JP2000193852A - Optical module - Google Patents

Optical module

Info

Publication number
JP2000193852A
JP2000193852A JP10368290A JP36829098A JP2000193852A JP 2000193852 A JP2000193852 A JP 2000193852A JP 10368290 A JP10368290 A JP 10368290A JP 36829098 A JP36829098 A JP 36829098A JP 2000193852 A JP2000193852 A JP 2000193852A
Authority
JP
Japan
Prior art keywords
groove
light
optical
substrate
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10368290A
Other languages
Japanese (ja)
Other versions
JP3716118B2 (en
Inventor
Keiko Nakajima
恵子 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP36829098A priority Critical patent/JP3716118B2/en
Publication of JP2000193852A publication Critical patent/JP2000193852A/en
Application granted granted Critical
Publication of JP3716118B2 publication Critical patent/JP3716118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical module which is capable of achieving optical connection with high efficiency, and reducing the number of parts, and easy in wiring using wire bonding, etc. SOLUTION: An upper main surface of a lower substrate 1 is provided with an inverted trapezoidal groove 3 for a reflecting surface 4, the reflecting surface 4 to reflect the laser beam approximately perpendicularly upward, a groove 8 formed not to cut off an optical path, an electrode 9 to supply power to an LD 15 which is a light-emitting device, a V-shaped groove (a) for fixing an optical fiber 17, a groove (c) for installing a spherical lens 18, and a groove (b) of recessed section for installing an optical filter 16, and a lower main surface of an upper substrate 2 is provided with an electrode to supply the output of a PD 20, a Fresnel zone lens 21 to converge the reflected light from the reflecting surface 4, a V-shaped groove for installing the optical fiber 17, a groove for installing the spherical lens 18, and a groove of recessed section for installing the optical filter 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体レーザ等の
光源、光ファイバ、集光レンズ及びフォトダイオード等
の受光素子を基板上に搭載した双方向性の光モジュール
に関する。
The present invention relates to a bidirectional optical module having a light source such as a semiconductor laser, an optical fiber, a condenser lens, and a light receiving element such as a photodiode mounted on a substrate.

【0002】[0002]

【従来の技術】従来、基板上に光ファイバや受発光素子
等の光部品を配設し、光学的に結合させた光モジュール
が提案されているが、これらの光部品を簡易な構造で且
つ低損失に光接続することはきわめて重要である。そこ
で、高精度な光接続を実現する技術として、シリコン基
板上に異方性エッチング等を施し、V溝や導体パターン
を精度良く形成する方法が検討されている。
2. Description of the Related Art Conventionally, there has been proposed an optical module in which optical components such as an optical fiber and a light receiving / emitting element are disposed on a substrate and optically coupled to each other. Optical connection with low loss is very important. Therefore, as a technique for realizing high-precision optical connection, a method of performing anisotropic etching or the like on a silicon substrate to form a V-groove or a conductor pattern with high accuracy has been studied.

【0003】このような異方性エッチングは、一般に水
酸化カリウム水溶液等を用いて(100)面シリコン基
板をエッチングし、エッチングレートの遅い(111)
面を出すことによって行われる。(100)面シリコン
基板を異方性エッチングして得られるV溝は結晶方位を
利用しているので、必然的にシリコン基板表面とV溝と
のなす角は54.7°になる。
In such anisotropic etching, a (100) plane silicon substrate is generally etched using an aqueous solution of potassium hydroxide or the like, and the etching rate is low (111).
This is done by exposing the face. Since the V-groove obtained by anisotropically etching the (100) plane silicon substrate utilizes the crystal orientation, the angle between the silicon substrate surface and the V-groove is necessarily 54.7 °.

【0004】そして、異方性エッチングしたシリコン基
板上に半導体レーザ素子を搭載させる従来例として、光
情報処理、光計測、光通信等に用いる半導体レーザ装置
に関するものであって、〈110〉方向を軸として1〜
11°のオフアングルを有する(511)面のシリコン
基板と、シリコン基板上に形成された両側の斜面が(1
11)面で断面形状がV状等の溝と、その溝を形成する
斜面のうちシリコン基板の表面に対する傾きが45°に
近い反射ミラー面に対向する斜面の溝上端稜線に対し
て、端面がほぼ平行になるようにしてシリコン基板上に
半導体レーザチップとを有することにより、レーザ光を
ほぼ垂直方向に取り出すことができ、出射方向の位置合
わせが容易なものが提案されている(特開平5−315
699号公報参照)。図12に前記半導体レーザ装置の
部分断面図を示す。同図において、31はシリコン基
板、32は反射ミラー面、33は半導体レーザ素子、3
4は光路である。
As a conventional example of mounting a semiconductor laser element on a silicon substrate subjected to anisotropic etching, the present invention relates to a semiconductor laser device used for optical information processing, optical measurement, optical communication, and the like. 1 to 1
The (511) plane silicon substrate having an off-angle of 11 ° and the slopes on both sides formed on the silicon substrate are (1).
11) A groove having a V-shaped cross section on the surface and an upper end ridge line of a slope facing a reflection mirror surface which is inclined at an angle of about 45 ° with respect to the surface of the silicon substrate among slopes forming the groove. By providing a semiconductor laser chip on a silicon substrate so as to be substantially parallel to each other, a laser beam can be extracted in a substantially vertical direction, and an alignment in an emission direction is easily performed (Japanese Patent Laid-Open No. Hei 5 (1994)). -315
699). FIG. 12 shows a partial sectional view of the semiconductor laser device. In the figure, 31 is a silicon substrate, 32 is a reflection mirror surface, 33 is a semiconductor laser device, 3
4 is an optical path.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来例の半導体レーザ装置は図12に示すように、半導体
レーザ素子(Laser diodeで、以下、LDと略す)33か
ら出射したレーザ光の光軸高さと、反射ミラー面32の
上端がほぼ同じ高さであり、このため上方へ取り出され
るレーザ光の光量は半減してしまう。そこで、LD33
を載置する面を反射ミラー面32の上端よりも低くして
反射光量を増大させる為には、本発明のような光ファイ
バ及び集光レンズを基板31上に搭載するタイプの場
合、LD33載置面、光ファイバ搭載用V溝の形成面、
球レンズ等の集光レンズ搭載用V溝の形成面を、反射ミ
ラー面32の上端に対して予めレーザビーム径の半分以
上低くする必要がある。例えば、集光レンズとして直径
600μmの球レンズを使用する場合最大300μm、
直径800μmの球レンズの場合最大400μm低くす
ることになる。
However, as shown in FIG. 12, the above-described conventional semiconductor laser device has an optical axis height of a laser beam emitted from a semiconductor laser element (Laser diode, hereinafter abbreviated as LD) 33. And the upper end of the reflection mirror surface 32 is substantially at the same height, so that the amount of laser light extracted upward is reduced by half. Therefore, LD33
In order to increase the amount of reflected light by lowering the surface on which the light is placed to be lower than the upper end of the reflection mirror surface 32, in the case of a type in which an optical fiber and a condenser lens are mounted on the substrate 31 as in the present invention, the LD 33 is mounted. Mounting surface, forming surface of V-groove for mounting optical fiber,
It is necessary that the surface on which the V-groove for mounting a condenser lens such as a spherical lens is formed to be lower than the upper end of the reflection mirror surface 32 by half or more of the laser beam diameter in advance. For example, when a spherical lens having a diameter of 600 μm is used as a condensing lens, the maximum is 300 μm,
In the case of a spherical lens having a diameter of 800 μm, the maximum value is reduced by 400 μm.

【0006】そして、LD33載置面、光ファイバ搭載
用V溝の形成面及び集光レンズ搭載用V溝の形成面を低
くする方法として、ダイシング法等の研削法、エッチン
グ法等があるが、ダイシング法の場合ダイシング後の面
が粗いために電極やV溝を形成することができない。
As a method for lowering the mounting surface of the LD 33, the surface for forming the optical fiber mounting V-groove, and the surface for forming the condensing lens mounting V-groove, there are a grinding method such as a dicing method and an etching method. In the case of the dicing method, electrodes and V-grooves cannot be formed because the surface after dicing is rough.

【0007】従って、本発明は上記事情に鑑みて完成さ
れたものであり、その目的は、光量を低下させることな
くほぼ垂直上方へ取り出すことができ、その結果きわめ
て高効率の光接続を行うことが可能で、上側基板を蓋体
兼用としているため別個の蓋体が不要になり部品点数が
低減され、また受発光素子が基板上部に搭載されている
ためワイヤーボンディング等による配線が容易なものと
することにある。
Accordingly, the present invention has been completed in view of the above circumstances, and an object of the present invention is to make it possible to take out light almost vertically upward without reducing the amount of light, and as a result, to carry out an extremely efficient optical connection. A separate lid is not required because the upper substrate is also used as a lid, reducing the number of components. Is to do.

【0008】[0008]

【課題を解決するための手段】本発明の光モジュール
は、下側基板と透光性の上側基板とを有し、下側基板の
上側主面に、発光素子搭載部と、発光素子に対向する位
置に設けられた光ファイバ固定用のV溝aと、発光素子
とV溝aとの間の光軸上に形成された光学フィルタ設置
用の溝bと、該光学フィルタにより反射された光を略垂
直上方へ反射させる反射面とを設け、且つ前記発光素子
搭載部は反射面上端よりも反射面側にあり、前記上側基
板の下側主面に、反射面による反射光を集光させる集光
レンズと受光素子とを設置し、前記上側基板の下側主面
と下側基板の上側主面とを重ね合わせたことを特徴とす
る。
An optical module according to the present invention has a lower substrate and a translucent upper substrate, and a light emitting element mounting portion and a light emitting element facing the light emitting element are provided on the upper main surface of the lower substrate. V groove a for fixing an optical fiber, a groove b for setting an optical filter formed on the optical axis between the light emitting element and the V groove a, and light reflected by the optical filter. And a reflecting surface for reflecting the light substantially vertically upward, and the light emitting element mounting portion is located closer to the reflecting surface than the upper end of the reflecting surface, and the light reflected by the reflecting surface is collected on the lower main surface of the upper substrate. A condenser lens and a light receiving element are provided, and a lower main surface of the upper substrate and an upper main surface of the lower substrate are overlapped.

【0009】本発明は、上記構成により、発光素子から
の光をほぼ完全に垂直上方へ取り出すことができ、その
結果きわめて高効率の光接続が実現する。また、蓋体が
不要になるので部品点数が低減され、受発光素子が基板
上部に搭載されているためワイヤーボンディング等によ
る配線が容易になり、作業性が向上する。更に、上側基
板に反射光を集光させるフレネルゾーンレンズを成膜技
術で形成でき、反射光集光用の集光レンズが不要になる
ため、上側基板を非常に薄型化でき、その結果全体が低
背化する。
According to the present invention, the light from the light emitting element can be almost completely extracted vertically upward by the above configuration, and as a result, an extremely efficient optical connection is realized. In addition, since the lid is not required, the number of components is reduced, and since the light emitting / receiving element is mounted on the upper portion of the substrate, wiring by wire bonding or the like is facilitated and workability is improved. Furthermore, a Fresnel zone lens for condensing the reflected light on the upper substrate can be formed by a film forming technique, and a condensing lens for condensing the reflected light is not required. Shortening.

【0010】本発明において、好ましくは、上側基板に
設けた集光レンズが、フレネルゾーンレンズ又は球レン
ズである。
In the present invention, preferably, the condenser lens provided on the upper substrate is a Fresnel zone lens or a spherical lens.

【0011】[0011]

【発明の実施の形態】本発明の双方向性の光モジュール
M1を図1〜図6に示す。図1は光モジュールM1の平
面図、図2(a)は図1のA−A′線(LD15から出
射されたレーザビームの光軸)における断面図、図2
(b)は図1のB−B′線における断面図、図2(c)
は図1のC−C′線における断面図、図3は下側基板1
の平面図、図4(a)は図3のA−A′線における断面
図、図4(b)は図3のB−B′線における断面図、図
4(c)は図3のC−C′線における断面図、図5は上
側基板2の平面図、図6(a)は図5のA−A′線にお
ける断面図、図6(b)は図5のB−B′線における断
面図、図6(c)は図5のC−C′線における断面図で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A bidirectional optical module M1 of the present invention is shown in FIGS. FIG. 1 is a plan view of the optical module M1, FIG. 2A is a cross-sectional view taken along line AA ′ of FIG. 1 (the optical axis of the laser beam emitted from the LD 15), and FIG.
FIG. 2B is a cross-sectional view taken along the line BB ′ of FIG. 1, and FIG.
FIG. 3 is a sectional view taken along line CC ′ of FIG.
4A is a sectional view taken along line AA 'in FIG. 3, FIG. 4B is a sectional view taken along line BB' in FIG. 3, and FIG. 5A is a cross-sectional view taken along the line AA 'in FIG. 5, and FIG. 6B is a cross-sectional view taken along the line AA' in FIG. 6 (c) is a cross-sectional view taken along the line CC 'of FIG.

【0012】これらの図において、1は下側基板、2は
透光性の上側基板であり、下側基板1の上側主面には、
反射面4用の逆台形状の溝3、レーザビームを略垂直上
方へ反射する反射面4、光路を遮断しないように形成さ
れた溝8、発光素子であるLD15へ電力を供給する電
極9、光ファイバ固定用(押圧用)のV溝a、球レンズ
設置用の溝c、光学フィルタ16設置用の断面凹型の溝
bがそれぞれ形成されている。また、上側基板2には、
受光素子のフォトダイオード(以下、PDと略す)の出
力を取り出す電極14、反射面4からの反射光を集光さ
せる集光レンズとしてのフレネルゾーンレンズ21、光
ファイバ17設置用のV溝a1、球レンズ18設置用の
溝c1、光学フィルタ16設置用の断面凹型の溝b1が
それぞれ設けられている。本発明でいう発光素子搭載部
とは、LD15が搭載され電極9が形成された面部であ
る。
In these figures, 1 is a lower substrate, 2 is a translucent upper substrate, and an upper main surface of the lower substrate 1 has
An inverted trapezoidal groove 3 for the reflection surface 4, a reflection surface 4 for reflecting a laser beam substantially vertically upward, a groove 8 formed so as not to block an optical path, an electrode 9 for supplying power to an LD 15 as a light emitting element, A V-groove a for fixing (pressing) the optical fiber, a groove c for setting the spherical lens, and a groove b having a concave cross section for setting the optical filter 16 are formed. Also, the upper substrate 2 has
An electrode 14 for extracting an output of a photodiode (hereinafter abbreviated as PD) of a light receiving element, a Fresnel zone lens 21 as a condenser lens for condensing light reflected from the reflection surface 4, a V-groove a1 for installing an optical fiber 17, A groove c1 for setting the spherical lens 18 and a groove b1 having a concave cross section for setting the optical filter 16 are provided. The light emitting element mounting portion in the present invention is a surface portion on which the LD 15 is mounted and the electrode 9 is formed.

【0013】本発明の光モジュールM1は双方向性のも
のであり、以下のように機能する。例えば、LD15か
ら出射された光波長(以下、波長という)1.31μm
のレーザビームは、波長選択フィルタである光学フィル
タ16を透過し光ファイバ17に入射する。光ファイバ
17は外部の光通信装置、情報処理装置又は計測装置等
に接続されており、これらの装置から波長1.55μm
の戻り光が返って来る。この波長1.55μmの光は光
学フィルタ16によって反射され、反射面4で反射され
PD20によって検出されて、光通信における情報、光
計測における測定値として出力される。
The optical module M1 of the present invention is bidirectional and functions as follows. For example, a light wavelength (hereinafter, referred to as a wavelength) emitted from the LD 15 is 1.31 μm.
Is transmitted through an optical filter 16 which is a wavelength selection filter, and is incident on an optical fiber 17. The optical fiber 17 is connected to an external optical communication device, information processing device, measuring device, or the like.
The return light comes back. The light having a wavelength of 1.55 μm is reflected by the optical filter 16, reflected by the reflection surface 4, detected by the PD 20, and output as information in optical communication and a measured value in optical measurement.

【0014】上記例では、光学フィルタ16を波長選択
フィルタとしたが、偏光ビームスプリッタとしても良
い。その場合、例えば、LD15から出射された直線偏
光光は偏光ビームスプリッタを通過して光ファイバ17
に入射し、光ファイバ17からのランダム偏光の戻り光
は偏光ビームスプリッタによって反射されるように構成
しても良い。
In the above example, the optical filter 16 is a wavelength selection filter, but may be a polarization beam splitter. In that case, for example, the linearly polarized light emitted from the LD 15 passes through the polarization beam splitter and passes through the optical fiber 17.
, And return light of random polarization from the optical fiber 17 may be reflected by the polarization beam splitter.

【0015】本発明の光モジュールM1は下側基板1と
透光性の上側基板2とを有しており、図1に示すよう
に、下側基板1よりも上側基板2の面積を小さくして、
下側基板1の少なくとも電極9及びLD15が外部へ露
出する構成が良い。この構成により、LD15及び電極
9と外部の駆動回路との接続がワイヤーボンディング等
により容易に行える。また、下側基板1は異方性エッチ
ング法により加工が容易なシリコンが良く、上側基板2
は透光性材料であり、赤外光に対して透光性を有するシ
リコン,GaAs,SiO2 ガラス,水晶,ルチル等が
良く、なかでも異方性エッチング法により加工が容易な
シリコンが好ましい。
The optical module M1 of the present invention has a lower substrate 1 and a translucent upper substrate 2, and as shown in FIG. 1, the area of the upper substrate 2 is made smaller than that of the lower substrate 1. hand,
It is preferable that at least the electrode 9 and the LD 15 of the lower substrate 1 be exposed to the outside. With this configuration, connection between the LD 15 and the electrode 9 and an external drive circuit can be easily performed by wire bonding or the like. The lower substrate 1 is preferably made of silicon which can be easily processed by the anisotropic etching method.
Is a light-transmitting material, and is preferably silicon, GaAs, SiO 2 glass, quartz, rutile or the like having a light-transmitting property with respect to infrared light, and among them, silicon which can be easily processed by an anisotropic etching method is preferable.

【0016】また、下側基板1について、図4(c)に
示すように、下側基板1の主面に垂直な方向においてL
D15搭載部は反射面4の上端4tよりも反射面4側の
位置にあり、その結果レーザビームは殆ど反射面4によ
り垂直上方へ反射される(図2(c))。下側基板1の
主面に垂直方向における前記上端4tとLD15の発光
部との高さの差は、50〜250μmが良く、50μm
未満では反射面に当たらない光が多くなり受光量が低下
する。250μmを超えると、下側基板1の強度が弱く
なり、溝b及び溝c等のパターン形成が困難になるため
取り扱いが難しくなる。更に好ましくは、反射面4の上
端4tは、更にV溝a、溝b及び溝cよりも高い位置に
あるのが良い。
Further, as shown in FIG. 4C, the lower substrate 1 has L in a direction perpendicular to the main surface of the lower substrate 1.
The D15 mounting portion is located at a position closer to the reflection surface 4 than the upper end 4t of the reflection surface 4, and as a result, the laser beam is almost vertically reflected by the reflection surface 4 (FIG. 2C). The height difference between the upper end 4t and the light emitting portion of the LD 15 in the direction perpendicular to the main surface of the lower substrate 1 is preferably 50 to 250 μm, and 50 μm.
If it is less than the above, the amount of light that does not hit the reflection surface increases, and the amount of received light decreases. If the thickness exceeds 250 μm, the strength of the lower substrate 1 becomes weak, and it becomes difficult to form a pattern such as the groove b and the groove c, so that handling becomes difficult. More preferably, the upper end 4t of the reflection surface 4 is located higher than the V-grooves a, b, and c.

【0017】前記反射面4は下側基板1の主面に対して
45°程度傾斜しているのが良く、その場合反射光が略
垂直上方へ反射される。そして、下側基板1がシリコン
からなり反射面4を異方性エッチングにより形成する場
合、(100)面を〈110〉方向を軸にして下側基板
1の主面に対して9〜12°傾けることにより、反射面
4である(111)面を前記主面に対して45°程度傾
斜させることができる。前記角度範囲から外れると、垂
直上方へ反射されない光が増加し、PD20の受光量が
減少する。
The reflecting surface 4 is preferably inclined by about 45 ° with respect to the main surface of the lower substrate 1, in which case the reflected light is reflected substantially vertically upward. When the lower substrate 1 is made of silicon and the reflection surface 4 is formed by anisotropic etching, the (100) plane is 9 to 12 ° with respect to the main surface of the lower substrate 1 with the <110> direction as an axis. By inclining, the (111) plane which is the reflecting surface 4 can be inclined by about 45 ° with respect to the main surface. Outside the angle range, the amount of light that is not reflected vertically upward increases, and the amount of light received by the PD 20 decreases.

【0018】本発明において、フレネルゾーンレンズ2
1は光を集光するとともに、光透過率を高めより多くの
光量をPD20に集光させることができる。例えば、上
側基板2が赤外光に対して透光性のシリコンから成る場
合、上側基板2上にSiO2,TiO2 等を成膜し、フ
ォトリソグラフィー法によりピッチを中心から外側に向
かって変えた同心円状のレジストパターンを形成し、反
応性イオンエッチング法,電子ビームエッチング法,レ
ーザビームエッチング法等により作製できる。また、フ
レネルゾーンレンズ21は誘電体多層反射防止層として
も機能し得るため、より多くの光をPD20に集光可能
となる。
In the present invention, the Fresnel zone lens 2
Numeral 1 condenses light and increases the light transmittance so that more light can be converged on the PD 20. For example, when the upper substrate 2 is made of silicon that is transparent to infrared light, SiO 2 , TiO 2, or the like is formed on the upper substrate 2 and the pitch is changed from the center to the outside by photolithography. A concentric resist pattern is formed, and can be manufactured by a reactive ion etching method, an electron beam etching method, a laser beam etching method, or the like. Further, since the Fresnel zone lens 21 can also function as a dielectric multilayer anti-reflection layer, more light can be collected on the PD 20.

【0019】具体的には、上側基板2がシリコンから成
り、波長λ=1.55μmでSiO2 をフレネルゾーン
レンズ21に使用する場合、まずSiO2 を膜厚約3.
42μm成膜し、最大3.16μmエッチングし、最も
薄い部分を0.26μmとすることで約95%の透過率
が得られる。これは、シリコン単体の透過率の69%よ
りも26%も高い値である。SiO2 の代わりにTiO
2 を用いる場合は、最大膜厚1.05μm、エッチング
膜厚0.91μm、最も薄い部分の膜厚0.14μmと
して、約87.7%の透過率が得られる。
More specifically, when the upper substrate 2 is made of silicon and SiO 2 is used for the Fresnel zone lens 21 at a wavelength λ = 1.55 μm, first, the SiO 2 is formed to a thickness of about 3.
By forming a film having a thickness of 42 μm, etching the film at a maximum of 3.16 μm, and making the thinnest portion 0.26 μm, a transmittance of about 95% can be obtained. This is a value 26% higher than the transmittance of silicon alone of 69%. TiO instead of SiO 2
When 2 is used, a transmittance of about 87.7% can be obtained when the maximum film thickness is 1.05 μm, the etching film thickness is 0.91 μm, and the film thickness of the thinnest portion is 0.14 μm.

【0020】また、本発明は、反射面4に反射防止のた
めのコーティング等を行い、反射率を高めるとともに光
の散乱を防ぎ、また不要成分を吸収するといったことも
可能である。例えば、反射面4にTiO2 ,SiO2
Ge,LiF等の誘電体層を形成することにより、反射
率の制御等を行うことができる。また、まずAg,A
u,Pt等の金属層を反射層として形成し、次いで上記
誘電体層を積層することにより、反射率をより高めるこ
とができる。
Further, according to the present invention, it is possible to coat the reflection surface 4 with an anti-reflection coating or the like so as to increase the reflectance, prevent light scattering, and absorb unnecessary components. For example, TiO 2 , SiO 2 ,
By forming a dielectric layer such as Ge or LiF, it is possible to control the reflectance. First, Ag, A
By forming a metal layer of u, Pt or the like as a reflection layer and then laminating the above-mentioned dielectric layer, the reflectance can be further increased.

【0021】更には、反射面4のレーザビームのスポッ
ト部に反射を強める厚さの誘電体層を形成し、スポット
部以外の箇所には反射を弱める厚さの誘電体層を設ける
ことで、必要なスポット部の反射を強め、他の迷光や散
乱光を減衰させることができる。また、金属反射層と誘
電体層との構成でもって、特定波長に対する反射率の制
御も可能であり、例えばAg反射層とTiO2 層の2層
構造の場合、λ=1.31μmのとき、TiO2 層の厚
さ0.23μmで反射率約98.3%、TiO2 層の厚
さ0.10μmで反射率約88.3%となり、反射率を
約10%制御できる。また、λ=1.55μmのとき、
TiO2 層の厚さ0.27μmで反射率最大、TiO2
層の厚さ0.12μmで反射率最小とすることができ
る。
Further, a dielectric layer having a thickness for enhancing reflection is formed at a spot portion of the laser beam on the reflection surface 4 and a dielectric layer having a thickness for reducing reflection is provided at a portion other than the spot portion. The required reflection at the spot portion is enhanced, and other stray light and scattered light can be attenuated. Further, the reflectance of a specific wavelength can be controlled by the configuration of the metal reflection layer and the dielectric layer. For example, in the case of a two-layer structure of an Ag reflection layer and a TiO 2 layer, when λ = 1.31 μm, When the thickness of the TiO 2 layer is 0.23 μm, the reflectance is about 98.3%, and when the thickness of the TiO 2 layer is 0.10 μm, the reflectance is about 88.3%. Thus, the reflectance can be controlled by about 10%. When λ = 1.55 μm,
With a TiO 2 layer thickness of 0.27 μm, the reflectance is maximum, and the TiO 2
The reflectivity can be minimized at a layer thickness of 0.12 μm.

【0022】本発明の光モジュールM1の下側基板1は
以下のような工程によって作製する。下側基板1の発光
素子搭載部及び光ファイバ17固定面を予めエッチング
により反射面4の上端4tよりも低くなるよう形成す
る。次いで、V溝a,溝c,反射面4用の溝3を異方性
エッチング法により形成する。電極9をフォトリソグラ
フィー法及び蒸着法により形成する。そして、溝b,溝
8をダイシング法により作製する。
The lower substrate 1 of the optical module M1 of the present invention is manufactured by the following steps. The light emitting element mounting portion of the lower substrate 1 and the fixing surface of the optical fiber 17 are formed in advance so as to be lower than the upper end 4t of the reflecting surface 4 by etching. Next, V grooves a, grooves c, and grooves 3 for the reflection surface 4 are formed by anisotropic etching. The electrode 9 is formed by a photolithography method and an evaporation method. Then, the grooves b and 8 are formed by a dicing method.

【0023】また、上側基板2は以下のような工程で作
製する。上側基板2のV溝a1が存在する面以外を予め
エッチングする。次いで、V溝a1,溝c1を異方性エ
ッチング法により形成する。電極14をフォトリソグラ
フィー法及び蒸着法により形成し、フレネルゾーンレン
ズ21をフォトリソグラフィー法及びエッチング法によ
り設ける。そして、溝b1をダイシング法により作製す
る。
The upper substrate 2 is manufactured by the following steps. The surface of the upper substrate 2 other than the surface where the V-groove a1 exists is etched in advance. Next, V-grooves a1 and c1 are formed by an anisotropic etching method. The electrode 14 is formed by photolithography and vapor deposition, and the Fresnel zone lens 21 is provided by photolithography and etching. Then, a groove b1 is formed by a dicing method.

【0024】上記電極9及び電極14は、Ti/Pt/
Au等の3層構成のもの、Cr/Au等の2層構成のも
のが好ましく、これらは長期信頼性に優れ、密着強度も
強い。
The electrodes 9 and 14 are made of Ti / Pt /
A three-layer structure such as Au and a two-layer structure such as Cr / Au are preferable, and these have excellent long-term reliability and strong adhesion strength.

【0025】また、図7〜図10は他の実施形態を示
し、図7は光モジュールM2の平面図、図8(a)は図
7のA−A′線(LD15から出射されたレーザビーム
の光軸)における断面図、図8(b)は図7のB−B′
線における断面図、図8(c)は図7のC−C′線にお
ける断面図、図9は上側基板2の平面図、図10(a)
は図9のA−A′線における断面図、図10(b)は図
9のB−B′線における断面図、図10(c)は図9の
C−C′線における断面図である。
7 to 10 show another embodiment, FIG. 7 is a plan view of the optical module M2, and FIG. 8A is a line AA 'of FIG. 7 (the laser beam emitted from the LD 15). FIG. 8B is a cross-sectional view taken along the optical axis of FIG.
8C is a cross-sectional view taken along line CC ′ of FIG. 7, FIG. 9 is a plan view of the upper substrate 2, and FIG.
9 is a sectional view taken along the line AA 'in FIG. 9, FIG. 10B is a sectional view taken along the line BB' in FIG. 9, and FIG. 10C is a sectional view taken along the line CC 'in FIG. .

【0026】この光モジュールM2は、下側基板1は上
記光モジュールM1と同様であり、上側基板2の集光レ
ンズとして、フレネルゾーンレンズ21の代わりに球レ
ンズ19及び球レンズ19設置用の先細りの貫通孔dを
設けた構成である。この貫通孔dは異方性エッチング法
により形成することにより、逆台形状の断面形状とされ
ている。この実施形態では、球レンズ19を使用してい
るため、上側基板2は必ずしも透光性を有していなくて
も良く、また貫通孔dは逆円錐形状等の断面形状であっ
ても構わない。この例では、光は貫通孔dを通過するの
で光の損失は小さいが、上側基板2の厚みは光モジュー
ルM1よりも厚くなるうえ、貫通孔dを形成する手間が
かかる。
In this optical module M2, the lower substrate 1 is the same as the above-mentioned optical module M1, and instead of the Fresnel zone lens 21, the converging lens for the upper substrate 2 is a spherical lens 19 and a taper for installing the spherical lens 19. Is provided. The through-hole d has an inverted trapezoidal cross-sectional shape by being formed by an anisotropic etching method. In this embodiment, since the spherical lens 19 is used, the upper substrate 2 does not necessarily have to have translucency, and the through hole d may have a cross-sectional shape such as an inverted conical shape. . In this example, since light passes through the through-hole d, the loss of light is small. However, the thickness of the upper substrate 2 is larger than that of the optical module M1, and it takes time to form the through-hole d.

【0027】かくして、本発明は、光をほぼ完全に垂直
上方へ取り出すことができ、きわめて高効率の光接続が
実現する。また、蓋体が不要になるので部品点数が低減
され、受発光素子が基板上部に搭載されているためワイ
ヤーボンディング等による配線が容易になり、作業性が
向上する。更に、上側基板に反射光を集光させるフレネ
ルゾーンレンズを成膜技術で形成でき、反射光集光用の
球レンズが不要になるため、上側基板を非常に薄型化で
き、その結果全体が低背化する、という作用効果を有す
る。
Thus, according to the present invention, light can be extracted almost completely vertically upward, and an extremely efficient optical connection is realized. In addition, since the lid is not required, the number of components is reduced, and since the light emitting / receiving element is mounted on the upper portion of the substrate, wiring by wire bonding or the like is facilitated and workability is improved. Further, a Fresnel zone lens for condensing reflected light on the upper substrate can be formed by a film forming technique, and a spherical lens for condensing reflected light is not required. It has the function and effect of becoming tall.

【0028】尚、本発明は上記の実施形態に限定される
ものではなく、本発明の要旨を逸脱しない範囲内で種々
の変更は何等差し支えない。
It should be noted that the present invention is not limited to the above embodiment, and various changes may be made without departing from the scope of the present invention.

【0029】[0029]

【実施例】本発明の実施例を以下に説明する。Embodiments of the present invention will be described below.

【0030】(実施例)図1の光モジュールM1の下側
基板1を以下の工程(1)〜(4)で作製した。
(Example) The lower substrate 1 of the optical module M1 of FIG. 1 was manufactured by the following steps (1) to (4).

【0031】(1)シリコンからなる厚さ1mmの下側
基板1を用い、電極9を形成する面とV溝aが存在する
面を、水酸化カリウム水溶液を使ってエッチングし、反
射面4の上端4tよりも低くした。その際、球レンズ1
8の直径が600μmの時は約150μm、直径が80
0μmの時は約210μm程度エッチングすることで、
光ファイバ17から返ってきた光を減衰させることなく
反射面4に当てて、PD20へ入れることができる。L
D15の光軸はLD15搭載面より8μm高い位置にあ
り、V溝a形成面からの高さも8μmであった。また、
本実施例では深さは全て光軸からの深さである。
(1) Using the lower substrate 1 made of silicon and having a thickness of 1 mm, the surface on which the electrode 9 is formed and the surface on which the V-groove a is present are etched using an aqueous solution of potassium hydroxide to form the reflecting surface 4. Lower than the upper end 4t. At that time, the ball lens 1
8 is about 150 μm when the diameter is 600 μm,
By etching about 210 μm at 0 μm,
The light returned from the optical fiber 17 can be applied to the reflection surface 4 without being attenuated, and can enter the PD 20. L
The optical axis of D15 was 8 μm higher than the LD15 mounting surface, and the height from the V-groove a forming surface was also 8 μm. Also,
In this embodiment, all the depths are depths from the optical axis.

【0032】(2)その後、V溝a,溝cを同じく水酸
化カリウム水溶液により異方性エッチングした。溝cの
深さは、球レンズ18により決定され、球レンズ18の
直径が600μmの時深さは300μm程度、直径が8
00μmの時は400μm程度となる。V溝aは、深さ
108μm、下側基板1主面における幅は142μmで
あった。
(2) Thereafter, the V-grooves a and c were similarly anisotropically etched with an aqueous potassium hydroxide solution. The depth of the groove c is determined by the spherical lens 18. When the diameter of the spherical lens 18 is 600 μm, the depth is about 300 μm and the diameter is 8 μm.
When it is 00 μm, it is about 400 μm. The V-groove a had a depth of 108 μm and a width on the main surface of the lower substrate 1 of 142 μm.

【0033】(3)Cr/Auからなる電極9をフォト
リソグラフィー法及び蒸着法により形成した。
(3) An electrode 9 made of Cr / Au was formed by photolithography and vapor deposition.

【0034】(4)そして、溝b,溝8をダイシング法
により作製した。溝bは深さ510μm、下側基板1主
面における幅は50μmであり、溝8は深さ400μ
m、下側基板1主面における幅は100〜400μmで
あり、本実施例では200μmとした。
(4) The grooves b and 8 were formed by dicing. The groove b has a depth of 510 μm, the width on the main surface of the lower substrate 1 is 50 μm, and the groove 8 has a depth of 400 μm.
m, the width of the main surface of the lower substrate 1 is 100 to 400 μm, and is 200 μm in this embodiment.

【0035】また、上側基板2は以下の工程(5)〜
(8)により作製した。
The upper substrate 2 is formed by the following steps (5) to (5).
It was produced by (8).

【0036】(5)シリコンからなる厚さ800μmの
上側基板2を用い、V溝a1が存在する面以外を予めエ
ッチングし、その面の高さを低下させた。その際、直径
600μmの球レンズ18の場合は約150μm程度低
下させ、直径800μmの球レンズ18の場合は約21
0μm低下させる。
(5) Using the upper substrate 2 made of silicon and having a thickness of 800 μm, the surface other than the surface where the V-groove a1 is present was etched in advance to reduce the height of the surface. At this time, the diameter of the spherical lens 18 having a diameter of 600 μm is reduced by about 150 μm, and the diameter of the spherical lens 18 having a diameter of 800 μm is reduced by about 21 μm.
Reduce by 0 μm.

【0037】(6)次いで、V溝a1,溝c1を水酸化
カリウム水溶液による異方性エッチング法で形成した。
このとき、球レンズ18の直径を600μmとすると、
逆四角錐状の溝c1は深さ362μm、上側基板2主面
において511.5μm×511.5μm角であり、V
溝a1は深さ108μm、上側基板2主面における幅は
142μmであった。また、溝c1は、球レンズ18の
直径が800μmの時は、深さ462μm、上側基板2
主面において653.0μm×653.0μm角とな
る。
(6) Next, V-grooves a1 and c1 were formed by anisotropic etching using an aqueous solution of potassium hydroxide.
At this time, if the diameter of the spherical lens 18 is 600 μm,
The inverted quadrangular pyramid-shaped groove c1 has a depth of 362 μm, and is 511.5 μm × 511.5 μm square on the main surface of the upper substrate 2.
The groove a1 had a depth of 108 μm, and the width on the main surface of the upper substrate 2 was 142 μm. When the diameter of the spherical lens 18 is 800 μm, the groove c1 has a depth of 462 μm and the upper substrate 2
The size of the main surface is 653.0 μm × 653.0 μm square.

【0038】(7)電極14をフォトリソグラフィー法
及び蒸着法により形成し、フレネルゾーンレンズ21を
フォトリソグラフィー法及びエッチング法により設け
た。このとき、使用波長λ=1.55μmとしてSiO
2 をフレネルゾーンレンズ21に使用した。まずSiO
2 を膜厚約3.42μm成膜し、最大3.16μmエッ
チングし、最も薄い部分を0.26μmとすることで約
95%の透過率が得られた。フレネルゾーンレンズ21
については、全体の直径を0.6mmとし、λ=1.5
5μm、NA(開口率)=0.3の場合、全ゾーン数は
29、中心からm番目のゾーンの内半径rm はrm =
(2mλf)1/2 (λは波長、fは焦点距離)となる。
(7) The electrode 14 was formed by photolithography and vapor deposition, and the Fresnel zone lens 21 was provided by photolithography and etching. At this time, the operating wavelength λ = 1.55 μm and SiO 2
2 was used for the Fresnel zone lens 21. First, SiO
2 was formed to a film thickness of about 3.42 μm, etched at a maximum of 3.16 μm, and the thinnest portion was made 0.26 μm, whereby a transmittance of about 95% was obtained. Fresnel zone lens 21
Is about 0.6 mm, and λ = 1.5
When 5 μm and NA (aperture ratio) = 0.3, the total number of zones is 29, and the inner radius rm of the m-th zone from the center is rm =
(2mλf) 1/2 (where λ is the wavelength and f is the focal length).

【0039】(8)そして、溝b1をダイシング法によ
り作製した。その深さは510μm、上側基板2主面に
おける幅は510μmであった。
(8) Then, a groove b1 was formed by a dicing method. The depth was 510 μm, and the width on the main surface of the upper substrate 2 was 510 μm.

【0040】また、反射面4用の溝3は、反射面4をな
す(111)面が異方性エッチング後に下側基板1の主
面に対して45°程度傾斜した状態とするために、シリ
コン結晶の(100)面を〈110〉方向を軸にして下
側基板1の主面に対して10°傾けたものを使用し、異
方性エッチングを施した。そして、この反射面4にAg
反射層(下層)とTiO2 層(上層)を設け、TiO2
層の厚さ0.27μmとしてλ=1.55μmに対する
反射率を97.9%とした。
The groove 3 for the reflecting surface 4 is formed so that the (111) plane forming the reflecting surface 4 is inclined by about 45 ° with respect to the main surface of the lower substrate 1 after anisotropic etching. Anisotropic etching was performed using a silicon crystal whose (100) plane was inclined by 10 ° with respect to the main surface of the lower substrate 1 with the <110> direction as an axis. The reflective surface 4 is made of Ag.
Reflective layer (lower layer) TiO 2 layer (upper layer) provided, TiO 2
Assuming that the thickness of the layer is 0.27 μm, the reflectance for λ = 1.55 μm is 97.9%.

【0041】このような下側基板1に光学フィルタ1
6、LD15を搭載し、上側基板2に光ファイバ17、
球レンズ18、PD20をそれぞれ搭載した後、2枚の
基板を重ね合わせて、紫外線硬化樹脂又は熱硬化樹脂に
より接着固定した。その後、LD15及びPD20のワ
イヤーボンディングを一度に行うことができた。本実施
例において、光学フィルタ16は波長選択フィルタであ
り、LD15の波長1.31μmの出射光を透過させ、
光ファイバ17からの波長1.55μmの光を反射させ
る。
The optical filter 1 is mounted on the lower substrate 1.
6, the LD 15 is mounted, and the upper substrate 2 has an optical fiber 17,
After mounting the spherical lens 18 and the PD 20, respectively, the two substrates were superposed and bonded and fixed with an ultraviolet curing resin or a thermosetting resin. After that, wire bonding of the LD 15 and the PD 20 could be performed at once. In the present embodiment, the optical filter 16 is a wavelength selection filter, and transmits the light having a wavelength of 1.31 μm from the LD 15.
The light having a wavelength of 1.55 μm from the optical fiber 17 is reflected.

【0042】また、図7の光モジュールM2を、上側基
板2に球レンズ設置用の貫通孔dを設けた以外は上記と
同様にして作製した。この場合、上側基板2の厚さが1
mmと厚くなったが、光損失は光モジュールM1よりも
小さかった。
The optical module M2 of FIG. 7 was manufactured in the same manner as described above except that the upper substrate 2 was provided with a through hole d for installing a spherical lens. In this case, the thickness of the upper substrate 2 is 1
mm, but the optical loss was smaller than that of the optical module M1.

【0043】更に、図11は比較例を示し、(a)は下
側基板1の平面図、(b)は(a)のA−A′線におけ
る断面図、(c)は(a)のB−B′線における断面図
である。尚、上側基板2については省略する。
11A and 11B show a comparative example, wherein FIG. 11A is a plan view of the lower substrate 1, FIG. 11B is a cross-sectional view taken along the line AA 'of FIG. 11A, and FIG. It is sectional drawing in the BB 'line. The description of the upper substrate 2 is omitted.

【0044】同図(c)に示すように、反射面4の上端
4とLD15搭載面がほぼ同じ高さになっているため、
光学フィルタ16で反射された光は反射面4で完全に反
射されず、半分程度の光量が失われた。また、反射面4
には何等のコーティング等も設けていないため、反射率
も43.3%程度と低かった。
As shown in FIG. 5C, the upper end 4 of the reflection surface 4 and the LD 15 mounting surface are substantially at the same height.
The light reflected by the optical filter 16 was not completely reflected by the reflection surface 4, and about half of the light was lost. Also, the reflection surface 4
Since no coating or the like was provided, the reflectance was as low as about 43.3%.

【0045】[0045]

【発明の効果】本発明は、下側基板の上側主面に、発光
素子搭載部と、発光素子に対向する位置に設けられた光
ファイバ固定用のV溝aと、発光素子とV溝aとの間の
光軸上に形成された光学フィルタ設置用の溝bと、光学
フィルタで反射された光を略垂直上方へ反射させる反射
面とを設け、且つ発光素子搭載面は反射面上端よりも反
射面側にあり、上側基板の下側主面に、反射面による反
射光を集光させる集光レンズと受光素子とを設置し、前
記上側基板の下側主面と下側基板の上側主面とを重ね合
わせたことにより、光量を低下させることなくほぼ垂直
上方へ光を取り出すことができ、その結果きわめて高効
率の光接続を行うことが可能で、上側基板を蓋体兼用と
しているため別個の蓋体が不要になり部品点数が低減さ
れ、また受発光素子が基板上部に搭載されているためワ
イヤーボンディング等による配線が容易なものとなる。
According to the present invention, a light emitting element mounting portion, an optical fiber fixing V groove a provided at a position facing the light emitting element, and a light emitting element and V groove a are provided on the upper main surface of the lower substrate. A groove b for installing an optical filter formed on the optical axis between the optical filter and a reflecting surface for reflecting light reflected by the optical filter substantially vertically upward, and the light emitting element mounting surface is located at a position higher than the upper end of the reflecting surface. Is also on the reflection surface side, and on the lower main surface of the upper substrate, a condensing lens and a light receiving element for condensing light reflected by the reflection surface are installed, and the lower main surface of the upper substrate and the upper side of the lower substrate By superimposing the main surface, light can be extracted almost vertically upward without reducing the amount of light. As a result, extremely high-efficiency optical connection can be performed, and the upper substrate is also used as the lid. This eliminates the need for a separate lid, reducing the number of parts, and There becomes easy wiring by wire bonding or the like because it is mounted on the substrate top.

【0046】また、上側基板に集光レンズとして、薄膜
形成法によるフレネルゾーンレンズを設けた場合、高い
光透過率を維持して上側基板がきわめて薄型化できると
いう作用効果も有する。前記集光レンズとして、球レン
ズを設けた場合光損失をより小さくできる。
Further, when a Fresnel zone lens formed by a thin film forming method is provided as a condenser lens on the upper substrate, there is an effect that the upper substrate can be made extremely thin while maintaining high light transmittance. When a spherical lens is provided as the condenser lens, light loss can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光モジュールM1の平面図である。FIG. 1 is a plan view of an optical module M1 of the present invention.

【図2】(a)は図1のA−A′線における断面図、
(b)は図1のB−B′線における断面図、(c)は図
1のC−C′線における断面図である。
FIG. 2A is a sectional view taken along line AA ′ of FIG. 1;
FIG. 2B is a cross-sectional view taken along line BB ′ of FIG. 1, and FIG. 2C is a cross-sectional view taken along line CC ′ of FIG.

【図3】本発明の下側基板1の平面図である。FIG. 3 is a plan view of the lower substrate 1 of the present invention.

【図4】(a)は図3のA−A′線における断面図、
(b)は図3のB−B′線における断面図、(c)は図
3のC−C′線における断面図である。
FIG. 4A is a sectional view taken along line AA ′ of FIG. 3;
FIG. 3B is a cross-sectional view taken along line BB ′ of FIG. 3, and FIG. 3C is a cross-sectional view taken along line CC ′ of FIG.

【図5】本発明の上側基板2の平面図である。FIG. 5 is a plan view of the upper substrate 2 of the present invention.

【図6】(a)は図5のA−A′線における断面図、
(b)は図5のB−B′線における断面図、(c)は図
5のC−C′線における断面図である。
6A is a cross-sectional view taken along line AA ′ in FIG.
(B) is a cross-sectional view taken along the line BB 'in FIG. 5, and (c) is a cross-sectional view taken along the line CC' in FIG.

【図7】本発明の他の実施例であり、光モジュールM2
の平面図である。
FIG. 7 shows another embodiment of the present invention, in which an optical module M2 is provided.
FIG.

【図8】(a)は図7のA−A′線における断面図、
(b)は図7のB−B′線における断面図、(c)は図
7のC−C′線における断面図である。
FIG. 8A is a cross-sectional view taken along line AA ′ of FIG.
(B) is a cross-sectional view taken along the line BB 'in FIG. 7, and (c) is a cross-sectional view taken along the line CC' in FIG.

【図9】光モジュールM2の上側基板2の平面図であ
る。
FIG. 9 is a plan view of the upper substrate 2 of the optical module M2.

【図10】(a)は図9のA−A′線における断面図、
(b)は図9のB−B′線における断面図、(c)は図
9のC−C′線における断面図である。
FIG. 10A is a cross-sectional view taken along line AA ′ of FIG. 9;
(B) is a cross-sectional view taken along the line BB 'in FIG. 9, and (c) is a cross-sectional view taken along the line CC' in FIG.

【図11】比較例を示し、(a)は下側基板1の平面
図、(b)は(a)のA−A′線における断面図、
(c)は(a)のB−B′線における断面図である。
11A and 11B show a comparative example, in which FIG. 11A is a plan view of the lower substrate 1, FIG. 11B is a cross-sectional view taken along line AA ′ of FIG.
(C) is a sectional view taken along line BB 'of (a).

【図12】従来の半導体レーザ装置の部分断面図であ
る。
FIG. 12 is a partial sectional view of a conventional semiconductor laser device.

【符号の説明】[Explanation of symbols]

1:下側基板 2:上側基板 3:逆台形状の溝 4:反射面 8:溝 9:LD用の電極 14:PD用の電極 15:LD 16:光学フィルタ 17:光ファイバ 20:PD 21:フレネルゾーンレンズ 1: lower substrate 2: upper substrate 3: inverted trapezoidal groove 4: reflective surface 8: groove 9: LD electrode 14: PD electrode 15: LD 16: optical filter 17: optical fiber 20: PD 21 : Fresnel zone lens

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】下側基板と透光性の上側基板とを有し、下
側基板の上側主面に、発光素子搭載部と、発光素子に対
向する位置に設けられた光ファイバ固定用のV溝aと、
発光素子とV溝aとの間の光軸上に形成された光学フィ
ルタ設置用の溝bと、該光学フィルタにより反射された
光を略垂直上方へ反射させる反射面とを設け、且つ前記
発光素子搭載部は反射面上端よりも反射面側にあり、前
記上側基板の下側主面に、反射面による反射光を集光さ
せる集光レンズと受光素子とを設置し、前記上側基板の
下側主面と下側基板の上側主面とを重ね合わせたことを
特徴とする光モジュール。
A light-emitting element mounting portion provided on an upper main surface of the lower substrate and an optical fiber fixing portion provided at a position facing the light-emitting element. V groove a,
A groove b for installing an optical filter formed on the optical axis between the light-emitting element and the V-groove a; a reflecting surface for reflecting light reflected by the optical filter substantially vertically upward; The element mounting portion is located closer to the reflection surface than the upper end of the reflection surface, and a condensing lens and a light receiving element for collecting light reflected by the reflection surface are installed on the lower main surface of the upper substrate. An optical module characterized in that a side main surface and an upper main surface of a lower substrate are overlapped.
【請求項2】前記上側基板の主面に設けた集光レンズ
が、フレネルゾーンレンズ又は球レンズである請求項1
記載の光モジュール。
2. A condensing lens provided on a main surface of the upper substrate is a Fresnel zone lens or a spherical lens.
An optical module as described.
JP36829098A 1998-12-25 1998-12-25 Optical module Expired - Fee Related JP3716118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36829098A JP3716118B2 (en) 1998-12-25 1998-12-25 Optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36829098A JP3716118B2 (en) 1998-12-25 1998-12-25 Optical module

Publications (2)

Publication Number Publication Date
JP2000193852A true JP2000193852A (en) 2000-07-14
JP3716118B2 JP3716118B2 (en) 2005-11-16

Family

ID=18491450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36829098A Expired - Fee Related JP3716118B2 (en) 1998-12-25 1998-12-25 Optical module

Country Status (1)

Country Link
JP (1) JP3716118B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665464B2 (en) * 2001-03-28 2003-12-16 Seiko Instruments Inc. Optical function module having removable optical function unit
JP2004128507A (en) * 2002-09-30 2004-04-22 Osram Opto Semiconductors Gmbh Semiconductor chip for emitting electromagnetic beam and its manufacturing method
EP1434067A1 (en) * 2001-10-04 2004-06-30 Matsushita Electric Industrial Co., Ltd. Optical filter module, and manufacturing method thereof
JP2012078527A (en) * 2010-09-30 2012-04-19 Sumitomo Bakelite Co Ltd Optical waveguide module and electronic equipment
US8687664B2 (en) 2006-03-08 2014-04-01 Agere Systems Llc Laser assembly with integrated photodiode
US9105807B2 (en) 2013-04-22 2015-08-11 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor optical emitting device with grooved substrate providing multiple angled light emission paths

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665464B2 (en) * 2001-03-28 2003-12-16 Seiko Instruments Inc. Optical function module having removable optical function unit
EP1434067A1 (en) * 2001-10-04 2004-06-30 Matsushita Electric Industrial Co., Ltd. Optical filter module, and manufacturing method thereof
EP1434067A4 (en) * 2001-10-04 2005-05-25 Matsushita Electric Ind Co Ltd Optical filter module, and manufacturing method thereof
US7044649B2 (en) 2001-10-04 2006-05-16 Matsushita Electric Industrial Co., Ltd. Optical filter module, and manufacturing method thereof
JP2004128507A (en) * 2002-09-30 2004-04-22 Osram Opto Semiconductors Gmbh Semiconductor chip for emitting electromagnetic beam and its manufacturing method
US7655488B2 (en) 2002-09-30 2010-02-02 Osram Gmbh Method for fabricating a plurality of electromagnetic radiation emitting semiconductor chips
JP4623953B2 (en) * 2002-09-30 2011-02-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Semiconductor chip emitting electromagnetic beam and method of manufacturing the same
US8687664B2 (en) 2006-03-08 2014-04-01 Agere Systems Llc Laser assembly with integrated photodiode
JP2012078527A (en) * 2010-09-30 2012-04-19 Sumitomo Bakelite Co Ltd Optical waveguide module and electronic equipment
US9105807B2 (en) 2013-04-22 2015-08-11 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor optical emitting device with grooved substrate providing multiple angled light emission paths

Also Published As

Publication number Publication date
JP3716118B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
CN1885079B (en) Optical device
US6998691B2 (en) Optoelectronic device packaging with hermetically sealed cavity and integrated optical element
US5932114A (en) Integrated optical module including a waveguide and a photoreception device
US6969204B2 (en) Optical package with an integrated lens and optical assemblies incorporating the package
JP2644829B2 (en) Optical information recording / reproducing device
JP2003014987A (en) Optical path converting body and its packaging structure and optical module
KR20110028273A (en) Optical splitter device
US7308174B2 (en) Optical device including a filter member for dividing a portion of signal light
TWI497726B (en) Optical receiver architecture using a mirrored substrate
JPH1140823A (en) Photodetector module
JP3716118B2 (en) Optical module
JP2002357748A (en) Light path converting reflective body, mounting structure thereof and optical module
US20050276546A1 (en) Bidirectional emitting and receiving module
US6588948B2 (en) Optical communication module having a constant plane of polarization of transmitted light
JP2012098756A (en) Optical path converting body and packaging structure thereof, and optical module with the same
JPH0290585A (en) Laser device
JPH08186327A (en) Sealing structure of semiconductor element
JPH0582810A (en) Photoelectric transfer device
JP3810315B2 (en) Mounting structure of optical path changer for optical communication and optical module
KR100351561B1 (en) Vertical cavity surface emitting laser and optical transmitter using the same
JP3290888B2 (en) Laser length measuring device and manufacturing method thereof
JPH05327131A (en) Semiconductor laser device
JP3302709B2 (en) Magneto-optical information recording / reproducing apparatus and method of manufacturing the same
JPH06230236A (en) Optical circuit
US20240077688A1 (en) Optical assemblies comprising a prism

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees