JP2000192122A - Structure of auxiliary fuel blowing tuyere in blast furnace - Google Patents

Structure of auxiliary fuel blowing tuyere in blast furnace

Info

Publication number
JP2000192122A
JP2000192122A JP10370423A JP37042398A JP2000192122A JP 2000192122 A JP2000192122 A JP 2000192122A JP 10370423 A JP10370423 A JP 10370423A JP 37042398 A JP37042398 A JP 37042398A JP 2000192122 A JP2000192122 A JP 2000192122A
Authority
JP
Japan
Prior art keywords
tuyere
auxiliary fuel
blast furnace
fuel injection
diameter portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10370423A
Other languages
Japanese (ja)
Other versions
JP3492929B2 (en
Inventor
Akito Kasai
昭人 笠井
Kazuya Miyagawa
一也 宮川
Kentaro Nozawa
健太郎 野沢
Jun Sato
佐藤  淳
Yoshiyuki Matsui
良行 松井
Ryuichi Hori
隆一 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP37042398A priority Critical patent/JP3492929B2/en
Publication of JP2000192122A publication Critical patent/JP2000192122A/en
Application granted granted Critical
Publication of JP3492929B2 publication Critical patent/JP3492929B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a structure of an auxiliary fuel blowing tuyere in a blast furnace, in which the auxiliary fuel can be stably blown into the blast furnace, e.g. in the case of using pulverized fine coal, in the pulverized fine coal blowing ratio of >=150 kg/ton of pig-iron. SOLUTION: In the structure of the auxiliary fuel blowing tuyere in the blast furnace containing the neighborhood of the connecting part of a blow pipe 3 connected with the tuyere 1, this tuyere has the reduced diameter part 4 of the diameter smaller than the inner diameter of the blow pipe 3 and the inner diameter of the tip part of the tuyere 1 in the tube between the neighborhood of the connecting part of the blow pipe 3 and the tip part of the tuyere 1 and an auxiliary fuel blowing lance 2 is arranged so that the tip part 7 of the lance 2 is positioned at the tip part side of the tuyere from the reduced diameter part 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉における補助
燃料吹込み羽口構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an auxiliary fuel injection tuyere structure in a blast furnace.

【0002】[0002]

【従来の技術】周知のように従来、高炉では、鉄鉱石
(ペレット、焼結鉱等を含む)、コークス、副原料(石
灰石等)などを上部から装入する一方、下部の羽口から
高温の空気を供給することで、コークスを燃料(熱源)
及び還元剤として鉄鉱石を還元、溶解し、銑鉄の製造が
なされてきたが、その後、製造コストの高いコークスの
使用量を低減するため、またコークス炉の老朽化対策と
してコークス炉の稼働率を軽減するため、等の理由か
ら、コークスに換わる燃料として高炉羽口から補助燃料
を吹込む高炉への補助燃料吹込み操業方法が広く実施さ
れるようになってきた。
2. Description of the Related Art As is well known, in a conventional blast furnace, iron ore (including pellets, sintered ore, etc.), coke, auxiliary materials (limestone, etc.) and the like are charged from the upper part, while high-temperature Coke as fuel (heat source) by supplying air
Iron ore has been reduced and dissolved as a reducing agent, and pig iron has been manufactured.However, in order to reduce the use of coke, which is expensive to manufacture, and to counteract the aging of coke ovens, the operating rate of coke ovens was reduced. In order to reduce the amount of fuel, for example, the method of injecting auxiliary fuel into a blast furnace through which auxiliary fuel is injected from a blast furnace tuyere as fuel instead of coke has been widely practiced.

【0003】補助燃料としては、当初、燃焼性に優れる
重油等の液体燃料が用いられたが、先のオイルショック
以降、重油価格が高騰し、近年では、石炭を粉砕した微
粉炭をコークスの一部代替燃料として羽口から吹込む所
謂微粉炭吹込み操業(以下PCI操業と言う)が一般的
となりつつある。また更に、最近になって、環境問題へ
の対応の一環として、廃プラスチックに代表される廃棄
合成樹脂材並びに廃棄物由来の固形燃料を羽口を介して
高炉内に供給し、熱源及び還元剤として供することが提
案されてもいる。
As an auxiliary fuel, a liquid fuel such as heavy oil having excellent flammability was initially used. However, since the oil shock, the price of heavy oil has soared. In recent years, pulverized coal obtained by pulverizing coal has been used as coke. The so-called pulverized coal injection operation (hereinafter, referred to as PCI operation), which is blown from tuyeres, is becoming common as a part alternative fuel. Furthermore, recently, as a part of addressing environmental issues, waste synthetic resin material represented by waste plastic and solid fuel derived from waste have been supplied into the blast furnace through tuyeres, and a heat source and a reducing agent have been supplied. It has also been proposed to serve as

【0004】ところで、溶銑コストの低減を進めるため
には、微粉炭、重油等の補助燃料の吹込み比を増量しコ
ークスを減量することが最も効果的な方法であるが、従
来よりブローパイプに接続して普通に用いられてきた羽
口〔例えば第3版鉄鋼便覧第II巻製銑・製鋼(第 306頁
図 5・170)、特開昭64−4410号公報、特開平 3−240908
号公報参照〕(以下通常羽口と称す)では、羽口からの
補助燃料吹込み比を増大した場合には、補助燃料が羽口
内で脱揮及び燃焼ガス化するためにガス体積が増し羽口
圧損が上昇すること、更には羽口先のレースウエイ内で
の燃焼性が悪化するためコークスとの置換率が悪化する
こと、等が確認され、これらが補助燃料吹込み比増量を
律速すると言われている。
In order to reduce the cost of hot metal, the most effective method is to increase the injection ratio of auxiliary fuel such as pulverized coal and heavy oil to reduce coke. The tuyere that has been commonly used by connecting it (for example, Iron and Steelmaking, Vol. II, 3rd Edition Iron and Steel Handbook (Page 306, FIG. 5, 170), JP-A-64-4410, JP-A-3-240908)
(Hereinafter referred to as the tuyere), when the auxiliary fuel injection ratio from the tuyere is increased, the auxiliary fuel devolatilizes in the tuyere and becomes a combustion gas to increase the gas volume. It has been confirmed that the head pressure loss increases, and that the replacement rate with coke deteriorates due to the deterioration of the combustibility in the raceway at the tuyere tip. Have been done.

【0005】そこで、上記問題を改善するために、上記
通常羽口を用い補助燃料として微粉炭を吹込む場合にお
いて、例えば、微粉炭の吹込みランスの先端位置を最適
位置に設定する、吹込みランス本数や構造を改善する、
あるいは適正な炭種(揮発分、灰分等)の選定や粒度構
成の適正化、等々の改善が図られてきたが、これらの改
善がなされても上記通常羽口より安定して吹き込める微
粉炭の量は微粉炭吹込み比で 150kg/銑鉄t程度であ
る。
[0005] In order to solve the above problem, when pulverized coal is blown as auxiliary fuel using the normal tuyere, for example, the tip position of a pulverized coal blowing lance is set to an optimum position. Improve the number and structure of lances,
Improvements have also been made in the selection of appropriate coal types (volatiles, ash, etc.) and the optimization of the particle size composition. However, even if these improvements are made, pulverized coal that can be stably injected from the above-mentioned normal tuyere Is about 150 kg / t of pig iron in pulverized coal injection ratio.

【0006】一方、特公昭53− 19442号公報、特公平 1
− 28804号公報、特開平 2−104604号公報には溶鉱炉
(高炉)の羽口として用いられるラバール(Laval) 型式
の羽口(以下ラバール羽口と称す)の提案がされてい
る。
On the other hand, Japanese Patent Publication No. 53-19442,
Japanese Patent Application Laid-Open No. 28804 and Japanese Patent Application Laid-Open No. 2-104604 propose a Laval-type tuyere (hereinafter referred to as Laval tuyere) used as a tuyere of a blast furnace (blast furnace).

【0007】例えば、特公昭53− 19442号公報(特に第
1頁第2コラム第8行〜第2頁第3コラム第1行)に
は、溶鉱炉などシャフト炉において使用されるコークス
等の固体燃料の価格が高いことから、その1部を液体状
の炭化水素補助燃料に代え、その補助燃料をシャフト炉
に開口する送風管内に噴射して行う技術に用いる羽口と
してラバール羽口が提案されている。このラバール羽口
は、音速炉口を構成する先細部と末広部及び羽口内で燃
料を噴射する噴射管を有する取換え可能な第1部材と、
この第1部材に連なり第1部材の末広部に延長して末広
部を構成する固定の第2部材とで基本的に構成されてい
る。そして、このラバール羽口では、羽口の末広部にお
いて超音速流の状態から亜音速の状態に推移する条件す
なわち、末広部において衝撃波が形成されるような条件
をつくり、その衝撃波の上流に燃料を噴射することで、
噴射された燃料が衝撃波帯域を通過するときに、燃焼媒
体中への分散作用が効果的になり、煤を生成することな
く燃料の噴射率を高くすることができる。と説明されて
いる。なお、このラバール羽口においては、末広部内に
衝撃波を生じさせるためには、そのシャフト炉の燃焼媒
体の供給速度に応じた、炉口(縮流部)の設計が必要で
あることから、この点に着目し、燃焼媒体供給速度によ
り、炉口の形状を変化できるように、第1部材を取換え
可能としている。
For example, Japanese Patent Publication No. 53-19442 (especially page 1, column 2, line 8 to page 2, column 3, line 1) discloses solid fuel such as coke used in shaft furnaces such as blast furnaces. Due to its high price, Laval tuyere has been proposed as a tuyere used for a technique in which a part of the auxiliary fuel is replaced with a liquid hydrocarbon auxiliary fuel and the auxiliary fuel is injected into a blower pipe opened in a shaft furnace. I have. The Laval tuyere is a replaceable first member having a tapered portion constituting a sonic furnace port, a divergent portion, and an injection pipe for injecting fuel in the tuyere,
It is basically composed of a fixed second member connected to the first member and extending to the divergent portion of the first member to form the divergent portion. In this Laval tuyere, a condition for transition from a supersonic flow state to a subsonic state in the flared portion of the tuyere, that is, a condition in which a shock wave is formed in the flared portion, is created, and fuel is provided upstream of the shock wave. By injecting
When the injected fuel passes through the shock wave band, the dispersing action into the combustion medium becomes effective, and the fuel injection rate can be increased without generating soot. It is explained. In order to generate a shock wave in the divergent portion of the Laval tuyere, it is necessary to design a furnace port (contraction section) in accordance with the supply speed of the combustion medium of the shaft furnace. Focusing on the point, the first member can be replaced so that the shape of the furnace port can be changed according to the combustion medium supply speed.

【0008】また、特公平 1− 28804号公報には、高炉
に用いられる送風羽口自体を、中央部が入口径及び出口
径より小径に形成された所謂ラバール羽口とすることが
提案されている。そして同公報には「このラバール羽口
においては、羽口の入側で亜音速の風は中央部(喉部)
ではマッハ数M=1となり、羽口の出口側では超音速の
流れとなるもので、この出口側の風速を超音速とするに
は羽口の入口と出口の風の圧力によって決定される。そ
して、このラバール羽口よりの超音速流は乱流圧縮性自
由噴流となり、ラバール羽口の出口の速度が保持されて
高炉の奥深くまでそのエネルギーが伝えられるものであ
り、その速度コアはマッハ数が大きい程長いのであ
る。」と大要説明され、そして更に、このラバール羽口
によれば、次の如き効果があると説明されている。:
デッドマンと称される不活性な炉芯が狭小化し、稼働内
容積の増大による送風量を増加することができ出銑量が
増加する。:高炉下部の反応性が増大し、直接還元率
の上昇による燃料比を低減できる。:高炉の中心操業
化ができ、炉体熱損失減少による燃料比低減と炉床銑滓
流の中心流化により炉体保護及び炉底保護ができる。
:羽口前運動エネルギーの増大及びレースウエイの深
化により羽口破損回数が減少する。:劣性コークス使
用下ではレースウエイが浅くなるといわれているが、レ
ースウエイ維持が可能となる。
Further, Japanese Patent Publication No. 28804/1989 proposes that the blowing tuyere used for the blast furnace is a so-called Laval tuyere whose central portion is formed smaller in diameter than the inlet diameter and the outlet diameter. I have. According to the official gazette, "In this Laval tuyere, the subsonic wind flows in the center (throat) at the entrance of the tuyere.
In this case, the Mach number M = 1, and a supersonic flow occurs on the exit side of the tuyere. The supersonic velocity at the exit side is determined by the wind pressure at the entrance and exit of the tuyere. Then, the supersonic flow from the Laval tuyere becomes a turbulent compressible free jet, the energy of which is transmitted deep into the blast furnace while maintaining the velocity of the outlet of the Laval tuyere. The longer is the longer. It is further described that the Laval tuyere has the following effects. :
An inactive furnace core called a deadman is narrowed, and the amount of blown air can be increased due to an increase in the operating internal volume, thereby increasing the amount of tapping. : The reactivity of the lower part of the blast furnace increases, and the fuel ratio due to the increase in the direct reduction rate can be reduced. : The central operation of the blast furnace can be achieved, the fuel ratio can be reduced by reducing the heat loss of the furnace body, and the furnace body and bottom can be protected by centralizing the hearth iron slag flow.
: The number of tuyere breakage decreases due to an increase in kinetic energy in front of the tuyere and deepening of the raceway. : It is said that the raceway becomes shallow when recessive coke is used, but the raceway can be maintained.

【0009】また、特開平 2−104604号公報には、微粉
炭を多量に吹き込む高炉の羽口構造に係わり、スロート
部(喉部)を境として前部管と後部管とし、その前部管
の長さを羽口長さの0.2 乃至0.6 とする所謂ラバール羽
口が提案されている。そして同公報には「微粉炭が混合
された熱風は後部管から前部管に入るがスロート部を通
るとき流速を105m/s 以上とされ、前部管の先端から高
炉内に吹き込まれる。」、また「スロート部でのガス流
速は逆火限界速度である105m/s 以上としてあるので、
微粉炭の燃焼は後部管より内部で生じことはない。」、
更に「このラバール羽口によれば、前部管の長さを羽口
長さの0.2 乃至0.6 としているので、羽口先の流速を高
めて逆火現象が防止され、また前部管の摩耗を減少する
ことができる。」と説明されている。
Japanese Patent Application Laid-Open No. 2-104604 relates to a tuyere structure of a blast furnace in which a large amount of pulverized coal is blown, wherein a front pipe and a rear pipe are formed with a throat (throat) as a boundary. The so-called Laval tuyere is proposed in which the length of the tuyere is 0.2 to 0.6 of the tuyere length. The publication also states, "Hot air mixed with pulverized coal enters the front pipe from the rear pipe, but has a flow velocity of 105 m / s or more when passing through the throat, and is blown into the blast furnace from the tip of the front pipe.""The gas flow velocity at the throat is set to 105 m / s or more, which is the flashback limit velocity.
Pulverized coal combustion does not occur inside the rear pipe. "
Further, according to this Laval tuyere, since the length of the front tube is set to 0.2 to 0.6 of the tuyere length, the flow velocity at the tuyere tip is increased to prevent a flashback phenomenon and to reduce the wear of the front tube. Can be reduced. "

【0010】ところで、上述したラバール羽口の場合、
例えば、特公昭53− 19442号公報に説明されたラバール
羽口では、燃焼媒体(熱風)を末広部内において衝撃波
を生じる条件で供給するとともに、その衝撃波の上流に
燃料(補助燃料)を噴射するので、噴射された補助燃料
が衝撃波帯域を通過するときに熱風中へ分散供給される
ことが期待でき、更に煤を生成することなく燃料の噴射
率を高めることが期待できる反面、次のような問題が懸
念される。すなわち、:第1、第2部材の2つの部材
を必要とするため、従来の通常羽口に比して羽口破損等
のトラブル時には、取り換え・復旧作業が煩雑化し、長
時間を要する可能性から炉冷え等の危険性が増す。:
補助燃料吹込み時に、末広部内で衝撃波を形成するため
に、その時々で衝風条件(生産条件)に適した先細部と
末広部、音速炉口径を有する第1部材に設置し直す必要
がある。:また、近年の主流である炉頂圧力を高く保
つ高圧高炉操業では、第1部材入口での圧力を、末広部
で衝撃波を形成させるに必要な圧力にまで、燃焼媒体を
昇圧させる必要があるため、ブロワー、配管等の設備負
荷が増大する。:補助燃料の噴射孔がラバール羽口の
内周面に形成されているため、補助燃料が必ずしも熱風
中へ分散供給されるとは限らない。:第1部材は、音
速炉口を構成する先細部と末広部及び羽口内で燃料を噴
射する噴射管を有し取換え可能に構成されているため、
形状が複雑である上に末広部において衝撃波を生じる形
状に構成されなければならず、実用性が懸念される。
By the way, in the case of the above-mentioned Laval tuyere,
For example, in the Laval tuyere described in Japanese Patent Publication No. 53-19442, a combustion medium (hot air) is supplied under conditions that generate a shock wave in the divergent portion, and fuel (auxiliary fuel) is injected upstream of the shock wave. Although it can be expected that the injected auxiliary fuel is dispersed and supplied into the hot air when passing through the shock wave band, and it can be expected that the fuel injection rate can be increased without generating soot, the following problems occur. Is concerned. That is, since two members, the first and second members, are required, replacement / recovery work becomes complicated in the case of trouble such as tuyere breakage as compared with the conventional normal tuyere, and it may take a long time. Danger such as furnace cooling increases. :
At the time of auxiliary fuel injection, in order to form a shock wave in the divergent part, it is necessary to re-install the tapered part suitable for the blast condition (production condition), the divergent part, and the first member having the sonic furnace diameter at each time. . : In recent years, in the high pressure blast furnace operation for maintaining the furnace top pressure high, it is necessary to increase the pressure of the combustion medium to the pressure at the inlet of the first member to the pressure required to form a shock wave in the divergent portion. As a result, the load on equipment such as blowers and pipes increases. : Since the auxiliary fuel injection holes are formed in the inner peripheral surface of the Laval tuyere, the auxiliary fuel is not always dispersed and supplied into the hot air. : Since the first member has a tapered part constituting the sonic furnace port, an injection pipe for injecting fuel in the divergent part and the tuyere, and is configured to be replaceable,
In addition to being complicated in shape, it must be configured to generate a shock wave in the divergent portion, and there is a concern about practicality.

【0011】また、特公平 1− 28804号公報に説明され
たラバール羽口では、ラバール羽口からの超音速流は乱
流圧縮性自由噴流となり、ラバール羽口の出口の速度が
保持されて高炉の奥深くまでそのエネルギーが伝えられ
るものの、このラバール羽口を用いて補助燃料を併せて
吹込むことについては記載がされていない。
Further, in the Laval tuyere described in Japanese Patent Publication No. 1-2804, the supersonic flow from the Laval tuyere becomes a turbulent compressible free jet, and the speed of the outlet of the Laval tuyere is maintained, and the blast furnace is maintained. Although the energy is transmitted to the interior of the car, there is no mention of using the Laval tuyere to inject auxiliary fuel.

【0012】また、特開平 2−104604号公報に説明され
た微粉炭吹込みラバール羽口では、羽口先の流速を高め
て逆火現象を防止し得ることで多量の微粉炭の吹込みが
期待できるものの、その微粉炭の供給は、同公報の第2
頁下段左第7〜11行に「微粉炭が混合された熱風は後部
管から前部管に入るが、スロート部を通るガスは流速を
105m/s 以上とされ、前部管の先端から高炉内に吹き込
まれる。」と大要説明されているように、微粉炭はラバ
ール羽口の上流側で熱風に混合されてラバール羽口より
供給されるため、逆火現象は防止できても、前部管内及
び前部管を出たところで激しく燃焼が起こり背圧が高く
なるため、良好な衝風条件(生産条件)が期待できな
い。
Also, in the pulverized coal injection Laval tuyere described in Japanese Patent Application Laid-Open No. 2-104604, a large amount of pulverized coal is expected to be injected because the flow velocity at the tuyere tip can be increased to prevent the flashback phenomenon. Although it is possible, the supply of pulverized coal is
In the lower left of the page, lines 7-11, "The hot air mixed with pulverized coal enters the front pipe from the rear pipe, but the gas passing through the throat
It is set to 105 m / s or more, and is blown into the blast furnace from the tip of the front pipe. The pulverized coal is mixed with hot air upstream of the Laval tuyere and supplied from the Laval tuyere, so that even if the flashback phenomenon can be prevented, Good combustion conditions (production conditions) cannot be expected because of the intense combustion at the exit of the pipe and the increase in back pressure.

【0013】[0013]

【発明が解決しようとする課題】そこで、本発明は、上
述したように通常羽口を用いたのでは、例えば補助燃料
として安価な微粉炭を用いた場合に、安定して吹き込め
る微粉炭量が微粉炭吹込み比でせいぜい 150kg/銑鉄t
程度であって、これ以上の微粉炭吹込み量の増大が難し
く高価なコークスの使用量の低減(コークス比の低減)
が期待できにくいこと、及び本出願人も特公平 1− 288
04号公報に提案しているように、ラバール羽口を用いる
と衝風条件(生産条件)によっては高炉内深く熱風が供
給できること、に着目してなしたものであって、その目
的は、高炉への補助燃料吹込みを、例えば微粉炭の場合
で微粉炭吹込み比 150kg/銑鉄t以上を安定して吹込む
ことのできる高炉における補助燃料吹込み羽口構造を提
供するものである。
Therefore, according to the present invention, if the normal tuyere is used as described above, for example, when inexpensive pulverized coal is used as an auxiliary fuel, the amount of pulverized coal that can be stably blown in is reduced. Is at most 150kg / pig iron in pulverized coal injection ratio
It is difficult to further increase the amount of pulverized coal to be injected, and the amount of expensive coke used is reduced (reduction of coke ratio)
Is difficult to expect, and the applicant has also
As proposed in Japanese Patent Publication No. 04, the use of a Laval tuyere was focused on the fact that hot air could be supplied deep inside the blast furnace depending on the blast conditions (production conditions). The present invention provides an auxiliary fuel injection tuyere structure in a blast furnace capable of stably injecting pulverized coal at a pulverized coal injection ratio of 150 kg / t or more in the case of pulverized coal.

【0014】[0014]

【課題を解決するための手段】上記の目的を達成するた
め、本発明に係る高炉における補助燃料吹込み羽口構造
は、羽口に接続されたブローパイプの接続部近傍を含む
高炉における補助燃料吹込み羽口構造であって、ブロー
パイプの接続部近傍から羽口先端に至る間の管内に、ブ
ローパイプの内径及び羽口先端の内径より小径の縮径部
を有するとともに、補助燃料吹込みランスがその先端位
置を前記縮径部より羽口先端側に位置して配設されてな
るものである。
In order to achieve the above object, an auxiliary fuel injection tuyere structure in a blast furnace according to the present invention comprises an auxiliary fuel in a blast furnace including a vicinity of a connection portion of a blow pipe connected to the tuyere. A blow tuyere structure with a reduced diameter portion smaller than the inner diameter of the blow pipe and the inner diameter of the tuyere tip in the pipe from the vicinity of the connection of the blow pipe to the tuyere tip, and auxiliary fuel injection The lance is disposed with its tip position located closer to the tuyere tip than the reduced diameter portion.

【0015】上記構成では、先願のラバール羽口の構造
を利用するものであるが、羽口の内径が大径であった
り、あるいは羽口の全長が比較的短い場合なども考慮し
て、羽口に接続されたブローパイプの接続部近傍を含め
てラバール羽口に構成してもよいとしたもので、羽口自
体でラバール羽口が構成できる場合には羽口自体でラバ
ール羽口造を構成してもよい(以下、本発明の羽口をラ
バール羽口と称す)。このラバール羽口では縮径部を出
た流れは高速の中心流と縮径部の下流側の末広部に沿っ
た拡がりのある流れとができ、これによって高炉深く深
度のある且つ拡がりのあるレースウエイが形成できる。
In the above-mentioned configuration, the structure of the Laval tuyere of the prior application is used. However, in consideration of the case where the inner diameter of the tuyere is large or the total length of the tuyere is relatively short, It is said that the Laval tuyere may be configured including the vicinity of the connection part of the blow pipe connected to the tuyere. (Hereinafter, the tuyere of the present invention is referred to as a Laval tuyere). At the Laval tuyere, the flow exiting the reduced diameter portion has a high-speed central flow and a widening flow along the divergent portion downstream of the reduced diameter portion, thereby providing a deep and deep race in the blast furnace. A way can be formed.

【0016】そして更に、上記構成では、このラバール
羽口に対して補助燃料吹込みランスを設けるとともに、
そのランス先端位置を、縮径部より羽口先端側に配設す
るものである。すなわち、補助燃料吹込みランスの先端
位置をラバール羽口の縮径部より後方(送風方向の上流
側)に配設した場合には、補助燃料が縮径部の上流側で
混合されてしまい、その結果、縮径部より下流側の末広
部内で、あるいはその末広部を出た近傍で激しく燃焼し
背圧(羽口内圧損)が高くなり、良好な衝風条件(生産
条件)が期待できなくなるので、補助燃料吹込みランス
の先端位置はラバール羽口の縮径部より羽口先端側に配
設したもので、このように配設した場合には、縮径部を
経た熱風が補助燃料吹込みランスの先端部によって攪拌
されるので、吹込まれた補助燃料が熱風中に攪拌分散さ
れながら高速で高炉内に吹込め、これにより、縮径部よ
り下流側の末広部内で、あるいはその末広部を出た近傍
で激しく燃焼することがなく羽口内圧損を低くして高炉
内深く補助燃料を吹き込んで燃焼させることができる。
Further, in the above configuration, an auxiliary fuel injection lance is provided for the Laval tuyere,
The lance tip position is disposed closer to the tuyere tip than the reduced diameter portion. In other words, if the tip position of the auxiliary fuel injection lance is disposed behind the upstream of the reduced diameter portion of the Laval tuyere (upstream in the blowing direction), the auxiliary fuel will be mixed upstream of the reduced diameter portion, As a result, the fuel burns violently in the divergent portion downstream of the reduced diameter portion or in the vicinity of the divergent portion, and the back pressure (internal pressure loss in the tuyere) increases, so that good blast conditions (production conditions) cannot be expected. Therefore, the tip position of the auxiliary fuel injection lance is located closer to the tuyere tip than the diameter-reduced portion of the Laval tuyere. The auxiliary fuel is injected into the blast furnace at a high speed while being agitated and dispersed in the hot air, so that the auxiliary fuel is injected into the blast furnace at a high speed downstream of the reduced diameter portion or in the divergent portion. Tuyere without violent burning near the exit It can be burnt by blowing the blast furnace deeply auxiliary fuel to lower the pressure loss.

【0017】また、上記のように、補助燃料吹込みラン
スの先端位置をラバール羽口の縮径部より羽口先端側に
配設することで、縮径部を経た熱風が補助燃料吹込みラ
ンスの先端部によって攪拌され、その結果、吹込まれた
補助燃料がラバール羽口の縮径部より先で熱風中に攪拌
分散されるので、縮径部の先の末広部での熱風速度を、
特公昭53− 19442号公報に説明されているような衝撃波
を発生させるような超音速(M>1)にしてまでも攪拌
分散させる必要がなく、亜音速(0.3<M<0.8)程度で、
十分補助燃料を分散させて着火し、しかも幅のある且つ
長さのある良好なレースウエイを形成させて補助燃料を
高炉内に吹込んで燃焼させることができる。また、亜音
速の場合には、超音速の場合に比較して送風圧力が低く
てよいことから、ブロワーや送風管などの送風設備のコ
スト及び送風に要するエネルギーコストを低く抑えるこ
とができる。
Further, as described above, the tip of the auxiliary fuel injection lance is disposed closer to the tip of the tuyere than the reduced diameter portion of the Laval tuyere, so that the hot air passing through the reduced diameter portion can be used as the auxiliary fuel injection lance. As a result, the injected auxiliary fuel is stirred and dispersed in the hot air before the reduced diameter portion of the Laval tuyere, so that the hot air velocity at the divergent portion ahead of the reduced diameter portion is
It is not necessary to stir and disperse even at a supersonic speed (M> 1) which generates a shock wave as described in JP-B-53-19442, and at a subsonic speed (0.3 <M <0.8),
The auxiliary fuel can be sufficiently dispersed to ignite, and a wide and long good raceway can be formed to blow the auxiliary fuel into the blast furnace and burn. Further, in the case of subsonic speed, since the blowing pressure may be lower than in the case of supersonic speed, the cost of blowing equipment such as a blower and a blowing pipe and the energy cost required for blowing can be suppressed.

【0018】そして、上記請求項1に記載の高炉におけ
る補助燃料吹込み羽口構造においては、ラバール羽口先
端の内径側に曲率Rが形成されてあってもよく、このよ
うに内径側に曲率Rを設けることで、ラバール羽口の先
端周辺部を出た補助燃料を含む熱風は羽口先端外側で渦
流が発生しにくく抑制されるため、高炉内部への熱風流
れの乱れが減少でき、安定したレースウエイを形成し高
炉操業の安定が可能となる。そして、このような作用を
得るには、曲率Rの大きさとしては、R= 2〜100mm が
好ましく、より望ましくはR=10〜60mmである。
In the auxiliary fuel injection tuyere structure for a blast furnace according to the first aspect of the present invention, the curvature R may be formed on the inner diameter side of the tip of the Laval tuyere. By providing R, the hot air containing the auxiliary fuel that has flowed out of the vicinity of the tip of the Laval tuyere is less likely to generate a vortex on the outside of the tuyere tip. A stable raceway is formed and the blast furnace operation can be stabilized. In order to obtain such an effect, the curvature R is preferably R = 2 to 100 mm, and more preferably R = 10 to 60 mm.

【0019】また、上記請求項1に記載の高炉における
補助燃料吹込み羽口構造においては、縮径部の最小径部
D2、補助燃料吹込みランスの外径OD、補助燃料吹込みラ
ンス本数N とした場合に式〔(OD/D2)2 ×N <0.15〕
を満たす構成を備えてあってもよく、このように縮径部
の最小径部D2の面積に占める補助燃料吹込みランスの断
面積の割合を15%未満とすることにより、ラバール羽口
に熱風を吹込んだとき、縮径部を流れる熱風の乱れや羽
口内圧力損失の増大が抑制され、特に羽口内圧力損失を
許容範囲に抑えることができ、また補助燃料吹込みラン
スの振動も抑えることができる。また更に、補助燃料吹
込みランスより吹込まれた補助燃料を適度に攪拌分散さ
せて高炉内に吹込むことができる。なお、この場合、羽
口とランスの面積を計算し易くするため直径を以て表示
したが、これらの断面形状は円形が望ましいが、必ずし
も円形でなくてもよい。
Further, in the auxiliary fuel injection tuyere structure for a blast furnace according to the first aspect of the present invention, the minimum diameter portion of the reduced diameter portion is provided.
When D2, the outer diameter OD of the auxiliary fuel injection lance, and the number of auxiliary fuel injection lances N, the formula [(OD / D2) 2 × N <0.15]
The ratio of the cross-sectional area of the auxiliary fuel injection lance to the area of the minimum diameter portion D2 of the reduced diameter portion is less than 15%, so that the hot air is supplied to the Laval tuyere. When the air is blown, the turbulence of the hot air flowing through the reduced diameter portion and the increase in the pressure loss in the tuyere are suppressed, and in particular, the pressure loss in the tuyere can be suppressed to an allowable range, and the vibration of the auxiliary fuel injection lance is also suppressed. Can be. Further, the auxiliary fuel injected from the auxiliary fuel injection lance can be appropriately stirred and dispersed and injected into the blast furnace. In this case, the diameters of the tuyere and the lance are indicated by a diameter in order to facilitate the calculation, but the cross-sectional shape of these is preferably, but not necessarily, circular.

【0020】また、上記請求項1に記載の高炉における
補助燃料吹込み羽口構造においては、縮径部の最小径部
D2、縮径部入側のブローパイプの内径D1とした場合にD2
/D1が0.5 〜0.9 を満たす、又は縮径部入側の絞り角度
βが10〜60度を満たす構成を備えてあってもよく、この
ような構成を備えることで、ラバール羽口に熱風を吹込
んだとき、羽口内圧力損失を許容範囲内に抑えることが
できるとともに、この許容範囲内で送風量及び/又は補
助燃料の吹込み量の増加が望め、その分出銑量の増加や
溶銑製造コストの低減が期待できる。また、請求項1に
記載の高炉における補助燃料吹込み羽口構造において、
縮径部の最小径部D2、羽口の出口内径D3とした場合にD2
/D3が0.55〜0.95を満たす、又は縮径部出側の拡がり角
度θが 1〜15度を満たす構成としても、同様の作用効果
が期待できる。
Further, in the auxiliary fuel injection tuyere structure for a blast furnace according to the first aspect of the present invention, the minimum diameter portion of the reduced diameter portion is provided.
D2, D2 when the inner diameter of the blow pipe on the inlet side of the reduced diameter part is D1
/ D1 satisfies 0.5 to 0.9, or the aperture angle β on the entrance side of the reduced diameter portion satisfies 10 to 60 degrees. By providing such a configuration, hot air can be supplied to the Laval tuyere. When blown, the tuyere pressure loss can be kept within an allowable range, and within this allowable range, an increase in the amount of air blown and / or the amount of auxiliary fuel injected can be expected. A reduction in manufacturing costs can be expected. Further, in the auxiliary fuel injection tuyere structure in the blast furnace according to claim 1,
When the minimum diameter part D2 of the reduced diameter part and the exit inner diameter D3 of the tuyere are D2
The same operation and effect can be expected even in a configuration in which / D3 satisfies 0.55 to 0.95 or the divergence angle θ on the exit side of the reduced diameter portion satisfies 1 to 15 degrees.

【0021】また、特に限定するものではないが、上記
請求項1に記載の高炉における補助燃料吹込み羽口構造
においては、縮径部の最小径部に曲率Rが形成されてあ
ってもよい。このように最小径部に曲率Rを設けると、
ラバール羽口に熱風を吹込んだとき、熱風がラバール羽
口の最小径部を通過した後、下流内周面側で渦流が発生
しにくく抑制されるため、羽口内圧力損失の増大が抑制
され、安定した高炉操業が期待できる。そして、このよ
うな作用を得るには、曲率Rの大きさとしては、羽口入
側の絞り角度と羽口出側の拡がり角度にもよるが、R=
2〜100mm 程度が好ましい。
Although not particularly limited, in the auxiliary fuel injection tuyere structure in the blast furnace according to the first aspect, the curvature R may be formed at the minimum diameter portion of the reduced diameter portion. . When the curvature R is provided in the minimum diameter portion in this manner,
When hot air is blown into the Laval tuyere, after the hot air passes through the minimum diameter portion of the Laval tuyere, a vortex is less likely to be generated on the downstream inner peripheral surface side, so that the increase in the tuyere pressure loss is suppressed. Stable blast furnace operation can be expected. In order to obtain such an effect, the magnitude of the curvature R depends on the aperture angle on the tuyere entrance side and the spread angle on the tuyere exit side.
It is preferably about 2 to 100 mm.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は、本発明に係る高炉における
補助燃料吹込み羽口構造の断面説明図であって、この図
1において、1はラバール羽口、2は補助燃料吹込みラ
ンス、3はブローパイプである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory sectional view of an auxiliary fuel injection tuyere structure in a blast furnace according to the present invention. In FIG. 1, reference numeral 1 denotes a Laval tuyere, reference numeral 2 denotes an auxiliary fuel injection lance, and reference numeral 3 denotes a blow pipe. .

【0023】ラバール羽口1は、本例では羽口自体にラ
バール型が形成された例で、中央部に縮径部4が形成さ
れ、その縮径部4の上流側(ブローパイプ3側)に先細
りに形成された入口部5、下流側に末広に形成された出
口部6を有し、縮径部4の内径D2、入口部5の内径D1、
出口部6の内径D3とした場合に、D1>D2<D3の関係を満
たす形状に形成されている。そして、ラバール羽口1の
入口部5側にはブローパイプ3が接続され、またブロー
パイプ3を貫通させて微粉炭吹込みランス2が対称位置
に2本、且つその先端7の位置を縮径部4より僅かに出
口部6側に出して装着されている。
In the present embodiment, the Laval tuyere 1 is an example in which a Laval type is formed in the tuyere itself, and a reduced diameter portion 4 is formed in the center portion, and the upstream side of the reduced diameter portion 4 (on the blow pipe 3 side). An inlet portion 5 formed to be tapered, an outlet portion 6 formed to be divergent on the downstream side, an inner diameter D2 of the reduced diameter portion 4, an inner diameter D1 of the inlet portion 5,
When the inside diameter D3 of the outlet part 6 is set, it is formed in a shape that satisfies the relationship of D1> D2 <D3. A blow pipe 3 is connected to the inlet portion 5 side of the Laval tuyere 1, and two pulverized coal blowing lances 2 are pierced through the blow pipe 3, and the position of the tip 7 is reduced in diameter. It is mounted slightly out of the part 4 to the outlet part 6 side.

【0024】上記構成の高炉における補助燃料吹込み羽
口構造を図2に示す燃焼実験装置に装備して、微粉炭遮
断時の羽口支管における風量の変化を調査した。また比
較のためラバール羽口1の入口部5の内径D1と等しい入
口内径、及び縮径部4の内径D2と等しい出口内径を有す
る通常羽口Hを用い、熱風量、微粉炭量等の諸条件を同
じ条件で同様の調査を行った。その調査結果を図3に示
す。
The auxiliary fuel injection tuyere structure in the blast furnace having the above-described configuration was installed in the combustion test apparatus shown in FIG. 2, and the change in air flow in the tuyere branch pipe when pulverized coal was cut off was investigated. For comparison, a normal tuyere H having an inlet inner diameter equal to the inner diameter D1 of the inlet portion 5 of the Laval tuyere 1 and an outlet inner diameter equal to the inner diameter D2 of the reduced diameter portion 4 was used. A similar investigation was conducted under the same conditions. FIG. 3 shows the result of the investigation.

【0025】図3から明らかなように、通常羽口Hに対
してラバール羽口1では羽口支管風量変化が大きく改善
されていることが分かる。この理由は図4に示すよう
に、通常羽口Hでは先細りに形成されているため羽口内
燃焼による体積膨張が大きな背圧となって羽口支管にお
ける風量に大きく影響するのに対して、ラバール羽口1
では出口部6が末広がりに形成されているので背圧がほ
とんどかかることはなく、結果、通常羽口Hでは吹き出
された微粉炭流Pは細く短いのに対してラバール羽口1
では吹き出された微粉炭流Pは太く長いものとなり、高
炉内においては幅のある且つ長さのある微粉炭が分散し
て燃焼するようなレースウエイを形成することができ
る。
As is apparent from FIG. 3, the change in the tuyere branch pipe airflow is greatly improved in the Laval tuyere 1 compared to the normal tuyere H. The reason for this is that, as shown in FIG. 4, the tuyere H is usually tapered, so that the volume expansion due to the combustion in the tuyere causes a large back pressure, which greatly affects the air volume in the tuyere branch pipe. Tuyere 1
Since the outlet 6 is formed so as to be widened at the end, almost no back pressure is applied. As a result, the pulverized coal stream P blown out at the tuyere H is thin and short, whereas the Laval tuyere 1
In this case, the blown pulverized coal stream P becomes thick and long, and a raceway can be formed in the blast furnace where wide and long pulverized coal is dispersed and burned.

【0026】すなわち、上記図1に示す構成の高炉にお
ける補助燃料吹込み羽口構造では、ラバール羽口1に対
して補助燃料吹込みランス2の先端7位置を、縮径部4
より僅かに出口部6側に出して配設しているので、高炉
に装備して熱風を供給するとともに、補助燃料吹込みラ
ンス2より微粉炭を供給したとき、熱風は縮径部4を経
たところでは亜音速(0.3<マッハ数M<0.8)乃至超音速
(M=1)程度であるが、その流れは高速の中心流と出
口部6の末広形状に沿った拡がりのある流れとなり、こ
れによって高炉深く深度のある且つ拡がりのあるレース
ウエイが形成されるとともに、縮径部4を出た高速の中
心流は補助燃料吹込みランス2の先端部によって攪拌さ
れるので、補助燃料吹込みランス2より吹込まれた微粉
炭は熱風中に攪拌分散されながら着火し高速で高炉内に
吹込まれ、これにより、縮径部4より下流側の出口部6
内で、あるいはその出口部6を出た近傍で激しく燃焼す
ることがなく羽口内圧損を低くして高炉内深く微粉炭を
吹込んで燃焼させることができる。そしてこのような作
用により、高炉への補助燃料吹込みを、例えば微粉炭の
場合で微粉炭吹込み比 150kg/銑鉄t以上を安定して吹
込むことができ、実際、本発明に係る補助燃料吹込み羽
口構造を通常羽口に替えて高炉に60%程度装備して操業
した結果、通常羽口のみの時の最大微粉炭吹込み比に対
して、微粉炭比を約25%以上(微粉炭吹込み比 250kg/
銑鉄t程度)まで安定して増量することができた。
That is, in the auxiliary fuel injection tuyere structure of the blast furnace having the configuration shown in FIG. 1, the position of the tip 7 of the auxiliary fuel injection lance 2 with respect to the Laval tuyere 1
Since it is disposed slightly to the outlet 6 side, it is installed in the blast furnace to supply hot air, and when pulverized coal is supplied from the auxiliary fuel injection lance 2, the hot air passes through the reduced diameter portion 4. By the way, the flow is about subsonic (0.3 <Mach number M <0.8) to supersonic (M = 1), but the flow becomes a high-speed central flow and a flow that spreads along the divergent shape of the outlet portion 6. As a result, a deep and deep raceway is formed in the blast furnace, and the high-speed central flow exiting the reduced diameter portion 4 is stirred by the tip of the auxiliary fuel injection lance 2. The pulverized coal blown from 2 is ignited while being stirred and dispersed in hot air, and blown into the blast furnace at a high speed.
The pulverized coal can be blown deep into the blast furnace and burned without lowering the pressure loss in the tuyere without violent combustion inside or near the outlet 6 thereof. By such an operation, the auxiliary fuel can be injected into the blast furnace stably at a pulverized coal injection ratio of 150 kg / pig iron t or more in the case of pulverized coal, for example. As a result of operating the blast furnace with the tuyere structure changed to the normal tuyere and installing about 60% in the blast furnace, the pulverized coal ratio is about 25% or more of the maximum pulverized coal injection ratio when only the normal tuyere is used ( Pulverized coal injection ratio 250kg /
It was possible to stably increase the amount up to about pig iron t).

【0027】なお、図2は、燃焼実験装置の概略図であ
って、実際の高炉羽口部に模した構造に設計されてい
る。微粉炭8は地上ホッパ9からスクリューコンベア10
によってコールビン11へ搬送される。コールビン11の下
部には粉体燃料定量供給機12が設けられており、この部
分で定量切り出された微粉炭8は、輸送気体13と共に輸
送管14によって微粉炭吹込みランス2へ送られる。一方
高温熱風炉15で得られた熱風は、送風管16からブローパ
イプ3及びラバール羽口1を経て燃焼試験炉17へ送られ
る。符号18は煙突である。
FIG. 2 is a schematic view of a combustion test apparatus, which is designed to have a structure imitating an actual blast furnace tuyere. Pulverized coal 8 is transferred from ground hopper 9 to screw conveyor 10
Is transferred to the coal bin 11. A pulverized coal feeder 12 is provided below the coal bin 11, and the pulverized coal 8 quantitatively cut out at this portion is sent to the pulverized coal injection lance 2 through a transport pipe 14 together with a transport gas 13. On the other hand, the hot air obtained in the high-temperature hot-blast furnace 15 is sent from the blowing pipe 16 to the combustion test furnace 17 through the blow pipe 3 and the Laval tuyere 1. Reference numeral 18 denotes a chimney.

【0028】高炉の燃料吹込み部は一般の燃焼装置とは
全く異なり、ブローパイプ3及び通常羽口(この実験で
は本発明に係るラバール羽口1)で構成されているの
で、上記燃焼実験装置は実際の高炉吹込み部に近似させ
ている。また燃焼試験炉17には粉体燃料の燃焼状態及び
着火状態を観察するための覗き窓を多数設けるととも
に、炉内温度、炉内ガス組成、炉内ダスト、火炎輻射量
等を測定するための検査孔が設けられ、且つブローパイ
プ3の上流側曲がり部には該ブローパイプ3の壁面への
灰の付着状況を観察するための覗き窓19が設けられてい
る。
The fuel injection section of the blast furnace is completely different from a general combustion apparatus, and is constituted by a blow pipe 3 and a normal tuyere (in this experiment, the Laval tuyere 1 according to the present invention). Is approximated to the actual blast furnace injection section. In addition, the combustion test furnace 17 is provided with a large number of viewing windows for observing the combustion state and the ignition state of the powder fuel, and is used for measuring the furnace temperature, the furnace gas composition, the furnace dust, the flame radiation amount, and the like. An inspection hole is provided, and a viewing window 19 for observing the state of adhesion of ash to the wall surface of the blow pipe 3 is provided at the upstream bent portion of the blow pipe 3.

【0029】図5は、上記図1に示す構成の高炉におけ
る補助燃料吹込み羽口構造においてラバール羽口1の出
口部6の先端内径側に曲率R(R= 2〜100mm )を形成
した羽口構造を示す説明図であって、このように内径側
に曲率Rを設けることで、出口部6の先端周辺部を出た
補助燃料を含む熱風は出口部6の先端外側で渦流が発生
しにくく抑制されるため、高炉内部への熱風流れの乱れ
が減少でき、安定した高炉操業が可能となる。
FIG. 5 shows a blade having a curvature R (R = 2 to 100 mm) on the inner diameter side of the tip of the outlet portion 6 of the Laval tuyere 1 in the auxiliary fuel injection tuyere structure in the blast furnace having the structure shown in FIG. FIG. 4 is an explanatory view showing the mouth structure, in which the curvature R is provided on the inner diameter side, so that the hot air containing the auxiliary fuel that has exited the periphery of the tip of the outlet 6 generates a vortex at the outside of the tip of the outlet 6. Since it is difficult to suppress, the turbulence of the hot air flow into the blast furnace can be reduced, and stable blast furnace operation can be performed.

【0030】因みに、図5において、ラバール羽口1の
長さ 500mm、ブローパイプ3の内径D1=175mm 、縮径部
4の最小径部D2=135mm 、出口部6の内径D3=168mm 、
縮径部4の出側の拡がり角度θ= 6度のラバール羽口1
を用いて、ラバール羽口1の出口部6の先端内径側に曲
率Rを変化させた場合の、曲率Rと局部損失係数との関
係をシミュレーションした。そのシミュレーション結果
を図6に示す。この図6から明らかなように、曲率Rが
2mm 未満では局部損失係数が大きく、殆ど曲率Rを設け
た意味がないことが分かる。そして曲率Rが2mm を越え
ると局部損失係数が急激に小さくなり先端外側で渦流が
発生しにくくなることが分かる。一方、その効果は曲率
Rが100mm を越えても充分有するが、羽口内冷却水室を
構造する関係で曲率Rの上限は100mm とするのがよい。
そこで、本発明に係る高炉における補助燃料吹込み羽口
構造においては、その好ましい実施態様として羽口先端
の内径側に曲率R(R= 2〜100mm)を設けた構造として
もよいとするものである。
In FIG. 5, the length of the Laval tuyere 1 is 500 mm, the inner diameter D1 of the blow pipe 3 is 175 mm, the minimum diameter D2 of the reduced diameter portion 4 is 135 mm, the inner diameter D3 of the outlet 6 is 168 mm,
Laval tuyere 1 with divergent angle θ = 6 degrees on the exit side of reduced diameter portion 4
Was used to simulate the relationship between the curvature R and the local loss coefficient when the curvature R was changed toward the inner diameter of the tip of the outlet portion 6 of the Laval tuyere 1. FIG. 6 shows the simulation results. As is apparent from FIG. 6, the curvature R is
It can be seen that if it is less than 2 mm, the local loss coefficient is large, and it is almost meaningless to provide the curvature R. When the curvature R exceeds 2 mm, the local loss coefficient sharply decreases and eddy currents are less likely to be generated outside the tip. On the other hand, the effect is sufficient even if the curvature R exceeds 100 mm, but the upper limit of the curvature R is preferably set to 100 mm due to the structure of the tuyere cooling water chamber.
In view of this, the auxiliary fuel injection tuyere structure in the blast furnace according to the present invention may have a structure in which a curvature R (R = 2 to 100 mm) is provided on the inner diameter side of the tuyere tip as a preferred embodiment. is there.

【0031】図7は、上記図1に示す構成の高炉におけ
る補助燃料吹込み羽口構造を備える縮尺 1/17の冷間模
型炉を用いて実験を行った場合の、補助燃料吹込みラン
スの断面積とラバール羽口の最小径部での面積との比
〔(OD/D2)2 ×N 〕と、羽口内圧力損失との関係を示
すグラフ図である。この実験では、ラバール羽口1の長
さ(27.4mm)、ブローパイプ3の内径D1(11.4mm)、縮
径部4の最小径部D2(6mm 〜10mm)、出口部6の内径D3
(11.0mm)、補助燃料吹込みランス2の外径OD(2mm)、
補助燃料吹込みランス2の本数を N= 2本とした時に、
D2を変更した場合の羽口内圧力損失を測定し、その結果
を図7に示したものである。この図7から明らかなよう
に、補助燃料吹込みランス2の断面積とラバール羽口1
の最小径部での面積との比{π(OD/2)2 ×N /〔π(D2/
2)2 〕=(OD/D2)2 ×N }が0.15未満であれば、その
比が0.15以上のときよりも、羽口内圧力損失が大きく低
減することが分かる。また、補助燃料吹込みランス2の
微振動も抑制でき、これにより安定した高炉操業ができ
る。そこで、本発明に係る高炉における補助燃料吹込み
羽口構造においては、その好ましい実施態様として縮径
部の最小径部D2、補助燃料吹込みランスの外径OD、補助
燃料吹込みランス本数N とした場合に(OD/D2)2 ×N
<0.15を満たす構造としてもよいとするものである。な
お、本実験では、補助燃料吹込みランス2として、断面
形状が円形のものを使用したが、必ずしも円形である必
要はない。
FIG. 7 shows the lance of the auxiliary fuel injection lance when an experiment was conducted using a 1/17 scale cold model furnace having an auxiliary fuel injection tuyere structure in the blast furnace having the structure shown in FIG. FIG. 4 is a graph showing the relationship between the ratio [(OD / D2) 2 × N] of the cross-sectional area to the area at the minimum diameter of the Laval tuyere and the pressure loss in the tuyere. In this experiment, the length of the Laval tuyere 1 (27.4 mm), the inner diameter D1 of the blow pipe 3 (11.4 mm), the minimum diameter D2 of the reduced diameter portion 4 (6 mm to 10 mm), and the inner diameter D3 of the outlet 6
(11.0mm), Outer diameter OD of auxiliary fuel injection lance 2 (2mm),
When the number of auxiliary fuel injection lances 2 is N = 2,
The pressure loss in the tuyere when D2 was changed was measured, and the result is shown in FIG. As is apparent from FIG. 7, the sectional area of the auxiliary fuel injection lance 2 and the Laval tuyere 1
Ratio to the area at the minimum diameter of {π (OD / 2) 2 × N / [π (D2 /
2) 2 ] = (OD / D2) 2 × N} is less than 0.15, it can be seen that the pressure loss in the tuyere is greatly reduced as compared with the case where the ratio is 0.15 or more. In addition, fine vibration of the auxiliary fuel injection lance 2 can be suppressed, and thereby stable blast furnace operation can be performed. Therefore, in the auxiliary fuel injection tuyere structure in the blast furnace according to the present invention, as preferred embodiments, the minimum diameter portion D2 of the reduced diameter portion, the outer diameter OD of the auxiliary fuel injection lance, the number of auxiliary fuel injection lances N and (OD / D2) 2 × N
A structure satisfying <0.15 may be adopted. In this experiment, the auxiliary fuel injection lance 2 used was one having a circular cross-sectional shape, but it is not necessarily required to be circular.

【0032】図8は、図1に示す構成の高炉における補
助燃料吹込み羽口構造を備える縮尺1/17の冷間模型炉
を用いて実験を行った場合の、ラバール羽口の最小径部
D2とブローパイプの内径D1との比(D2/D1)と、羽口内
圧力損失との関係を示すグラフ図である。この実験で
は、ラバール羽口1の長さ(27.4mm)、ブローパイプ3
の内径D1(11.4mm)、縮径部4の最小径部D2(3mm 〜1
1.4mm)、出口部6の内径D3(11.0mm)、補助燃料吹込
みランス2の外径OD(1mm 〜2mm)、補助燃料吹込みラン
ス2の本数を N( 2本)とした時に、D2を変更した場合
の羽口内圧力損失を測定し、その結果を図8に示したも
のである。この図8から明らかなように、ラバール羽口
1の縮径部4の最小径部D2とブローパイプ3の内径D1と
の比(D2/D1)が0.5 以上であれば、その比が0.5 より
小さいときよりも、羽口内圧力損失が大きく低減するこ
とが分かる。また、図10に示すように羽口先端で縮流を
発生するためにはD2/D1を 0.9より小さくしなければな
らない。すなわち、これにより、D2/D1が0.5 〜0.9 を
満たす構成を備えることで、ラバール羽口に熱風を吹込
んだとき、羽口内圧力損失を許容範囲内に抑えることが
できるとともに、この許容範囲内で送風量及び/又は補
助燃料の吹込み量の増加が望め、その分出銑量の増加や
溶銑製造コストの低減が期待できる。
FIG. 8 shows the minimum diameter portion of the Laval tuyere when an experiment was conducted using a 1/17 scale cold model furnace having an auxiliary fuel injection tuyere structure in the blast furnace having the configuration shown in FIG.
It is a graph which shows the relationship between the ratio (D2 / D1) of D2 and the inner diameter D1 of a blow pipe, and the tuyere pressure loss. In this experiment, the length of Laval tuyere 1 (27.4 mm), blow pipe 3
Inner diameter D1 (11.4mm), the minimum diameter part D2 of the reduced diameter part 4 (3mm ~ 1
1.4 mm), the inner diameter D3 of the outlet 6 (11.0 mm), the outer diameter OD of the auxiliary fuel injection lance 2 (1 mm to 2 mm), and when the number of auxiliary fuel injection lances 2 is N (2), D2 The pressure loss in the tuyere when the pressure was changed was measured, and the result is shown in FIG. As is apparent from FIG. 8, if the ratio (D2 / D1) of the minimum diameter D2 of the reduced diameter portion 4 of the Laval tuyere 1 to the inner diameter D1 of the blow pipe 3 is 0.5 or more, the ratio is 0.5 or more. It can be seen that the pressure loss in the tuyere is greatly reduced as compared with the case where the pressure is small. Also, as shown in FIG. 10, D2 / D1 must be smaller than 0.9 in order to generate a contraction at the tuyere tip. In other words, by providing a configuration in which D2 / D1 satisfies 0.5 to 0.9, when hot air is blown into the Laval tuyere, the tuyere pressure loss can be suppressed within an allowable range, and within this allowable range. As a result, an increase in the amount of air blown and / or the amount of auxiliary fuel blow-in can be expected, and an increase in the amount of extracted tap iron and a reduction in the cost of hot metal production can be expected.

【0033】図9は、図1に示す構成の高炉における補
助燃料吹込み羽口構造を備える縮尺1/17の冷間模型炉
を用いて実験を行った場合の、縮径部入側の絞り角度β
と羽口内圧力損失との関係を示すグラフ図である。この
実験では、ラバール羽口1の長さ(27.4mm)、ブローパ
イプ3の内径D1(11.4mm)、縮径部4の最小径部D2(6m
m 〜10mm)、出口部6の内径D3(11.0mm)、縮径部4の
入側の絞り角度β、補助燃料吹込みランス2の外径OD
(2mm)、補助燃料吹込みランス2の本数を N( 2本)と
した時に、D2と絞り位置を変えることによりβを変更し
た場合の羽口内圧力損失を測定し、その結果を図9に示
したものである。この図9から明らかなように、縮径部
入側の絞り角度βが60度以下であれば、その角度が60度
より大きくなったときよりも、羽口内圧力損失が大きく
低減することが分かる。なお、角度βは、ラバール羽
口1の長さとの関係で10度以上において構成可能であ
り、更に図10に示すように羽口先端で縮流が発生する
のが10度以上であることから下限値は10度としたもので
ある。従って、縮径部入側の絞り角度βが10〜60度を満
たす構成を備えることによっても、上記D2/D1が0.5 〜
0.9 を満たす構成を備えた場合と同様に、ラバール羽口
に熱風を吹込んだとき、羽口内圧力損失を許容範囲内に
抑えることができるとともに、この許容範囲内で送風量
及び/又は補助燃料の吹込み量の増加が望め、その分出
銑量の増加や溶銑製造コストの低減が期待できる。
FIG. 9 is a diagram showing a throttle at the inlet side of the reduced diameter portion when an experiment was conducted using a 1/17 scale cold model furnace having an auxiliary fuel injection tuyere structure in the blast furnace having the configuration shown in FIG. Angle β
FIG. 6 is a graph showing the relationship between the pressure loss in the tuyere and the tuyere. In this experiment, the length of the Laval tuyere 1 (27.4 mm), the inner diameter D1 of the blow pipe 3 (11.4 mm), and the minimum diameter D2 of the reduced diameter portion 4 (6 m)
m to 10 mm), the inner diameter D3 of the outlet part 6 (11.0 mm), the throttle angle β on the entrance side of the reduced diameter part 4, and the outer diameter OD of the auxiliary fuel injection lance 2.
(2mm), when the number of auxiliary fuel injection lances 2 was N (2), the pressure loss in the tuyere was measured when β was changed by changing D2 and the throttle position, and the results are shown in FIG. It is shown. As is clear from FIG. 9, when the throttle angle β on the inlet side of the reduced diameter portion is 60 degrees or less, the pressure loss in the tuyere is greatly reduced as compared with the case where the angle becomes larger than 60 degrees. . The angle β can be configured at 10 degrees or more in relation to the length of the Laval tuyere 1. Further, as shown in FIG. 10, since the contraction at the tuyere tip occurs at 10 degrees or more, The lower limit is 10 degrees. Therefore, by providing a configuration in which the aperture angle β on the inlet side of the reduced diameter portion satisfies 10 to 60 degrees, the D2 / D1 is 0.5 to 0.5.
As with the case where the configuration that satisfies 0.9 is provided, when hot air is blown into the Laval tuyere, the tuyere pressure loss can be suppressed within the allowable range, and the air flow rate and / or auxiliary fuel It is expected that the amount of molten iron blown will increase, and it is expected that the amount of tapping will increase and the cost of hot metal production will decrease.

【0034】図11は、図1に示す構成の高炉における補
助燃料吹込み羽口構造を備える縮尺1/17の冷間模型炉
を用いて実験を行った場合の、ラバール羽口の最小径部
D2とラバール羽口の出口内径D3との比(D2/D3)と、羽
口内摩擦損失との関係を示すグラフ図である。この実験
では、ラバール羽口1の長さ(27.4mm)、ブローパイプ
3の内径D1(11.4mm)、縮径部4の最小径部D2(8mm)、
出口部6の内径D3(8mm 〜16mm)、補助燃料吹込みラン
ス2の外径OD(2mm)、補助燃料吹込みランス2の本数を
N( 2本)とした時に、D3を変更した場合の羽口内摩擦
損失を測定し、その結果を図11に示したものである。こ
の図11から明らかなように、ラバール羽口1の縮径部4
の最小径部D2と出口部6の内径D3との比(D2/D3)が0.
55〜0.95の範囲内であれば、その比が0.55未満あるいは
0.95を越えたときよりも、羽口内摩擦損失が図4bに示
す従来構造の羽口における羽口内摩擦損失よりも大きく
低減することが分かる。すなわち、これにより、D2/D3
が0.55〜0.95を満たす構成を備えることで、ラバール羽
口に熱風を吹込んだとき、羽口内圧力損失を許容範囲内
すなわち通常羽口以下に抑えることができるとともに、
この許容範囲内で送風量及び/又は補助燃料の吹込み量
の増加が望め、その分出銑量の増加や溶銑製造コストの
低減が期待できる。
FIG. 11 shows the minimum diameter portion of the Laval tuyere when an experiment was conducted using a 1/17 scale cold model furnace having an auxiliary fuel injection tuyere structure in the blast furnace having the configuration shown in FIG.
It is a graph which shows the relationship between the ratio (D2 / D3) of D2 and the exit inner diameter D3 of Laval tuyere, and the tuyere friction loss. In this experiment, the length of the Laval tuyere 1 (27.4 mm), the inner diameter D1 of the blow pipe 3 (11.4 mm), the minimum diameter D2 of the reduced diameter portion 4 (8 mm),
The inner diameter D3 of the outlet 6 (8 mm to 16 mm), the outer diameter OD of the auxiliary fuel injection lance 2 (2 mm), and the number of auxiliary fuel injection lances 2
When N (2 pieces) was set, the friction loss in the tuyere when D3 was changed was measured, and the results are shown in FIG. As is clear from FIG. 11, the reduced diameter portion 4 of the Laval tuyere 1
The ratio (D2 / D3) of the minimum diameter part D2 of the above to the inner diameter D3 of the outlet part 6 is 0.
If within the range of 55 to 0.95, the ratio is less than 0.55 or
It can be seen that the friction loss in the tuyere is much smaller than that in the case of the conventional structure shown in FIG. That is, this allows D2 / D3
With a configuration satisfying 0.55 to 0.95, when hot air is blown into the Laval tuyere, the pressure loss in the tuyere can be suppressed within the allowable range, that is, below the normal tuyere,
Within this allowable range, an increase in the amount of air blown and / or the amount of auxiliary fuel injected can be expected, and an increase in the amount of tapping and a reduction in the cost of hot metal production can be expected.

【0035】図12は、図1に示す構成の高炉における補
助燃料吹込み羽口構造を備える縮尺1/17の冷間模型炉
を用いて実験を行った場合の、縮径部出側の拡がり角度
θと羽口内摩擦損失との関係を示すグラフ図である。こ
の実験では、ラバール羽口1の長さ(27.4mm)、ブロー
パイプ3の内径D1(11.4mm)、縮径部4の最小径部D2
(8mm)、出口部6の内径D3(8mm 〜16mm)、縮径部4の
出側の拡がり角度θ、補助燃料吹込みランス2の外径OD
(2mm)、補助燃料吹込みランス2の本数を N( 2本)と
した時に、D3と絞り位置を変えることによりθを変更し
た場合の羽口内摩擦損失を測定し、その結果を図12に示
したものである。この図12から明らかなように、縮径部
4の出側の拡がり角度θが 1〜15度であれば、その角度
が 1度未満あるいは15度を越えたときよりも、羽口内摩
擦損失が図4bに示す従来構造の羽口における羽口内摩
擦損失よりも大きく低減することが分かる。なお、角度
θは15度を越えるとラバール羽口1内の冷却流路との取
り合いが悪くなり構造がしにくくなることから上限値を
15度としたものである。このように縮径部出側の拡がり
角度θが 1〜15度を満たす構成を備えることによって
も、上記D2/D3が0.55〜0.95を満たす構成を備えた場合
と同様に、ラバール羽口に熱風を吹込んだとき、羽口内
圧力損失を許容範囲内すなわち通常羽口以下に抑えるこ
とができるとともに、この許容範囲内で送風量及び/又
は補助燃料の吹込み量の増加が望め、その分出銑量の増
加や溶銑製造コストの低減が期待できる。
FIG. 12 shows the expansion at the exit side of the reduced diameter portion when an experiment was performed using a 1/17 scale cold model furnace having an auxiliary fuel injection tuyere structure in the blast furnace having the configuration shown in FIG. It is a graph which shows the relationship between angle (theta) and the tuyere friction loss. In this experiment, the length of the Laval tuyere 1 (27.4 mm), the inner diameter D1 of the blow pipe 3 (11.4 mm), and the minimum diameter D2 of the reduced diameter portion 4
(8 mm), inner diameter D3 of outlet 6 (8 mm to 16 mm), divergence angle θ on the exit side of reduced diameter section 4, outer diameter OD of auxiliary fuel injection lance 2
(2mm), when the number of auxiliary fuel injection lances 2 was N (2), the tuyere friction loss was measured when θ was changed by changing D3 and the throttle position, and the results are shown in Fig. 12. It is shown. As is apparent from FIG. 12, when the divergent angle θ on the exit side of the reduced diameter portion 4 is 1 to 15 degrees, the friction loss in the tuyere becomes smaller than when the angle is less than 1 degree or exceeds 15 degrees. It can be seen that the friction loss in the tuyere of the conventional structure shown in FIG. If the angle θ exceeds 15 degrees, the connection with the cooling flow path in the Laval tuyere 1 becomes poor, and the structure becomes difficult, so the upper limit value is set.
15 degrees. By providing the configuration in which the divergent angle θ on the exit side of the reduced diameter portion satisfies 1 to 15 degrees, similarly to the case in which the configuration in which D2 / D3 satisfies 0.55 to 0.95 is used, hot air is applied to the Laval tuyere. When the air is blown, the pressure loss in the tuyere can be suppressed within an allowable range, that is, below the normal tuyere, and within this allowable range, an increase in the amount of air blown and / or the amount of auxiliary fuel injected can be expected. An increase in the amount of pig iron and a reduction in the cost of hot metal production can be expected.

【0036】なお、上記例では、基本的な構造を例とし
て説明したが、本発明はこの例に限定されるものではな
く、例えば、上記図5に示す構成の高炉における補助燃
料吹込み羽口構造において、ラバール羽口1の縮径部4
の最小径部を僅かな長さの直線部又は頂部とする外に入
出側を滑らかに結ぶ曲率(r= 2〜100mm 程度)に形成
してもよい。このように曲率(r)に形成することによ
り、直線部や頂部に形成したときよりも、縮径部4の最
小径部周辺での補助燃料を含む熱風は縮径部4の出側で
渦流の発生が抑制され、摩擦損失が抑制され、高炉内部
への熱風流れの乱れが減少でき、安定した高炉操業が期
待できる。
In the above example, the basic structure has been described as an example, but the present invention is not limited to this example. For example, the auxiliary fuel injection tuyere in the blast furnace having the structure shown in FIG. In the structure, the reduced diameter portion 4 of the Laval tuyere 1
In addition to forming the minimum diameter portion as a straight portion or a top portion having a small length, the portion may be formed to have a curvature (r = about 2 to 100 mm) that smoothly connects the entrance and exit sides. With such a curvature (r), the hot air containing the auxiliary fuel around the minimum diameter portion of the reduced diameter portion 4 is more likely to be swirled on the exit side of the reduced diameter portion 4 than when formed at the straight portion or the top portion. Is suppressed, friction loss is suppressed, the turbulence of the hot air flow into the blast furnace can be reduced, and stable blast furnace operation can be expected.

【0037】[0037]

【発明の効果】以上説明したように、本発明に係る高炉
における補助燃料吹込み羽口構造であれば、羽口圧損を
低減することができ、高炉への補助燃料吹込みを、従来
よりも大量に、例えば微粉炭の場合で微粉炭吹込み比 1
50kg/銑鉄t以上、更には微粉炭吹込み比 200kg/銑鉄
t乃至 300kg/銑鉄t以上を安定して吹込むことができ
るようになり、高価なコークスの使用が低減できる。
As described above, the auxiliary fuel injection tuyere structure in the blast furnace according to the present invention can reduce the tuyere pressure loss and reduce the auxiliary fuel injection into the blast furnace as compared with the conventional one. For pulverized coal in large quantities, for example pulverized coal injection ratio 1
It is possible to stably inject 50 kg / pig iron or more, and further, pulverized coal injection ratio 200 kg / pig t to 300 kg / pig iron t or more, thereby reducing the use of expensive coke.

【0038】また、補助燃料吹込みランスの先端位置
を、ラバール羽口の縮径部より羽口先端側に配設するこ
とで、縮径部を経た熱風が補助燃料吹込みランスの先端
部によって攪拌されるので、吹込まれた微粉炭が熱風中
に攪拌分散されるため、縮径部の先の末広部での熱風の
速度を亜音速(0.3<M<0.8)程度で十分微粉炭を分散さ
せることができ、これにより実炉操業では、ブロワーや
送風管などの送風設備のコストを低く抑えて操業でき
る。
Further, by disposing the tip of the auxiliary fuel injection lance on the tip side of the tuyere from the reduced diameter portion of the Laval tuyere, the hot air passing through the reduced diameter portion is moved by the tip of the auxiliary fuel injection lance. Since the pulverized coal injected is stirred and dispersed in the hot air, the pulverized coal is sufficiently dispersed at the subsonic speed (0.3 <M <0.8) at the divergent portion ahead of the reduced diameter portion. Accordingly, in the actual furnace operation, the cost of the blower equipment such as the blower and the blower tube can be reduced and operated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る高炉における補助燃料吹込み羽口
構造の断面説明図である。
FIG. 1 is an explanatory sectional view of an auxiliary fuel injection tuyere structure in a blast furnace according to the present invention.

【図2】燃焼実験装置の概略図である。FIG. 2 is a schematic diagram of a combustion test apparatus.

【図3】本発明に係るラバール羽口と通常羽口による羽
口支管風量変化を比較して示す説明図である。
FIG. 3 is an explanatory diagram showing a comparison of changes in the tuyere branch pipe air volume between the Laval tuyere according to the present invention and a normal tuyere.

【図4】本発明に係るラバール羽口と通常羽口による微
粉炭吹込み状態を比較して示す模式図であって、aはラ
バール羽口、bは通常羽口の場合である。
FIG. 4 is a schematic diagram showing a comparison of pulverized coal injection states between the Laval tuyere according to the present invention and a normal tuyere, wherein a is the case of the Laval tuyere and b is the case of the normal tuyere.

【図5】本発明に係る高炉における補助燃料吹込み羽口
構造の別の例を示す断面説明図である。
FIG. 5 is an explanatory sectional view showing another example of the auxiliary fuel injection tuyere structure in the blast furnace according to the present invention.

【図6】図5に示す補助燃料吹込み羽口構造における出
口部の先端内径側の曲率Rと出口部における局部損失係
数との関係を示すグラフ図である。
6 is a graph showing a relationship between a curvature R on an inner diameter side of a tip end of an outlet portion and a local loss coefficient at the outlet portion in the auxiliary fuel injection tuyere structure shown in FIG.

【図7】補助燃料吹込みランスの断面積とラバール羽口
の最小径部での面積との比〔(OD/D2)2 ×N 〕と羽口
内圧力損失との関係を示すグラフ図である。
FIG. 7 is a graph showing the relationship between the ratio [(OD / D2) 2 × N] of the cross-sectional area of the auxiliary fuel injection lance to the area at the minimum diameter of the Laval tuyere and the pressure loss in the tuyere. .

【図8】ラバール羽口の最小径部D2とブローパイプの内
径D1との比(D2/D1)と、羽口内圧力損失との関係を示
すグラフ図である。
FIG. 8 is a graph showing the relationship between the ratio (D2 / D1) between the minimum diameter D2 of the Laval tuyere and the inner diameter D1 of the blow pipe and the pressure loss in the tuyere.

【図9】縮径部入側の絞り角度βと羽口内圧力損失との
関係を示すグラフ図である。
FIG. 9 is a graph showing the relationship between the throttle angle β on the inlet side of the reduced diameter portion and the pressure loss in the tuyere.

【図10】通常羽口と本発明に係るラバール羽口を用いた
時の羽口先端での流速(動圧)分布を模式的に示すグラ
フ図である。
FIG. 10 is a graph schematically showing the flow velocity (dynamic pressure) distribution at the tip of the tuyere when the normal tuyere and the Laval tuyere according to the present invention are used.

【図11】ラバール羽口の最小径部D2とラバール羽口の出
口内径D3との比(D2/D3)と、羽口内摩擦損失との関係
を示すグラフ図である。
FIG. 11 is a graph showing the relationship between the ratio (D2 / D3) between the minimum diameter portion D2 of the Laval tuyere and the outlet inner diameter D3 of the Laval tuyere, and the friction loss in the tuyere.

【図12】縮径部出側の拡がり角度θと羽口内摩擦損失と
の関係を示すグラフ図である。
FIG. 12 is a graph showing a relationship between a divergence angle θ on the exit side of the reduced diameter portion and a friction loss in the tuyere.

【符号の説明】 1:ラバール羽口 2:補助燃料吹込みランス 3:ブローパイプ 4:縮径部
5:入口部 6:出口部 7:ランス先端
[Explanation of Signs] 1: Laval tuyere 2: auxiliary fuel injection lance 3: blow pipe 4: reduced diameter portion
5: Inlet 6: Outlet 7: Lance tip

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野沢 健太郎 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 佐藤 淳 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 松井 良行 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 堀 隆一 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 Fターム(参考) 4K015 FC01 FC02 FC03  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kentaro Nozawa 1 Kanazawacho, Kakogawa City, Hyogo Prefecture Inside the Kobe Steel Works Kakogawa Works (72) Inventor Jun Sato 1 Kanazawacho, Kakogawa City, Hyogo Prefecture Kobe Corporation Inside the Steel Works Kakogawa Works (72) Inventor Yoshiyuki Matsui 1 Kanazawacho, Kakogawa City, Hyogo Prefecture Inside Kobe Steel Works Kakogawa Steel Works, Ltd. (72) Ryuichi Hori 1 Kanazawacho, Kakogawa City, Hyogo Prefecture Kobe Steel Works, Ltd. F-term in Kakogawa Works (reference) 4K015 FC01 FC02 FC03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 羽口に接続されたブローパイプの接続部
近傍を含む高炉における補助燃料吹込み羽口構造であっ
て、ブローパイプの接続部近傍から羽口先端に至る間の
管内に、ブローパイプの内径及び羽口先端の内径より小
径の縮径部を有するとともに、補助燃料吹込みランスが
その先端位置を前記縮径部より羽口先端側に位置して配
設されてなることを特徴とする高炉における補助燃料吹
込み羽口構造。
1. An auxiliary fuel injection tuyere structure in a blast furnace including a vicinity of a connection portion of a blow pipe connected to a tuyere, wherein a blower is provided in a pipe extending from the vicinity of the connection portion of the blow pipe to the tip of the tuyere. It has a reduced diameter portion smaller than the inner diameter of the pipe and the inner diameter of the tuyere tip, and the auxiliary fuel injection lance is arranged such that the tip position is located closer to the tuyere tip side than the reduced diameter portion. Auxiliary fuel injection tuyere structure in a blast furnace.
【請求項2】 請求項1に記載の高炉における補助燃料
吹込み羽口構造において、羽口先端の内径側に曲率R
(R= 2〜100mm)が形成されてなる高炉における補助燃
料吹込み羽口構造。
2. The tuyere structure according to claim 1, wherein the tuyere tip has a curvature R at an inner diameter side thereof.
(R = 2 to 100 mm) Auxiliary fuel injection tuyere structure in a blast furnace formed.
【請求項3】 請求項1に記載の高炉における補助燃料
吹込み羽口構造において、縮径部の最小径部D2、補助燃
料吹込みランスの外径OD、補助燃料吹込みランス本数N
とした場合に下記式を満たす構成を備えてなる高炉にお
ける補助燃料吹込み羽口構造。 (OD/D2)2 ×N <0.15
3. The auxiliary fuel injection tuyere structure for a blast furnace according to claim 1, wherein the minimum diameter portion D2 of the reduced diameter portion, the outer diameter OD of the auxiliary fuel injection lance, and the number N of auxiliary fuel injection lances.
And an auxiliary fuel injection tuyere structure in a blast furnace having a configuration satisfying the following expression. (OD / D2) 2 × N <0.15
【請求項4】 請求項1に記載の高炉における補助燃料
吹込み羽口構造において、縮径部の最小径部D2、縮径部
入側のブローパイプの内径D1とした場合にD2/D1が0.5
〜0.9 を満たす、又は縮径部入側の絞り角度βが10〜60
度を満たす構成を備えてなる高炉における補助燃料吹込
み羽口構造。
4. The auxiliary fuel injection tuyere structure for a blast furnace according to claim 1, wherein D2 / D1 is equal to a minimum diameter portion D2 of the reduced diameter portion and an inner diameter D1 of a blow pipe on the side of the reduced diameter portion. 0.5
0.9, or the aperture angle β on the inlet side of the reduced diameter part is 10-60.
Auxiliary fuel injection tuyere structure in a blast furnace having a configuration satisfying the temperature.
【請求項5】 請求項1に記載の高炉における補助燃料
吹込み羽口構造において、縮径部の最小径部D2、羽口の
出口内径D3とした場合にD2/D3が0.55〜0.95を満たす、
又は縮径部出側の拡がり角度θが 1〜15度を満たす構成
を備えてなる高炉における補助燃料吹込み羽口構造。
5. The auxiliary fuel injection tuyere structure for a blast furnace according to claim 1, wherein D2 / D3 satisfies 0.55 to 0.95 when the minimum diameter portion D2 of the reduced diameter portion and the exit inner diameter D3 of the tuyere are set. ,
Alternatively, an auxiliary fuel injection tuyere structure in a blast furnace having a configuration in which a divergence angle θ at the outlet side of the reduced diameter portion satisfies 1 to 15 degrees.
JP37042398A 1998-12-25 1998-12-25 Pulverized coal injection tuyere structure in blast furnace Expired - Lifetime JP3492929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37042398A JP3492929B2 (en) 1998-12-25 1998-12-25 Pulverized coal injection tuyere structure in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37042398A JP3492929B2 (en) 1998-12-25 1998-12-25 Pulverized coal injection tuyere structure in blast furnace

Publications (2)

Publication Number Publication Date
JP2000192122A true JP2000192122A (en) 2000-07-11
JP3492929B2 JP3492929B2 (en) 2004-02-03

Family

ID=18496879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37042398A Expired - Lifetime JP3492929B2 (en) 1998-12-25 1998-12-25 Pulverized coal injection tuyere structure in blast furnace

Country Status (1)

Country Link
JP (1) JP3492929B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080038960A (en) * 2006-10-31 2008-05-07 주식회사 포스코 Tuyere of melting furnace for improving race-way
CN112325277A (en) * 2020-12-16 2021-02-05 无锡华光环保能源集团股份有限公司 Coal-spreading air arrangement structure for boiler spiral coal feeder
CN114854916A (en) * 2022-05-17 2022-08-05 中冶赛迪工程技术股份有限公司 Supersonic tuyere injection device and design method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080038960A (en) * 2006-10-31 2008-05-07 주식회사 포스코 Tuyere of melting furnace for improving race-way
CN112325277A (en) * 2020-12-16 2021-02-05 无锡华光环保能源集团股份有限公司 Coal-spreading air arrangement structure for boiler spiral coal feeder
CN114854916A (en) * 2022-05-17 2022-08-05 中冶赛迪工程技术股份有限公司 Supersonic tuyere injection device and design method
CN114854916B (en) * 2022-05-17 2023-12-29 中冶赛迪工程技术股份有限公司 Supersonic tuyere blowing device and design method

Also Published As

Publication number Publication date
JP3492929B2 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
JP3379946B2 (en) Equipment for introducing pulverized coal
JP2006312757A (en) Injection lance for gaseous reducing material, blast furnace and blast furnace operation method
BR112014015099B1 (en) method for operating a blast furnace
ES8405138A1 (en) Method and apparatus for injecting pulverized fuel into a blast furnace
CN105838845A (en) Supersonic circulating combustion coherent arbon-oxygen lance of electric arc furnace and spray head structure
KR101555222B1 (en) Blast furnace operating method and tube bundle-type lance
JP3450205B2 (en) How to inject auxiliary fuel into the blast furnace
KR20130122658A (en) Blast furnace operation method
JP2003194307A5 (en)
JP3492929B2 (en) Pulverized coal injection tuyere structure in blast furnace
JP4506337B2 (en) Pulverized coal blowing burner for metallurgical furnace and method for blowing pulverized coal into metallurgical furnace
JP3644862B2 (en) Auxiliary fuel injection operation method to blast furnace
CA2618411C (en) Apparatus and method for injection of fluid hydrocarbons into a blast furnace
KR100782684B1 (en) A pulverized solid fuel injecting apparatus
JP3644856B2 (en) Auxiliary fuel injection operation method to blast furnace
JP3450206B2 (en) Auxiliary fuel injection operation method to blast furnace
CN1125771A (en) Blast furnace coal powder jet quick-burning method and equipment
JPH11315310A (en) Method for blowing pulverized coal into blast furnace
KR200278280Y1 (en) Pulverized coal blow lance
JP2001348605A (en) Lance for blowing synthetic resin material into vertical type metallurgical furnace and method for producing molten iron by using vertical type metallurgical furnace with attendant blowing of synthetic resin material
JPH11302710A (en) Fuel blowing lance
JPH08157916A (en) Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal
KR100627464B1 (en) Increasing apparatus for combustibiliy of pulverized coal at blast furnace operation
JP3373011B2 (en) How to use a converter lance
AU2012355193B2 (en) Blast furnace operation method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

EXPY Cancellation because of completion of term