JP2000192167A - Method for selecting and seprating rare metal component from waste fluorescent material - Google Patents

Method for selecting and seprating rare metal component from waste fluorescent material

Info

Publication number
JP2000192167A
JP2000192167A JP37630298A JP37630298A JP2000192167A JP 2000192167 A JP2000192167 A JP 2000192167A JP 37630298 A JP37630298 A JP 37630298A JP 37630298 A JP37630298 A JP 37630298A JP 2000192167 A JP2000192167 A JP 2000192167A
Authority
JP
Japan
Prior art keywords
rare metal
fluorescent material
rare
waste fluorescent
ball mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP37630298A
Other languages
Japanese (ja)
Other versions
JP3497089B2 (en
Inventor
Fumiyoshi Saito
文良 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sendai Clean & Eco Technologic
Sendai Clean & Eco-Technological Corp
Original Assignee
Sendai Clean & Eco Technologic
Sendai Clean & Eco-Technological Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sendai Clean & Eco Technologic, Sendai Clean & Eco-Technological Corp filed Critical Sendai Clean & Eco Technologic
Priority to JP37630298A priority Critical patent/JP3497089B2/en
Publication of JP2000192167A publication Critical patent/JP2000192167A/en
Application granted granted Critical
Publication of JP3497089B2 publication Critical patent/JP3497089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To further facilitate the separation and recovery of rare metal components from disposed waste fluorescent lamps containing various kinds of rare metals. SOLUTION: Waste fluorescent materials containing rare metal components are subjected to the mechano-chemical treatment of low degree to elude Y and Eu components in a weak acid, and then subjected to the mechano-chemical treatment of high degree to elude La, Ce and Tb components in a weak acid to selectively separate the rare metal components. The degree of the mechano- chemical treatment includes the rotational speed and the treatment time by a ball mill, and in a specific example, the combination of the rotational speed of 700 rpm for two treatment hours by the ball mill is of high degree, while the combination of the rotational speed of 400 rpm for 20 minutes is of low degree. Hydrochloric acid or sulfonic acid of <=1N is suitable for the weak acid. Since the rare metal components can be extracted by the kind in two parts, the final separation of each component is easy to enable the cyclic use of rare resources.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は各種レアメタルを含
有する廃棄された蛍光管からこれらを種類ごと大別して
分離する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating fluorescent lamps containing various rare metals from abandoned fluorescent tubes by type.

【0002】[0002]

【従来の技術】レアメタル(希土類元素)は原子番号5
7のLa(ランタン)から原子番号71のLu(ルテチ
ウム)までの15元素と、化学的性質が類似するSc
(スカンジウム)とY(イットリウム)の2元素を加え
た17元素を総称するもので、三波長形蛍光管や触媒、
光学ガラス、ファインセラミックス、磁石など、いわゆ
る機能性材料の製造に欠かせない重要な元素である。そ
して、これらの元素は、通常、モナザイトやバストネサ
イト、ゼノタイムなどの鉱石を出発原料として高温度、
高濃度酸による抽出操作によって製造されているのが現
状である。
2. Description of the Related Art Rare metals (rare earth elements) have atomic number 5
Sc with similar chemical properties to 15 elements from La (lanthanum) 7 to Lu (lutetium) with atomic number 71
(Scandium) and Y (yttrium), which is a collective term for 17 elements including three elements, such as a three-wavelength fluorescent tube, a catalyst,
It is an important element indispensable for the production of so-called functional materials such as optical glass, fine ceramics and magnets. And these elements are usually high temperature starting from ores such as monazite, bastnaesite and xenotime,
At present, it is manufactured by an extraction operation using a high-concentration acid.

【0003】これら増加するレアメタルの需要に応える
ために莫大な量のレアメタル鉱石が必要であるが、レア
メタル含有鉱石の産地は世界中でも主に中国、北米、ロ
シアなどに限定されており、しかも産出量が少ないの
で、レアメタルの入手をこれのみに依存していたのでは
早晩枯渇してしまうおそれがある。このように資源を鉱
石にのみ依存するには限界があり、将来の技術としても
廃棄物からのレアメタル回収法が望まれる。
An enormous amount of rare metal ore is required in order to meet the increasing demand for rare metal, but the rare metal-containing ore is produced mainly in China, North America, Russia, etc. all over the world. Therefore, relying solely on the acquisition of rare metals may lead to exhaustion sooner or later. As described above, there is a limit in relying only on ore for resources, and a method of recovering rare metals from waste is desired as a future technology.

【0004】その有望なレアメタル回収対象物として大
量に廃棄される三波長高演色蛍光管が見込まれる。すな
わち、レアメタルが三波長高演色性蛍光管用蛍光材とし
て広く利用され、年々これを用いた蛍光管の需要が増大
するにともない、使用済みとなって廃棄される蛍光管の
量が増加の一途をたどっているので、廃棄される蛍光管
からレアメタルを分離回収し、再利用することが考えら
れている。蛍光管に使用される蛍光材にはYをはじめ、
La、Eu、Ce、Tbなど多くのレアメタルが含まれ
ている。従来の回収技術は高温度、高濃度酸による抽出
法であるので、作業環境上の問題があり、より温和な条
件下での回収法の確立が望まれていた。
As a promising rare metal recovery target, a three-wavelength high color rendering fluorescent tube that is discarded in large quantities is expected. In other words, rare metals are widely used as fluorescent materials for three-wavelength high color rendering fluorescent tubes, and as the demand for fluorescent tubes using them increases year by year, the amount of used and discarded fluorescent tubes continues to increase. Therefore, it is considered that rare metals are separated and collected from the fluorescent tubes to be discarded and reused. Fluorescent materials used for fluorescent tubes include Y,
Many rare metals such as La, Eu, Ce, and Tb are included. Since the conventional recovery technique is an extraction method using a high-temperature, high-concentration acid, there is a problem in the working environment, and establishment of a recovery method under milder conditions has been desired.

【0005】本発明者は廃棄蛍光管を将来の有望なレア
メタルの都市資源と位置付け、さきにメカノケミカル処
理と室温下で弱酸性溶液を用いた抽出操作とを組み合わ
せ、よりマイルドな条件下での廃棄蛍光管からのレアメ
タルの抽出化の可能性を模索した結果、これら廃棄され
る蛍光材に対して乾式メカノケミカル処理をほどこした
うえ、室温で弱酸によるレアメタル浸出をおこなえば、
含有レアメタルのすべての種類が高収率で酸に溶解する
ことを見出している。
The present inventor has positioned waste fluorescent lamps as a promising rare metal city resource in the future, and previously combined mechanochemical treatment with extraction using a weakly acidic solution at room temperature, and under more mild conditions. As a result of exploring the possibility of extracting rare metals from waste fluorescent tubes, dry mechanochemical treatment was applied to these discarded fluorescent materials, and if rare metal leaching was performed at room temperature with a weak acid,
It has been found that all kinds of rare metals contained dissolve in acids in high yield.

【0006】[0006]

【発明が解決しようとする課題】本発明は各種レアメタ
ルを含有する廃棄蛍光管からこれらの分離回収をより一
層容易にするため、これらを種類ごと大別して分離する
方法を提供せんとするものである。
SUMMARY OF THE INVENTION The present invention aims to provide a method for separating these types of waste fluorescent tubes from waste fluorescent tubes containing various rare metals, in order to further facilitate their separation and recovery. .

【0007】[0007]

【課題を解決するための手段】ここにおいて本発明者
は、レアメタル成分含有の廃棄蛍光材に対し、さきに度
合の低いメカノケミカル処理をほどこしてYおよびEu
成分を弱酸に溶出させ、あとで度合の高いメカノケミカ
ル処理をほどこしてLa、Ce、Tb成分を弱酸に溶出
させることを特徴とする廃棄蛍光材からレアメタル成分
を選択分離する方法を見出すにいたった。
Here, the present inventor has performed a low-level mechanochemical treatment on a waste fluorescent material containing a rare metal component to obtain Y and Eu.
We have found a method for selectively separating rare metal components from waste fluorescent material, characterized in that components are eluted in a weak acid and a high degree of mechanochemical treatment is applied later to elute La, Ce, and Tb components in a weak acid. .

【0008】ここで、メカノケミカル処理の度合いの高
低はボ−ルミルによる回転速度と処理時間の大小であ
り、具体例として、ボ−ルミルの回転速度700rpm
で2時間処理に対する400rpmで20分の組合わせ
をその大小とすることができる。なお、レアメタル成分
の溶出に用いる弱酸は濃度1N以下の塩酸または硫酸が
好適である。
The degree of the mechanochemical treatment depends on the rotation speed of the ball mill and the processing time. As a specific example, the rotation speed of the ball mill is 700 rpm.
Thus, the combination of 20 minutes at 400 rpm for the two-hour process can be made larger or smaller. The weak acid used for eluting the rare metal component is preferably hydrochloric acid or sulfuric acid having a concentration of 1N or less.

【0009】[0009]

【発明の実施の形態】メカノケミカルとは、一般に固体
物質に加えた機械的ネネルギ−、たとえば、せん断、圧
縮、衝撃、粉砕、曲げ延伸などによって、固体表面が物
理化学的変化をきたし、その周囲に存在する気体、液体
物質に化学的変化をもたらすか、あるいはそれらと固体
表面との化学的変化を直接誘起し、または促進するなど
して、化学的状態に影響をおよぼす現象として知られて
いる。
DETAILED DESCRIPTION OF THE INVENTION A mechanochemical is generally defined as a mechanical energy added to a solid substance, for example, shear, compression, impact, crushing, bending or stretching, and the like, which causes a physicochemical change in the surface of the solid. Known as a phenomenon that affects a chemical state by causing a chemical change to a gas or liquid substance present in the water, or by directly inducing or promoting a chemical change between them and a solid surface. .

【0010】廃棄蛍光管からレアメタル成分を取出す際
は、予め金具と管内の水銀成分を除き、全体を粗砕して
レアメタル成分を機械的に分離してからこれを乾式メカ
ノケミカル処理にかけるのが望ましい。通常の蛍光管で
あれば二つ折り程度にすると蛍光材が一部剥離し、ガラ
ス破片も多少同伴する。さらに、折れた蛍光管に振動を
与えると蛍光材が95%以上剥離してくる。これをたと
えば200メッシュ(目開き74ミクロン)のふるいに
かけると、供給した70%程度にあたる蛍光材が殆ど回
収され、ガラス成分が分離される。しかし、ここで得ら
れた廃棄蛍光材は劣化しており、そのままでは蛍光材と
して再利用できないことが判明している。これはおそら
く酸化物としての固溶体でない形、すなわち単なる酸化
物の混合体に変化しているためではないかと推測され
る。なお、このようにして得られる蛍光材にガラス成分
の随伴は避けられないので、その場合の影響を調べたと
ころ、ガラス成分が多いとかえって乾式メカノケミカル
処理の効果が上がることが判明している。したがって、
本発明におけるレアメタル成分含有の廃棄蛍光材にはガ
ラス成分が共存する場合も包含されるものとする。
When removing the rare metal component from the waste fluorescent tube, it is necessary to remove the mercury component in the metal fittings and the tube in advance, crush the whole, and mechanically separate the rare metal component, and then subject it to dry mechanochemical treatment. desirable. In the case of a normal fluorescent tube, when it is folded in half, a part of the fluorescent material is peeled off, and some glass fragments are accompanied. Further, when vibration is applied to the broken fluorescent tube, 95% or more of the fluorescent material is peeled off. When this is sieved through, for example, a 200-mesh sieve (aperture 74 microns), almost 70% of the supplied fluorescent material is recovered, and the glass component is separated. However, it has been found that the waste fluorescent material obtained here has deteriorated and cannot be reused as a fluorescent material as it is. It is presumed that this is probably due to the fact that it is not a solid solution as an oxide, that is, it has just changed to a mixture of oxides. In addition, since the fluorescent material obtained in this way cannot avoid the accompanying glass component, it was found that the effect in that case was examined, and it was found that the effect of the dry-type mechanochemical treatment was improved when the glass component was large. . Therefore,
The waste fluorescent material containing a rare metal component in the present invention includes a case where a glass component coexists.

【0011】[0011]

【実施例】以下、実施例により本発明を具体的に説明す
る。 〔蛍光材〕廃棄される三波長高演色蛍光管に含まれる蛍
光材(以下、単に蛍光材という)は青色、緑色、赤色の
各単色蛍光体が混合された粉末体であり、下記4種類の
複合酸化物からなるものである。 青色蛍光体・・・BaMgAl1017:Eu2+(略称:
BAT) 緑色蛍光体・・・LaPO4 :Ce3+、Tb3+(略称:
LAP) 緑色蛍光体・・・CeMgAl1119:Tb3+(略称:
MAT) 赤色蛍光体・・・Y2 3 :Eu3+(略称:YOX)
The present invention will be described below in detail with reference to examples. [Fluorescent material] The fluorescent material contained in the three-wavelength high color rendering fluorescent tube to be discarded (hereinafter simply referred to as a fluorescent material) is a powder in which blue, green, and red monochromatic phosphors are mixed. It is composed of a composite oxide. Blue phosphor: BaMgAl 10 O 17 : Eu 2+ (abbreviation:
BAT) Green phosphor: LaPO 4 : Ce 3+ , Tb 3+ (abbreviation:
LAP) Green phosphor: CeMgAl 11 O 19 : Tb 3+ (abbreviation:
MAT) Red phosphor ・ ・ ・ Y 2 O 3 : Eu 3+ (abbreviation: YOX)

【0012】〔乾式メカノケミカル処理〕蛍光材の乾式
メカノケミカル処理(以下、メカノケミカル処理とい
う)における高エネルギ−型粉砕機として、遊星ボ−ル
ミル(Fritsch社製、Planetary Mi
cro Ball,Pulverissete−7)を
用いた。この遊星ボ−ルミルは内容量50cm3 からな
る2個のジルコニア製ミルポットを回転方向が時計回り
で、回転半径70mmの回転円盤に取付けたもので、ミ
ルポット自身も回転方向が反時計回りで、回転円盤と同
じ速度で回転できるようになっている。ミルポットには
直径15mmのジルコニア製ボ−ル7個と蛍光材粉末5
gを装填し、ミル回転速度を変化させ、所定時間メカノ
ケミカル処理をおこなった。粉砕は回分法でおこない、
所定時間処理して得られた産物は全量回収した。最長処
理時間は2時間であり、とくに、ポット内の過度の発熱
を避けるため、15分運転後は30分停止して自然冷却
する操作をくりかえした。各粉砕処理時間後の産物は、
粒度分布測定(Seisin,Laser Micro
nSizer,LMS−30)、X線回析(XRD)
(Rigaku,RAD−Bsystem,Cu−K
α)、熱分析(Rigaku,TAS−200)などを
おこなって、メカノケミカル処理による粉体特性の変化
を評価した。
[Dry Mechanochemical Treatment] As a high energy type pulverizer in dry mechanochemical treatment of fluorescent material (hereinafter referred to as mechanochemical treatment), a planetary ball mill (Planetary Mi, manufactured by Fritsch) is used.
cro Ball, Pulverisset-7) was used. This planetary ball mill is composed of two zirconia mill pots having a capacity of 50 cm 3 attached to a rotating disk with a clockwise rotation of 70 mm and a turning radius of 70 mm. It can rotate at the same speed as the disk. The mill pot contains 7 balls made of zirconia having a diameter of 15 mm and phosphor powder 5.
g was loaded, the mill rotation speed was changed, and mechanochemical treatment was performed for a predetermined time. Grinding is carried out by the batch method,
All the products obtained by processing for a predetermined time were collected. The longest processing time was 2 hours. In particular, in order to avoid excessive heat generation in the pot, the operation of stopping for 30 minutes after the 15-minute operation and repeating the natural cooling operation was repeated. The product after each milling time is
Particle size distribution measurement (Seisin, Laser Micro
nSizer, LMS-30), X-ray diffraction (XRD)
(Rigaku, RAD-Bsystem, Cu-K
α), thermal analysis (Rigaku, TAS-200) and the like were performed to evaluate changes in powder characteristics due to mechanochemical treatment.

【0013】第1図に4種類の単色蛍光体とこれを12
0分メカノケミカル処理したもの(それぞれ上と下)の
XRDパタ−ンを示す。同図より、メカノケミカル処理
に対するこれら試料の結晶構造の安定性が異なることが
わかる。
FIG. 1 shows four types of monochromatic phosphors and the
The XRD pattern of mechanochemically treated for 0 minute (upper and lower, respectively) is shown. It can be seen from the figure that the stability of the crystal structures of these samples with respect to the mechanochemical treatment is different.

【0014】第2図にはボ−ルミルの回転速度を変化さ
せた場合におけるボ−ルミル処理時間によるYの収率の
変化を示す。同図よりYの収率はボ−ルミルの回転速度
が高いほど、また、処理時間が長いほど良好となる。
FIG. 2 shows the change in the yield of Y depending on the ball mill processing time when the rotation speed of the ball mill is changed. As shown in the figure, the yield of Y becomes better as the rotation speed of the ball mill is higher and the processing time is longer.

【0015】とくに、ボ−ルミルの回転速度が400r
pm以上でYの収率が良好となることから、つぎに、4
00rpmという一定条件下で各レアメタルの収率の変
化を調べ、その結果を図3 に示す。同図より、ボ−ルミ
ルによる処理時間の経過とともに、YやEuの収率は急
激に増大するが、La、Ce、Tbの収率は、ボ−ルミ
ルによる処理時間5〜10分前後までは低く、それ以降
では徐々に増加する程度である。
Particularly, when the rotation speed of the ball mill is 400 r
pm or more, the yield of Y becomes good.
Changes in the yield of each rare metal were examined under a constant condition of 00 rpm, and the results are shown in FIG. As shown in the figure, the yields of Y and Eu sharply increase with the elapse of the processing time by the ball mill, but the yields of La, Ce and Tb are increased up to about 5 to 10 minutes by the ball mill. It is low and gradually increases thereafter.

【0016】したがって、たとえば、La、Ce、Tb
の収率を10%程度に抑制し、Y、Euの収率を80〜
90%にするには、ボ−ルの径15mmを使用してボ−
ルミルの回転速度を400rpmとし、その処理時間を
約20分に設定すればよいことがわかる。
Therefore, for example, La, Ce, Tb
Is suppressed to about 10%, and the yields of Y and Eu are reduced to 80 to 80%.
To achieve 90%, use a ball with a diameter of 15 mm.
It can be seen that the rotation speed of the mill should be 400 rpm and the processing time should be set to about 20 minutes.

【0017】これらの図より、各レアメタル間の収率比
の変化を求めることができる。たとえば、Laを基準と
すると、図3から図4が得られる。同図より収率比(R
e/La)(Re:Y,Ce,Tb,Eu)はボ−ルミ
ル処理時間の初期で大きく変化し、時間の経過とともに
一定になることがわかる。
From these figures, the change in the yield ratio between the rare metals can be determined. For example, based on La, FIGS. 3 and 4 are obtained. From the figure, the yield ratio (R
It can be seen that e / La) (Re: Y, Ce, Tb, Eu) changes greatly at the beginning of the ball milling time and becomes constant over time.

【0018】一方、図2から図5が得られ、同図より、
メカノケミカル処理した蛍光材の酸浸出特性を示す収率
比(Y/La)はボ−ルミル処理時間のみならず、ボ−
ルミルの回転速度によっても変化することがわかる。す
なわち、Y、Euを抽出したあとで、ボ−ルの径15m
mを用いてボ−ルミルの回転速度を700rpmとし、
ボ−ルミル処理時間を約120分に設定すれば、La、
Ce、Tbが抽出されることになる。
On the other hand, FIG. 5 is obtained from FIG.
The yield ratio (Y / La) showing the acid leaching property of the fluorescent material subjected to the mechanochemical treatment is determined not only by the ball milling time but also by the ball milling time.
It can be seen that it changes depending on the rotational speed of the mill. That is, after extracting Y and Eu, the diameter of the ball is 15 m.
m, the rotation speed of the ball mill is set to 700 rpm,
If the ball mill processing time is set to about 120 minutes, La,
Ce and Tb are extracted.

【0019】〔酸処理〕以上において、蛍光材をメカノ
ケミカル処理して得られたものからレアメタル成分を抽
出するにあたり、低濃度の酸として1Nの塩酸を用い
た。酸液25mlにメカノケミカル処理した蛍光材粉末
0.5gを投入し(固液重量比=1/50)、室温下で
1時間マグネチック・スタラ−で攪拌後、濾紙、No.
5Cで濾過して固液を分離し、濾液中の含有元素をIC
Pで分析するとともに、固体残渣はXRD法によって構
成成分を同定し評価した。なお、メカノケミカル処理し
ていない蛍光材粉末についても同様に酸浸出をおこな
い、同様な分析をおこなったが、酸浸出は殆ど認められ
なかった。
[Acid Treatment] In extracting a rare metal component from a fluorescent material obtained by mechanochemical treatment, 1N hydrochloric acid was used as a low-concentration acid. 0.5 g of phosphor powder treated with mechanochemical treatment was added to 25 ml of the acid solution (weight ratio of solid / liquid = 1/50), and the mixture was stirred with a magnetic stirrer at room temperature for 1 hour.
The solution was filtered through 5C to separate the solid and the liquid.
While analyzing with P, the solid residue was identified and evaluated for its constituent components by the XRD method. In addition, acid leaching was similarly performed on the fluorescent material powder that had not been subjected to the mechanochemical treatment, and a similar analysis was performed. However, almost no acid leaching was observed.

【0020】〔ガラス破片混入の影響〕図6にはガラス
破片混入割合を変化させた蛍光材に対するボ−ルミルの
回転数700rpmによるメカノケミカル処理2時間の
場合のXRDパタ−ンを示す。同図より、ガラス破片を
含まないもの(0%表示)ではBATとYOXの回析ピ
−クが明瞭であるが、ガラス破片共存の混合体粉末では
BATならびにYOXのピ−クが低くなるか、あるいは
消滅していることがわかる。しかしながら、ガラス破片
含有蛍光材の場合はその含有率によるXRDパタ−ンの
変化が小さい。
FIG. 6 shows the XRD pattern in the case where the mechanochemical treatment was performed for 2 hours at a ball mill rotation speed of 700 rpm with respect to the fluorescent material in which the mixing ratio of the glass shards was changed. From the figure, the diffraction peaks of BAT and YOX are clear in the case where glass shards are not included (0% display), but the peaks of BAT and YOX are lower in the mixed powder in which glass shards coexist. Or disappeared. However, in the case of the fluorescent material containing glass fragments, the change in the XRD pattern depending on the content is small.

【0021】図7にはボ−ルミルの回転数700rpm
によるメカノケミカル処理2時間の蛍光材からの1N塩
酸によるレアメタル成分浸出におよぼすガラス(シリ
カ)破片添加割合の影響を示す。同図より、Y、La、
Tbの収率はガラス破片の有無に無関係で、収率が約8
0%以上となっている。一方、Ceについてはガラス破
片が少ない場合60〜70%とガラス破片なしの場合よ
り低い。しかしながら、ガラス破片が30%以上になる
と、収率が90%に限りなく近づく傾向にある。ガラス
破片は廃棄蛍光管から蛍光材を分離する際に量の大小を
問わず必然的に混入するとみるべきであり、そのことか
ら、その共存による影響が懸念されたが、ガラス破片共
存蛍光材のメカノケミカル処理は、最終的なレアメタル
成分の酸浸出結果にさほど悪影響をおよぼさず、むし
ろ、ガラス破片がある程度以上含まれるとレアメタル成
分の浸出率が向上することがわかった。なお、図には示
していないが,EuについてはYと同じ傾向であり、約
5%低い収率を示した。その理由はBAT(Eu2+)が
溶解しにくいことによる。
FIG. 7 shows the rotation speed of the ball mill at 700 rpm.
1 shows the effect of the glass (silica) fragment addition ratio on the leaching of rare metal components from a fluorescent material by 1N hydrochloric acid for 2 hours from a mechanochemical treatment with chlorophyll. From the figure, Y, La,
The yield of Tb is independent of the presence or absence of glass shards,
0% or more. On the other hand, Ce is 60 to 70% when there are few glass fragments, which is lower than the case without glass fragments. However, when the glass shards are 30% or more, the yield tends to approach 90% without limit. Glass fragments should be inevitably mixed, regardless of the amount, when separating the fluorescent material from the waste fluorescent tube.Therefore, there was concern about the effect of the coexistence of the fluorescent material. It has been found that the mechanochemical treatment does not significantly affect the final acid leaching result of the rare metal component, but rather improves the leaching rate of the rare metal component when glass fragments are contained to some extent. Although not shown in the figure, Eu had the same tendency as Y, and showed a yield of about 5% lower. The reason is that BAT (Eu 2+ ) is difficult to dissolve.

【0022】なお、弱酸としてたとえば塩酸に浸出した
レアメタル成分が塩化物として溶解しているところから
レアメタル成分を析出させるには、溶液のpHを制御す
ることによって、水酸化物として取出し、さらに各成分
を分離するには、析出段階で他の硫酸イオンや硝酸イオ
ン等との反応における選択性を利用して逐次析出をおこ
ない、使用目的の形態に合わせて分離・回収することが
でき、析出物を焼成すれば各種レアメタルの酸化物を得
ることができる。レアメタル成分の内容が二分されてい
れば以上の分離操作が容易になる。
In order to precipitate the rare metal component from a place where the rare metal component leached in, for example, hydrochloric acid as a weak acid is dissolved as a chloride, the pH is adjusted by controlling the pH of the solution. Can be separated in the precipitation stage by sequentially utilizing the selectivity in the reaction with other sulfate ions or nitrate ions, and can be separated and recovered in accordance with the intended use form. By firing, oxides of various rare metals can be obtained. If the content of the rare metal component is divided into two, the above separation operation becomes easy.

【0023】[0023]

【発明の効果】本発明によりレアメタル成分を含む廃棄
蛍光管からこれらを種類ごと二分して抽出できるので、
各成分の最終分離が容易になり、希少資源の循環使用を
可能にする。
According to the present invention, these can be separated into two types by type from waste fluorescent tubes containing rare metal components.
The final separation of each component is facilitated, enabling the recycling of scarce resources.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 4種類の単色蛍光体とこれを120分メカノ
ケミカル処理したもの(それぞれ上と下)のXRDパタ
−ンを示す。
FIG. 1 shows XRD patterns of four types of monochromatic phosphors and their mechanochemically treated (upper and lower) for 120 minutes.

【図2】 ボ−ルミルの回転速度を変化させた場合にお
けるボ−ルミル処理時間によるYの収率の変化を示す。
FIG. 2 shows a change in the yield of Y depending on the ball mill processing time when the rotation speed of the ball mill is changed.

【図3】 ボ−ルミルの回転速度400rpmにおける
メカノケミカル処理時間と酸抽出されたレアメタル成分
の収率との関係を示す。
FIG. 3 shows the relationship between the mechanochemical treatment time at a rotation speed of a ball mill of 400 rpm and the yield of an acid-extracted rare metal component.

【図4】 メカノケミカル処理時間と酸抽出されたレア
メタル成分の収率との関係を示す。
FIG. 4 shows the relationship between the mechanochemical treatment time and the yield of acid-extracted rare metal components.

【図5】 メカノケミカルにおけるボ−ルミルの回転速
度の変化と処理時間による酸抽出されたレアメタル成分
の収率との関係を示す。
FIG. 5 shows the relationship between the change in the rotation speed of a ball mill in mechanochemicals and the yield of acid-extracted rare metal components depending on the treatment time.

【図6】 ガラス破片の混合率を変化させておこなった
メカノケミカル処理後のXRDパタ−ンを示す。
FIG. 6 shows an XRD pattern after a mechanochemical treatment performed by changing the mixing ratio of glass fragments.

【図7】 レアメタル成分の酸浸出収率におよぼすガラ
ス破片混合割合の影響を示す。
FIG. 7 shows the effect of the glass shard mixing ratio on the acid leaching yield of rare metal components.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G076 AA01 AB28 AC04 BC04 BE08 DA30 4K001 AA39 BA22 CA01 DB02 DB04 DB17  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G076 AA01 AB28 AC04 BC04 BE08 DA30 4K001 AA39 BA22 CA01 DB02 DB04 DB17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レアメタル成分含有の廃棄蛍光材に対
し、さきに度合の低いメカノケミカル処理をほどこして
YおよびEu成分を弱酸に溶出させ、あとで度合の高い
メカノケミカル処理をほどこしてLa、Ce、Tb成分
を弱酸に溶出させることを特徴とする廃棄蛍光材からレ
アメタル成分を選択分離する方法。
The waste fluorescent material containing a rare metal component is first subjected to a low-level mechanochemical treatment to elute the Y and Eu components into a weak acid, and then subjected to a high-level mechanochemical process to obtain La and Ce. A method of selectively separating a rare metal component from a waste fluorescent material, wherein the Tb component is eluted into a weak acid.
【請求項2】 メカノケミカル処理の度合いの高低がボ
−ルミルによる回転速度と処理時間の大小である請求項
1記載の廃棄蛍光材からレアメタル成分を選択分離する
方法。
2. The method for selectively separating rare metal components from waste fluorescent material according to claim 1, wherein the degree of the mechanochemical treatment depends on the rotation speed and the treatment time of the ball mill.
【請求項3】 ボ−ルミルによる回転速度と処理時間の
大小が700rpmで2時間に対する400rpmで2
0分である請求項2記載の廃棄蛍光材からレアメタル成
分を選択分離する方法。
3. The rotation speed and the processing time of the ball mill are 700 rpm and 2 hours at 400 rpm.
3. The method according to claim 2, wherein the rare metal component is selectively separated from the waste fluorescent material for 0 minutes.
JP37630298A 1998-12-22 1998-12-22 Method for selective separation of rare metal components from waste fluorescent material Expired - Fee Related JP3497089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37630298A JP3497089B2 (en) 1998-12-22 1998-12-22 Method for selective separation of rare metal components from waste fluorescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37630298A JP3497089B2 (en) 1998-12-22 1998-12-22 Method for selective separation of rare metal components from waste fluorescent material

Publications (2)

Publication Number Publication Date
JP2000192167A true JP2000192167A (en) 2000-07-11
JP3497089B2 JP3497089B2 (en) 2004-02-16

Family

ID=18506916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37630298A Expired - Fee Related JP3497089B2 (en) 1998-12-22 1998-12-22 Method for selective separation of rare metal components from waste fluorescent material

Country Status (1)

Country Link
JP (1) JP3497089B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392518B1 (en) * 2000-10-26 2003-07-28 한국화학연구원 useful metal separation method of useless three wave fluorescent lamp
KR100412397B1 (en) * 2001-11-05 2003-12-24 한국화학연구원 La and Eu separation method of useless three wave fluorescent lamp
WO2006058508A1 (en) * 2004-11-30 2006-06-08 Ustav Chemickych Procesu Av Cr Method of extraction of europium(iii) and/or yttrium(iii) ions from concentrate of luminophore dust or sludge
JP2009538949A (en) * 2006-06-02 2009-11-12 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング Recovery method of rare earth from fluorescent lamp
JP2010042346A (en) * 2008-08-12 2010-02-25 Jfe Mineral Co Ltd Pretreatment method for recovering rare earth element from disposed fluorescent lamp and method of recovering rare earth element using solid matter obtained by the pretreatment method
KR100945413B1 (en) 2009-07-15 2010-03-04 (주)포스바이오 Method of recycling waste mixed phosphor of the ccfl
WO2011132740A1 (en) 2010-04-21 2011-10-27 Uehara Haruo System and method for recycling rare metals
JP2012523370A (en) * 2009-04-14 2012-10-04 ロデイア・オペラシヨン Method for recovering rare earth elements from solid mixtures containing halophosphate and one or more rare earth element compounds
CN102776366A (en) * 2012-08-10 2012-11-14 北京科技大学 Process for decomposing waste rare earth luminescent materials by two times of acidolysis
KR101480494B1 (en) * 2012-12-24 2015-01-12 주식회사 포스코 Method of recovering europium from mixed rare earth
CN104593608A (en) * 2015-02-02 2015-05-06 上海第二工业大学 Method for intensified leaching of rare earth metals from waste fluorescent powder by mechanical activation method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392518B1 (en) * 2000-10-26 2003-07-28 한국화학연구원 useful metal separation method of useless three wave fluorescent lamp
KR100412397B1 (en) * 2001-11-05 2003-12-24 한국화학연구원 La and Eu separation method of useless three wave fluorescent lamp
WO2006058508A1 (en) * 2004-11-30 2006-06-08 Ustav Chemickych Procesu Av Cr Method of extraction of europium(iii) and/or yttrium(iii) ions from concentrate of luminophore dust or sludge
US8628734B2 (en) 2006-06-02 2014-01-14 Osram Gesellschaft Mit Beschraenkter Haftung Method for recovery of rare earths from fluorescent lamps
JP2009538949A (en) * 2006-06-02 2009-11-12 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング Recovery method of rare earth from fluorescent lamp
JP2010042346A (en) * 2008-08-12 2010-02-25 Jfe Mineral Co Ltd Pretreatment method for recovering rare earth element from disposed fluorescent lamp and method of recovering rare earth element using solid matter obtained by the pretreatment method
JP2012523370A (en) * 2009-04-14 2012-10-04 ロデイア・オペラシヨン Method for recovering rare earth elements from solid mixtures containing halophosphate and one or more rare earth element compounds
KR100945413B1 (en) 2009-07-15 2010-03-04 (주)포스바이오 Method of recycling waste mixed phosphor of the ccfl
WO2011132740A1 (en) 2010-04-21 2011-10-27 Uehara Haruo System and method for recycling rare metals
US8974572B2 (en) 2010-04-21 2015-03-10 Haruo Uehara Method and apparatus for recovering rare metal
CN102776366A (en) * 2012-08-10 2012-11-14 北京科技大学 Process for decomposing waste rare earth luminescent materials by two times of acidolysis
US9322083B2 (en) 2012-08-10 2016-04-26 University Of Science And Technology Beijing Technologies of twice dissolved by hydrochloric acid for waste rare earth luminescent materials
KR101480494B1 (en) * 2012-12-24 2015-01-12 주식회사 포스코 Method of recovering europium from mixed rare earth
CN104593608A (en) * 2015-02-02 2015-05-06 上海第二工业大学 Method for intensified leaching of rare earth metals from waste fluorescent powder by mechanical activation method
CN104593608B (en) * 2015-02-02 2017-03-22 上海第二工业大学 Method for intensified leaching of rare earth metals from waste fluorescent powder by mechanical activation method

Also Published As

Publication number Publication date
JP3497089B2 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
JP5598631B2 (en) Recovery method of rare earth elements
JP5424873B2 (en) Recovery method of rare earth from fluorescent lamp
JP3497089B2 (en) Method for selective separation of rare metal components from waste fluorescent material
Liu et al. Multiscale recycling rare earth elements from real waste trichromatic phosphors containing glass
WO2007105714A1 (en) Method of recovering rare earth element from composition containing rare earth fluoride
Tanvar et al. Extraction of rare earth oxides from discarded compact fluorescent lamps
CN114107668B (en) Method for mechanically activating, reinforcing and leaching rare earth in waste polishing solution
WO2011106167A1 (en) Rare earth recovery from fluorescent material and associated method
CN1064109A (en) The treatment process of ores containing rare earths
JP5991992B2 (en) Method for recovering rare earth from solid mixture containing halophosphate and rare earth compound and solid mixture suitable for this method
Shukla et al. Rapid microwave processing of discarded tubular lights for extraction of rare earth values
KR102475153B1 (en) Recovering Method of Rare Earth Element from Waste Phosphor Powder Using Acid Leaching
JPH1171111A (en) Extraction of rare earth metallic compound
US8486354B2 (en) Method for extracting rare earth material from monazite
CN108950251A (en) The recovery method of rare earth element
JP2009096902A (en) Method for recovery of rare earth element from fluorescent material
CN117448582A (en) Method for efficiently extracting key metals from fly ash based on distribution occurrence
EP1639144B1 (en) Method for recovering at least one metallic element like cesium from ore
CN106636685A (en) Method for extracting rare earth element from cerium-doped yttrium lutecium silicate crystals
CN111304469B (en) Preparation method of high-dispersity ultrafine neodymium oxide
Shukla et al. Investigation of different processing routes for rare earth extraction from discarded tubular lights
JP4169871B2 (en) In leaching method from In-containing oxide
JPS6260833A (en) Treatment of rare earth metal ore
JP2004262978A (en) Method for recovering fluorescent powder
JPS6058175B2 (en) Complete recovery method for uranium, yttrium, thorium, and rare earths contained in phosphate-containing ores during wet process phosphoric acid production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees