JP2000189183A - Production of biodegradable plastic from vegetable oil waste - Google Patents

Production of biodegradable plastic from vegetable oil waste

Info

Publication number
JP2000189183A
JP2000189183A JP37379098A JP37379098A JP2000189183A JP 2000189183 A JP2000189183 A JP 2000189183A JP 37379098 A JP37379098 A JP 37379098A JP 37379098 A JP37379098 A JP 37379098A JP 2000189183 A JP2000189183 A JP 2000189183A
Authority
JP
Japan
Prior art keywords
organic acid
vegetable oil
liquid
waste liquid
oil waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37379098A
Other languages
Japanese (ja)
Inventor
Kazunari Masuda
和成 増田
Yoshito Shirai
義人 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Kyushu Institute of Technology NUC
Original Assignee
Ebara Corp
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Kyushu Institute of Technology NUC filed Critical Ebara Corp
Priority to JP37379098A priority Critical patent/JP2000189183A/en
Publication of JP2000189183A publication Critical patent/JP2000189183A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To treat organic components in a vegetable oil waste without generating methane gas during a disposal process for the vegetable oil waste and at the same time produce a useful component from the vegetable oil waste by using a hydrogen bacterium. SOLUTION: The organic components in a vegetable oil waste are converted into organic acids in a short time by subjecting the vegetable oil waste to an anaerobic treatment and stopping the reaction at the acid fermentation step without allowing the reaction to proceed to methane fermentation, subsequently sludge is separated and removed from the anaerobically treated liquid by a solid-liquid separation means such as centrifugation, and the organic acid- containing liquid prepared by the removal of the solid components is concentrated by using an ion-exchanging resin or by heating to obtain a concentrated organic acid liquid. Polyhydroxyalkanoate(PHA), which is a biodegradable resin, is produced from the concentrated organic acid liquid by a hydrogen bacteria.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、植物油廃液からの
生分解性プラスチックの製造方法に関し、特に、植物油
廃液を嫌気処理し、有機酸発酵により生成した有機酸か
ら水素細菌により生分解性プラスチックであるポリヒド
ロキシアルカノエイト(PHA)を製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a biodegradable plastic from a vegetable oil waste liquid, and more particularly, to a method for producing a biodegradable plastic from an organic acid produced by organic acid fermentation by hydrogen bacteria from an organic acid produced by organic acid fermentation. The present invention relates to a method for producing a certain polyhydroxyalkanoate (PHA).

【0002】[0002]

【従来の技術】ヤシの実からパームオイルを生産してい
る産業では、パームオイルの採取と同時に油を含んだか
なりの量の廃液が排出される。その廃液は通常ラグーン
と呼ばれる処理池に入れられ、そこで自然のメタン醗酵
により処理されているが、パームオイルの生産量の増大
と共にその廃液の排出量が増大しているため、その処理
が困難になってきている。大豆やトウモロコシなどから
の植物油を製造する工業でも油などの有機物を含有する
廃液が排出されており、その処理も問題となっている。
2. Description of the Related Art In the industry where palm oil is produced from coconut, a considerable amount of waste liquid containing oil is discharged at the same time as palm oil is collected. The effluent is usually put into a treatment lagoon called a lagoon, where it is treated by natural methane fermentation. However, the discharge of the effluent is increasing with the increase in palm oil production, which makes the treatment difficult. It has become to. In the industry that produces vegetable oil from soybeans and corn, wastewater containing organic substances such as oil is discharged, and its treatment is also a problem.

【0003】また、近年、生活の洋風化に伴い家庭での
食事で油脂類が多量に消費されるようになってきた。ま
た、外食産業の繁栄や主婦の職場進出に伴う家事労働の
低減のためにも総菜産業の繁栄に伴い、油脂類の使用量
が増大してきた。更に、清潔ブームにより、朝シャンな
どが流行し洗浄剤の使用量も増大の一途を辿っている。
しかも、健康志向により、食事関係では動物性脂肪より
も植物性油脂に、洗浄剤関係でも合成洗剤から植物性洗
剤に消費者の人気が集まってきている。食事関係では、
植物性油脂として大豆油、菜種油、オリーブ油、椿油の
ほかにマーガリン(人造バター)としてヤシ油(パーム
核油)も多用されている。また、洗浄剤の分野でも石鹸
の原料としてヤシ油(パーム油)が多用されている。こ
れらの厨房廃水の処理は、通常の活性汚泥処理では十分
でない。
In recent years, a large amount of fats and oils have been consumed in meals at home with the westernization of daily life. In addition, the use of oils and fats has increased along with the prosperity of the delicatessen industry, in order to reduce the domestic labor associated with the prosperity of the restaurant industry and the housewife's advancement to the workplace. Furthermore, due to the boom in the cleanliness, morning shan and the like have become popular, and the amount of detergent used has been increasing steadily.
In addition, due to health consciousness, consumers are increasingly popular with vegetable fats and oils rather than animal fats in the diet, and synthetic detergents and vegetable detergents in the detergent category. In the diet,
In addition to soybean oil, rapeseed oil, olive oil and camellia oil as vegetable oils and fats, coconut oil (palm kernel oil) as margarine (artificial butter) is frequently used. In the field of detergents, coconut oil (palm oil) is frequently used as a raw material for soap. The treatment of these kitchen wastewaters is not sufficient with ordinary activated sludge treatment.

【0004】従来行われてきた植物油廃液の処理方法の
内容について、パームオイル廃液処理を例にとって簡単
に説明する。図6にパームオイルの搾油工程を示す。こ
の図によると、ヤシの実1トンから粗パームオイル(C
PO)と仁油(KPO)が約300kg取れることがわ
かる。パームオイルの搾油工程では、まずオイルパーム
の房を水蒸気で蒸らして実を取りやすくし、それらを取
りはずす。その後、図に示すように実を搾って油を取り
出すが、このとき搾油された量の約1.5倍の廃液が排
出される(油281.7kgに対し水441.9kg−
各工程から排出される廃液中の水量の合計量)。したが
って、パームオイルの年産量が800万トンとすると、
年約1,200万トンの廃液が排出されると考えられ
る。しかも、この廃液のCODは2万ppm以上あり、
通常の廃液処理法では効率的で経済的な処理が難しい。
例えば、パームオイルの主産地マレーシアには300の
工場があるので、各工場で年4万トンの廃液が排出され
ることになる。現在は、廃液はラグーンと呼ばれる長さ
数百mから1kmもある処理池によって処理されてい
る。ここでは、自然なメタン発酵によって有機物はメタ
ンに変換されている。
[0004] The contents of a conventional method for treating vegetable oil waste liquid will be briefly described by taking palm oil waste liquid treatment as an example. FIG. 6 shows a palm oil pressing process. According to this figure, 1 ton of coconut palm is used to prepare crude palm oil (C
It can be seen that about 300 kg of PO) and kin oil (KPO) can be taken. In the palm oil squeezing process, first, the oil palm bunches are steamed with steam to make it easier to extract the fruits and then removed. Thereafter, as shown in the figure, the fruit is squeezed to take out the oil, and at this time, about 1.5 times the amount of the squeezed liquid is discharged (281.7 kg of oil and 441.9 kg of water-
Total amount of water in the waste liquid discharged from each process). Therefore, if the annual production of palm oil is 8 million tons,
It is estimated that about 12 million tons of waste liquid are discharged annually. Moreover, the COD of this waste liquid is more than 20,000 ppm,
Efficient and economical treatment is difficult with conventional waste liquid treatment methods.
For example, there are 300 factories in Malaysia, where palm oil is mainly produced, and each factory discharges 40,000 tons of waste liquid annually. At present, wastewater is treated by a treatment pond called a lagoon, which is several hundred meters to as long as 1 km. Here, organic matter is converted to methane by natural methane fermentation.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな自然なメタン発酵に頼る方法では、油ヤシ(オイル
パーム)廃液は、油を含んだ高濃度廃液(COD200
00ppm)であるため、CODを100ppmまで下
げるのに1〜2か月の滞留時間を要し、しかも温暖化ガ
スの一つであるメタンガスが全く処理、利用されないま
ま大気中に放出されている。この方法は自然条件による
ところが大きいため、処理能力も安定せず基準値をクリ
アーできないまま、河川に放流されることも多い。ま
た、異臭も出ることから周辺居住区からの苦情も多いと
いう問題点があった。そのため、新規で経済的な廃液処
理方法が求められていた。また、外食産業や揚物生産工
場から排出される、前記した植物油を多量に含有する廃
液や、厨房廃水の処理は、通常の活性汚泥処理では十分
でないので、これらの廃液や廃水を十分処理できる廃液
処理方法が求められていた。
However, in such a method that relies on natural methane fermentation, oil palm (oil palm) waste liquid is a high-concentration waste liquid containing oil (COD200).
(00 ppm), it requires a residence time of one to two months to reduce the COD to 100 ppm, and methane gas, one of the greenhouse gases, is released into the atmosphere without any treatment or use. Since this method largely depends on natural conditions, it is often discharged into rivers without being able to meet the standard value due to unstable processing capacity. In addition, there was also a problem that there were many complaints from the surrounding residential areas because of off-flavors. Therefore, a new and economical waste liquid treatment method has been demanded. Further, since the wastewater containing a large amount of vegetable oil and kitchen wastewater discharged from the food service industry and fried food production factories and kitchen wastewater are not sufficiently treated by ordinary activated sludge treatment, wastewater capable of sufficiently treating these wastewater and wastewater A processing method was required.

【0006】本発明は、このような従来の問題点に鑑み
てなされたものであり、パームオイル廃液の有機成分を
効率的に処理すると同時に、その処理物から有用物を生
産することを課題とする。すなわち、本発明は、このよ
うな高濃度の有機物を含有している植物油廃液を単に処
理してCO2 やCH4 にして放出しても何の利点にもな
らないので、処理が容易な方法で有用な物質を生産しよ
うとすることを課題とする。
The present invention has been made in view of such conventional problems, and it is an object of the present invention to efficiently treat organic components of palm oil waste liquid and to produce useful substances from the treated product. I do. That is, the present invention does not provide any advantage even if the vegetable oil waste liquid containing such a high concentration of organic substances is simply treated and released as CO 2 or CH 4 , so that the treatment is easy. An object is to produce a useful substance.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記課題
を解決するため鋭意検討した結果、最初の嫌気処理でメ
タン発酵まで反応を進めず、有機酸の生成で反応を止め
ると、前記メタン発酵に要する時間に較べて嫌気処理工
程に要する時間が10%以下に短縮できること、しかも
そこで得た有機酸を原料として水素細菌(PHA生産
菌)の能力を十分活かすことにより効率良く生分解性プ
ラスチックPHAが生産できると共に、地球温暖化の原
因の一つであるメタンガスの大気中への放出も防止でき
ることを知見し、この知見に基づいて上記課題を解決で
きることを見出し本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, when the reaction was not proceeded to methane fermentation in the first anaerobic treatment and the reaction was stopped by the production of organic acid, The time required for the anaerobic treatment process can be reduced to 10% or less compared to the time required for methane fermentation, and the biodegradability can be efficiently achieved by fully utilizing the ability of hydrogen bacteria (PHA-producing bacteria) using the organic acids obtained therefrom as raw materials. The present inventors have found that it is possible to produce plastic PHA and also to prevent the emission of methane gas, which is one of the causes of global warming, into the atmosphere. Based on this finding, they have found that the above problems can be solved, and have completed the present invention. Was.

【0008】すなわち、本発明は、次の構成からなる。 (1) 植物油廃液を嫌気処理し、酸発酵により植物油
廃液中の有機物を有機酸に変換し、次いで固液分離手段
により嫌気処理液からスラッジを分離除去し、固形物を
除去した有機酸液を濃縮し、この濃縮有機酸液から水素
細菌によりポリヒドロキシアルカノエイトを生成するこ
とを特徴とする植物油廃液からの生分解性プラスチック
の製造方法。 (2) 前記固液分離手段が遠心分離法である前記
(1)記載の生分解性プラスチックの製造方法。 (3) 前記濃縮が加熱により行われる前記(1)記載
の生分解性プラスチックの製造方法。 (4) 前記濃縮がイオン交換樹脂により行われる前記
(1)記載の生分解性プラスチックの製造方法。 (5) 前記酸発酵におけるpH調整が炭酸カルシウム
の添加により行われる前記(1)記載の生分解性プラス
チックの製造方法。
That is, the present invention has the following configuration. (1) Vegetable oil waste liquid is subjected to anaerobic treatment, organic matter in the vegetable oil waste liquid is converted into organic acids by acid fermentation, and then sludge is separated and removed from the anaerobic treatment liquid by solid-liquid separation means, and the organic acid liquid from which solids are removed is removed. A method for producing biodegradable plastics from vegetable oil waste liquid, comprising concentrating and producing polyhydroxyalkanoate from the concentrated organic acid liquid by hydrogen bacteria. (2) The method for producing a biodegradable plastic according to the above (1), wherein the solid-liquid separation means is a centrifugal separation method. (3) The method for producing a biodegradable plastic according to (1), wherein the concentration is performed by heating. (4) The method for producing a biodegradable plastic according to (1), wherein the concentration is performed using an ion exchange resin. (5) The method for producing a biodegradable plastic according to (1), wherein the pH in the acid fermentation is adjusted by adding calcium carbonate.

【0009】[0009]

【発明の実施の形態】本発明において、その処理の対象
となる植物油廃液に含まれる植物油の種類としては、植
物種子より得られる常温で液体である物すべてが含ま
れ、例えばオイルパーム(アブラヤシ)の果肉からのパ
ーム油、種子からのパーム核油、大豆油、ごま油、椿
油、菜種油、オリーブ油など、食用、石鹸、塗料に用い
られる物が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the types of vegetable oil contained in the vegetable oil waste liquid to be treated include all those which are liquid at room temperature and obtained from plant seeds, such as oil palm (oil palm). Palm oil from pulp, palm kernel oil from seed, soybean oil, sesame oil, camellia oil, rapeseed oil, olive oil, and the like, which are used in foods, soaps, and paints.

【0010】本発明の植物油廃液からの生分解性プラス
チックの製造方法の各工程のブロック図を図1に示す。
以下に各工程を順次説明する。本発明の嫌気処理として
は、嫌気条件で嫌気性菌で有機物を有機酸に変換される
ように行うが、この処理方法は公知のものであって、そ
れにしたがって行い、有機酸に変換された段階で停止さ
せる。一般に、メタン発酵は有機物を酢酸を中心とする
有機酸に変換させた後、メタン細菌によってメタンに変
えているが、有機物が有機酸に変換される時間は、全メ
タン発酵に要する時間と比較すると1割以下である。そ
こで、本発明、植物油廃液の有機物を有機酸に変換させ
た段階で停止させることに特徴がある。
FIG. 1 shows a block diagram of each step of the method for producing a biodegradable plastic from waste vegetable oil of the present invention.
Hereinafter, each step will be sequentially described. The anaerobic treatment of the present invention is performed under anaerobic conditions so that organic substances can be converted into organic acids by anaerobic bacteria. To stop. In general, methane fermentation converts organic matter into organic acids, mainly acetic acid, and then converts it to methane by methane bacteria.However, the time required to convert organic matter into organic acids is shorter than the time required for whole methane fermentation. Less than 10%. Therefore, the present invention is characterized in that the suspension is stopped at the stage when the organic matter in the vegetable oil waste liquid is converted into the organic acid.

【0011】本発明では、嫌気処理を終了した廃液から
そこで得られた有機酸を分離する必要があり、そのため
に固液分離手段により行う。本発明の固液分離手段とし
ては、嫌気処理液からスラッジを分離するために遠心分
離法で分離する方法、アルカリ添加による沈降分離、重
力濾過、真空濾過、加圧濾過などの濾過方式が挙げられ
る。
In the present invention, it is necessary to separate the organic acid obtained therefrom from the waste liquid after the anaerobic treatment, and the separation is performed by a solid-liquid separation means. Examples of the solid-liquid separation means of the present invention include a method for separating sludge from an anaerobic treatment liquid by a centrifugal separation method, sedimentation separation by addition of alkali, gravity filtration, vacuum filtration, and filtration methods such as pressure filtration. .

【0012】スラッジ分離後の有機酸液の濃縮方法とし
ては、イオン交換樹脂により上澄液から有機酸を濃縮分
離する方法と、希薄な有機酸液を加熱濃縮して減容する
方法が挙げられる。イオン交換樹脂法によれば、廃液か
ら有機酸を含む電解質成分が取り出されて分離され、他
の成分は除かれるので、有機酸成分について効率的な発
酵を行うことが可能であるが、イオン交換操作が一つ加
わる点に問題がある。また、後者の加熱濃縮方法は、加
熱濃縮の熱源は、例えば、オイルパームの房や葉を燃や
すことで容易に得られる。濃縮された有機酸を含む廃液
は、直接水素細菌によるPHA生産に利用される。な
お、この場合は最初の有機酸発酵におけるpH調整に廉
価な炭酸カルシウムを利用する。炭酸カルシウムは難溶
性であるので、添加しておくだけでpHが低下すれば溶
解し、pHセンサー等の制御装置がなくてもほぼpHを
中性付近に保つことができる。炭酸カルシウムが汚泥に
含まれるため、回収した汚泥の肥料や土壌改良剤として
の価値も上昇する。更に、汚泥の沈降分離に遠心分離等
のアルカリ添加以外の方法を利用すれば、汚泥にダメー
ジを与えることなく有機酸生成のための嫌気処理槽に返
送することができる。汚泥のリサイクルを伴う連続嫌気
処理により滞留時間の短縮が可能で、装置容積を小さく
できるという利点を生じる。
As a method for concentrating an organic acid solution after sludge separation, there are a method of concentrating and separating an organic acid from a supernatant using an ion exchange resin, and a method of heating and concentrating a dilute organic acid solution to reduce the volume. . According to the ion exchange resin method, an electrolyte component containing an organic acid is taken out from a waste liquid and separated, and other components are removed, so that efficient fermentation can be performed on the organic acid component. The problem is that one operation is added. In the latter heat concentration method, the heat source of the heat concentration can be easily obtained, for example, by burning a bunch or a leaf of oil palm. The waste liquid containing the concentrated organic acid is directly used for PHA production by hydrogen bacteria. In this case, inexpensive calcium carbonate is used for pH adjustment in the first organic acid fermentation. Since calcium carbonate is hardly soluble, it can be dissolved if the pH is lowered only by adding it, and the pH can be kept almost at around neutral without a control device such as a pH sensor. Since calcium carbonate is contained in the sludge, the value of the recovered sludge as a fertilizer or soil conditioner also increases. Furthermore, if a method other than alkali addition such as centrifugation is used for the sedimentation and separation of sludge, the sludge can be returned to the anaerobic treatment tank for organic acid generation without damaging the sludge. The continuous anaerobic treatment accompanied by the recycling of sludge has the advantage that the residence time can be shortened and the volume of the apparatus can be reduced.

【0013】濃縮有機酸液からPHAを生成する水素細
菌(PHA生産菌)としてはArcaligenes
eutrophusが挙げられる。通常微生物を利用し
た物質生産の系では、単一菌を使用するために他の菌に
よるコンタミネーションを防ぐ必要がある。そのために
滅菌の設備が必要で時間もかかる。本プロセスでは高濃
度で窒素含量が低い廃液組成の組成とPHA生産菌の能
力(通常、細菌は貧酸素条件下では炭素源があっても活
動を停止して胞子を作るか死んでしまう。しかし、PH
A生産菌は同様の条件下では一旦PHAの形で炭素源を
蓄積しておき、再び富窒素条件になったときに蓄積した
PHAを分解してタンパク質を作りだす。)を活かし
て、開放系においても優先的に培養することを可能にし
た。これにより管理が極めて容易となりプラント建設コ
スト、ランニングコストを低減することができる。
Arcaligenes is a hydrogen bacterium (PHA-producing bacterium) that produces PHA from a concentrated organic acid solution.
eutrophus. Usually, in a system for producing substances using microorganisms, it is necessary to prevent contamination by other microorganisms because a single microorganism is used. Therefore, sterilization equipment is required and it takes time. In this process, the composition of the effluent composition with a high concentration and low nitrogen content and the ability of PHA producing bacteria (usually the bacteria stop their activity and produce spores or die under anoxic condition even in the presence of a carbon source. , PH
Under the same conditions, the A-producing bacterium once accumulates a carbon source in the form of PHA, and degrades the accumulated PHA to produce a protein when the condition becomes nitrogen-rich again. ) Enables preferential culture in open systems. As a result, management becomes extremely easy, and plant construction costs and running costs can be reduced.

【0014】[0014]

【実施例】以下に実施例において本発明を具体的に説明
するが、本発明は、これらの実施例に限定されるもので
はない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0015】実施例1 この実施例は、パームオイル廃液の有機成分を有機酸に
変換させ、これを生分解性プラスチックの原料にする工
程を説明するものである。まず、パームオイル廃液を嫌
気処理し、ここで有機分を酢酸を中心とする有機酸に変
換させる。次に、嫌気処理液からスラッジを分離し、上
澄液からイオン交換樹脂により有機酸を濃縮分離する。
この濃縮有機酸液を使い、水素細菌により生分解性プラ
スチックであるポリヒドロアルカノエイト(PHA)を
つくる。
Example 1 This example describes a process in which an organic component of a palm oil waste liquid is converted into an organic acid, which is used as a raw material for a biodegradable plastic. First, palm oil waste liquid is subjected to anaerobic treatment, where organic components are converted into organic acids centered on acetic acid. Next, sludge is separated from the anaerobic treatment liquid, and the organic acid is concentrated and separated from the supernatant using an ion exchange resin.
Using this concentrated organic acid solution, hydrogen bacterium produces polyhydroalkanoate (PHA), which is a biodegradable plastic.

【0016】1) パームオイル廃液の嫌気処理による
有機酸の生産 パームオイル処理池から採取した汚泥を入れた反応器
に、パームオイル廃液を流通させた。反応器を密閉し、
水酸化ナトリウムを添加してpHを7に調整すると、酢
酸を中心とする有機酸を連続的に生産させることができ
た。このときの廃液の滞留時間は5日であった。実験結
果を図2に示す。図2より滞留時間の7倍の時間、10
g/リットルの濃度で安定に有機酸が生成されているこ
とがわかる。
1) Production of Organic Acid by Anaerobic Treatment of Palm Oil Waste Liquid Palm oil waste liquid was passed through a reactor containing sludge collected from a palm oil treatment pond. Seal the reactor,
When sodium hydroxide was added to adjust the pH to 7, organic acids centering on acetic acid could be continuously produced. The residence time of the waste liquid at this time was 5 days. The experimental results are shown in FIG. As shown in FIG.
It can be seen that the organic acid was stably generated at a concentration of g / liter.

【0017】2) 有機酸含有廃液から懸濁固形分の分
離 有機酸を生成させたパームオイル廃液から汚泥を含む懸
濁固形分(SS)除去する方法として、アルカリ添加に
よる沈降分離を試みた。pH10とpH11におけるS
S粒子の粒径分布を検討すると、わずかなpHの違いに
よって粒子径が大きく変わることがわかった。これによ
り沈降が容易になり、SSを容易に分離することができ
た。
2) Separation of Suspended Solids from Organic Acid-Containing Waste Liquid As a method for removing suspended solids (SS) containing sludge from palm oil waste liquid in which an organic acid was generated, sedimentation separation by addition of an alkali was attempted. S at pH 10 and pH 11
When examining the particle size distribution of the S particles, it was found that a slight difference in pH greatly changes the particle size. As a result, sedimentation was facilitated and SS could be easily separated.

【0018】3) パームオイル廃液からイオン交換樹
脂による酢酸等の分離 嫌気処理の廃液から、陰イオン交換樹脂を用いて有機酸
を分離することを試みた。この場合、処理液中のSSが
有機酸の吸着を強く阻害することがわかった。一方、ア
ルカリ添加によってSSを除去すると、処理廃液から有
機酸を回収して濃縮分離できることがわかった。また、
有機酸分離後の廃液のCODは分離前の約10%に減少
していることがわかった。イオン交換操作では、通常陰
イオン交換樹脂に吸着した有機酸を脱着する際にはNa
Cl溶液で脱着させるのが一般的であるが、次にその脱
着の際に吸着した塩素イオンを脱着させるためには大量
のアルカリが必要であるので、高濃度の水酸化ナトリウ
ム溶液で溶出させた方が有利である。pHと塩素イオン
濃度に対する吸着体積(破過体積)の検討から、塩素イ
オン濃度は吸着に大きな影響を及ぼすことがわかった。
また、酢酸吸着後、高濃度水酸化ナトリウム溶液で溶出
させると、アルカリ溶液でも十分有機酸の濃縮分離が可
能であることがわかった。このため、このイオン交換操
作では、有機酸は有機酸ナトリウムとして分離される。
3) Separation of acetic acid and the like from palm oil waste liquid by ion exchange resin An attempt was made to separate organic acids from waste liquid from anaerobic treatment using anion exchange resin. In this case, it was found that SS in the processing solution strongly inhibited the adsorption of the organic acid. On the other hand, it was found that when the SS was removed by adding an alkali, the organic acid could be recovered from the treated waste liquid and concentrated and separated. Also,
It was found that the COD of the waste liquid after the organic acid separation was reduced to about 10% before the separation. In the ion exchange operation, when desorbing an organic acid which is usually adsorbed on an anion exchange resin, Na
It is common to desorb with a Cl solution, but then a large amount of alkali is required to desorb the chloride ions adsorbed during the desorption, so it was eluted with a high concentration sodium hydroxide solution. Is more advantageous. Examination of the adsorption volume (breakthrough volume) with respect to pH and chloride ion concentration revealed that chloride ion concentration had a large effect on adsorption.
In addition, it was found that, after acetic acid adsorption, elution with a high-concentration sodium hydroxide solution enabled sufficient concentration and separation of organic acids even with an alkaline solution. Therefore, in this ion exchange operation, the organic acid is separated as sodium organic acid.

【0019】4) パームオイル廃液から分離した有機
酸を原料とするPHAの生産 処理廃液からイオン交換樹脂により分離した有機酸を、
水素細菌(Arcaligenes eutrophu
s)の菌体内にPHAとして蓄積させることを試みた。
この実験では、分離された有機酸を培養槽内に連続的に
供給するが、槽内からは菌体を排出させない半回分培養
を用いた。実験結果を図3に示す。図3の結果をまとめ
ると、PHA生産性は0.6kg/(hm3 )、有機酸
あたりのPHA収率は0.35kg/kg、PHA含量
0.8kg/kgであった。
4) Production of PHA Using Organic Acid Separated from Palm Oil Waste Liquid as Raw Material The organic acid separated from the treated waste liquid by an ion exchange resin is
Hydrogen bacteria (Arcaligenes eutrophu)
An attempt was made to accumulate PHA in the cells of s).
In this experiment, a semi-batch culture was used in which the separated organic acid was continuously supplied into the culture tank, but the cells were not discharged from the tank. The experimental results are shown in FIG. Summarizing the results in FIG. 3, the PHA productivity was 0.6 kg / (hm 3 ), the PHA yield per organic acid was 0.35 kg / kg, and the PHA content was 0.8 kg / kg.

【0020】5) 物質収支および設備容量 マレーシアの標準的なパームオイル工場における、イオ
ン交換樹脂による酢酸の濃縮分離について試算した結果
について説明する。なお、操業は365日間休まず行わ
れるとした。そして、オイルパームの実81,000t
/年を水15,000t/年使用して処理してパームオ
イルを27,000t/年生産すると仮定すると、タン
ク容積は約700m3 必要となると算出される。更に、
流出した処理液はアルカリの添加によりSSを沈降分離
させる。嫌気処理とSS分離に水酸化ナトリウムが必要
である。一方、SSを除かれた有機酸を含む処理液は、
イオン交換樹脂により分離される。約8.4%まで濃縮
された有機酸ナトリウムが、年間9500トン(固形量
では800トン、有機酸のみでは500トン)得られる
ことになる。イオン交換操作では、吸着剤1トンあたり
50kgの有機酸が回収できるので、毎日脱着操作を繰
り返すとすると 500 [t/年]×1000[kg/t]/50 [kg/m3 ]/365[回/
年]=28m3 の容量のイオン交換装置が必要となる。
5) Material Balance and Equipment Capacity The results of a trial calculation of the concentration and separation of acetic acid by an ion exchange resin in a standard palm oil factory in Malaysia will be described. The operation will be continued 365 days. And 81,000 tons of oil palm
Assuming that 15,000 t / year of water is processed using 15,000 t / year of water to produce 27,000 t / year of palm oil, a tank volume of approximately 700 m 3 is calculated. Furthermore,
The treatment liquid that has flowed out causes the precipitation and separation of SS by the addition of an alkali. Sodium hydroxide is required for anaerobic treatment and SS separation. On the other hand, the processing solution containing the organic acid excluding SS is
Separated by ion exchange resin. 9,500 tons of organic acid sodium (concentrated 800 tons in solid content, 500 tons in organic acid only) can be obtained annually to a concentration of about 8.4%. In the ion exchange operation, 50 kg of organic acid can be recovered per ton of adsorbent, so if the desorption operation is repeated every day, 500 [t / year] x 1000 [kg / t] / 50 [kg / m 3 ] / 365 [ Times /
Year] = 28 m 3 of ion exchange equipment is required.

【0021】ここで分離された有機酸以外にもまだ有機
成分は処理液に残っているので、これを活性炭で除去す
る。このときの活性炭はヤシ殻から作るものとする。こ
の活性炭は再生させることなく、このまま土壌改良材と
して利用する。一方、有機分を除かれたアルカリ液は、
ヤシ殻を燃焼させた熱で濃縮する。このとき、蒸発した
水は凝縮させて処理水となる。ゼロエミッションの観点
からは、水酸化ナトリウムをイオン交換における有機酸
の脱着剤に使うことは意味がある。この方法では、有機
酸ナトリウムとして系外に取り除かれる分の補給のみが
必要である。一方、生成された有機酸ナトリウムを、オ
ンサイトでのPHA生成に用いるとすると、ナトリウム
分を除いた正味の有機酸量は500トン/年であり、P
HA収率は0.35であるので年175トン/年にな
る。PHAの生産性が0.6kg/(hm3 )であるの
で、PHA生産用の培養タンク容積は 175 [t/年]×1000[kg/t]/(0.6 [kg/(hm3)]×365
[日]×24[h ]=33m3 になる。
Since organic components other than the separated organic acid still remain in the processing solution, they are removed with activated carbon. The activated carbon at this time shall be made from coconut shells. This activated carbon is used as it is as a soil conditioner without regeneration. On the other hand, the alkaline liquid from which organic components have been removed
The coconut shell is concentrated with the heat of combustion. At this time, the evaporated water is condensed to be treated water. From a zero emission point of view, it makes sense to use sodium hydroxide as a desorbent for organic acids in ion exchange. In this method, it is only necessary to replenish the amount removed as an organic acid sodium out of the system. On the other hand, if the generated organic acid sodium is used for on-site PHA generation, the net organic acid amount excluding the sodium content is 500 tons / year.
The HA yield is 0.35, which is 175 tons / year. Since the productivity of PHA is 0.6 kg / (hm 3 ), the culture tank volume for PHA production is 175 [t / year] × 1000 [kg / t] / (0.6 [kg / (hm 3 )] × 365
[Sun] become × 24 [h] = 33m 3 .

【0022】実施例2 この実施例は、実施例1における生成した有機酸をイオ
ン交換クロマトグラフィーによって分離濃縮する手段に
代えて、加熱濃縮することによって減容する手段を採用
している。そして、有機酸発酵におけるpH調整に廉価
な炭酸カルシウムを利用する。炭酸カルシウムは難溶性
なので、添加しておくだけでpHが低下すれば溶解し、
pHセンサー等の制御装置がなくてもpHをほぼ中性に
保つことができる。炭酸カルシウムが汚泥に含まれるた
め、回収した汚泥の肥料や土壌改良剤としての価値も上
昇する。また、搾油工程から生じる食物性廃棄物の燃焼
により得られる余剰エネルギーを、廃液の濃縮に利用す
る。これによりプロセス全体の運転コストを低減するこ
とができる。本プロセスに必要な全エネルギーを、平均
的な搾油工場で生じるヤシ殻廃棄物の約20%の燃焼エ
ネルギーでまかなうことができる。
Example 2 This example employs a means for reducing the volume by heat concentration instead of the means for separating and concentrating the organic acid produced in Example 1 by ion exchange chromatography. Inexpensive calcium carbonate is used for pH adjustment in organic acid fermentation. Calcium carbonate is hardly soluble, so it will dissolve if the pH drops just by adding it,
The pH can be kept almost neutral without a control device such as a pH sensor. Since calcium carbonate is contained in the sludge, the value of the recovered sludge as a fertilizer or soil conditioner also increases. In addition, surplus energy obtained by burning food waste generated from the oil pressing step is used for concentration of waste liquid. Thereby, the operation cost of the whole process can be reduced. The total energy required for the process can be provided by the combustion energy of about 20% of the coconut shell waste generated by the average mill.

【0023】1) バームオイル廃液から有機酸生成に
おけるpH調整のための炭酸カルシウムの利用 この実施例でもパームオイル処理池から汚泥を入れた反
応器にパームオイル廃液を流通させたが、毎日1リット
ルあたり1gの炭酸カルシウムを添加した。その結果反
応液のpHは5.8から6.3の間で安定した。廃液の
滞留時間は実施例1の1)と同様5日としたが、図2に
示した結果と同様10g/リットルの濃度で有機酸が生
成されることがわかった。このとき酢酸の有機酸あたり
の選択率は約70%で、他の主な有機酸はプロピオン酸
であった。
1) Utilization of Calcium Carbonate for pH Adjustment in Organic Acid Production from Balm Oil Waste Liquid In this example, the palm oil waste liquid was passed from a palm oil treatment pond to a reactor containing sludge, but 1 liter daily. Per gram of calcium carbonate was added. As a result, the pH of the reaction solution was stabilized between 5.8 and 6.3. The retention time of the waste liquid was set to 5 days as in 1) of Example 1, but it was found that the organic acid was produced at a concentration of 10 g / liter as in the result shown in FIG. At this time, the selectivity of acetic acid per organic acid was about 70%, and the other main organic acid was propionic acid.

【0024】2) パームオイル廃液を加熱濃縮した有
機酸を原料とするPHAの生産 パームオイル廃液の嫌気処理後の有機酸を含む廃液から
汚泥を分離で除いた上澄み液をエバポレータで30倍に
濃縮した。これにより廃液中の有機酸濃度は300g/
リットルに上昇した。また、凝縮した水のCODは60
ppmであった。この濃縮有機酸廃液を蒸気減菌した
後、水素細菌の半回分培養を行った。その結果を図4に
示す。図4より、パームオイル廃液の嫌気処理液の濃縮
した液を直接用いているので、有機酸以外の成分もある
程度高い濃度で含まれていると考えられるが、菌体の増
殖に阻害がなかったことがわかる。濃縮廃液中の有機酸
は消費されるが、半回分操作であるため、発酵液中の有
機酸濃度は低く抑えることができ、最終的には0にする
ことができた(図4(b)参照)。一方、PHAを含む
水素細菌の濃度は上昇し、最終的には20g/リットル
を越えた(図4(a)参照)。発酵時間(処理時間)を
3日に限っても菌体濃度が約20g/リットル、PHA
濃度が10g/リットルになり、PHA含量は50%に
達した。更に、わずかに廃液中に残っていた窒素(アン
モニア)も完全に取り除かれていることがわかる。
2) Production of PHA using organic acid obtained by heating and concentrating palm oil waste liquid as raw material The supernatant liquid obtained by separating sludge from waste liquid containing organic acid after anaerobic treatment of palm oil waste liquid is concentrated 30 times by evaporator. did. Thereby, the organic acid concentration in the waste liquid is 300 g /
Rose to liters. The COD of the condensed water is 60
ppm. After the concentrated organic acid waste liquid was sterilized by steam, a half-batch culture of hydrogen bacteria was performed. FIG. 4 shows the results. According to FIG. 4, since the concentrated solution of the anaerobic treatment solution of the palm oil waste liquid is directly used, it is considered that components other than the organic acid are also contained at a somewhat high concentration, but the growth of the bacterial cells was not inhibited. You can see that. Although the organic acid in the concentrated waste liquid is consumed, the concentration of the organic acid in the fermented liquor can be suppressed to a low level because the operation is performed in a half-batch operation, and finally the concentration can be reduced to 0 (FIG. 4B) reference). On the other hand, the concentration of hydrogen bacteria including PHA increased, and eventually exceeded 20 g / liter (see FIG. 4 (a)). Even if the fermentation time (treatment time) is limited to 3 days, the bacterial cell concentration is about 20 g / liter and PHA
The concentration reached 10 g / l and the PHA content reached 50%. Further, it can be seen that a slight amount of nitrogen (ammonia) remaining in the waste liquid has been completely removed.

【0025】本プロセスはPHAの生産プロセスである
と同時に廃水の処理プロセスでもあるので、蒸気減菌を
行わない開放系での発酵が求められる。そこで、50%
酢酸溶液を用いて蒸気減菌を行わない系でのPHAの半
回分生産を試験した。この際、発酵液中の酢酸濃度が1
g/リットルを越えないように注意しながら、酢酸の高
濃度溶液を添加した。また、開放系の影響が顕著に現れ
るように、培養48時間後に下水処理場より得た生汚泥
を0.1%パルス的に投入した。その結果を図5に示
す。図より、開放系にもかかわらず、また、汚泥が添加
されたにもかかわらず、酢酸は消費され(図5(b)参
照)、PHAが蓄積していることがわかる(図5(a)
参照)。この場合も菌体中のPHA含量は50%以上に
達した。
Since this process is not only a PHA production process but also a wastewater treatment process, fermentation in an open system without steam sterilization is required. So 50%
The batch production of PHA was tested in a system without steam sterilization using an acetic acid solution. At this time, the acetic acid concentration in the fermentation broth was 1
A concentrated solution of acetic acid was added, taking care not to exceed g / l. Moreover, 0.1% pulse of fresh sludge obtained from the sewage treatment plant after 48 hours of cultivation was introduced so that the influence of the open system was remarkable. The result is shown in FIG. From the figure, it can be seen that acetic acid is consumed (see FIG. 5 (b)) and PHA is accumulated despite the open system and sludge added (FIG. 5 (a)).
reference). Also in this case, the PHA content in the cells reached 50% or more.

【0026】以上より濃縮されたパームオイル廃液の嫌
気処理液を直接利用しても、あるいは、蒸気減菌しない
開放系でPHA生産を行っても、大きな障害なく有機酸
が消費され、PHAに変換されることがわかった。ま
た、この際、発酵液中の有機酸濃縮はゼロ、あるいは、
非常に低いレベルに抑えられた。更に、窒素(アンモニ
ア)はまったく検出されないレベルに落とすことができ
た。しかし、有機酸以外のCOD成分は消費されなかっ
た。嫌気処理廃液の有機成分の90%は有機酸で占めら
れていたが、残り10%の有機成分は水素細菌の発酵で
は消費されなかった。
Even if the anaerobic treating solution of the concentrated palm oil waste liquid is directly used or PHA is produced in an open system without steam sterilization, the organic acid is consumed without any major obstacle and converted to PHA. It turned out to be. In this case, the concentration of the organic acid in the fermentation broth is zero, or
Very low level. In addition, nitrogen (ammonia) could be reduced to a level that could not be detected at all. However, the COD components other than the organic acids were not consumed. While 90% of the organic components of the anaerobic wastewater were occupied by organic acids, the remaining 10% of the organic components were not consumed in the fermentation of hydrogen bacteria.

【0027】3) 物質収支および設備容量 マレーシアの標準的なパームオイル工場における、炭酸
カルシウムを併用した酢酸の加熱濃縮について試算した
結果について説明する。操業日数、原料のオイルパーム
の実の量、使用水量およびパームオイルの生産量は全て
実施例1の場合と同条件に揃えた。まず、汚泥を循環さ
せるため滞留時間を短縮することが可能であるので、廃
液の滞留時間は1日とした。したがって、嫌気処理タン
クの大きさは、実施例1の700m3 の1/5に余裕を
もたせ160m3 とした。SSの分離に関しては、SS
は相当高い濃度まで濃縮されるものとした。排出される
炭酸カルシウムを含むSSは、土壌改良剤あるいは肥料
として供給する。有機酸を含む処理液は、加熱濃縮装置
で50倍に濃縮される。この際に凝縮される水蒸気が処
理水となる。あるいは、このときの蒸気をオイルパーム
の蒸気減菌や油脂の水蒸気蒸留等に利用すれば、水を大
きく節約できる。この後、濃縮された有機酸を含む廃液
は、水素細菌の半回分培養により処理される。加熱蒸発
に必要な熱源は、固形廃棄物から得る。このために、排
出される固形物の総量の1/5が必要である。このと
き、廃液の窒素含量は相当低いので、水素細菌のような
炭素分をPHAとして蓄積できる微生物でないと生きて
いけない。廃液の処理時間を3日とすると、年当たり1
22回分操作が必要である。もし、培養槽3基用いると
すると、処理量が年1000tであるので、1000/
122/3=2.7t/回分となる。
3) Mass Balance and Equipment Capacity The following describes the results of a trial calculation of heat concentration of acetic acid with calcium carbonate in a standard palm oil plant in Malaysia. The number of operating days, the amount of raw oil palm, the amount of water used, and the amount of palm oil produced were all set to the same conditions as in Example 1. First, the residence time of the waste liquid was set to one day because the residence time can be reduced because the sludge is circulated. Therefore, the size of the anaerobic treatment tank was set to 160 m 3 with a margin of 1/5 of 700 m 3 of Example 1. Regarding SS separation, SS
Was concentrated to a considerably high concentration. The SS containing the discharged calcium carbonate is supplied as a soil conditioner or a fertilizer. The processing solution containing the organic acid is concentrated 50-fold with a heat concentration device. Water vapor condensed at this time becomes treated water. Alternatively, if the steam at this time is used for steam sterilization of oil palm, steam distillation of oils and fats, etc., water can be largely saved. Thereafter, the waste liquid containing the concentrated organic acid is treated by semi-batch culture of hydrogen bacteria. The heat source required for heat evaporation is obtained from solid waste. For this, one-fifth of the total amount of solids discharged is required. At this time, since the nitrogen content of the waste liquid is considerably low, the microorganism must survive unless it is a microorganism such as a hydrogen bacterium that can accumulate carbon as PHA. Assuming that the waste liquid treatment time is 3 days, 1
22 operations are required. If three culture tanks are used, the processing amount is 1000 t / year, so 1000 /
122/3 = 2.7 t / time.

【0028】これだけの高濃度廃液が1回分操作当たり
流入する。実験室の経験から、初期にこの10倍程度の
基本培地(希釈の意味だけなので固液分離後の液で十
分)が必要であるので、発酵タンク1基は容量が約30
3 必要である。また、同じタンクを種菌発酵用に利用
するので、同じタンクはもう1つ必要となる。このプロ
セスにより標準的搾油工場からの廃水40000t/年
(COD20000ppm)を浄化処理して39000
t/yの処理水(COD60ppm)を得ると同時に、
PHAを高濃度に含む汚泥0.8kg/kgを生産する
ことが可能となる。(廃水処理プラントであるとともに
PHAの生産プラントでもある。)実施例2の大きな特
徴は、必要とする消耗品が炭酸カルシウムと硫安のみで
あることで、実施例1に比べると消耗品費が非常に小さ
いことである。また、プロセスがシンプルであることも
実施例1より優れている点であると思われる。一方、難
点としては、開放系のPHA発酵を安定に継続するため
には、可成りの熟練と注意深い運転操作を要する点にあ
ると思われる。
This high-concentration waste liquid flows in one operation. From the experience of the laboratory, since about 10 times the basic medium (liquid after solid-liquid separation is sufficient only for the purpose of dilution) is required at the initial stage, one fermentation tank has a capacity of about 30 times.
m 3 is required. Further, since the same tank is used for inoculum fermentation, another same tank is required. This process purifies 30000 t / year (COD 20000 ppm) of wastewater from a standard oil mill to 39000 t
At the same time as obtaining t / y treated water (COD 60 ppm),
0.8 kg / kg of sludge containing PHA at a high concentration can be produced. (It is a wastewater treatment plant and a PHA production plant.) A major feature of the second embodiment is that the required consumables are only calcium carbonate and ammonium sulfate. It is small. Also, the fact that the process is simple seems to be an advantage over the first embodiment. On the other hand, it is considered that the difficulty is that considerable skill and careful operation are required in order to stably continue the open PHA fermentation.

【0029】したがって、実施例1のイオン交換樹脂に
より有機酸を濃縮分離する方式は、てんぷら等の植物油
を多用する和風レストランや中華レストラン、あるいは
給食センターや小規模の食品加工工場等の廃水量の比較
的少ない、いわゆる厨房廃水の処理に適していると思わ
れる。一方、実施例2の加熱濃縮と炭酸カルシウムを組
合せた減容方式は、植物油製造プラントや大規模の加工
食品製造工場等の廃水量の極めて多い、いわゆる生産設
備廃水の処理に適していると思われる。
Therefore, the method of Example 1 for concentrating and separating an organic acid with an ion-exchange resin is a method of reducing the amount of wastewater from a Japanese-style restaurant or a Chinese restaurant that uses a lot of vegetable oil such as tempura, a catering center or a small food processing plant. It seems to be suitable for the treatment of relatively little so-called kitchen wastewater. On the other hand, the volume reduction method using the combination of heat concentration and calcium carbonate of Example 2 seems to be suitable for the treatment of so-called production equipment wastewater, which has a very large amount of wastewater, such as a vegetable oil production plant or a large-scale processed food production plant. It is.

【0030】[0030]

【発明の効果】以上に詳述したとおり、本発明の植物油
廃液からの生分解性プラスチックの製造方法によれば、
油を含んだ高濃度廃液を、温暖化ガスの一つであるメタ
ンガスを発生させずに比較的短時間で処理できるばかり
でなく、廃液中の有機成分を効率的に有機酸に転換する
と共に、これから水素細菌等の微生物を用いて生分解性
プラスチックであるPHAを生産することができる。し
かも、このPHAはポリエチレン等の汎用プラスチック
に混合して、例えば、包装材料や農業用フイルム等に用
いることができる。その結果、従来自然界において難分
解性であるため、環境保全の面で問題があった汎用プラ
スチック類を環境保全型の生分解性製品に変えることが
できるという極めて優れた効果を発揮することができ
る。
As described in detail above, according to the method for producing a biodegradable plastic from a vegetable oil waste liquid of the present invention,
Not only can high-concentration wastewater containing oil be treated in a relatively short time without generating methane gas, which is one of the warming gases, as well as efficiently converting organic components in the wastewater to organic acids, From this, PHA, which is a biodegradable plastic, can be produced using microorganisms such as hydrogen bacteria. In addition, this PHA can be mixed with general-purpose plastics such as polyethylene and used for, for example, packaging materials and agricultural films. As a result, it is possible to exhibit an extremely excellent effect that general-purpose plastics, which have been difficult to decompose in the natural world and have been problematic in terms of environmental protection, can be converted into biodegradable products of environmental protection. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の植物油廃液からの生分解性プラスチッ
クの製造方法の工程を示すブロック図である。
FIG. 1 is a block diagram showing steps of a method for producing a biodegradable plastic from waste vegetable oil of the present invention.

【図2】パームオイル廃液の嫌気処理による有機酸化を
示すグラフである。
FIG. 2 is a graph showing organic oxidation by anaerobic treatment of palm oil waste liquid.

【図3】パームオイル廃液起源の有機酸からのPHAの
生産を示すグラフである。
FIG. 3 is a graph showing the production of PHA from organic acids derived from palm oil waste liquid.

【図4】パームオイル廃液起源の加熱濃縮した有機酸か
らのPHAの生産を示すグラフで、(a)は菌体濃度、
PHA濃度、有機酸消費量と処理時間の関係を示すグラ
フで、(b)は酢酸濃度、その他の有機酸濃度、窒素濃
度と処理時間の関係を示すグラフである。
FIG. 4 is a graph showing the production of PHA from heat-concentrated organic acids derived from palm oil waste liquid, wherein (a) shows the concentration of bacterial cells,
It is a graph which shows the relationship between PHA density | concentration, organic acid consumption, and processing time, and (b) is a graph which shows the relationship between acetic acid density | concentration, other organic acid density | concentrations, nitrogen density, and processing time.

【図5】開放系での有機酸からのPHAの生産を示すグ
ラフで、(a)、(b)とも図4と同様の関係を示すグ
ラフである。
FIG. 5 is a graph showing the production of PHA from an organic acid in an open system, and is a graph showing the same relationship as (a) and (b) in FIG. 4;

【図6】パームオイルの搾油工程を示すブロック図であ
る。
FIG. 6 is a block diagram showing a step of extracting palm oil.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) //(C12P 7/62 C12R 1:05) (72)発明者 白井 義人 福岡県北九州市戸畑区仙水町1番1号 九 州工業大学内 Fターム(参考) 4B064 AD83 CA02 CB30 CC01 CC07 CD07 CD24 CE20 DA16 4B065 AA12X AC16 BB02 BB10 BC01 BC02 BD14 BD15 BD50 CA12 CA54 CA60 4D040 AA01 AA62 DD03 DD11 4J029 AB05 AC02 AD10 AE03 KE17 KJ08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) // (C12P 7/62 C12R 1:05) (72) Inventor Yoshito Shirai Sensuicho, Tobata-ku, Kitakyushu-shi, Fukuoka No. 1-1 F-term in Kyushu Institute of Technology (Reference) 4B064 AD83 CA02 CB30 CC01 CC07 CD07 CD24 CE20 DA16 4B065 AA12X AC16 BB02 BB10 BC01 BC02 BD14 BD15 BD50 CA12 CA54 CA60 4D040 AA01 AA62 DD03 DD11 4J029 AB05 AC02 AD10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 植物油廃液を嫌気処理し、酸発酵により
植物油廃液中の有機物を有機酸に変換し、次いで固液分
離手段により嫌気処理液からスラッジを分離除去し、固
形物を除去した有機酸液を濃縮し、この濃縮有機酸液か
ら水素細菌によりポリヒドロキシアルカノエイトを生成
することを特徴とする植物油廃液からの生分解性プラス
チックの製造方法。
1. An organic acid obtained by subjecting a vegetable oil waste liquid to anaerobic treatment, converting organic matter in the vegetable oil waste liquid into an organic acid by acid fermentation, and then separating and removing sludge from the anaerobic treated liquid by solid-liquid separation means to remove solid matter. A method for producing a biodegradable plastic from waste vegetable oil, comprising concentrating the liquid and producing polyhydroxyalkanoate from the concentrated organic acid liquid by hydrogen bacteria.
【請求項2】 前記固液分離手段が遠心分離法である請
求項1記載の生分解性プラスチックの製造方法。
2. The method for producing a biodegradable plastic according to claim 1, wherein said solid-liquid separation means is a centrifugal separation method.
【請求項3】 前記濃縮が加熱により行われる請求項1
記載の生分解性プラスチックの製造方法。
3. The method according to claim 1, wherein the concentration is performed by heating.
A method for producing the biodegradable plastic according to the above.
【請求項4】 前記濃縮がイオン交換樹脂により行われ
る請求項1記載の生分解性プラスチックの製造方法。
4. The method for producing a biodegradable plastic according to claim 1, wherein the concentration is performed by using an ion exchange resin.
【請求項5】 前記酸発酵におけるpH調整が炭酸カル
シウムの添加により行われる請求項1記載の生分解性プ
ラスチックの製造方法。
5. The method for producing a biodegradable plastic according to claim 1, wherein the pH adjustment in the acid fermentation is performed by adding calcium carbonate.
JP37379098A 1998-12-28 1998-12-28 Production of biodegradable plastic from vegetable oil waste Pending JP2000189183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37379098A JP2000189183A (en) 1998-12-28 1998-12-28 Production of biodegradable plastic from vegetable oil waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37379098A JP2000189183A (en) 1998-12-28 1998-12-28 Production of biodegradable plastic from vegetable oil waste

Publications (1)

Publication Number Publication Date
JP2000189183A true JP2000189183A (en) 2000-07-11

Family

ID=18502764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37379098A Pending JP2000189183A (en) 1998-12-28 1998-12-28 Production of biodegradable plastic from vegetable oil waste

Country Status (1)

Country Link
JP (1) JP2000189183A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020022508A (en) * 2000-09-20 2002-03-27 이우기 Method for Manufacturing PHA Using Fermentation Broth of Food Waste
JP2003304893A (en) * 2002-04-16 2003-10-28 Sumitomo Heavy Ind Ltd Method for producing organic acid, apparatus therefor and method for storage of organic acid
JP2011050910A (en) * 2009-09-03 2011-03-17 Sumitomo Heavy Industries Environment Co Ltd Method and apparatus for biological wastewater treatment
WO2011043829A3 (en) * 2009-10-08 2011-08-18 The Board Of Trustees Of The Leland Stanford Junior University High solids fermentation for synthesis of polyhydroxyalkanoates from gas substrates
JP2013535227A (en) * 2010-08-18 2013-09-12 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Method for recovery of stabilized polyhydroxyalkanoates from biomass used to treat organic waste
WO2015000266A1 (en) * 2013-07-03 2015-01-08 同济大学 Enhanced sewage biological nitrogen and phosphorus removal method based on polyhydroxyalkanoates metabolic regulation
CN104724821A (en) * 2015-03-24 2015-06-24 上海市政工程设计研究总院(集团)有限公司 Method and device for enhancing biological phosphorus removal
US10465214B2 (en) 2014-11-20 2019-11-05 Full Cycle Bioplastics Llc Producing resins from organic waste products
US11339351B2 (en) 2018-05-30 2022-05-24 Kaneka Corporation Method for producing polyhydroxyalkanoate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020022508A (en) * 2000-09-20 2002-03-27 이우기 Method for Manufacturing PHA Using Fermentation Broth of Food Waste
JP2003304893A (en) * 2002-04-16 2003-10-28 Sumitomo Heavy Ind Ltd Method for producing organic acid, apparatus therefor and method for storage of organic acid
JP2011050910A (en) * 2009-09-03 2011-03-17 Sumitomo Heavy Industries Environment Co Ltd Method and apparatus for biological wastewater treatment
WO2011043829A3 (en) * 2009-10-08 2011-08-18 The Board Of Trustees Of The Leland Stanford Junior University High solids fermentation for synthesis of polyhydroxyalkanoates from gas substrates
JP2013535227A (en) * 2010-08-18 2013-09-12 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Method for recovery of stabilized polyhydroxyalkanoates from biomass used to treat organic waste
US9487624B2 (en) 2010-08-18 2016-11-08 Veolia Water Solutions & Technologies Support Method for recovery of stabilized polyhydroxyalkanoates from biomass that has been used to treat organic waste
WO2015000266A1 (en) * 2013-07-03 2015-01-08 同济大学 Enhanced sewage biological nitrogen and phosphorus removal method based on polyhydroxyalkanoates metabolic regulation
US10465214B2 (en) 2014-11-20 2019-11-05 Full Cycle Bioplastics Llc Producing resins from organic waste products
US11377672B2 (en) 2014-11-20 2022-07-05 Full Cycle Bioplastics Llc Producing resins from organic waste products
CN104724821A (en) * 2015-03-24 2015-06-24 上海市政工程设计研究总院(集团)有限公司 Method and device for enhancing biological phosphorus removal
CN104724821B (en) * 2015-03-24 2018-04-10 上海市政工程设计研究总院(集团)有限公司 A kind of method and device of enhanced biological phosphorus removal
US11339351B2 (en) 2018-05-30 2022-05-24 Kaneka Corporation Method for producing polyhydroxyalkanoate

Similar Documents

Publication Publication Date Title
Hansen et al. Agricultural waste management in food processing
Chen et al. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production
Sawant et al. Fungal citric acid production using waste materials: a mini-review
Grosser et al. Anaerobic digestion of sewage sludge with grease trap sludge and municipal solid waste as co-substrates
Shabir et al. Treatment technologies for olive mill wastewater with impacts on plants
Arvanitoyannis et al. Olive oil waste treatment: a comparative and critical presentation of methods, advantages & disadvantages
CN104030738A (en) Resource-based and harmless treatment method for kitchen waste
Agrawal et al. Anaerobic digestion of fruit and vegetable waste: a critical review of associated challenges
JP2007143542A (en) New microbial consortium and use thereof for liquefaction of solid organic matter
JP2000189183A (en) Production of biodegradable plastic from vegetable oil waste
He et al. Resource recovery and valorization of food wastewater for sustainable development: An overview of current approaches
CN106348562A (en) Method for treating active sludge generated by sewage treatment and extracting protein
US20210403960A1 (en) Systems and methods for producing polyhydroxyalkanoates from organic waste
EP3737513B1 (en) A soil remediant and its method of production
JP4714862B2 (en) Method for producing and separating and purifying succinic acid from raw garbage
Edith et al. Improving anaerobic biodigestion of manioc wastewater with human urine as co-substrate
Akbar et al. Anaerobic digestate: a sustainable source of bio-fertilizer
Shabbir et al. Revitalization of wastewater from the edible oil industry
Tello-Andrade et al. Management of sewage sludge by composting using fermented water hyacinth
JP2005144361A (en) Organic waste treating method
JP5235643B2 (en) Method and apparatus for treating organic waste by combined methane fermentation
Tommaso et al. Clean strategies for the management of residues in dairy industries
Stamatelatou et al. Integrated management methods for the treatment and/or valorization of olive mill wastes
WO2017216720A2 (en) Process for treating and generating energy from biomasses
CN113616838A (en) Sterilization deodorant

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060719

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630