JP2000195507A - Manufacture of negative electrode for nonaqueous system secondary battery - Google Patents

Manufacture of negative electrode for nonaqueous system secondary battery

Info

Publication number
JP2000195507A
JP2000195507A JP10372849A JP37284998A JP2000195507A JP 2000195507 A JP2000195507 A JP 2000195507A JP 10372849 A JP10372849 A JP 10372849A JP 37284998 A JP37284998 A JP 37284998A JP 2000195507 A JP2000195507 A JP 2000195507A
Authority
JP
Japan
Prior art keywords
negative electrode
compound
binder
silicon
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10372849A
Other languages
Japanese (ja)
Inventor
Toru Nishimura
徹 西村
Atsushi Suzuki
淳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP10372849A priority Critical patent/JP2000195507A/en
Publication of JP2000195507A publication Critical patent/JP2000195507A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance charging/discharging cycle characteristics by mixing Si or its compound with a binder carbonized and imparting conductivity, compressing the mixture, and sintering under a non-oxidizing atmosphere. SOLUTION: In the manufacture of a negative electrode, mixture powder containing Si or its compound, and a binder is compressed in a specified shape with a molding machine. A molding body is sintered under a non-oxidizing atmosphere such as nitrogen or argon atmosphere at 400-1400 deg.C for example. The mixture powder may be dispersed in water to form slurry. As the molding method, injection molding and extrusion molding can also be used. As the Si compound, silicon oxide and silicone resin are listed. They are converted into Si by decomposition or reduction under non-oxidizing atmosphere. As the binder, usual thermoplastic polymer, rubber like polymer, thermoplastic elastomer, and pitch resin are listed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、負極活物質として
ケイ素を含む非水系二次電池用負極の製造方法に関す
る。
The present invention relates to a method for producing a negative electrode for a non-aqueous secondary battery containing silicon as a negative electrode active material.

【0002】[0002]

【従来の技術】携帯電話やノ−トパソコン等の普及に伴
って、リチウムイオンを挿入放出可能な正極活物質及び
負極活物質を含む高容量なリチウム二次電池が注目され
ているが、その中でも特に省スペ−スな薄型の角型電池
の需要が高まっている。
2. Description of the Related Art With the spread of mobile phones and notebook personal computers, high-capacity lithium secondary batteries containing a positive electrode active material and a negative electrode active material capable of inserting and releasing lithium ions have been receiving attention. In particular, the demand for space-saving and thin rectangular batteries is increasing.

【0003】現在の角型電池の電極中にはバインダ、導
電材、金属箔といった本来電極の容量に寄与しないもの
が含まれており、体積当たりの電池容量を制限するとい
う問題が有る。また、卷回した電極を角型の電池缶に収
納すると、電池缶の隅角の部分には充填できず、無駄な
スペ−スができるため、単位体積当たりの容量はさらに
低下する。
[0003] The electrodes of current prismatic batteries include those that do not originally contribute to the capacity of the electrodes, such as binders, conductive materials, and metal foils, and have the problem of limiting the battery capacity per volume. Further, when the wound electrode is housed in a rectangular battery can, the corner of the battery can cannot be filled, and wasteful space is created, so that the capacity per unit volume is further reduced.

【0004】そこで、単位体積当たりの容量を増大させ
る一つの手段として、電極を実質的に活物質からなる燒
結体で構成する試みがなされている。電極を燒結体で構
成すると、バインダを含まず、さらに導電材を不用又は
少量に減らすことができるため、活物質の充填密度を高
くすることができ、単位体積当たりの容量を増大させる
ことができる。例えば、特開平5−299090号公報
には石油ピッチあるいは炭素質材料の燒結体からなる負
極や、特開平8−180904号公報にはリチウム複合
酸化物の燒結体からなる正極が開示されている。
Therefore, as one means for increasing the capacity per unit volume, attempts have been made to form an electrode from a sintered body substantially made of an active material. When the electrode is formed of a sintered body, the binder is not included, and the conductive material can be unnecessary or reduced to a small amount. Therefore, the packing density of the active material can be increased, and the capacity per unit volume can be increased. . For example, JP-A-5-299090 discloses a negative electrode made of a sintered body of petroleum pitch or a carbonaceous material, and JP-A-8-180904 discloses a positive electrode made of a sintered body of a lithium composite oxide.

【0005】一方、本出願人らは、実用化されている焼
成炭素質材料に比べ大きな容量の期待できるケイ素と炭
素質材料とからなる焼結体を負極として用いることを、
WO98/24135号公報において提案している。
On the other hand, the present applicants have proposed using a sintered body of silicon and a carbonaceous material, which can be expected to have a larger capacity than a commercially available calcined carbonaceous material, as a negative electrode.
It is proposed in WO98 / 24135.

【0006】[0006]

【発明が解決しようとする課題】本発明は、ケイ素と炭
素質材料とからなる焼結体を用いる負極の改良に関する
ものであり、特に充放電のサイクル特性を向上させる非
水系二次電池用負極の製造方法を提供することを目的と
した。
The present invention relates to an improvement of a negative electrode using a sintered body composed of silicon and a carbonaceous material, and more particularly to a negative electrode for a non-aqueous secondary battery which improves the charge / discharge cycle characteristics. The purpose of the present invention is to provide a production method.

【0007】[0007]

【課題を解決するための手段】本発明は、ケイ素を負極
活物質として含む焼結体からなる非水系二次電池用負極
の製造方法において、ケイ素又はその化合物と炭化して
導電性を賦与するバインダーとを混合し、圧縮し、非酸
化雰囲気下で焼結させることを特徴とする。
SUMMARY OF THE INVENTION The present invention provides a method for producing a negative electrode for a non-aqueous secondary battery comprising a sintered body containing silicon as a negative electrode active material. It is characterized in that it is mixed with a binder, compressed and sintered under a non-oxidizing atmosphere.

【0008】ケイ素又はその化合物とバインダーを含む
混合物を圧縮して、焼結することにより、焼結体の密度
が向上し、さらに焼結体の電気抵抗も減少する。そのた
め、体積エネルギー密度の向上や、充放電のサイクル特
性の向上が可能となる。
[0008] By compressing and sintering a mixture containing silicon or its compound and a binder, the density of the sintered body is improved and the electric resistance of the sintered body is also reduced. Therefore, it is possible to improve the volume energy density and the charge / discharge cycle characteristics.

【0009】また、上記ケイ素又はその化合物とバイン
ダーとの混合物は、圧縮と同時に成型することが好まし
い。電池形状に合わせて、所望の形状の負極を成型機を
選択して調製することができる。
It is preferable that the mixture of silicon or the compound thereof and a binder is molded simultaneously with the compression. A negative electrode having a desired shape can be prepared by selecting a molding machine according to the shape of the battery.

【0010】また、上記ケイ素又はその化合物とバイン
ダーとを含む塗液を集電体に塗布して塗膜を調製し、塗
膜を圧縮することが好ましい。塗膜を圧縮して集電体と
より密着させることにより、焼結体と集電体との接触面
積が増加し、焼結体と集電体との間の接触抵抗が減少
し、充放電のサイクル特性の向上に寄与するとともに、
大面積の負極の調製が可能となる。
It is preferable that a coating liquid containing the silicon or its compound and a binder is applied to a current collector to prepare a coating film, and the coating film is compressed. By compressing the coating film and bringing it closer to the current collector, the contact area between the sintered body and the current collector increases, the contact resistance between the sintered body and the current collector decreases, Contributes to the improvement of the cycle characteristics of
A large-area negative electrode can be prepared.

【0011】[0011]

【発明の実施の形態】本発明の製造方法には、以下の方
法を用いることができる。すなわち、ケイ素又はその化
合物とバインダーを含む混合粉末を、成型機を用い、所
定形状に圧縮、成型する。この成型体は、窒素、アルゴ
ン等の非酸化ガス雰囲気下で、例えば400℃〜140
0℃で加熱処理して燒結する。また、上記混合粉末は、
水又は溶剤に分散させてスラリー状としても良い。成型
法は、射出成型、押出成型、鋳込成型、ドクターブレー
ド成型及び圧縮成型等、従来公知のいずれの方法を用い
ても良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The following method can be used for the production method of the present invention. That is, a mixed powder containing silicon or a compound thereof and a binder is compressed and molded into a predetermined shape using a molding machine. This molded body is, for example, 400 ° C. to 140 ° C. in a non-oxidizing gas atmosphere such as nitrogen or argon.
Sinter by heating at 0 ° C. Further, the mixed powder,
It may be dispersed in water or a solvent to form a slurry. As a molding method, any conventionally known method such as injection molding, extrusion molding, casting molding, doctor blade molding and compression molding may be used.

【0012】また、ケイ素又はその化合物をバインダー
を溶解した溶液に分散させて塗液とし、塗液を集電体上
に塗布して塗膜を調製し、その塗膜を圧縮成型等で圧縮
し、続いて非酸化雰囲気下で加熱処理して焼結しても良
い。ここで、塗液の集電体上への塗布には、グラビアコ
ーター、リバースコーター、ダイコーター及びカーテン
コーター等の従来公知のいずれの塗工機を用いても良
い。
Further, silicon or a compound thereof is dispersed in a solution in which a binder is dissolved to form a coating solution. The coating solution is applied on a current collector to prepare a coating film, and the coating film is compressed by compression molding or the like. Subsequently, sintering may be performed by heat treatment in a non-oxidizing atmosphere. Here, for coating the coating liquid on the current collector, any conventionally known coating machine such as a gravure coater, a reverse coater, a die coater, and a curtain coater may be used.

【0013】また、本発明に用いるケイ素又はその化合
物としては、結晶質、非晶質のいずれのケイ素も用いる
事ができ、ケイ素を含む化合物を用いても良い。ケイ素
化合物としては、酸化ケイ素などの無機ケイ素化合物
や、シリコーン樹脂、含ケイ素高分子化合物などの有機
ケイ素化合物様の非酸化雰囲気で分解又は還元されてケ
イ素に変化し得る材料が挙げられる。これらの中でも、
特にケイ素(単体)が好ましい。ケイ素の純度は特に限
定されるものではないが、十分な容量を得るためケイ素
含有率90重量%以上であることが好ましく、経済性か
ら99.999重量%以下のものが好ましい。ケイ素粉
末を用いる場合、その粒子径は特に限定されないが、ハ
ンドリングや原料価格、負極材料の均一性の観点から、
平均粒子径0.01μm以上100μm以下のものが好
適に用いられる。
As the silicon or the compound thereof used in the present invention, either crystalline or amorphous silicon can be used, and a compound containing silicon may be used. Examples of the silicon compound include inorganic silicon compounds such as silicon oxide, and materials capable of being decomposed or reduced into silicon by being decomposed or reduced in a non-oxidizing atmosphere like an organic silicon compound such as a silicone resin or a silicon-containing polymer compound. Among these,
Particularly, silicon (simple) is preferable. Although the purity of silicon is not particularly limited, the silicon content is preferably 90% by weight or more in order to obtain a sufficient capacity, and preferably 99.999% by weight or less from the viewpoint of economy. When using silicon powder, the particle size is not particularly limited, from the viewpoint of handling and raw material price, uniformity of the negative electrode material,
Those having an average particle size of 0.01 μm or more and 100 μm or less are preferably used.

【0014】また、ケイ素又はその化合物の代わりにケ
イ素と炭素材料とを含む複合粉末を用いても良い。。複
合粉末は、ケイ素又はその化合物を、炭素材料又は熱処
理により炭化する材料の存在下、非酸化雰囲気下で、ケ
イ素が溶融しない範囲で十分な燒結が起こる範囲、すな
わち600〜1400℃、好ましくは800〜1200
℃で熱処理することによる作製する。ここで用いる炭素
材料としては、コ−クス、ガラス状炭素、黒鉛、ピッチ
の炭化物及びこれらの混合物等が挙げられる。
Further, a composite powder containing silicon and a carbon material may be used instead of silicon or its compound. . The composite powder is in a range in which sufficient sintering occurs in a non-oxidizing atmosphere in the presence of a carbon material or a material that carbonizes silicon or its compound by heat treatment in a range where silicon does not melt, that is, 600 to 1400 ° C., preferably 800 to 800 ° C. ~ 1200
Fabricated by heat treatment at ℃. Examples of the carbon material used here include coke, glassy carbon, graphite, carbides of pitch, and mixtures thereof.

【0015】また、集電体には、ステンレス、銅族及び
白金族から選ばれたいずれか一つの金属を用いる事がで
きるが、還元状態でも電気化学的に安定で、導電性が高
く、さらに安価である銅が望ましい。さらに、箔又はメ
ッシュのいずれの形状のものを用いても良いが、厚さは
3〜100μmが望ましい。
Further, any one metal selected from stainless steel, copper group and platinum group can be used for the current collector, but it is electrochemically stable even in a reduced state, has high conductivity, and Inexpensive copper is desirable. Further, any shape of foil or mesh may be used, but the thickness is desirably 3 to 100 μm.

【0016】また、本発明に用いるバインダーとして
は、ポリエチレン、ポリプロピレン、ポリエチレンテレ
フタレート、ポリアミド、セルロース、メチルセルロー
ス、エチルセルロース、ポリアクリロニトリル、ポリエ
チレンオキサイド、ポリプロピレンオキサイド、ポリビ
ニルピロリドン、ポリビニルアルコール、ポリフッ化ビ
ニリデン、ポリウレタン等の熱可塑性高分子、スチレン
・ブタジエンゴム、イソプレンゴム、エチレン・プロピ
レンゴム等のゴム状高分子、熱可塑性エラストマー、ピ
ッチ樹脂等、従来公知のいずれのものも用いることがで
きる。
The binder used in the present invention includes polyethylene, polypropylene, polyethylene terephthalate, polyamide, cellulose, methyl cellulose, ethyl cellulose, polyacrylonitrile, polyethylene oxide, polypropylene oxide, polyvinyl pyrrolidone, polyvinyl alcohol, polyvinylidene fluoride, polyurethane and the like. Any conventionally known materials such as thermoplastic polymers, rubbery polymers such as styrene / butadiene rubber, isoprene rubber, and ethylene / propylene rubber, thermoplastic elastomers, pitch resins, and the like can be used.

【0017】また、塗膜の加熱処理温度は、用いる集電
体の融点以下が望ましく、例えば銅を用いる場合には、
融点である1083℃以下の必要がある。さらに、バイ
ンダーが炭化して導電性を発現するためには、400℃
以上の必要がある。好ましくは600〜1000℃、さ
らに、好ましくは800〜1000℃である。また、成
型機を用いる場合においても、上記温度範囲で焼結可能
である。
The heat treatment temperature of the coating film is desirably equal to or lower than the melting point of the current collector used. For example, when copper is used,
The melting point must be 1083 ° C. or less. Furthermore, in order for the binder to be carbonized and exhibit conductivity, the
Need more. Preferably it is 600-1000 degreeC, More preferably, it is 800-1000 degreeC. Further, even when a molding machine is used, sintering can be performed in the above temperature range.

【0018】また、本発明の方法で得られる負極ととも
に非水系二次電池に用いられる正極活物質として用いら
れる正極材料は、従来公知の何れの材料も使用でき、例
えば、LixCoO2,LixNiO2,MnO2,LiM
nO2,LixMn24,LixMn2-y4,α−V
25,TiS2等が挙げられる。
As the positive electrode active material used in the non-aqueous secondary battery together with the negative electrode obtained by the method of the present invention, any conventionally known materials can be used. For example, Li x CoO 2 , Li x x NiO 2 , MnO 2 , LiM
nO 2 , Li x Mn 2 O 4 , Li x Mn 2-y O 4 , α-V
2 O 5 , TiS 2 and the like.

【0019】また、本発明の方法で得られる負極ととも
に使用される非水電解質は、有機溶媒にリチウム化合物
を溶解させた非水電解液、又は高分子にリチウム化合物
を固溶或いはリチウム化合物を溶解させた有機溶媒を保
持させた高分子固体電解質を用いることができる。非水
電解液は、有機溶媒と電解質とを適宜組み合わせて調製
されるが、これら有機溶媒や電解質はこの種の電池に用
いられるものであればいずれも使用可能である。
The nonaqueous electrolyte used together with the negative electrode obtained by the method of the present invention is a nonaqueous electrolyte in which a lithium compound is dissolved in an organic solvent, or a solid solution of a lithium compound or a solution of a lithium compound in a polymer. A solid polymer electrolyte holding the organic solvent thus obtained can be used. The non-aqueous electrolyte is prepared by appropriately combining an organic solvent and an electrolyte, and any of these organic solvents and electrolytes can be used as long as they are used for this type of battery.

【0020】また、電極の膜厚の均一性を維持するとと
もに、強度を確保し、さらに内部抵抗を大きくしないた
めには、焼結体の厚さは10〜2000μmであること
が好ましい。
The thickness of the sintered body is preferably from 10 to 2000 μm in order to maintain the uniformity of the film thickness of the electrode, to secure the strength and not to increase the internal resistance.

【0021】[0021]

【実施例】実施例1.ケイ素粉末(平均粒子径1μm、
純度99%、高純度化学研究所(株))80重量部(以
下、重量部を部と略す)とグラファイト及びピッチ樹脂
の混合粉末(グラファイト90部/ピッチ樹脂10部、
大阪化成(株))20部を乾式混合し、窒素雰囲気下1
100℃で3時間焼成後、ボールミルで粉砕して、原料
粉末を得た。
[Embodiment 1] Silicon powder (average particle diameter 1 μm,
Purity 99%, High Purity Chemical Laboratory Co., Ltd. 80 parts by weight (hereinafter, parts by weight are abbreviated as “parts”) and a mixed powder of graphite and pitch resin (90 parts graphite / 10 parts pitch resin,
20 parts of Osaka Chemical Co., Ltd.) are dry-mixed and mixed under nitrogen atmosphere.
After firing at 100 ° C. for 3 hours, the mixture was pulverized with a ball mill to obtain a raw material powder.

【0022】原料粉末30部に、ポリフッ化ビニリデン
のN−メチル−2−ピロリドン溶液(10重量%)70
部を加え、ボールミルで湿式混合しスラリー状とした。
このスラリーを銅箔(厚さ30μm)上に塗布し、80
℃で30分間乾燥後、ロールプレス機で1.5t/cm
2の圧力をかけて圧着し、塗膜を得た。この塗膜を窒素
雰囲気下800℃で3時間焼成し、直径2cmの円形に
裁断して負極とした。
N-methyl-2-pyrrolidone solution (10% by weight) of polyvinylidene fluoride was added to 30 parts of the raw material powder.
And wet-mixed with a ball mill to form a slurry.
This slurry was applied on a copper foil (thickness 30 μm),
After drying at ℃ for 30 minutes, 1.5 t / cm with a roll press
The coating was applied under a pressure of 2 to obtain a coating film. This coating film was fired at 800 ° C. for 3 hours in a nitrogen atmosphere, and cut into a circle having a diameter of 2 cm to obtain a negative electrode.

【0023】コバルト酸リチウム88部、アセチレンブ
ラック6部及びポリテトラフルオロエチレン樹脂6部か
らなる混合物を成型型に入れ、1t/cm2の圧力で成
型し、直径2cmの円盤状の正極を得た。
A mixture comprising 88 parts of lithium cobaltate, 6 parts of acetylene black and 6 parts of polytetrafluoroethylene resin was put into a mold and molded at a pressure of 1 t / cm 2 to obtain a disk-shaped positive electrode having a diameter of 2 cm. .

【0024】炭酸エチレンと炭酸ジメチルの1:1(体
積比)混合溶媒に、六フッ化リン酸リチウムを1mol
/lの濃度に溶解したもの(三菱化学(株))を電解液
として用い、セパレータには、厚さ25μmの多孔性ポ
リエチレンフィルム(旭化成(株))を用い、セパレー
タを介して正極と負極を積層し、電池缶に収容し、電解
液を注液後、密封してコイン型電池を作製した。
1 mol of lithium hexafluorophosphate in a 1: 1 (volume ratio) mixed solvent of ethylene carbonate and dimethyl carbonate
/ L dissolved in a concentration of 1 / l (Mitsubishi Chemical Corporation) as an electrolyte, a porous polyethylene film (Asahi Kasei Corporation) having a thickness of 25 µm was used as a separator, and the positive electrode and the negative electrode were separated through the separator. The batteries were stacked, housed in a battery can, injected with an electrolytic solution, and sealed to produce a coin-type battery.

【0025】36時間室温でエージング後、2mAの定
電流で充放電試験を行った。初期の放電容量が24mA
h、30サイクル目の放電容量は23mAhであった。
After aging at room temperature for 36 hours, a charge / discharge test was performed at a constant current of 2 mA. Initial discharge capacity is 24mA
h, the discharge capacity at the 30th cycle was 23 mAh.

【0026】実施例2.以下の方法により作製した負極
を用いた以外は、実施例1と同様の方法により電池を作
製するとともに、充放電試験を行った。
Embodiment 2 FIG. A battery was produced in the same manner as in Example 1 except that the negative electrode produced by the following method was used, and a charge / discharge test was performed.

【0027】ケイ素粉末(平均粒子径1μm、純度99
%、高純度化学研究所(株))80部と、バインダーの
ピッチ樹脂粉末(残炭率50%、HSB−S)20部を
溶媒にイソプロピルアルコールを用いて、ボールミルに
より湿式混合した。得られたスラリーから溶媒を除去
後、成型助剤としてポリビニルアルコール粉末を1重量
%となるように加え、ボールミルで混合し、成型用粉末
を得た。この成型用粉末を、乾式圧縮成型機を用い、
1.5t/cm2の圧力をかけて成型し、直径2cmの
円盤状の成型体を得た。この成型体を窒素雰囲気下10
00℃で3時間焼成して負極とした。充放電試験の結
果、初期の放電容量24mAhに対し、30サイクル目
は23mAhであった。
Silicon powder (average particle diameter 1 μm, purity 99)
%, 80 parts of Kojundo Chemical Laboratory Co., Ltd.) and 20 parts of pitch resin powder as binder (residual carbon ratio: 50%, HSB-S) were wet-mixed with a ball mill using isopropyl alcohol as a solvent. After removing the solvent from the obtained slurry, a polyvinyl alcohol powder was added as a molding aid to a concentration of 1% by weight, and mixed with a ball mill to obtain a molding powder. Using a dry compression molding machine,
Molding was performed under a pressure of 1.5 t / cm 2 to obtain a disc-shaped molded body having a diameter of 2 cm. This molded body is placed under a nitrogen atmosphere for 10 minutes.
It was fired at 00 ° C. for 3 hours to obtain a negative electrode. As a result of the charge / discharge test, the discharge capacity at the 30th cycle was 23 mAh against the initial discharge capacity of 24 mAh.

【0028】実施例3.以下に述べる方法により作製し
た負極を用いた以外は、実施例1と同様の方法により電
池を作製するとともに、充放電試験を行った。
Embodiment 3 FIG. A battery was produced in the same manner as in Example 1 except that the negative electrode produced by the method described below was used, and a charge / discharge test was performed.

【0029】ケイ素粉末(平均粒子径1μm、純度99
%、高純度化学研究所(株))80部に、水17部とバ
インダーのメチルセルロース粉末2部及びポリエチレン
オキサイド粉末1部を加えてニーダーにより混練し、成
型用坏土を得た。押出成型機を用いて、成型用坏土を直
径2cmの柱状に成型し、切断して直径2cmの円盤状
の成型体を得た。この成型体を窒素雰囲気下1000℃
で3時間焼成して負極とした。充放電試験の結果、初期
の放電容量24mAhに対し、30サイクル目は23m
Ahであった。
Silicon powder (average particle diameter 1 μm, purity 99)
%, 80 parts of High Purity Chemical Laboratory Co., Ltd.), 17 parts of water, 2 parts of methylcellulose powder as a binder, and 1 part of polyethylene oxide powder were added and kneaded with a kneader to obtain a forming clay. Using an extruder, the forming clay was formed into a column having a diameter of 2 cm, and cut to obtain a disk-shaped formed body having a diameter of 2 cm. This molded body is heated at 1000 ° C. in a nitrogen atmosphere.
For 3 hours to obtain a negative electrode. As a result of the charge / discharge test, the initial discharge capacity was 24 mAh, and the 30th cycle was 23 m
Ah.

【0030】比較例1.実施例1において、ロールプレ
ス機を用いて圧着しなかった以外は実施例1と同様にし
て負極を作製し、電池を構成した。同様の充放電試験を
行った結果、初期の放電容量は15mAh、30サイク
ル目の放電容量は5mAhであった。
Comparative Example 1 A negative electrode was prepared in the same manner as in Example 1 except that pressure bonding was not performed using a roll press machine, and a battery was configured. As a result of performing the same charge / discharge test, the initial discharge capacity was 15 mAh, and the discharge capacity at the 30th cycle was 5 mAh.

【0031】[0031]

【発明の効果】以上の説明から明らかなように、本発明
の製造方法によれば、ケイ素又はその化合物とバインダ
ーとを含む混合物を圧縮して、焼結することにより、体
積エネルギー密度の向上や、充放電のサイクル特性の向
上した非水系二次電池の提供が可能となる。
As is apparent from the above description, according to the production method of the present invention, a mixture containing silicon or a compound thereof and a binder is compressed and sintered to improve the volume energy density. In addition, it is possible to provide a non-aqueous secondary battery having improved charge / discharge cycle characteristics.

【0032】また、ケイ素又はその化合物とバインダー
との混合物を成型機を用いて圧縮することにより、電池
形状に合わせて、所望の形状の負極を作製できる。
By compressing a mixture of silicon or a compound thereof and a binder using a molding machine, a negative electrode having a desired shape can be produced according to the shape of the battery.

【0033】また、ケイ素又はその化合物とバインダー
とを含む塗液を集電体に塗布して塗膜を調製し、塗膜を
圧縮することにより、焼結体と集電体との間の接触抵抗
が減少し、充放電のサイクル特性をより向上させること
ができる。
Further, a coating liquid containing silicon or a compound thereof and a binder is applied to a current collector to prepare a coating film, and the coating film is compressed, whereby contact between the sintered body and the current collector is reduced. The resistance is reduced, and the charge / discharge cycle characteristics can be further improved.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA02 AA04 BA01 BA03 BA05 BB01 BB02 BB04 BB11 BB15 BC05 5H014 AA02 AA04 BB01 BB05 BB06 BB08 CC01 EE05 EE07 EE10 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA02 AA04 BA01 BA03 BA05 BB01 BB02 BB04 BB11 BB15 BC05 5H014 AA02 AA04 BB01 BB05 BB06 BB08 CC01 EE05 EE07 EE10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ケイ素を負極活物質として含む焼結体か
らなる非水系二次電池用負極の製造方法において、ケイ
素又はその化合物と炭化して導電性を賦与するバインダ
ーとを混合し、圧縮し、非酸化雰囲気下で焼結させる非
水系二次電池用負極の製造方法。
In a method for producing a negative electrode for a non-aqueous secondary battery comprising a sintered body containing silicon as a negative electrode active material, silicon or a compound thereof and a binder which imparts conductivity by being carbonized are mixed and compressed. A method for producing a negative electrode for a non-aqueous secondary battery, which is sintered in a non-oxidizing atmosphere.
【請求項2】 上記圧縮が圧縮と成型を同時に行うもの
である請求項1記載の非水系二次電池用負極の製造方
法。
2. The method for producing a negative electrode for a non-aqueous secondary battery according to claim 1, wherein the compression is performed simultaneously with the compression and the molding.
【請求項3】 上記ケイ素又はその化合物とバインダー
とを含む塗液を集電体に塗布して塗膜を調製し、該塗膜
を圧縮する請求項1記載の非水系二次電池用負極の製造
方法。
3. The negative electrode for a non-aqueous secondary battery according to claim 1, wherein a coating liquid containing the silicon or its compound and a binder is applied to a current collector to prepare a coating film, and the coating film is compressed. Production method.
JP10372849A 1998-12-28 1998-12-28 Manufacture of negative electrode for nonaqueous system secondary battery Pending JP2000195507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10372849A JP2000195507A (en) 1998-12-28 1998-12-28 Manufacture of negative electrode for nonaqueous system secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10372849A JP2000195507A (en) 1998-12-28 1998-12-28 Manufacture of negative electrode for nonaqueous system secondary battery

Publications (1)

Publication Number Publication Date
JP2000195507A true JP2000195507A (en) 2000-07-14

Family

ID=18501151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10372849A Pending JP2000195507A (en) 1998-12-28 1998-12-28 Manufacture of negative electrode for nonaqueous system secondary battery

Country Status (1)

Country Link
JP (1) JP2000195507A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367602A (en) * 2001-06-06 2002-12-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell
KR100805133B1 (en) 2004-03-26 2008-02-21 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
US20150010830A1 (en) * 2012-02-23 2015-01-08 Postech Academy-Industry Foundation Germanium nanoparticle/carbon composite anode material using no binder for lithium-polymer battery having high capacity and high rapid charge/discharge characteristics
WO2016032211A1 (en) * 2014-08-25 2016-03-03 서강대학교산학협력단 Carbon-silicon composite electrode material and method for preparing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367602A (en) * 2001-06-06 2002-12-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell
KR100805133B1 (en) 2004-03-26 2008-02-21 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
US20150010830A1 (en) * 2012-02-23 2015-01-08 Postech Academy-Industry Foundation Germanium nanoparticle/carbon composite anode material using no binder for lithium-polymer battery having high capacity and high rapid charge/discharge characteristics
WO2016032211A1 (en) * 2014-08-25 2016-03-03 서강대학교산학협력단 Carbon-silicon composite electrode material and method for preparing same
KR101613518B1 (en) * 2014-08-25 2016-04-19 서강대학교산학협력단 Carbon-silicon composite electrode material and preparing method of the same
US10868297B2 (en) 2014-08-25 2020-12-15 Sogang University Research Foundation Secondary battery comprising a carbon-silicon composite electrode and method of preparing same

Similar Documents

Publication Publication Date Title
JP2948205B1 (en) Method for producing negative electrode for secondary battery
KR100769567B1 (en) Anode For Hybrid Capacitor, Manufacturing Method thereof and Hybrid Capacitor
CN114552125B (en) Nondestructive lithium supplement composite diaphragm and preparation method and application thereof
JP2001076727A (en) Positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2003100284A (en) Lithium secondary battery
JP2008066128A (en) Negative electrode active material for lithium ion battery, and its manufacturing method, cathode for lithium ion battery, and lithium ion battery
JP3243239B2 (en) Method for producing positive electrode for non-aqueous secondary battery
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
CN113574702A (en) Negative electrode active material for secondary battery, method for producing same, negative electrode for secondary battery comprising same, and lithium secondary battery
JP2948206B1 (en) Anode materials for non-aqueous secondary batteries
JP2000164217A (en) Lithium battery
JPH11329433A (en) Nonaqueous secondary battery negative electrode
KR100576221B1 (en) Negative active material for large capacity rechargeable lithium battery and large capacity rechargeable lithium battery comprising thereof
KR20120123821A (en) Method for preparing lithium manganese oxide positive active material for lithium ion secondary battery, positive active material prepared thereby, and lithium ion secondary battery including the same
JPH11339778A (en) Manufacture of secondary battery negative electrode
JP2000195507A (en) Manufacture of negative electrode for nonaqueous system secondary battery
JP3475530B2 (en) Non-aqueous electrolyte secondary battery
KR20110078307A (en) Metal based zn negative active material and lithium secondary battery comprising thereof
KR100698372B1 (en) Manufacturing Mathod of Negative Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising The Same
KR20000075095A (en) A positive electrode for a lithium secondary battery, a method of preparing the same, and a lithium secondary battery using the same
JP2000195550A (en) Nonaqueous electrolyte secondary battery
CN113161514A (en) Graphite composition, battery cathode and lithium ion battery
KR101888230B1 (en) Silicon-based anode active material and its fabrication method
JP2002100345A (en) Manufacturing method of positive electrode for nonaqueous secondary battery
KR101777399B1 (en) Method for manufacturing positive electrode active material for rechargable lithium battery