reference (reference) 5H027 AA06 BC19 KK46 MM03 MM04 5H115 PA11 PG04 PI18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 新気が吸入される吸気流路からの空気を
圧縮し燃料電池に供給するエアポンプと、燃料電池から
排出される空気を外部に放出する排気流路から分岐して
上記吸気流路に合流し燃料電池からの排出空気をエアポ
ンプに還流せしめる還流路と、還流路の開度を切り換え
る還流路開度切り換え手段と、燃料および空気の供給を
制御する制御手段とを具備し、上記制御手段は、燃料電
池への燃料の供給に先立ち還流路開度切り換え手段を制
御して還流路を開くとともにエアポンプを作動するよう
に設定し、還流路を流通しエアポンプ通過時に昇温する
循環空気により燃料電池を暖機することを特徴とする燃
料電池の暖機システム。
1. An air pump for compressing air from an intake passage through which fresh air is sucked and supplying the compressed air to a fuel cell, and an exhaust passage branching from an exhaust passage for discharging air discharged from the fuel cell to the outside. A recirculation path that merges with the path and recirculates exhaust air from the fuel cell to the air pump; recirculation path opening degree switching means for switching the degree of opening of the recirculation path; and control means for controlling the supply of fuel and air. The control means controls the return path opening degree switching means to open the return path and operate the air pump prior to the supply of fuel to the fuel cell, and sets the circulating air to flow through the return path and raise the temperature when passing through the air pump. A warm-up system for a fuel cell, comprising:
【請求項2】 請求項1記載の燃料電池の暖機システム
において、上記吸気流路の上記還流路との分岐部よりも
上流部に、吸気流路の開度を切り換える吸気流路開度切
り換え手段を設け、上記排気流路の上記還流路との分岐
部よりも下流部に、排気流路の開度を切り換える排気流
路開度切り換え手段を設け、上記制御手段は、燃料電池
への燃料の供給に先立ち、吸気流路開度切り換え手段お
よび排気流路開度切り替え手段を制御して、吸気流路お
よび排気流路を閉じるように設定した燃料電池の暖機シ
ステム。
2. A fuel cell warm-up system according to claim 1, wherein the opening of the intake passage is switched to an opening of the intake passage upstream of a branch from the return passage of the intake passage. Means, and an exhaust flow path opening degree switching means for switching the degree of opening of the exhaust flow path is provided downstream of the branch of the exhaust flow path from the return path. A fuel cell warm-up system in which the intake passage opening degree switching unit and the exhaust passage opening degree switching unit are controlled prior to the supply of the fuel cell to close the intake passage and the exhaust passage.
【請求項3】 請求項1または2いずれか記載の燃料電
池の暖機システムにおいて、上記燃料電池の温度を検出
する温度センサを具備せしめ、上記制御手段は、検出温
度が予め設定した発電開始基準温度を越えると燃料の供
給を開始するように設定した燃料電池の暖機システム。
3. The fuel cell warm-up system according to claim 1, further comprising a temperature sensor for detecting a temperature of the fuel cell, wherein the control means sets the detected temperature to a power generation start reference set in advance. A fuel cell warm-up system set to start supplying fuel when the temperature is exceeded.
【請求項4】 請求項3記載の燃料電池の暖機システム
において、上記制御手段を、発電作動中に検出温度が予
め設定した定常時基準温度となるように上記還流路の開
度を切り換えるように設定した燃料電池の暖機システ
ム。
4. The fuel cell warm-up system according to claim 3, wherein the control means switches the degree of opening of the return passage so that the detected temperature becomes a preset steady state reference temperature during the power generation operation. Fuel cell warm-up system set to.
JP10372101A 1998-12-28 1998-12-28 Warming-up system of fuel cell Pending JP2000195533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10372101A JP2000195533A (en) 1998-12-28 1998-12-28 Warming-up system of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10372101A JP2000195533A (en) 1998-12-28 1998-12-28 Warming-up system of fuel cell

Publications (1)

Publication Number Publication Date
JP2000195533A true JP2000195533A (en) 2000-07-14

Family

ID=18499858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10372101A Pending JP2000195533A (en) 1998-12-28 1998-12-28 Warming-up system of fuel cell

Country Status (1)

Country Link
JP (1) JP2000195533A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083618A (en) * 2000-09-06 2002-03-22 Hitachi Ltd Fuel cell system
JP2002313389A (en) * 2001-04-10 2002-10-25 Honda Motor Co Ltd Starting control device for fuel cell
WO2003041202A2 (en) * 2001-11-08 2003-05-15 Nissan Motor Co., Ltd. Fuel cell startup method
JP2004103367A (en) * 2002-09-09 2004-04-02 Denso Corp Fuel cell system
JP2004234895A (en) * 2003-01-28 2004-08-19 Toyota Industries Corp Fuel cell system
US6936359B2 (en) * 2000-05-30 2005-08-30 Honda Giken Kogyo Kabushiki Kaisha Apparatus for warming-up fuel cell
JP2005302421A (en) * 2004-04-08 2005-10-27 Toyota Motor Corp Fuel cell system
JP2006066112A (en) * 2004-08-25 2006-03-09 Toyota Motor Corp Fuel cell system
US7086246B2 (en) 2003-02-26 2006-08-08 Denso Corporation Cooling apparatus for fuel cell utilizing air conditioning system
JP2008166042A (en) * 2006-12-27 2008-07-17 Toshiba Consumer Electronics Holdings Corp Fuel cell cogeneration system
JP2009140731A (en) * 2007-12-06 2009-06-25 Toyota Motor Corp Fuel cell system
WO2013161804A1 (en) * 2012-04-27 2013-10-31 スズキ株式会社 Fuel cell device for vehicle
JP2018097926A (en) * 2016-12-08 2018-06-21 アイシン精機株式会社 Fuel cell system
JP2018113214A (en) * 2017-01-13 2018-07-19 株式会社豊田自動織機 Fuel cell system
CN111439167A (en) * 2020-03-20 2020-07-24 清华大学 Multi-environment comprehensive heat management method for fuel cell vehicle
CN112640173A (en) * 2019-07-10 2021-04-09 株式会社东芝 Intake air preheating device and fuel cell power generation system

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936359B2 (en) * 2000-05-30 2005-08-30 Honda Giken Kogyo Kabushiki Kaisha Apparatus for warming-up fuel cell
US7470479B2 (en) 2000-05-30 2008-12-30 Honda Motor Co., Ltd. Method and apparatus for warming-up fuel cell and fuel cell vehicle
JP2002083618A (en) * 2000-09-06 2002-03-22 Hitachi Ltd Fuel cell system
JP2002313389A (en) * 2001-04-10 2002-10-25 Honda Motor Co Ltd Starting control device for fuel cell
US7122259B2 (en) 2001-11-08 2006-10-17 Nissan Motor Co., Ltd. Fuel cell startup method
WO2003041202A2 (en) * 2001-11-08 2003-05-15 Nissan Motor Co., Ltd. Fuel cell startup method
WO2003041202A3 (en) * 2001-11-08 2004-03-25 Nissan Motor Fuel cell startup method
JP2004103367A (en) * 2002-09-09 2004-04-02 Denso Corp Fuel cell system
JP2004234895A (en) * 2003-01-28 2004-08-19 Toyota Industries Corp Fuel cell system
US7086246B2 (en) 2003-02-26 2006-08-08 Denso Corporation Cooling apparatus for fuel cell utilizing air conditioning system
JP4701624B2 (en) * 2004-04-08 2011-06-15 トヨタ自動車株式会社 Fuel cell system
JP2005302421A (en) * 2004-04-08 2005-10-27 Toyota Motor Corp Fuel cell system
JP2006066112A (en) * 2004-08-25 2006-03-09 Toyota Motor Corp Fuel cell system
JP2008166042A (en) * 2006-12-27 2008-07-17 Toshiba Consumer Electronics Holdings Corp Fuel cell cogeneration system
JP2009140731A (en) * 2007-12-06 2009-06-25 Toyota Motor Corp Fuel cell system
US9705140B2 (en) 2012-04-27 2017-07-11 Suzuki Motor Corporation Vehicle fuel cell apparatus with improved air intake
GB2514728A (en) * 2012-04-27 2014-12-03 Suzuki Motor Corp Fuel cell device for vehicle
CN104247121A (en) * 2012-04-27 2014-12-24 铃木株式会社 Fuel cell device for vehicle
JPWO2013161804A1 (en) * 2012-04-27 2015-12-24 スズキ株式会社 Vehicle fuel cell device
WO2013161804A1 (en) * 2012-04-27 2013-10-31 スズキ株式会社 Fuel cell device for vehicle
GB2514728B (en) * 2012-04-27 2019-07-03 Suzuki Motor Corp Fuel cell apparatus for vehicles
JP2018097926A (en) * 2016-12-08 2018-06-21 アイシン精機株式会社 Fuel cell system
JP2018113214A (en) * 2017-01-13 2018-07-19 株式会社豊田自動織機 Fuel cell system
CN112640173A (en) * 2019-07-10 2021-04-09 株式会社东芝 Intake air preheating device and fuel cell power generation system
CN112640173B (en) * 2019-07-10 2024-02-20 株式会社东芝 Intake air preheating device and fuel cell power generation system
CN111439167A (en) * 2020-03-20 2020-07-24 清华大学 Multi-environment comprehensive heat management method for fuel cell vehicle
CN111439167B (en) * 2020-03-20 2021-11-09 清华大学 Multi-environment comprehensive heat management method for fuel cell vehicle
US11309559B2 (en) 2020-03-20 2022-04-19 Tsinghua University Multi-environment integrative thermal management method for fuel cell vehicle

Similar Documents

Publication Publication Date Title
US7179556B2 (en) Fuel cell system
CN110957503B (en) Air heating reflux system for low-temperature starting of fuel cell and control method
JP3599761B2 (en) Fuel cell warm-up system
KR101136897B1 (en) Air conditioning control system
US7887965B2 (en) Warm-up apparatus for fuel cell
JP4843147B2 (en) Fuel cell warm-up system
US7901823B2 (en) Fuel cell employing cooling liquid passages for starting at low temperature
JP2000195533A (en) Warming-up system of fuel cell
CN209786084U (en) cooling system for vehicle fuel cell system
US20070218328A1 (en) Fuel cell system
US11450869B2 (en) Fuel cell system
JP2006513528A (en) Start-up operation under freezing of fuel cell-powered electric vehicles or other loads
JP2004030979A (en) Fuel cell system
JP5074669B2 (en) Fuel cell system
JP4178849B2 (en) Fuel cell system
US7179555B2 (en) Fuel cell system
JP3876608B2 (en) Fuel cell system
JP4984808B2 (en) Air conditioning control system
JP2004296351A (en) Fuel cell system
JP4114459B2 (en) Fuel cell system
JP4415538B2 (en) Fuel cell system
JP2009054427A (en) Fuel cell system
JP3951813B2 (en) Fuel cell warm-up system
JP2003331886A (en) Fuel cell system
JP4534281B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421