JP2000189169A - L-glutamate productive bacterium and production of l- glutamic acid - Google Patents

L-glutamate productive bacterium and production of l- glutamic acid

Info

Publication number
JP2000189169A
JP2000189169A JP11068343A JP6834399A JP2000189169A JP 2000189169 A JP2000189169 A JP 2000189169A JP 11068343 A JP11068343 A JP 11068343A JP 6834399 A JP6834399 A JP 6834399A JP 2000189169 A JP2000189169 A JP 2000189169A
Authority
JP
Japan
Prior art keywords
ala
leu
val
glu
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11068343A
Other languages
Japanese (ja)
Other versions
JP4144098B2 (en
Inventor
Yutaka Izui
裕 泉井
Eiji Ono
栄治 小野
Kazuhiko Matsui
和彦 松井
Mika Moriya
美加 守屋
Hisao Ito
久生 伊藤
Yoshihiko Hara
吉彦 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP06834399A priority Critical patent/JP4144098B2/en
Publication of JP2000189169A publication Critical patent/JP2000189169A/en
Application granted granted Critical
Publication of JP4144098B2 publication Critical patent/JP4144098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an L-plutamate productive bacterium having high L- glutamate producibility and contribute to the development of the inexpensive and efficient production of L-glutamic acid. SOLUTION: This glutamate productive bacterium is a strain which belongs to the genus Enterobactor or Serratia and is enhanced in the enzyme activity for catalyzing the biosynthetic reaction of L-glutamic acid or a strain which is branched from the pathway of the biosynthesis of L-glutamic acid and decreased or lost in the enzyme activity for catalyzing the reaction of forming compounds other than L-glutamic acid and the production of L-glutamic acid is carried out by cultivating microorganisms which have L-glutamate producibility in a culture medium and separating the resultant L-glutamic acid from the medium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規なL−グルタ
ミン酸生産菌及びそれを用いた発酵法によるL−グルタ
ミン酸の製造法に関する。L−グルタミン酸は、食品、
医薬品等として重要なアミノ酸である。
The present invention relates to a novel L-glutamic acid-producing bacterium and a method for producing L-glutamic acid by a fermentation method using the same. L-glutamic acid is a food,
It is an important amino acid for pharmaceuticals.

【0002】[0002]

【従来の技術】従来、L−グルタミン酸は、主としてブ
レビバクテリウム属、コリネバクテリウム属、ミクロバ
クテリウム属に属するいわゆるコリネ型L−グルタミン
酸生産菌またはそれらの変異株を用いた発酵法により製
造されている(アミノ酸発酵、学会出版センター、19
5〜215頁、1986年)。その他の菌株を用いた発
酵法によるL−グルタミン酸の製造法としては、バチル
ス属、ストレプトミセス属、ペニシリウム属等の微生物
を用いる方法(米国特許第3,220,929号)、シ
ュードモナス属、アースロバクター属、セラチア属、キ
ャンディダ属等の微生物を用いる方法(米国特許第3,
563,857号)、バチルス属、シュードモナス属、
セラチア属、アエロバクター・アエロゲネス(現エンテ
ロバクター・アエロゲネス)等の微生物を用いる方法
(特公昭32−9393号)、エシェリヒア・コリの変
異株を用いる方法(特開平5−244970号)等が知
られている。
2. Description of the Related Art Conventionally, L-glutamic acid is mainly produced by a fermentation method using a so-called coryneform L-glutamic acid-producing bacterium belonging to the genus Brevibacterium, Corynebacterium or Microbacterium, or a mutant thereof. (Amino Acid Fermentation, Academic Press, 19
5-215, 1986). As a method for producing L-glutamic acid by fermentation using other strains, methods using microorganisms such as Bacillus, Streptomyces, Penicillium (US Pat. No. 3,220,929), Pseudomonas, Arthro A method using microorganisms such as Bacter, Serratia, Candida (US Pat.
563,857), Bacillus, Pseudomonas,
Methods using microorganisms such as Serratia and Aerobacterium aerogenes (now Enterobacter aerogenes) are known (Japanese Patent Publication No. 32-9393), and a method using a mutant strain of Escherichia coli (JP-A-5-244970) is known. ing.

【0003】上記のような微生物の育種や製造法の改良
により、L−グルタミン酸の生産性はかなり高まっては
いるが、今後の需要の一層の増大に応えるためには、さ
らに安価かつ効率的なL−グルタミン酸の製造法の開発
が求められている。
[0003] Although the productivity of L-glutamic acid has been considerably increased due to the improvement of the breeding and production methods of the microorganisms as described above, in order to respond to a further increase in demand in the future, a more inexpensive and efficient method is required. There is a need for the development of a method for producing L-glutamic acid.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、高い
L−グルタミン酸生産能を有する新規なL−グルタミン
酸生産菌を見出し、安価かつ効率的なL−グルタミン酸
の製造法の開発につなげることにある。
An object of the present invention is to find a novel L-glutamic acid-producing bacterium having a high L-glutamic acid-producing ability and to develop an inexpensive and efficient method for producing L-glutamic acid. is there.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために、従来の微生物とは異なった微生物で
あって、かつL−グルタミン酸生産能を有する微生物を
広く検索、研究した結果、エンテロバクター属あるいは
セラチア属に属する微生物由来の誘導株が高いL−グル
タミン酸生産能を有することを見いだし、本発明を完成
するに至った。
Means for Solving the Problems In order to solve the above problems, the present inventors have extensively searched and studied microorganisms different from conventional microorganisms and capable of producing L-glutamic acid. As a result, they have found that a derivative derived from a microorganism belonging to the genus Enterobacter or Serratia has a high L-glutamic acid-producing ability, and have completed the present invention.

【0006】すなわち、本発明は以下の通りである。That is, the present invention is as follows.

【0007】(1)エンテロバクター属あるいはセラチ
ア属に属し、下記の性質の少なくとも一方を有し、かつ
L−グルタミン酸生産能を有する微生物: (a)L−グルタミン酸の生合成反応を触媒する酵素の
活性が高められている、 (b)L−グルタミン酸の生
合成経路から分岐してL−グルタミン酸以外の化合物を
生成する反応を触媒する酵素の活性が低下または欠損し
ている。
(1) A microorganism belonging to the genus Enterobacter or the genus Serratia, having at least one of the following properties, and having an ability to produce L-glutamic acid: (a) an enzyme that catalyzes the biosynthesis reaction of L-glutamic acid (B) The activity of an enzyme that catalyzes a reaction that diverges from the L-glutamic acid biosynthetic pathway to produce a compound other than L-glutamic acid is reduced or defective.

【0008】(2)L−グルタミン酸の生合成反応を触
媒する酵素が、クエン酸シンターゼ(以下「CS」と略
す)、フォスフォエノールピルベートカルボキシラーゼ
(以下「PEPC」と略す)、およびグルタミン酸デヒ
ドロゲナーゼ(以下「GDH」と略す)から選ばれる前
記(1)の微生物。
(2) Citrate synthase (hereinafter abbreviated as “CS”), phosphoenolpyruvate carboxylase (hereinafter abbreviated as “PEPC”), and glutamate dehydrogenase (hereinafter abbreviated as “PEPC”) are enzymes that catalyze the biosynthesis reaction of L-glutamic acid. (Hereinafter abbreviated as "GDH").

【0009】(3)L−グルタミン酸の生合成反応を触
媒する酵素が、クエン酸シンターゼ、フォスフォエノー
ルピルベートカルボキシラーゼ、およびグルタミン酸デ
ヒドロゲナーゼのすべてである(2)の微生物、
(3) The microorganism according to (2), wherein the enzymes that catalyze the biosynthesis reaction of L-glutamic acid are all citrate synthase, phosphoenolpyruvate carboxylase and glutamate dehydrogenase.

【0010】(4)L−グルタミン酸の生合成経路から
分岐してL−グルタミン酸以外の化合物を生成する反応
を触媒する酵素がα−ケトグルタル酸デヒドロゲナーゼ
(以下「αKGDH」と略す)である前記(1)〜
(3)のいずれかの微生物。
(4) The enzyme which catalyzes a reaction for producing a compound other than L-glutamic acid by branching off from the L-glutamic acid biosynthetic pathway is α-ketoglutarate dehydrogenase (hereinafter abbreviated as “αKGDH”). ) ~
The microorganism according to any one of (3).

【0011】(5)微生物がエンテロバクター・アグロ
メランスまたはセラチア・リクエファシエンスに属する
(1)〜(4)のいずれかの微生物。
(5) The microorganism according to any one of (1) to (4), wherein the microorganism belongs to Enterobacter agglomerans or Serratia requifaciens.

【0012】(6)前記(1)〜(5)のいずれかの微
生物を液体培地に培養し、培地中にL−グルタミン酸を
生成蓄積せしめ、これを該培地から採取することを特徴
とするL−グルタミン酸の製造法。
(6) The microorganism according to any one of (1) to (5), wherein the microorganism is cultured in a liquid medium, L-glutamic acid is produced and accumulated in the medium, and the L-glutamic acid is collected from the medium. -A method for producing glutamic acid.

【0013】[0013]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の微生物は、エンテロバクター属あるいはセラチ
ア属に属す微生物であって、下記の性質の少なくとも一
方を有する微生物である。 (a)L−グルタミン酸の生合成反応を触媒する酵素の
活性が高められている。 (b)L−グルタミン酸の生合成経路から分岐してL−
グルタミン酸以外の化合物を生成する反応を触媒する酵
素の活性が低下または欠損している。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The microorganism of the present invention is a microorganism belonging to the genus Enterobacter or the genus Serratia, and has at least one of the following properties. (A) The activity of an enzyme that catalyzes a biosynthesis reaction of L-glutamic acid is enhanced. (B) L-glutamic acid is diverged from the biosynthetic pathway to produce L-glutamic acid.
The activity of an enzyme that catalyzes a reaction for producing a compound other than glutamic acid is reduced or lacking.

【0014】このような微生物は、エンテロバクター属
あるいはセラチア属に属す微生物を親株として用い、前
記(a)および/または(b)の性質を付与することに
より得られる。親株として使用されるエンテロバクター
属あるいはセラチア属に属す微生物には、以下のような
ものがある。
Such a microorganism can be obtained by using a microorganism belonging to the genus Enterobacter or the genus Serratia as a parent strain and imparting the properties (a) and / or (b). The following microorganisms belong to the genus Enterobacter or Serratia used as parent strains.

【0015】エンテロバクター・アグロメランス(Ente
robacter agglomerans) エンテロバクター・アエロゲネス(Enterobacter aerog
enes) エンテロバクター・アムニゲナス(Enterobacter amnig
enus) エンテロバクター・アスブリア(Enterobacter asburia
e) エンテロバクター・クロエッケ(Enterobacter cloaca
e) エンテロバクター・ディソルベンス(Enterobacter dis
solvens) エンテロバクター・ジェルゴビア(Enterobacter gergo
viae) エンテロバクター・ホルマエッケ(Enterobacter horma
echei) エンテロバクター・インターメディウス(Enterobacter
intermedius) エンテロバクター・ニミプレスラリス(Enterobacter n
imipressuralis) エンテロバクター・サカザキ(Enterobacter sakazaki
i) エンテロバクター・テイロレ(Enterobacter taylora
e) セラチア・リクエファシエンス(Serratia liquefacien
ce) セラチア・エントモフィラ(Serratia entomophila) セラチア・フィカリア(Serratia ficaria) セラチア・フォンティコーラ(Serratia fonticola) セラチア・グリメシ(Serratia grimesii) セラチア・プロテアマキュランス(Serratia proteamac
ulans) セラチア・オドリフェラ(Serratia odorifera) セラチア・プリムシカ(Serratia plymuthica) セラチア・ルビダエ(Serratia rubidaea )
[0015] Enterobacter agglomerans
robacter agglomerans Enterobacter aerog
enes) Enterobacter amnig
enus) Enterobacter asburia
e) Enterobacter cloaca
e) Enterobacter dissolvens
solvens) Enterobacter gergovia
viae) Enterobacter horma
echei) Enterobacter intermedius
intermedius) Enterobacter nimipresalis (Enterobacter n)
imipressuralis) Enterobacter sakazaki
i) Enterobacter taylora
e) Serratia liquefacien
ce) Serratia entomophila (Serratia entomophila) Serratia ficaria (Serratia fonticola) Serratia grimesi (Serratia grimesii) Serratia protea maculaans (Serratia proteamac)
ulans) Serratia odorifera Serratia plymuthica Serratia rubidaea

【0016】さらに好ましくは、以下に示す菌株が挙げ
られる。 エンテロバクター・アグロメランス ATCC1228
7 エンテロバクター・アグロメランス AJ13355 セラチア・リクエファシエンス ATCC14460
More preferably, the following strains can be mentioned. Enterobacter agglomerans ATCC1228
7 Enterobacter agglomerans AJ13355 Serratia requesteaciens ATCC14460

【0017】エンテロバクター・アグロメランス AJ
13355は、平成10年2月19日に、通産省工業技
術院生命工学工業技術研究所に、受託番号FERM P
−16644として寄託され、平成11年1月11日に
ブタペスト条約に基づく国際寄託に移管され、受託番号
FERM BP−6614が付与されている。また、エ
ンテロバクター・アグロメランス ATCC1228
7、セラチア・リクエファシエンス ATCC1446
0は、ATCCより分譲を受けることができる。
Enterobacter agglomerans AJ
13355 is registered on February 19, 1998 by the Ministry of International Trade and Industry,
Deposit No. -16644, transferred to an international deposit based on the Budapest Treaty on January 11, 1999, and given the accession number FERM BP-6614. In addition, Enterobacter agglomerans ATCC1228
7, Serratia request faculty ATCC 1446
0 can be obtained from the ATCC.

【0018】エンテロバクター・アグロメランス AJ
13355株は静岡県磐田市の土壌から分離された株で
ある。AJ13355の生理的性質を記す。
Enterobacter agglomerans AJ
13355 strain is a strain isolated from soil in Iwata City, Shizuoka Prefecture. The physiological properties of AJ13355 are described.

【0019】(1)グラム染色性:陰性 (2)酸素に対する挙動:通性嫌気性 (3)カタラーゼ:ネガティブ (4)オキシダーゼ:ポジティブ (5)硝酸還元能:ネガティブ (6)フォゲス−プロスカウエル試験:ポジティブ (7)メチルレッド試験:ネガティブ (8)ウレアーゼ:ネガティブ (9)インドール生成:ポジティブ (10)運動性:有り (11)TSI培地での硫化水素生成:微弱な活性あり (12)β−ガラクトシダーゼ:ポジティブ(1) Gram stainability: negative (2) Behavior to oxygen: facultative anaerobic (3) Catalase: negative (4) Oxidase: positive (5) Nitrate reducing ability: negative (6) Fogges-Proscauer test : Positive (7) Methyl red test: Negative (8) Urease: Negative (9) Indole production: Positive (10) Motility: Yes (11) Hydrogen sulfide production in TSI medium: Weak activity (12) β- Galactosidase: positive

【0020】(13)糖資化性: アラビノース:ポジティブ シュークロース:ポジティブ ラクトース:ポジティブ キシロース:ポジティブ ソルビトール:ポジティブ イノシトール:ポジティブ トレハロース:ポジティブ マルトース:ポジティブ メリビオース:ポジティブ アドニトール:ネガティブ ラフィノース:ポジティブ サリシン:ネガティブ メリビオース:ポジティブ(13) Sugar utilization: Arabinose: Positive Sucrose: Positive Lactose: Positive Xylose: Positive Sorbitol: Positive Inositol: Positive Trehalose: Positive Maltose: Positive Melibiose: Positive Adonitol: Negative Raffinose: Negative Melibio positive

【0021】(14)グリセロース資化性:ポジティブ (15)有機酸資化性: クエン酸:ポジティブ 酒石酸:ネガティブ グルコン酸:ポジティブ 酢酸:ポジティブ マロン酸:ネガティブ (16)アルギニンデヒドラターゼ:ネガティブ (17)オルチンデカルボキシラーゼ:ネガティブ (18)リジンデカルボキシラーゼ:ネガティブ (19)フェニルアラニンデアミナーゼ:ネガティブ (20)色素形成:黄色 (21)ゼラチン液化能:ポジティブ (22)生育pH pH4生育不良、pH4.5〜7生
育良好 (23)生育温度 25℃生育良好、30℃生育良好、
37℃生育良好、42℃生育可、45℃生育不可
(14) Glycerose assimilation: positive (15) Organic acid assimilation: citric acid: positive tartaric acid: negative gluconic acid: positive acetic acid: positive malonic acid: negative (16) arginine dehydratase: negative (17) ol Tin decarboxylase: Negative (18) Lysine decarboxylase: Negative (19) Phenylalanine deaminase: Negative (20) Pigmentation: Yellow (21) Gelatin liquefaction: Positive (22) Growth pH Poor growth, pH 4.5-7 growth Good (23) Growth temperature 25 ° C good growth, 30 ° C good growth,
37 ° C good, 42 ° C, 45 ° C

【0022】これらの菌学的性質からAJ13355は
エンテロバクター・アグロメランスと判定された。
From these mycological properties, AJ13355 was determined to be Enterobacter agglomerans.

【0023】後述の実施例では、L−グルタミン酸の生
合成反応を触媒する酵素の活性が高めらた株、あるいは
L−グルタミン酸の生合成経路から分岐してL−グルタ
ミン酸以外の化合物を生成する反応を触媒する酵素の活
性が低下または欠損して株を取得するための出発親株と
して、エンテロバクター・アグロメランス ATCC1
2287、エンテロバクター・アグロメランス AJ1
3355、あるいはセラチア・リクエファシエンス A
TCC14460を用いた。しかし、エンテロバクター
属あるいはセラチア属に属する細菌による糖の代謝はい
ずれもエムデン−マイヤーホフ経路を経て行われ、同経
路で生成するピルビン酸は好気的条件下ではトリカルボ
ン酸サイクルにて酸化される。L−グルタミン酸は、ト
リカルボン酸サイクルの中間体であるα−ケトグルタル
酸より、GDHあるいはグルタミンシンセターゼ/グル
タミン酸シンターゼによって生合成される。このよう
に、これらの微生物ではL−グルタミン酸生合成経路は
共通のものであり、本発明においては、エンテロバクタ
ー属およびセラチア属に属する微生物は単一の概念を形
成する。従って、上記した種または菌株以外のエンテロ
バクター属およびセラチア属に属する微生物も本発明に
含まれる。
In the examples described below, a strain in which the activity of an enzyme that catalyzes the biosynthesis reaction of L-glutamic acid is enhanced, or a reaction in which a compound other than L-glutamic acid is branched off from the biosynthetic pathway of L-glutamic acid to produce a compound other than L-glutamic acid Agromerans ATCC1 as a starting parent strain for obtaining a strain with reduced or deficient activity of an enzyme that catalyzes
2287, Enterobacter agglomerans AJ1
3355, or Serratia Riquefaciens A
TCC14460 was used. However, sugar metabolism by bacteria belonging to the genus Enterobacter or Serratia is performed via the Emden-Meierhof pathway, and pyruvate produced in the pathway is oxidized in the tricarboxylic acid cycle under aerobic conditions. L-glutamic acid is biosynthesized by GDH or glutamine synthetase / glutamic acid synthase from α-ketoglutarate, which is an intermediate in the tricarboxylic acid cycle. Thus, the L-glutamic acid biosynthesis pathway is common in these microorganisms, and in the present invention, microorganisms belonging to the genus Enterobacter and the genus Serratia form a single concept. Therefore, microorganisms belonging to the genus Enterobacter and the genus Serratia other than the above-described species or strains are also included in the present invention.

【0024】本発明の微生物は、上記のようなエンテロ
バクター属またはセラチア属に属する微生物であって、
L−グルタミン酸生産能を有する微生物である。ここで
「L−グルタミン酸生産能を有する」とは、培養したと
きに培地中にL−グルタミン酸を蓄積する能力を有する
ことをいう。本発明においては、L−グルタミン酸生産
能は、下記の性質の一方または両方を付与することによ
り付与される。
The microorganism of the present invention is a microorganism belonging to the genus Enterobacter or Serratia as described above,
It is a microorganism capable of producing L-glutamic acid. Here, “has the ability to produce L-glutamic acid” means that it has the ability to accumulate L-glutamic acid in the medium when cultured. In the present invention, L-glutamic acid-producing ability is imparted by imparting one or both of the following properties.

【0025】(a)L−グルタミン酸の生合成反応を触
媒する酵素の活性が高められている。 (b)L−グルタミン酸の生合成経路から分岐してL−
グルタミン酸以外の化合物を生成する反応を触媒する酵
素の活性が低下または欠損している。
(A) The activity of an enzyme that catalyzes a biosynthesis reaction of L-glutamic acid is enhanced. (B) L-glutamic acid is diverged from the biosynthetic pathway to produce L-glutamic acid.
The activity of an enzyme that catalyzes a reaction for producing a compound other than glutamic acid is reduced or lacking.

【0026】エンテロバクター属またはセラチア属微生
物のL−グルタミン酸の生合成反応を触媒する酵素とし
ては、GDH、グルタミンシンセターゼ、グルタミン酸
シンターゼ、イソクエン酸デヒドロゲナーゼ、アコニッ
ト酸ヒドラターゼ、CS、PEPC、ピルビン酸デヒド
ロゲナーゼ、ピルビン酸キナーゼ、エノラーゼ、ホスホ
グリセロムターゼ、ホスホグリセリン酸キナーゼ、グリ
セルアルデヒド−3−リン酸デヒドロゲナーゼ、トリオ
ースリン酸イソメラーゼ、フルクトースビスリン酸アル
ドラーゼ、ホスホフルクトキナーゼ、グルコースリン酸
イソメラーゼ等が挙げられる。これらの酵素の中では、
CS、PEPCおよびGDHのいずれか1種または2種
もしくは3種が好ましい。さらに、本発明の微生物にお
いては、CS、PEPCおよびGDHの3種の酵素の活
性がともに高められていることが好ましい。細胞中の目
的酵素の活性が増加していること、および活性の増加の
程度は、微生物の菌体抽出液または精製画分の酵素活性
を測定し、野生株または親株と比較することによって確
認できる。
Enzymes that catalyze the biosynthesis of L-glutamic acid by microorganisms of the genus Enterobacter or Serratia include GDH, glutamine synthetase, glutamate synthase, isocitrate dehydrogenase, aconitate hydratase, CS, PEPC, pyruvate dehydrogenase, and the like. Examples include pyruvate kinase, enolase, phosphoglyceromutase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, fructosebisphosphate aldolase, phosphofructokinase, glucose phosphate isomerase and the like. Among these enzymes,
One, two or three of CS, PEPC and GDH are preferred. Further, in the microorganism of the present invention, it is preferable that the activities of all three enzymes, CS, PEPC and GDH, are enhanced. The activity of the target enzyme in the cell is increased, and the degree of the increase can be confirmed by measuring the enzyme activity of the microbial cell extract or purified fraction and comparing it with the wild-type or parent strain. .

【0027】本発明で使用されるエンテロバクター属あ
るいはセラチア属に属し、L−グルタミン酸の生合成反
応を触媒する酵素のいずれか1種、または2種以上の活
性が高められた微生物は、例えば、前記の微生物を出発
親株に用い、これらの酵素をコードする遺伝子に変異を
生じた変異株として、または遺伝子組換え株として取得
することができる。
The microorganism which belongs to the genus Enterobacter or the genus Serratia and has an enhanced activity of one or more enzymes that catalyze the biosynthesis reaction of L-glutamic acid includes, for example, Using the above microorganism as a starting parent strain, it can be obtained as a mutant strain in which a gene encoding these enzymes has been mutated, or as a genetically modified strain.

【0028】CS、PEPCまたはGDH活性を高める
には、例えば、CS、PEPCまたはGDHをコードす
る遺伝子を適当なプラスミド上にクローニングし、得ら
れたプラスミドを用いて宿主となる上記出発親株を形質
転換すればよい。形質転換株の細胞内のCS、PEPC
及びGDHをコードする遺伝子(以下、おのおのをこの
順に「gltA遺伝子」、「ppc遺伝子」、「gdh
A遺伝子」と略する)のコピー数が上昇し、その結果C
S、PEPC及びGDH活性が高められる。
In order to enhance CS, PEPC or GDH activity, for example, a gene encoding CS, PEPC or GDH is cloned into a suitable plasmid, and the obtained parent strain is transformed into the host strain using the obtained plasmid. do it. Intracellular CS, PEPC in transformed cells
And genes encoding GDH (hereinafter referred to as "gltA gene", "ppc gene", "gdh
A gene) and the copy number of C gene
S, PEPC and GDH activities are increased.

【0029】クローニングされたgltA遺伝子、pp
c遺伝子、およびgdhA遺伝子は、単独または任意の
2種または3種の組合わせで、上記出発親株に導入され
る。2種または3種の遺伝子を導入する場合には、一種
類のプラスミド上に2種又は3種の遺伝子がクローン化
されて宿主に導入されるか、あるいは共存可能な2種類
または3種類のプラスミド上に別々にクローン化されて
宿主に導入される。上記プラスミドとしては、エンテロ
バクター属あるいはセラチア属に属する微生物の細胞中
で自律複製可能なプラスミドであれば特に制限されない
が、例えばpUC19、pUC18、pBR322、pHSG299、pHSG298、
pHSG399、pHSG398、RSF1010、pMW119、pMW118、pMW21
9、pMW218等が挙げられる。他にもファージDNAのベ
クターも利用できる。形質転換は、例えば、D.M.Morris
onの方法(Methods in Enzymology 68, 326(1979))あ
るいは受容菌細胞を塩化カルシウムで処理してDNAの
透過性を増す方法(Mandel,M. and Higa,A.,J.Mol.Bio
l.,53,159(1970))等により行うことができる。
The cloned gltA gene, pp
The c gene and the gdhA gene are introduced into the starting parent strain alone or in any combination of two or three. When introducing two or three types of genes, two or three types of genes may be cloned on one type of plasmid and introduced into a host, or two or three types of compatible plasmids may be introduced. Cloned separately and introduced into a host. The plasmid is not particularly limited as long as it is a plasmid that can autonomously replicate in cells of a microorganism belonging to the genus Enterobacter or Serratia.For example, pUC19, pUC18, pBR322, pHSG299, pHSG298,
pHSG399, pHSG398, RSF1010, pMW119, pMW118, pMW21
9, pMW218 and the like. In addition, phage DNA vectors can be used. Transformation can be performed, for example, by using DMMorris.
on (Methods in Enzymology 68, 326 (1979)) or a method in which recipient cells are treated with calcium chloride to increase DNA permeability (Mandel, M. and Higa, A., J. Mol. Bio
l., 53, 159 (1970)).

【0030】CS、PEPCまたはGDH活性を高める
ことは、gltA遺伝子、ppc遺伝子またはgdhA
遺伝子を、宿主となる上記出発親株の染色体DNA上に
多コピー存在させることによっても達成できる。エンテ
ロバクター属、あるいはセラチア属に属する微生物の染
色体DNA上にgltA遺伝子、ppc遺伝子、または
gdhA遺伝子を多コピーで導入するには、レペッティ
ブDNA、転移因子の端部に存在するインバーティッド
・リピート等、染色体DNA上に多コピー存在する配列
が利用できる。あるいは、gltA遺伝子、ppc遺伝
子、またはgdhA遺伝子をトランスポゾンに搭載し
て、これを転移させて染色体DNA上に多コピー導入す
ることも可能である。形質転換株の細胞内のgltA遺
伝子、ppc遺伝子、またはgdhA遺伝子のコピー数
が上昇し、その結果CS、PEPCまたはGDH活性が
高められる。
[0030] Increasing CS, PEPC or GDH activity can be achieved by the gltA gene, the ppc gene or the gdhA gene.
The gene can also be achieved by allowing multiple copies of the gene to be present on the chromosomal DNA of the starting parent strain as a host. To introduce the gltA gene, the ppc gene, or the gdhA gene in multiple copies on the chromosomal DNA of a microorganism belonging to the genus Enterobacter or Serratia, repetitive DNA, inverted repeats present at the ends of transposable elements, and the like, Sequences present in multiple copies on chromosomal DNA can be used. Alternatively, it is also possible to mount the gltA gene, ppc gene, or gdhA gene on a transposon, transfer it, and introduce multiple copies into chromosomal DNA. The copy number of the gltA gene, the ppc gene, or the gdhA gene in the cells of the transformed strain is increased, and as a result, CS, PEPC or GDH activity is increased.

【0031】コピー数を上昇させるgltA遺伝子、p
pc遺伝子、およびgdhA遺伝子の供給源となる生物
としては、CS、PEPC及びGDH活性を有する生物
ならいかなる生物でも良い。なかでも原核生物である細
菌、たとえばエンテロバクター属、クレブシェラ属、エ
ルビニア属、パントエア属、セラチア属、エシェリヒア
属、コリネバクテリウム属、ブレビバクテリウム属、バ
チルス属に属する細菌が好ましい。具体的な例として
は、エシェリヒア・コリが挙げられる。gltA遺伝
子、ppc遺伝子、およびgdhA遺伝子は、上記のよ
うな微生物の染色体DNAより得ることができる。
The gltA gene that increases copy number, p
As an organism that is a source of the pc gene and the gdhA gene, any organism having CS, PEPC and GDH activity may be used. Of these, bacteria that are prokaryotes, for example, bacteria belonging to the genera Enterobacter, Klebsiella, Erwinia, Pantoea, Serratia, Escherichia, Corynebacterium, Brevibacterium, and Bacillus are preferred. A specific example is Escherichia coli. The gltA gene, the ppc gene, and the gdhA gene can be obtained from chromosomal DNA of a microorganism as described above.

【0032】gltA遺伝子、ppc遺伝子、およびg
dhA遺伝子は、おのおのCS、PEPCもしくはGD
H活性を欠失した変異株を用いてその栄養要求性を相補
するDNA断片を上記微生物の染色体DNAから単離す
ることによって取得できる。またエシェリヒア属のこれ
ら遺伝子、コリネバクテリウム属細菌のこれら遺伝子は
既に塩基配列が明らかにされていることから(Bioc
hemistry、第22巻、5243〜5249頁、
1983年;J.Biochem.、第95巻、909
〜916頁、1984年;Gene、第27巻、193
〜199頁、1984年;Microbiology、
第140巻、1817〜1828頁、1994年;Mo
l.Gen.Genet.、第218巻、330〜33
9頁、1989年;Molecular Microb
iology、第6巻、317〜326頁、1992
年)それぞれの塩基配列に基づいてプライマーを合成
し、染色体DNAを鋳型にしてPCR法により取得する
ことが可能である。
The gltA gene, ppc gene, and g
The dhA gene is CS, PEPC or GD, respectively.
It can be obtained by isolating a DNA fragment complementary to its auxotrophy from the chromosomal DNA of the microorganism using a mutant strain lacking H activity. In addition, the nucleotide sequences of these genes of the genus Escherichia and those of the genus Corynebacterium have already been determined (Bioc
hemistry, Vol. 22, pp. 5243-5249,
1983; Biochem. 95, 909
916, 1984; Gene, 27, 193.
199, 1984; Microbiology,
140, 1817-1828, 1994; Mo
l. Gen. Genet. 218, 330-33
9, 1989; Molecular Microb
iology, Vol. 6, pp. 317-326, 1992
Year) It is possible to synthesize primers based on each base sequence and obtain them by PCR using chromosomal DNA as a template.

【0033】CS、PEPCまたはGDH活性を高める
には、上記の遺伝子増幅による以外にも、gltA遺伝
子、ppc遺伝子、またはgdhA遺伝子の発現が強化
されることによって達成される。例えば、gltA遺伝
子、ppc遺伝子、またはgdhA遺伝子のプロモータ
ーをそれよりも強力な他のプロモーターに置換すること
によって発現が強化される。たとえば、lacプロモー
ター、trpプロモーター、trcプロモーター、ta
cプロモーター、ラムダファージのPRプロモーター、
Lプロモーター等が強力なプロモーターとして知られ
ている。プロモーターが置換されたgltA遺伝子、p
pc遺伝子またはgdhA遺伝子は、プラスミド上にク
ローニングされて宿主微生物に導入されるか、またはレ
ペッティブDNA、インバーティッド・リピート、また
はトランスポゾン等を用いて宿主微生物の染色体DNA
上に導入される。
The CS, PEPC or GDH activity can be enhanced by enhancing the expression of the gltA gene, the ppc gene or the gdhA gene in addition to the above gene amplification. For example, expression is enhanced by replacing the promoter of the gltA gene, ppc gene, or gdhA gene with another stronger promoter. For example, lac promoter, trp promoter, trc promoter, ta
c promoter, P R promoter of lambda phage,
The P L promoter and the like are known as strong promoters. The gltA gene with the promoter replaced, p
The pc gene or the gdhA gene is cloned into a plasmid and introduced into the host microorganism, or the chromosomal DNA of the host microorganism using repetitive DNA, inverted repeat, transposon, or the like.
Introduced above.

【0034】また、CS、PEPCまたはGDH活性を
高めるには、染色体上のgltA遺伝子、ppc遺伝子
またはgdhA遺伝子のプロモーターを、それらよりも
強力なプロモーターで置換する(WO87/03006
号、特開昭61−268183号参照)か、またはそれ
ぞれの遺伝子のコード配列の上流に、強力なプロモータ
ーを挿入すること(Gene, 29, (1984) 231-241参照)に
よっても達成することができる。具体的には、強力なプ
ロモーターに置換されたgltA遺伝子、ppc遺伝子
もしくはgdhA遺伝子またはそれらの一部を含むDN
Aと、染色体上の対応する遺伝子との間で相同組換えを
起こさせればよい。
In order to enhance CS, PEPC or GDH activity, the promoter of the gltA gene, ppc gene or gdhA gene on the chromosome is replaced by a stronger promoter (WO 87/03006).
Or the insertion of a strong promoter upstream of the coding sequence for each gene (see Gene, 29, (1984) 231-241). it can. Specifically, a DN containing a gltA gene, a ppc gene or a gdhA gene or a part thereof replaced with a strong promoter
The homologous recombination may be caused between A and the corresponding gene on the chromosome.

【0035】CS、PEPCまたはGDH活性が高めら
れたエンテロバクター属またはセラチア属に属する微生
物として具体的には、エンテロバクター・アグロメラン
スATCC12287/RSFCPG、エンテロバクタ
ー・アグロメランス AJ13355/RSFCPG、
およびセラチア・リクエファシエンス ATCC144
60/RSFCPGが挙げられる。
Specific examples of microorganisms belonging to the genus Enterobacter or Serratia having enhanced CS, PEPC or GDH activity include Enterobacter agglomerans ATCC12287 / RSFCPG, Enterobacter agglomerans AJ13355 / RSFCPG,
And Serratia requesta ATCC 144
60 / RSFCPG.

【0036】L−グルタミン酸の生合成経路から分岐し
てL−グルタミン酸以外の化合物を生成する反応を触媒
する酵素としては、αKGDH、イソクエン酸リアー
ゼ、リン酸アセチルトランスフェラーゼ、酢酸キナー
ゼ、アセトヒドロキシ酸シンターゼ、アセト乳酸シンタ
ーゼ、ギ酸アセチルトランスフェラーゼ、乳酸デヒドロ
ゲナーゼ、グルタミン酸デカルボキシラーゼ、1−ピロ
リンデヒドロゲナーゼ等がある。これらの酵素の中で
は、αKGDHが好ましい。
Enzymes that catalyze the reaction that branches off from the L-glutamic acid biosynthetic pathway to produce a compound other than L-glutamic acid include αKGDH, isocitrate lyase, phosphate acetyltransferase, acetate kinase, acetohydroxy acid synthase, and the like. Examples include acetolactate synthase, formate acetyltransferase, lactate dehydrogenase, glutamate decarboxylase, and 1-pyrroline dehydrogenase. Of these enzymes, αKGDH is preferred.

【0037】エンテロバクター属またはセラチア属に属
する微生物において、上記のような酵素の活性を低下ま
たは欠損させるには、通常の変異処理法によって、ある
いは遺伝子工学的手法によって、上記酵素の遺伝子に、
細胞中の当該酵素の活性が低下または欠損するような変
異を導入すればよい。
In a microorganism belonging to the genus Enterobacter or the genus Serratia, the activity of the above enzyme can be reduced or deleted by a conventional mutation treatment method or a genetic engineering technique by adding the gene of the enzyme to
What is necessary is just to introduce | transduce the mutation which reduces or loses the activity of the said enzyme in a cell.

【0038】変異処理法としては、たとえばX線や紫外
線を照射する方法、またはN−メチル−N’−ニトロ−
N−ニトロソグアニジン等の変異剤で処理する方法等が
ある。遺伝子に変異が導入される部位は、酵素タンパク
質をコードするコード領域であってもよく、プロモータ
ー等の発現制御領域であってもよい。
As the mutation treatment method, for example, a method of irradiating X-rays or ultraviolet rays, or N-methyl-N'-nitro-
There is a method of treating with a mutagen such as N-nitrosoguanidine. The site where the mutation is introduced into the gene may be a coding region encoding an enzyme protein or an expression control region such as a promoter.

【0039】また、遺伝子工学的手法には、例えば遺伝
子組換え法、形質導入法、細胞融合法等を用いる方法が
ある。例えば、クローン化された目的遺伝子の内部に薬
剤耐性遺伝子を挿入し、機能を失った遺伝子(欠陥遺伝
子)を作製する。次いで、この欠陥遺伝子をエンテロバ
クター属またはセラチア属に属する微生物の細胞に導入
し、相同組み換えを利用して染色体上の目的遺伝子を前
記欠陥遺伝子に置換する(遺伝子破壊)。
Genetic engineering techniques include, for example, methods using gene recombination, transduction, cell fusion and the like. For example, a drug resistance gene is inserted into the cloned target gene to produce a gene that has lost its function (defective gene). Next, the defective gene is introduced into cells of a microorganism belonging to the genus Enterobacter or Serratia, and the target gene on the chromosome is replaced with the defective gene by using homologous recombination (gene disruption).

【0040】細胞中の目的酵素の活性が低下または欠損
していること、および活性の低下の程度は、候補株の菌
体抽出液または精製画分の酵素活性を測定し、野生株ま
たは親株と比較することによって確認することができ
る。例えば、αKGDH活性は、Reedらの方法(L.J.Re
ed and B.B.Mukherjee, Methods in Enzymology 1969,1
3, p.55-61)に従って酵素活性を測定することができ
る。
The activity of the target enzyme in the cell is reduced or deficient, and the degree of the decrease is determined by measuring the enzyme activity of the cell extract or purified fraction of the candidate strain, and comparing with the wild strain or the parent strain. It can be confirmed by comparing. For example, αKGDH activity can be determined by the method of Reed et al. (LJRe
ed and BBMukherjee, Methods in Enzymology 1969,1
3, p.55-61).

【0041】また、目的とする酵素によっては、変異株
の表現型によって目的変異株を選択することができる。
例えば、αKGDH活性が欠損もしくは低下した変異株
は、好気的培養条件ではグルコースを含む最少培地、あ
るいは、酢酸やL−グルタミン酸を唯一の炭素源として
含む最少培地で生育できないか、または生育速度が著し
く低下する。ところが、同一条件でもグルコースを含む
最少培地にコハク酸またはリジン、メチオニン、及びジ
アミノピメリン酸を添加することによって通常の生育が
可能となる。これらの現象を指標としてαKGDH活性
が欠損もしくは低下した変異株の選抜が可能である。
Depending on the target enzyme, the target mutant can be selected depending on the phenotype of the mutant.
For example, a mutant strain in which αKGDH activity is deficient or reduced cannot grow on a minimal medium containing glucose or a minimal medium containing acetic acid or L-glutamic acid as a sole carbon source under aerobic culture conditions, or has a growth rate of less. It decreases significantly. However, even under the same conditions, normal growth becomes possible by adding succinic acid or lysine, methionine, and diaminopimelic acid to a minimal medium containing glucose. Using these phenomena as indicators, it is possible to select mutant strains in which αKGDH activity is deficient or reduced.

【0042】相同組換えを利用したブレビバクテリウム
・ラクトファーメンタムのαKGDH遺伝子欠損株の作
製法は、WO95/34672号に詳述されており、エ
ンテロバクター属およびセラチア属に属する微生物にも
同様の方法を適用することができる。その他、遺伝子の
クローニング、DNAの切断、連結、形質転換法等の技
術については、Molecular Cloning, 2nd edition, Cold
Spring Harbor press (1989))等に詳述されている。
A method for producing an αKGDH gene-deficient strain of Brevibacterium lactofermentum utilizing homologous recombination is described in detail in WO95 / 34672, and the same applies to microorganisms belonging to the genera Enterobacter and Serratia. The method can be applied. For other techniques such as gene cloning, DNA cleavage, ligation, and transformation methods, see Molecular Cloning, 2nd edition, Cold
Spring Harbor press (1989)).

【0043】以上のようにして得られるαKGDH活性
が欠損もしくは低下した変異株の具体例としては、エン
テロバクター・アグロメランス AJ13356が挙げ
られる。エンテロバクター・アグロメランス AJ13
356は、平成10年2月19日に、通産省工業技術院
生命工学工業技術研究所に、受託番号FERM P−1
6645として寄託され、平成11年1月11日にブタ
ペスト条約に基づく国際寄託に移管され、受託番号FE
RM BP−6615が付与されている。
Specific examples of the mutant strain obtained as described above, in which αKGDH activity is deficient or reduced, include Enterobacter agglomerans AJ13356. Enterobacter agglomerans AJ13
356 was issued by the Ministry of International Trade and Industry, National Institute of Advanced Industrial Science and Technology, Biotechnology and Industrial Technology Research Institute on February 19, 1998, under the accession number FERM P-1.
6645, transferred to the International Deposit under the Budapest Treaty on January 11, 1999, and received accession number FE.
RM BP-6615 is provided.

【0044】エンテロバクター属またはセラチア属に属
し、前記性質(a)および(b)の少なくとも一方を有
し、L−グルタミン酸生産能を有する微生物を液体培地
に培養することにより、培地中にL−グルタミン酸を生
成蓄積させることができる。
By culturing a microorganism belonging to the genus Enterobacter or the genus Serratia, having at least one of the properties (a) and (b), and capable of producing L-glutamic acid in a liquid medium, the L-glutamic acid can be expressed in the medium. Glutamic acid can be produced and accumulated.

【0045】前記培地としては、炭素源、窒素源、無機
塩類、その他必要に応じてアミノ酸、ビタミン等の有機
微量栄養素を含有する通常の栄養培地を用いることがで
きる。合成培地または天然培地のいずれも使用可能であ
る。培地に使用される炭素源および窒素源は、培養する
菌株の利用可能なものならばよい。
As the medium, a normal nutrient medium containing a carbon source, a nitrogen source, inorganic salts, and if necessary, organic trace nutrients such as amino acids and vitamins can be used. Either a synthetic medium or a natural medium can be used. The carbon source and nitrogen source used in the medium may be those available for the strain to be cultured.

【0046】炭素源としてはグルコース、グリセロー
ル、フラクトース、シュークロース、マルトース、マン
ノース、ガラクトース、でんぷん加水分解物、糖蜜等の
糖類が使用され、その他、酢酸、クエン酸等の有機酸等
も単独あるいは他の炭素源と併用して用いられる。
As the carbon source, sugars such as glucose, glycerol, fructose, sucrose, maltose, mannose, galactose, starch hydrolyzate, molasses and the like are used. In addition, organic acids such as acetic acid, citric acid and the like can be used alone or in addition. It is used in combination with a carbon source.

【0047】窒素源としてはアンモニア、硫酸アンモニ
ウム、炭酸アンモニウム、塩化アンモニウム、リン酸ア
ンモニウム、酢酸アンモニウム等のアンモニウム塩また
は硝酸塩等が使用される。
As the nitrogen source, ammonia, ammonium salts such as ammonium sulfate, ammonium carbonate, ammonium chloride, ammonium phosphate and ammonium acetate, nitrates and the like are used.

【0048】有機微量栄養素としては、アミノ酸、ビタ
ミン、脂肪酸、核酸、さらにこれらのものを含有するペ
プトン、カザミノ酸、酵母エキス、大豆蛋白分解物等が
使用され、生育にアミノ酸等を要求する栄養要求性変異
株を使用する場合には要求される栄養素を補添する事が
必要である。
As organic micronutrients, amino acids, vitamins, fatty acids, nucleic acids, and peptones, casamino acids, yeast extracts, soybean protein decomposed products containing these, and the like are used. When a sex mutant is used, it is necessary to supplement the required nutrients.

【0049】無機塩類としてはリン酸塩、マグネシウム
塩、カルシウム塩、鉄塩、マンガン塩等が使用される。
培養方法は、発酵温度20ないし42℃、pHを4ない
し8に制御しつつ通気培養を行う。かくして10時間な
いし4日間程度培養することにより培養液中に著量のL
−グルタミン酸が蓄積される。
As the inorganic salts, phosphates, magnesium salts, calcium salts, iron salts, manganese salts and the like are used.
As the culture method, aeration culture is performed while controlling the fermentation temperature to 20 to 42 ° C. and the pH to 4 to 8. By culturing for about 10 hours to 4 days, a remarkable amount of L
-Glutamic acid is accumulated.

【0050】培養終了後、培養液中に蓄積されたL−グ
ルタミン酸を単離する方法としては公知の方法に従って
行えばよい。例えば、培養液から菌体を除去した後に濃
縮晶析する方法、あるいはイオン交換クロマトグラフィ
ー等によって単離することができる。
After completion of the cultivation, L-glutamic acid accumulated in the culture solution may be isolated according to a known method. For example, it can be isolated by a method of removing the cells from the culture and then concentrating and crystallization, or by ion exchange chromatography.

【0051】[0051]

【実施例】次に、実施例によって本発明をさらに具体的
に説明する。
Next, the present invention will be described more specifically with reference to examples.

【0052】(1)gltA遺伝子、ppc遺伝子、お
よびgdhA遺伝子を有するプラスミドの作製 gltA遺伝子、ppc遺伝子、およびgdhA遺伝子
を有するプラスミドの作成の手順を、図1〜5図に基づ
いて説明する。
(1) Preparation of plasmid having gltA gene, ppc gene and gdhA gene The procedure for preparing a plasmid having gltA gene, ppc gene and gdhA gene will be described with reference to FIGS.

【0053】エシェリヒア・コリ由来のgdhA遺伝子
を有するプラスミドpBRGDH(特開平7−2039
80号)をHindIII、SphI消化し、T4DN
Aポリメラーゼ処理で両末端を平滑末端にした後、gd
hA遺伝子を有するDNA断片を精製回収した。一方、
エシェリヒア・コリ由来のgltA遺伝子およびppc
遺伝子を有するプラスミドpMWCP(WO97/08
294号)をXbaIで消化後、T4DNAポリメラー
ゼで両末端を平滑末端にした。これに、上で精製したg
dhA遺伝子を有するDNA断片を混合後、T4リガー
ゼにより連結し、pMWCPに更にgdhA遺伝子を搭
載したプラスミドpMWCPGを得た(図1)。また、
pBRGDHをHindIII、SalI消化して得ら
れたgdhA遺伝子を有するDNA断片を精製回収後、
プラスミドpSTV29(宝酒造(株)より購入)のH
indIII、SalIサイトに導入することによっ
て、プラスミドpSTVGを得た(図2)。
A plasmid pBRGDH having a gdhA gene derived from Escherichia coli (Japanese Patent Laid-Open No. 7-2039)
No. 80) was digested with HindIII and SphI, and T4DN
After blunting both ends by A polymerase treatment, gd
The DNA fragment having the hA gene was purified and recovered. on the other hand,
GltA gene and ppc from Escherichia coli
Plasmid pMWCP having the gene (WO97 / 08
294) was digested with XbaI, and both ends were made blunt with T4 DNA polymerase. To this, the g purified above
After mixing the DNA fragments having the dhA gene, they were ligated with T4 ligase to obtain a plasmid pMWCPG further carrying the gdhA gene in pMWCP (FIG. 1). Also,
After purifying and recovering a DNA fragment having the gdhA gene obtained by digesting pBRGDH with HindIII and SalI,
H of plasmid pSTV29 (purchased from Takara Shuzo Co., Ltd.)
Plasmid pSTVG was obtained by introducing into the indIII and SalI sites (FIG. 2).

【0054】同時に、広宿主域プラスミドRSF101
0の複製起点を有するプラスミドpVIC40(特開平
8−047397号)をNotIで消化し、T4DNA
ポリメラーゼ処理した後、PstI消化したものと、p
BR322をEcoT141消化し、T4DNAポリメ
ラーゼ処理した後、PstI消化したものとを混合後、
T4リガーゼにより連結し、RSF1010の複製起点
及びテトラサイクリン耐性遺伝子を有するプラスミドR
SF−Tetを得た(図3)。
At the same time, the broad host range plasmid RSF101
The plasmid pVIC40 having an origin of replication of 0 (Japanese Patent Laid-Open No. 08-047397) was digested with NotI, and T4 DNA was digested.
After digestion with PstI,
After BR322 was digested with EcoT141, treated with T4 DNA polymerase, and mixed with PstI digestion,
Plasmid R ligated by T4 ligase and having the RSF1010 origin of replication and the tetracycline resistance gene
SF-Tet was obtained (FIG. 3).

【0055】次に、pMWCPGをEcoRI、Pst
I消化し、gltA遺伝子、ppc遺伝子、およびgd
hA遺伝子を有するDNA断片を精製回収し、RSF−
Tetを同様にEcoRI、PstI消化し、RSF1
010の複製起点を有するDNA断片を精製回収したも
のと混合後、T4リガーゼにより連結し、RSF−Te
t上にgltA遺伝子、ppc遺伝子、およびgdhA
遺伝子を搭載したプラスミドRSFCPGを得た(図
4)。得られたプラスミドRSFCPGがgltA遺伝
子、ppc遺伝子およびgdhA遺伝子を、pSTVG
がgdhA遺伝子を発現していることは、エシェリヒア
・コリのgltA遺伝子、ppc遺伝子、あるいはgd
hA遺伝子欠損株の栄養要求性の相補と各酵素活性の測
定によって確認した。
Next, pMWCPG was converted to EcoRI, Pst
I digestion and the gltA gene, ppc gene, and gd
The DNA fragment having the hA gene was purified and recovered, and RSF-
Tet was similarly digested with EcoRI and PstI, and RSF1 was digested.
After mixing with a purified and recovered DNA fragment having an origin of replication of 010, it was ligated with T4 ligase and RSF-Te
The gltA gene, ppc gene, and gdhA
The plasmid RSFCPG carrying the gene was obtained (FIG. 4). The resulting plasmid RSFCPG was used to replace the gltA gene, the ppc gene and the gdhA gene with pSTVG.
Expresses the gdhA gene according to the presence of the gltA gene, the ppc gene, or the gdA gene of Escherichia coli.
Complementation of the auxotrophy of the hA gene-deficient strain and confirmation of the activity of each enzyme were confirmed.

【0056】ブレビバクテリウム・ラクトファーメンタ
ム由来のgltA遺伝子を有するプラスミドは、以下の
ようにして構築した。コリネバクテリウム・グルタミカ
ムのgltA遺伝子の塩基配列(Microbiology, 1994,
140, 1817-1828)をもとに、配列番号6及び7に示す塩
基配列を有するプライマーDNAを用い、ブレビバクテ
リウム・ラクトファーメンタムATCC13869の染
色体DNAを鋳型としてPCRを行い、約3kbのgl
tA遺伝子断片を得た。この断片をSmaI消化したプ
ラスミドpHSG399(宝酒造(株)より購入)に挿
入し、プラスミドpHSGCBを得た(図5)。次に、
pHSGCBをHindIIIで切断し切り出された約
3kbのgltA遺伝子断片をHindIII消化した
プラスミドpMW218(ニッポンジーン(株)より購
入)に挿入し、プラスミドpMWCBを得た(図5)。
得られたプラスミドpMWCBがgltA遺伝子を発現
していることは、エンテロバクター・アグロメランスA
J13355株中での酵素活性の測定によって確認し
た。
A plasmid having the gltA gene derived from Brevibacterium lactofermentum was constructed as follows. The nucleotide sequence of the gltA gene of Corynebacterium glutamicum (Microbiology, 1994,
140, 1817-1828), PCR was carried out using primer DNA having the nucleotide sequences shown in SEQ ID NOs: 6 and 7 and the chromosomal DNA of Brevibacterium lactofermentum ATCC 13869 as a template, and an approximately 3 kb gl was obtained.
A tA gene fragment was obtained. This fragment was inserted into SmaI-digested plasmid pHSG399 (purchased from Takara Shuzo Co., Ltd.) to obtain plasmid pHSGCB (FIG. 5). next,
pHSGCB was digested with HindIII and the cut out gltA gene fragment of about 3 kb was inserted into HindIII digested plasmid pMW218 (purchased from Nippon Gene Co., Ltd.) to obtain plasmid pMWCB (FIG. 5).
The expression of the gltA gene in the obtained plasmid pMWCB was confirmed by Enterobacter agglomerans A.
It was confirmed by measuring the enzyme activity in the J13355 strain.

【0057】(2)エンテロバクター・アグロメランス
あるいはセラチア・リクエファシエンスへのRSFCP
G、pMWCB及びpSTVGの導入とL−グルタミン
酸生産性の評価 RSFCPG、pMWCB及びpSTVGを用い、エン
テロバクター・アグロメランス ATCC12287
株、エンテロバクター・アグロメランス AJ1335
5株、あるいはセラチア・リクエファシエンス ATC
C14460を、エレクトロポレーション(Miller J.
H., "A Short Course in Bacterial Genetics; Handboo
k" Cold Spring Harbor Laboratory Press, USA, 199
2)によって形質転換し、テトラサイクリン耐性を示す
形質転換株を取得した。
(2) RSFCP to Enterobacter agglomerans or Serratia requifaciens
Introduction of G, pMWCB and pSTVG and evaluation of L-glutamic acid productivity Enterobacter agglomerans ATCC12287 using RSFCPG, pMWCB and pSTVG
Strain, Enterobacter agglomerans AJ1335
5 strains, or Serratia request faculty ATC
C14460 was prepared by electroporation (Miller J.
H., "A Short Course in Bacterial Genetics; Handboo
k "Cold Spring Harbor Laboratory Press, USA, 199
Transformation was performed according to 2), and a transformant showing tetracycline resistance was obtained.

【0058】得られた形質転換株あるいは各親株を、グ
ルコース40g/L、硫酸アンモニウム20g/L、硫
酸マグネシウム7水塩0.5g/L、リン酸2水素カリ
ウム2g/L、塩化ナトリウム0.5g/L、塩化カル
シウム7水塩0.25g/L、硫酸第一鉄7水塩0.0
2g/L、硫酸マンガン4水塩0.02g/L、硫酸亜
鉛2水塩0.72mg/L、硫酸銅5水塩0.64mg
/L、塩化コバルト6水塩0.72mg/L、ホウ酸
0.4mg/L、モリブデン酸ナトリウム2水塩1.2
mg/L、酵母エキス2g/L、炭酸カルシウム30g
/Lを含有する培地5mlを注入した50ml容大型試
験管に接種して、37℃で培地中の糖が消費されるまで
振とう培養した。ただし、AJ13355/pMWCB
株及びAJ13355/pSTVG株は、糖消費速度が
遅かったため、親株AJ13355と同様の培養時間1
5時間にて約10g/Lの糖を消費した時点で培養を打
ち切った。形質転換体の培養については、テトラサイク
リン25mg/Lを添加した。培養終了後、培養液中に
蓄積したL−グルタミン酸を測定した結果を表1に示し
た。
The obtained transformant or each parent strain was subjected to glucose 40 g / L, ammonium sulfate 20 g / L, magnesium sulfate heptahydrate 0.5 g / L, potassium dihydrogen phosphate 2 g / L, sodium chloride 0.5 g / L. L, calcium chloride heptahydrate 0.25 g / L, ferrous sulfate heptahydrate 0.0
2 g / L, manganese sulfate tetrahydrate 0.02 g / L, zinc sulfate dihydrate 0.72 mg / L, copper sulfate pentahydrate 0.64 mg
/ L, cobalt chloride hexahydrate 0.72 mg / L, boric acid 0.4 mg / L, sodium molybdate dihydrate 1.2
mg / L, yeast extract 2g / L, calcium carbonate 30g
The medium was inoculated into a large 50 ml test tube into which 5 ml of the medium containing / L was injected, and cultured at 37 ° C. with shaking until the sugar in the medium was consumed. However, AJ13355 / pMWCB
The strain and the AJ13355 / pSTVG strain had a slower sugar consumption rate, and thus had the same culture time 1 as the parent strain AJ13355.
When about 10 g / L of sugar was consumed in 5 hours, the culture was stopped. For culture of the transformant, 25 mg / L of tetracycline was added. After the completion of the culture, the results of measurement of L-glutamic acid accumulated in the culture solution are shown in Table 1.

【0059】[0059]

【表1】 表1 L−グルタミン酸蓄積量 ──────────────────────────────── 菌株 L−グルタミン酸蓄積量 ─────────────────────────────── ATCC12287 0.0g/L ATCC12287/RSFCPG 6.1 AJ13355 0.0 AJ13355/RSFCPG 3.3 AJ13355/pMWCB 0.8 AJ13355/pSTVG 0.8 ATCC14460 0.0 ATCC14460/RSFCPG 2.8 培地のみ 0.2 ────────────────────────────────Table 1 Table 1 L-glutamic acid accumulated amount 量 Strain L-glutamic acid accumulated amount ─ ────────────────────────────── ATCC12287 0.0 g / L ATCC12287 / RSFCPG 6.1 AJ13355 0.0 AJ13355 / RSFCPG 3 0.3 AJ13355 / pMWCB 0.8 AJ13355 / pSTVG 0.8 ATCC14460 0.0 ATCC14460 / RSFCPG 2.8 Medium only 0.2───────────────────── ───────────

【0060】エンテロバクター・アグロメランス AT
CC12287株、エンテロバクター・アグロメランス
AJ13355株、あるいはセラチア・リクエファシ
エンス ATCC14460株はL−グルタミン酸を蓄
積しなかったが、RSFCPGを導入することによって
CS、PEPC、およびGDH活性を増幅した株では、
それぞれ6.1g/L、3.3g/L、2.8g/Lの
L−グルタミン酸を蓄積した。また、AJ13355株
のCS活性のみを増幅することによって0.8g/Lの
L−グルタミン酸を、GDH活性のみを増幅することに
よっても0.8g/LのL−グルタミン酸を蓄積した。
[0060] Enterobacter agglomerans AT
The CC12287 strain, the Enterobacter agglomerans AJ13355 strain, or the Serratia requifaciens ATCC14460 strain did not accumulate L-glutamic acid, but the strains that amplified CS, PEPC, and GDH activities by introducing RSFCPG were:
6.1 g / L, 3.3 g / L and 2.8 g / L of L-glutamic acid were accumulated, respectively. In addition, 0.8 g / L of L-glutamic acid was accumulated by amplifying only the CS activity of AJ13355 strain, and 0.8 g / L of L-glutamic acid was also accumulated by amplifying only the GDH activity.

【0061】(3)エンテロバクター・アグロメランス
AJ13355株のαKGDH遺伝子(以後「suc
AB」という)のクローニング エンテロバクター・アグロメランス AJ13355株
のsucAB遺伝子は、エシェリヒア・コリのαKGD
H−E1サブユニット遺伝子(以後「sucA」とい
う)欠損株の酢酸非資化性を相補するDNA断片を、エ
ンテロバクター・アグロメランス AJ13355株染
色体DNAより選択することによって、クローニングし
た。
(3) The αKGDH gene of Enterobacter agglomerans AJ13355 (hereinafter referred to as “suc
AB ") Enterobacter agglomerans The sucAB gene of the AJ13355 strain is αKGD of Escherichia coli.
A DNA fragment complementary to the non-assimilation of acetate of a strain lacking the H-E1 subunit gene (hereinafter referred to as "sucA") was cloned by selecting from the chromosomal DNA of the Enterobacter agglomerans AJ13355 strain.

【0062】エンテロバクター・アグロメランス AJ
13355株の染色体DNAは、エシェリヒア・コリに
おいて通常染色体DNAを抽出するのに使用されるのと
同様の方法(生物工学実験書、日本生物工学会偏、97
−98頁、培風館、1992年)で単離した。ベクター
として使用したpTWV228(アンピシリン耐性)は
宝酒造社製の市販品を用いた。
Enterobacter agglomerans AJ
The chromosomal DNA of the 13355 strain can be obtained by the same method as used for extracting chromosomal DNA in Escherichia coli (Bioengineering Experiments, Japan Biotechnology Society, 97
-98, Baifukan, 1992). As pTWV228 (ampicillin resistance) used as a vector, a commercial product manufactured by Takara Shuzo was used.

【0063】AJ13355株の染色体DNAをEco
T221で消化したもの、およびpTWV228をPs
tIで消化したものをT4リガーゼにより連結し、su
cA欠損のエシェリヒア・コリ JRG465株(He
rbert J.ら Mol.Gen.Genetic
s 1969,105巻、182頁)を形質転換した。
こうして得た形質転換株より、酢酸最少培地にて生育す
る株を選択し、これよりプラスミドを抽出してpTWV
EK101と命名した。pTWVEK101を持つエシ
ェリヒア・コリ JRG465株は酢酸非資化性という
形質の他にコハク酸もしくはL−リジンおよびL−メチ
オニンの要求性も回復していた。このことよりpTWV
EK101にはエンテロバクター・アグロメランスのs
ucA遺伝子が含まれていると考えられる。
The chromosomal DNA of AJ13355 strain was
Digested with T221 and pTWV228 in Ps
The digested with tI was ligated with T4 ligase and su
cA-deficient Escherichia coli JRG465 strain (He
bert J. et al. Mol. Gen. Genetic
s 1969, 105, 182).
From the thus obtained transformants, a strain that grows in an acetic acid minimal medium was selected, and a plasmid was extracted therefrom to obtain pTWV
It was named EK101. The Escherichia coli JRG465 strain having pTWVEK101 restored the requirement for succinic acid or L-lysine and L-methionine in addition to the trait of non-assimilation of acetic acid. From this, pTWV
EK101 contains Enterobacter agglomerans
The ucA gene is considered to be included.

【0064】pTWVEK101のエンテロバクター・
アグロメランス由来DNA断片の制限酵素地図を図6に
示した。図6の斜線にて示した部分の塩基配列を決定し
た結果を配列番号1に示した。この配列の中には、2つ
の完全長のORFと、2つのORFの部分配列と思われ
る塩基配列が見いだされた。これらのORFまたはその
部分配列がコードし得るアミノ酸配列を、5’側から順
に配列番号2〜5に示す。これらのホモロジー検索をし
た結果、塩基配列を決定した部分は、サクシネートデヒ
ドロゲナーゼアイロン−スルファープロテイン遺伝子
(sdhB)の3’末端側の部分配列、完全長のsuc
AとαKGDH−E2サブユニット遺伝子(sucB遺
伝子)、サクシニルCoAシンセターゼβサブユニット
遺伝子(sucC遺伝子)の5’末端側の部分配列を含
んでいることが明らかとなった。これらの塩基配列から
推定されるアミノ酸配列をそれぞれエシェリヒア・コリ
のもの(Eur.J. Biochem., 141, 351-359 (1984)、Eur.
J. Biochem., 141, 361-374(1984)、Biochemistry, 24,
6245-6252 (1985))と比較した結果を図7〜9に示
す。このように各アミノ酸配列は非常に高い相同性を示
した。また、エンテロバクター・アグロメランス染色体
上でもエシェリヒア・コリと同様に(Eur.J. Biochem.,
141, 351-359 (1984)、Eur.J. Biochem., 141, 361-37
4 (1984)、Biochemistry, 24, 6245-6252 (1985))、s
dhB−sucA−sucB−sucCとクラスターを
構成していることが判明した。
The Enterobacter pTWVEK101
FIG. 6 shows a restriction enzyme map of the DNA fragment derived from agglomerans. The result of determining the base sequence of the portion shown by the diagonal lines in FIG. 6 is shown in SEQ ID NO: 1. In this sequence, two full-length ORFs and a nucleotide sequence that was considered to be a partial sequence of the two ORFs were found. The amino acid sequences that can be encoded by these ORFs or partial sequences thereof are shown in SEQ ID NOs: 2 to 5 in order from the 5 'side. As a result of these homology searches, the base sequence determined was the partial sequence at the 3 'end of the succinate dehydrogenase iron-sulfur protein gene (sdhB), the full-length suc
A and αKGDH-E2 subunit gene (sucB gene) and succinyl-CoA synthetase β subunit gene (sucC gene) were found to contain partial sequences at the 5 ′ end. Amino acid sequences deduced from these nucleotide sequences were obtained from Escherichia coli (Eur. J. Biochem., 141, 351-359 (1984), Eur.
J. Biochem., 141, 361-374 (1984), Biochemistry, 24,
6245-6252 (1985)) are shown in FIGS. Thus, each amino acid sequence showed very high homology. In addition, Escherichia coli on the chromosome of Enterobacter agglomerans (Eur. J. Biochem.,
141, 351-359 (1984), Eur. J. Biochem., 141, 361-37.
4 (1984), Biochemistry, 24, 6245-6252 (1985)), s
It was found that dhB-sucA-sucB-sucC constituted a cluster.

【0065】(4)エンテロバクター・アグロメランス
AJ13355株由来のαKGDH欠損株の取得 上記のようにして取得されたエンテロバクター・アグロ
メランスのsucAB遺伝子を用い、相同組換えにより
エンテロバクター・アグロメランスのαKGDH欠損株
の取得を行った。
(4) Acquisition of αKGDH-Deficient Strain Derived from Enterobacter agglomerans AJ13355 Using the sacAB gene of Enterobacter agglomerans obtained as described above, an αKGDH-deficient strain of Enterobacter agglomerans was obtained by homologous recombination. Acquisition was done.

【0066】まず、pTWVEK101をBglIIに
て切断し、sucA遺伝子のおよそ半分に当たるC末端
側領域とsucB遺伝子の全長を取り除いた。続いてそ
こにpHSG399(宝酒造社製)よりAccIによっ
て切り出したクロラムフェニコール耐性遺伝子断片を挿
入した。こうしてできたsdhB−ΔsucAB::C
r−sucCの領域をAflII、SacIにて切り
出した。得られたDNA断片を用いて、エンテロバクタ
ー・アグロメランス AJ13355株を、エレクトロ
ポレーションによって形質転換し、クロラムフェニコー
ル耐性である株を取得して、染色体上のsucAB遺伝
子がsucAB::Cmrに置換されたと考えられるs
ucAB欠損株エンテロバクター・アグロメランス A
J13356株を取得した。
First, pTWVEK101 was digested with BglII to remove the C-terminal region corresponding to about half of the sucA gene and the full length of the sucB gene. Subsequently, a chloramphenicol resistance gene fragment cut out by AccI from pHSG399 (manufactured by Takara Shuzo) was inserted therein. The resulting sdhB-ΔsucAB :: C
the area of m r -sucC AflII, was cut out by SacI. Using the obtained DNA fragment, the Enterobacter agglomerans AJ13355 strain was transformed by electroporation, to obtain the strains chloramphenicol resistance, sucAB gene on the chromosome is the sucAB :: Cm r S considered to be replaced
ucAB-deficient strain Enterobacter agglomerans A
J13356 strains were acquired.

【0067】以上のようにして得られたAJ13356
株がαKGDH活性を欠損していることを確認するため
に、Reedらの方法(L.J.Reed and B.B.Mukherjee, Meth
odsin Enzymology 1969, 13, p.55-61)に従って酵素活
性を測定した。その結果、表2に示すようにAJ133
56株ではαKGDH活性を検出できず、目的通りsu
cABが欠損していることが確かめられた。
AJ13356 obtained as described above
To confirm that the strain lacks αKGDH activity, the method of Reed et al. (LJ Reed and BBMukherjee, Meth.
odsin Enzymology 1969, 13, p.55-61). As a result, as shown in Table 2, AJ133
In 56 strains, αKGDH activity could not be detected.
It was confirmed that cAB was missing.

【0068】[0068]

【表2】 表2 αKGDH活性 ─────────────────────────── 菌株 αKGDH活性 (ΔABS/min/mg タンパク) ─────────────────────────── AJ13355 0.481 AJ13356 <0.0001 ───────────────────────────Table 2 αKGDH activity {Strain αKGDH activity (ΔABS / min / mg protein)} A AJ13355 0.481 AJ13356 <0.0001 ─────────

【0069】(5)エンテロバクター・アグロメランス
αKGDH欠損株のL−グルタミン酸生産性の評価 AJ13355、AJ13356両株を、グルコース4
0g/L、硫酸アンモニウム20g/L、硫酸マグネシ
ウム7水塩0.5g/L、リン酸2水素カリウム2g/
L、塩化ナトリウム0.5g/L、塩化カルシウム7水
塩0.25g/L、硫酸第一鉄7水塩0.02g/L、
硫酸マンガン4水塩0.02g/L、硫酸亜鉛2水塩
0.72mg/L、硫酸銅5水塩0.64mg/L、塩
化コバルト6水塩0.72mg/L、ホウ酸0.4mg
/L、モリブデン酸ナトリウム2水塩1.2mg/L、
酵母エキス2g/L、炭酸カルシウム30g/L、L−
リジン一塩酸塩200mg/L、L−メチオニン200
mg/L、DL−α,ε−ジアミノピメリン酸(DA
P)200mg/Lを含有する培地20mlを注入した
500ml容フラスコに接種して、37℃で培地中の糖
が消費されるまで振とう培養した。培養終了後、培養液
中に蓄積したL−グルタミン酸及びα−ケトグルタール
酸(以後「αKG」と略す)を測定した結果を表3に示
した。
(5) Evaluation of L-glutamic acid productivity of Enterobacter agglomerans αKGDH-deficient strains AJ13355 and AJ13356 were isolated from glucose 4
0 g / L, ammonium sulfate 20 g / L, magnesium sulfate heptahydrate 0.5 g / L, potassium dihydrogen phosphate 2 g / L
L, sodium chloride 0.5 g / L, calcium chloride heptahydrate 0.25 g / L, ferrous sulfate heptahydrate 0.02 g / L,
Manganese sulfate tetrahydrate 0.02 g / L, zinc sulfate dihydrate 0.72 mg / L, copper sulfate pentahydrate 0.64 mg / L, cobalt chloride hexahydrate 0.72 mg / L, boric acid 0.4 mg
/ L, sodium molybdate dihydrate 1.2 mg / L,
Yeast extract 2 g / L, calcium carbonate 30 g / L, L-
Lysine monohydrochloride 200 mg / L, L-methionine 200
mg / L, DL-α, ε-diaminopimelic acid (DA
P) A 500 ml flask in which 20 ml of a medium containing 200 mg / L was injected was inoculated, and cultured at 37 ° C. with shaking until the sugar in the medium was consumed. After the culture, the results of measurement of L-glutamic acid and α-ketoglutaric acid (hereinafter abbreviated as “αKG”) accumulated in the culture solution are shown in Table 3.

【0070】[0070]

【表3】 表3 L−グルタミン酸およびαKG蓄積量 ────────────────────────────── 菌株 L−グルタミン酸蓄積量 αKG蓄積量 ────────────────────────────── AJ13355 0.0g/L 0.0g/L AJ13356 1.5 3.2 ──────────────────────────────Table 3 L-glutamic acid and αKG accumulation ────────────────────────────── strain L-glutamic acid accumulation αKG Accumulated amount ────────────────────────────── AJ13355 0.0 g / L 0.0 g / L AJ13356 1.5 3.2 ──────────────────────────────

【0071】αKGDH活性が欠損したAJ13356
株は、L−グルタミン酸を1.5g/L蓄積した。また
同時に3.2g/LのαKGを蓄積した。
AJ13356 deficient in αKGDH activity
The strain accumulated 1.5 g / L of L-glutamic acid. At the same time, 3.2 g / L of αKG was accumulated.

【0072】(6)エンテロバクター・アグロメランス
αKGDH欠損株へのRSFCPの導入とL−グルタ
ミン酸生産性の評価 AJ13356株をRSFCPGを用いて形質転換を行
い、得られたRSFCPG導入株AJ13356/RS
FCPGを、グルコース40g/L、硫酸アンモニウム
20g/L、硫酸マグネシウム7水塩0.5g/L、リ
ン酸2水素カリウム2g/L、塩化ナトリウム0.5g
/L、塩化カルシウム7水塩0.25g/L、硫酸第一
鉄7水塩0.02g/L、硫酸マンガン4水塩0.02
g/L、硫酸亜鉛2水塩0.72mg/L、硫酸銅5水
塩0.64mg/L、塩化コバルト6水塩0.72mg
/L、ホウ酸0.4mg/L、モリブデン酸ナトリウム
2水塩1.2mg/L、酵母エキス2g/L、テトラサ
イクリン25mg/L、炭酸カルシウム30g/L、L
−リジン一塩酸塩200mg/L、L−メチオニン20
0mg/L、DL−α,ε−DAP200mg/Lを含
有する培地20mlを注入した500ml容フラスコに
接種して、37℃で培地中の糖が消費されるまで振とう
培養した。培養終了後、培養液中に蓄積したL−グルタ
ミン酸及びαKGを測定した結果を表4に示した。
(6) Introduction of RSFCP into Enterobacter agglomerans αKGDH-deficient strain and evaluation of L-glutamic acid productivity The AJ13356 strain was transformed with RSFCPG, and the resulting RSFCPG-introduced strain AJ13356 / RS
FCPG was prepared from glucose 40 g / L, ammonium sulfate 20 g / L, magnesium sulfate heptahydrate 0.5 g / L, potassium dihydrogen phosphate 2 g / L, sodium chloride 0.5 g.
/ L, calcium chloride heptahydrate 0.25 g / L, ferrous sulfate heptahydrate 0.02 g / L, manganese sulfate tetrahydrate 0.02
g / L, zinc sulfate dihydrate 0.72 mg / L, copper sulfate pentahydrate 0.64 mg / L, cobalt chloride hexahydrate 0.72 mg
/ L, boric acid 0.4 mg / L, sodium molybdate dihydrate 1.2 mg / L, yeast extract 2 g / L, tetracycline 25 mg / L, calcium carbonate 30 g / L, L
-Lysine monohydrochloride 200 mg / L, L-methionine 20
The flask was inoculated into a 500 ml flask in which 20 ml of a medium containing 0 mg / L and 200 mg / L of DL-α, ε-DAP was injected, and cultured at 37 ° C. with shaking until the sugar in the medium was consumed. After completion of the culture, the results of measuring L-glutamic acid and αKG accumulated in the culture solution are shown in Table 4.

【0073】[0073]

【表4】 表4 L−グルタミン酸およびαKG蓄積量 ──────────────────────────────────── 菌株 L−グルタミン酸蓄積量 αKG蓄積量 ──────────────────────────────────── AJ13356 1.4g/L 2.9g/L AJ13356/RSFCPG 5.1 0.0 ────────────────────────────────────Table 4 L-glutamic acid and αKG accumulation ──────────────────────────────────── strain L-glutamic acid accumulation amount αKG accumulation amount ──────────────────────────────────── AJ13356 1.4 g / L 2.9 g / L AJ13356 / RSFCPG 5.1 0.0 ────────────────────────────────────

【0074】RSFCPGを導入してCS、PEPC、
およびGDH活性を増幅した株では、αKG蓄積量が減
少し、L−グルタミン酸蓄積が更に向上した。
By introducing RSFCPG, CS, PEPC,
And, in the strains in which GDH activity was amplified, the amount of accumulated αKG was decreased, and the accumulation of L-glutamic acid was further improved.

【0075】[0075]

【発明の効果】本発明の微生物は、高いL−グルタミン
酸生産能を有することから、コリネ型L−グルタミン酸
生産菌で従来知られている育種手法等を用いてさらに高
い生産能を付与できると考えられ、また培養条件等の検
討により、安価で、効率の良いL−グルタミン酸製造法
の開発につながるものと期待される。
EFFECT OF THE INVENTION Since the microorganism of the present invention has a high L-glutamic acid-producing ability, it is considered that a higher productivity can be imparted by using a conventionally known breeding technique for coryneform L-glutamic acid-producing bacteria. It is expected that studies on culture conditions and the like will lead to the development of an inexpensive and efficient method for producing L-glutamic acid.

【0076】[0076]

【配列表】 SEQUENCE LISTING <110> 味の素株式会社(Ajinomoto Co., Inc.) <120> L−グルタミン酸生産菌及びL−グルタミン酸の製造法 <130> P-6389 <150> JP 10-69068 <151> 1998-03-18 <150> JP 10-297129 <151> 1998-10-19 <160> 7 <170> PatentIn Ver. 2.0[Sequence List] SEQUENCE LISTING <110> Ajinomoto Co., Inc. <120> L-glutamic acid producing bacteria and method for producing L-glutamic acid <130> P-6389 <150> JP 10-69068 <151 > 1998-03-18 <150> JP 10-297129 <151> 1998-10-19 <160> 7 <170> PatentIn Ver. 2.0

【0077】 <210> 1 <211> 4556 <212> DNA <213> Enterobacter agglomerans <220> <221> CDS <222> (2)..(121) <220> <221> CDS <222> (322)..(3129) <220> <221> CDS <222> (3145)..(4368) <220> <221> CDS <222> (4437)..(4556) <400> 1 t gca ttc agc gtt ttc cgc tgt cac agc atc atg aac tgt gta agt gtt 49 Ala Phe Ser Val Phe Arg Cys His Ser Ile Met Asn Cys Val Ser Val 1 5 10 15 tgt cct aaa ggg cta aac ccg acg cgc gct atc ggc cac att aag tcg 97 Cys Pro Lys Gly Leu Asn Pro Thr Arg Ala Ile Gly His Ile Lys Ser 20 25 30 atg ctg ctg caa cgc agc gcg tagttatacc accgggaacc tcaggttccc 148 Met Leu Leu Gln Arg Ser Ala 35 ggtattttac ggaagcctct gtaaacgcgg tcccaaccac gtttacaaag gttcccttac 208 gggccgggcg cgcgctgcgc acagtgctcg tatcgctgaa ctcactacgg caaaccgcga 268 aagcggcaac aaatgaaacc tcaaaaaagc ataacattgc ttaagggatc aca atg 324 Met 1 cag aac agc gcg atg aag ccc tgg ctg gac tcc tcc tgg ctg gcc ggc 372 Gln Asn Ser Ala Met Lys Pro Trp Leu Asp Ser Ser Trp Leu Ala Gly 5 10 15 gcg aat cag tct tac ata gag caa ctc tat gag gat ttc ctg acc gat 420 Ala Asn Gln Ser Tyr Ile Glu Gln Leu Tyr Glu Asp Phe Leu Thr Asp 20 25 30 cct gac tct gtg gat gca gtg tgg cgc tcg atg ttc caa cag tta cca 468 Pro Asp Ser Val Asp Ala Val Trp Arg Ser Met Phe Gln Gln Leu Pro 35 40 45 ggc acg gga gtg aaa cct gag cag ttc cac tcc gca act cgc gaa tat 516 Gly Thr Gly Val Lys Pro Glu Gln Phe His Ser Ala Thr Arg Glu Tyr 50 55 60 65 ttc cgt cgc ctg gcg aaa gac gca tct cgt tac acc tcc tca gtt acc 564 Phe Arg Arg Leu Ala Lys Asp Ala Ser Arg Tyr Thr Ser Ser Val Thr 70 75 80 gat ccg gca acc aac tcc aaa caa gtg aaa gtg ctg cag ctg att aac 612 Asp Pro Ala Thr Asn Ser Lys Gln Val Lys Val Leu Gln Leu Ile Asn 85 90 95 gcg ttt cgt ttc cgc gga cat cag gaa gca aat ctc gat ccg ctt ggc 660 Ala Phe Arg Phe Arg Gly His Gln Glu Ala Asn Leu Asp Pro Leu Gly 100 105 110 ctg tgg aaa cag gac cgc gtt gcc gat ctc gat cct gcc ttt cac gat 708 Leu Trp Lys Gln Asp Arg Val Ala Asp Leu Asp Pro Ala Phe His Asp 115 120 125 ctg acc gac gcc gat ttt cag gaa agc ttt aac gta ggt tct ttt gcc 756 Leu Thr Asp Ala Asp Phe Gln Glu Ser Phe Asn Val Gly Ser Phe Ala 130 135 140 145 att ggc aaa gaa acc atg aag ctg gcc gat ctg ttc gac gcg ctg aag 804 Ile Gly Lys Glu Thr Met Lys Leu Ala Asp Leu Phe Asp Ala Leu Lys 150 155 160 cag acc tac tgt ggc tcg att ggt gca gag tat atg cac atc aat aac 852 Gln Thr Tyr Cys Gly Ser Ile Gly Ala Glu Tyr Met His Ile Asn Asn 165 170 175 acc gaa gag aaa cgc tgg atc cag cag cgt atc gaa tcc ggt gcg agc 900 Thr Glu Glu Lys Arg Trp Ile Gln Gln Arg Ile Glu Ser Gly Ala Ser 180 185 190 cag acg tca ttc agt ggc gaa gag aaa aaa ggt ttc ctg aaa gag ctg 948 Gln Thr Ser Phe Ser Gly Glu Glu Lys Lys Gly Phe Leu Lys Glu Leu 195 200 205 acc gcg gca gaa ggg ctg gaa aaa tat ctg ggc gcg aaa ttc ccg ggt 996 Thr Ala Ala Glu Gly Leu Glu Lys Tyr Leu Gly Ala Lys Phe Pro Gly 210 215 220 225 gca aaa cgt ttc tcg ctg gaa ggc ggt gat gcg ctg gtg ccg atg ctg 1044 Ala Lys Arg Phe Ser Leu Glu Gly Gly Asp Ala Leu Val Pro Met Leu 230 235 240 cgc gag atg att cgt cat gcg ggc aaa agc ggc aca cgt gaa gtg gta 1092 Arg Glu Met Ile Arg His Ala Gly Lys Ser Gly Thr Arg Glu Val Val 245 250 255 ctg ggg atg gcg cac cgt ggc cgt ctt aac gta ctg att aac gta ctg 1140 Leu Gly Met Ala His Arg Gly Arg Leu Asn Val Leu Ile Asn Val Leu 260 265 270 ggt aaa aag cca cag gat ctg ttc gac gaa ttc tcc ggt aaa cac aaa 1188 Gly Lys Lys Pro Gln Asp Leu Phe Asp Glu Phe Ser Gly Lys His Lys 275 280 285 gag cat ctg ggc acc ggt gat gtg aag tat cac atg ggc ttc tct tcg 1236 Glu His Leu Gly Thr Gly Asp Val Lys Tyr His Met Gly Phe Ser Ser 290 295 300 305 gat att gaa acc gaa ggt ggt ctg gtg cat ctg gcg ctg gcg ttt aac 1284 Asp Ile Glu Thr Glu Gly Gly Leu Val His Leu Ala Leu Ala Phe Asn 310 315 320 ccg tct cac ctg gaa att gtc agc ccg gtg gtc atg gga tcg gta cgt 1332 Pro Ser His Leu Glu Ile Val Ser Pro Val Val Met Gly Ser Val Arg 325 330 335 gca cgt ctc gat cgt ctg gcc gaa ccg gtc agc aat aaa gtg ttg cct 1380 Ala Arg Leu Asp Arg Leu Ala Glu Pro Val Ser Asn Lys Val Leu Pro 340 345 350 atc acc att cac ggt gat gcg gcg gtg att ggt cag ggc gtg gtt cag 1428 Ile Thr Ile His Gly Asp Ala Ala Val Ile Gly Gln Gly Val Val Gln 355 360 365 gaa acc ctg aac atg tct cag gcg cgc ggc tac gaa gtg ggc ggc acg 1476 Glu Thr Leu Asn Met Ser Gln Ala Arg Gly Tyr Glu Val Gly Gly Thr 370 375 380 385 gta cgt atc gtc att aac aac cag gtt ggt ttt acc acc tcc aac ccg 1524 Val Arg Ile Val Ile Asn Asn Gln Val Gly Phe Thr Thr Ser Asn Pro 390 395 400 aaa gat gcg cgt tca acc ccg tac tgt act gac atc ggc aag atg gtg 1572 Lys Asp Ala Arg Ser Thr Pro Tyr Cys Thr Asp Ile Gly Lys Met Val 405 410 415 ctg gca ccg att ttc cac gtc aat gct gac gat ccg gaa gcg gtg gcc 1620 Leu Ala Pro Ile Phe His Val Asn Ala Asp Asp Pro Glu Ala Val Ala 420 425 430 ttt gtt acc cgc ctg gcg ctg gac tat cgc aac acc ttc aaa cgc gat 1668 Phe Val Thr Arg Leu Ala Leu Asp Tyr Arg Asn Thr Phe Lys Arg Asp 435 440 445 gtg ttt atc gat ctg gtg tgc tat cgc cgt cat ggt cac aac gag gcg 1716 Val Phe Ile Asp Leu Val Cys Tyr Arg Arg His Gly His Asn Glu Ala 450 455 460 465 gat gag cca agt gct acc cag ccg ttg atg tac cag aaa atc aaa aag 1764 Asp Glu Pro Ser Ala Thr Gln Pro Leu Met Tyr Gln Lys Ile Lys Lys 470 475 480 cat ccg acg ccg cgt aaa att tac gcc gat cgt ctg gaa ggc gaa ggt 1812 His Pro Thr Pro Arg Lys Ile Tyr Ala Asp Arg Leu Glu Gly Glu Gly 485 490 495 gtc gcg tcg cag gaa gat gcc acc gag atg gtg aac ctg tac cgc gat 1860 Val Ala Ser Gln Glu Asp Ala Thr Glu Met Val Asn Leu Tyr Arg Asp 500 505 510 gcg ctc gat gcg ggc gaa tgc gtg gtg ccg gaa tgg cgt ccg atg agc 1908 Ala Leu Asp Ala Gly Glu Cys Val Val Pro Glu Trp Arg Pro Met Ser 515 520 525 ctg cac tcc ttc acg tgg tcg cct tat ctg aac cac gaa tgg gat gag 1956 Leu His Ser Phe Thr Trp Ser Pro Tyr Leu Asn His Glu Trp Asp Glu 530 535 540 545 cct tat ccg gca cag gtt gac atg aaa cgc ctg aag gaa ctg gca ttg 2004 Pro Tyr Pro Ala Gln Val Asp Met Lys Arg Leu Lys Glu Leu Ala Leu 550 555 560 cgt atc agc cag gtc cct gag cag att gaa gtg cag tcg cgc gtg gcc 2052 Arg Ile Ser Gln Val Pro Glu Gln Ile Glu Val Gln Ser Arg Val Ala 565 570 575 aag atc tat aac gat cgc aag ctg atg gcc gaa ggc gag aaa gcg ttc 2100 Lys Ile Tyr Asn Asp Arg Lys Leu Met Ala Glu Gly Glu Lys Ala Phe 580 585 590 gac tgg ggc ggt gcc gag aat ctg gcg tac gcc acg ctg gtg gat gaa 2148 Asp Trp Gly Gly Ala Glu Asn Leu Ala Tyr Ala Thr Leu Val Asp Glu 595 600 605 ggt att ccg gtt cgc ctc tcg ggt gaa gac tcc ggt cgt gga acc ttc 2196 Gly Ile Pro Val Arg Leu Ser Gly Glu Asp Ser Gly Arg Gly Thr Phe 610 615 620 625 ttc cat cgc cac gcg gtc gtg cac aac cag gct aac ggt tca acc tat 2244 Phe His Arg His Ala Val Val His Asn Gln Ala Asn Gly Ser Thr Tyr 630 635 640 acg ccg ctg cac cat att cat aac agc cag ggc gag ttc aaa gtc tgg 2292 Thr Pro Leu His His Ile His Asn Ser Gln Gly Glu Phe Lys Val Trp 645 650 655 gat tcg gtg ctg tct gaa gaa gcg gtg ctg gcg ttt gaa tac ggt tac 2340 Asp Ser Val Leu Ser Glu Glu Ala Val Leu Ala Phe Glu Tyr Gly Tyr 660 665 670 gcc acg gct gag ccg cgc gtg ctg acc atc tgg gaa gcg cag ttt ggt 2388 Ala Thr Ala Glu Pro Arg Val Leu Thr Ile Trp Glu Ala Gln Phe Gly 675 680 685 gac ttt gcc aac ggt gct cag gtg gtg att gac cag ttc atc agc tct 2436 Asp Phe Ala Asn Gly Ala Gln Val Val Ile Asp Gln Phe Ile Ser Ser 690 695 700 705 ggc gaa cag aag tgg ggc cgt atg tgt ggc ctg gtg atg ttg ctg ccg 2484 Gly Glu Gln Lys Trp Gly Arg Met Cys Gly Leu Val Met Leu Leu Pro 710 715 720 cat ggc tac gaa ggt cag gga ccg gaa cac tcc tct gcc cgt ctg gaa 2532 His Gly Tyr Glu Gly Gln Gly Pro Glu His Ser Ser Ala Arg Leu Glu 725 730 735 cgc tat ctg caa ctt tgc gcc gag cag aac atg cag gtt tgc gtc ccg 2580 Arg Tyr Leu Gln Leu Cys Ala Glu Gln Asn Met Gln Val Cys Val Pro 740 745 750 tcg acg ccg gct cag gtg tat cac atg ctg cgc cgt cag gcg ctg cgc 2628 Ser Thr Pro Ala Gln Val Tyr His Met Leu Arg Arg Gln Ala Leu Arg 755 760 765 ggg atg cgc cgt ccg ctg gtg gtg atg tcg ccg aag tcg ctg tta cgc 2676 Gly Met Arg Arg Pro Leu Val Val Met Ser Pro Lys Ser Leu Leu Arg 770 775 780 785 cat cca ctg gcg atc tcg tcg ctg gat gaa ctg gca aac ggc agt ttc 2724 His Pro Leu Ala Ile Ser Ser Leu Asp Glu Leu Ala Asn Gly Ser Phe 790 795 800 cag ccg gcc att ggt gag atc gac gat ctg gat ccg cag ggc gtg aaa 2772 Gln Pro Ala Ile Gly Glu Ile Asp Asp Leu Asp Pro Gln Gly Val Lys 805 810 815 cgc gtc gtg ctg tgc tcc ggt aag gtt tac tac gat ctg ctg gaa cag 2820 Arg Val Val Leu Cys Ser Gly Lys Val Tyr Tyr Asp Leu Leu Glu Gln 820 825 830 cgt cgt aaa gac gag aaa acc gat gtt gcc atc gtg cgc atc gaa cag 2868 Arg Arg Lys Asp Glu Lys Thr Asp Val Ala Ile Val Arg Ile Glu Gln 835 840 845 ctt tac ccg ttc ccg cat cag gcg gta cag gaa gca ttg aaa gcc tat 2916 Leu Tyr Pro Phe Pro His Gln Ala Val Gln Glu Ala Leu Lys Ala Tyr 850 855 860 865 tct cac gta cag gac ttt gtc tgg tgc cag gaa gag cct ctg aac cag 2964 Ser His Val Gln Asp Phe Val Trp Cys Gln Glu Glu Pro Leu Asn Gln 870 875 880 ggc gcc tgg tac tgt agc cag cat cat ttc cgt gat gtc gtg ccg ttt 3012 Gly Ala Trp Tyr Cys Ser Gln His His Phe Arg Asp Val Val Pro Phe 885 890 895 ggt gcc acc ctg cgt tat gca ggt cgc ccg gca tcg gct tct ccg gcc 3060 Gly Ala Thr Leu Arg Tyr Ala Gly Arg Pro Ala Ser Ala Ser Pro Ala 900 905 910 gtg ggt tat atg tcc gta cac caa caa cag cag caa gac ctg gtt aat 3108 Val Gly Tyr Met Ser Val His Gln Gln Gln Gln Gln Asp Leu Val Asn 915 920 925 gac gca ctg aac gtc aat taattaaaag gaaagata atg agt agc gta gat 3159 Asp Ala Leu Asn Val Asn Met Ser Ser Val Asp 930 935 1 5 att ctc gtt ccc gac ctg cct gaa tcg gtt gca gat gcc aca gta gca 3207 Ile Leu Val Pro Asp Leu Pro Glu Ser Val Ala Asp Ala Thr Val Ala 10 15 20 acc tgg cac aag aaa cca ggc gat gca gtc agc cgc gat gaa gtc atc 3255 Thr Trp His Lys Lys Pro Gly Asp Ala Val Ser Arg Asp Glu Val Ile 25 30 35 gtc gaa att gaa act gac aaa gtc gtg ctg gaa gtg ccg gca tct gcc 3303 Val Glu Ile Glu Thr Asp Lys Val Val Leu Glu Val Pro Ala Ser Ala 40 45 50 gat ggc gtg ctg gaa gcc gtg ctg gaa gac gaa ggg gca acc gtt acg 3351 Asp Gly Val Leu Glu Ala Val Leu Glu Asp Glu Gly Ala Thr Val Thr 55 60 65 tcc cgc cag atc ctg ggt cgc ctg aaa gaa ggc aac agt gcg ggt aaa 3399 Ser Arg Gln Ile Leu Gly Arg Leu Lys Glu Gly Asn Ser Ala Gly Lys 70 75 80 85 gaa agc agt gcc aaa gcg gaa agc aat gac acc acg cca gcc cag cgt 3447 Glu Ser Ser Ala Lys Ala Glu Ser Asn Asp Thr Thr Pro Ala Gln Arg 90 95 100 cag aca gcg tcg ctt gaa gaa gag agc agc gat gcg ctc agc ccg gcg 3495 Gln Thr Ala Ser Leu Glu Glu Glu Ser Ser Asp Ala Leu Ser Pro Ala 105 110 115 atc cgt cgc ctg att gcg gag cat aat ctt gac gct gcg cag atc aaa 3543 Ile Arg Arg Leu Ile Ala Glu His Asn Leu Asp Ala Ala Gln Ile Lys 120 125 130 ggc acc ggc gta ggc gga cgt tta acg cgt gaa gac gtt gaa aaa cat 3591 Gly Thr Gly Val Gly Gly Arg Leu Thr Arg Glu Asp Val Glu Lys His 135 140 145 ctg gcg aac aaa ccg cag gct gag aaa gcc gcc gcg cca gcg gcg ggt 3639 Leu Ala Asn Lys Pro Gln Ala Glu Lys Ala Ala Ala Pro Ala Ala Gly 150 155 160 165 gca gca acg gct cag cag cct gtt gcc aac cgc agc gaa aaa cgt gtt 3687 Ala Ala Thr Ala Gln Gln Pro Val Ala Asn Arg Ser Glu Lys Arg Val 170 175 180 ccg atg acg cgt tta cgt aag cgc gtc gcg gag cgt ctg ctg gaa gcc 3735 Pro Met Thr Arg Leu Arg Lys Arg Val Ala Glu Arg Leu Leu Glu Ala 185 190 195 aag aac agc acc gcc atg ttg acg acc ttc aac gaa atc aac atg aag 3783 Lys Asn Ser Thr Ala Met Leu Thr Thr Phe Asn Glu Ile Asn Met Lys 200 205 210 ccg att atg gat ctg cgt aag cag tac ggc gat gcg ttc gag aag cgt 3831 Pro Ile Met Asp Leu Arg Lys Gln Tyr Gly Asp Ala Phe Glu Lys Arg 215 220 225 cac ggt gtg cgt ctg ggc ttt atg tct ttc tac atc aag gcc gtg gtc 3879 His Gly Val Arg Leu Gly Phe Met Ser Phe Tyr Ile Lys Ala Val Val 230 235 240 245 gaa gcg ctg aag cgt tat cca gaa gtc aac gcc tct atc gat ggc gaa 3927 Glu Ala Leu Lys Arg Tyr Pro Glu Val Asn Ala Ser Ile Asp Gly Glu 250 255 260 gac gtg gtg tac cac aac tat ttc gat gtg agt att gcc gtc tct acg 3975 Asp Val Val Tyr His Asn Tyr Phe Asp Val Ser Ile Ala Val Ser Thr 265 270 275 cca cgc gga ctg gtg acg cct gtc ctg cgt gac gtt gat gcg ctg agc 4023 Pro Arg Gly Leu Val Thr Pro Val Leu Arg Asp Val Asp Ala Leu Ser 280 285 290 atg gct gac atc gag aag aaa att aaa gaa ctg gca gtg aaa ggc cgt 4071 Met Ala Asp Ile Glu Lys Lys Ile Lys Glu Leu Ala Val Lys Gly Arg 295 300 305 gac ggc aag ctg acg gtt gac gat ctg acg ggc ggt aac ttt acc atc 4119 Asp Gly Lys Leu Thr Val Asp Asp Leu Thr Gly Gly Asn Phe Thr Ile 310 315 320 325 acc aac ggt ggt gtg ttc ggt tcg ctg atg tct acg cca atc atc aac 4167 Thr Asn Gly Gly Val Phe Gly Ser Leu Met Ser Thr Pro Ile Ile Asn 330 335 340 ccg cca cag agc gcg att ctg ggc atg cac gcc att aaa gat cgt cct 4215 Pro Pro Gln Ser Ala Ile Leu Gly Met His Ala Ile Lys Asp Arg Pro 345 350 355 atg gcg gtc aat ggt cag gtt gtg atc ctg cca atg atg tac ctg gct 4263 Met Ala Val Asn Gly Gln Val Val Ile Leu Pro Met Met Tyr Leu Ala 360 365 370 ctc tcc tac gat cac cgt tta atc gat ggt cgt gaa tct gtc ggc tat 4311 Leu Ser Tyr Asp His Arg Leu Ile Asp Gly Arg Glu Ser Val Gly Tyr 375 380 385 ctg gtc gcg gtg aaa gag atg ctg gaa gat ccg gcg cgt ctg ctg ctg 4359 Leu Val Ala Val Lys Glu Met Leu Glu Asp Pro Ala Arg Leu Leu Leu 390 395 400 405 gat gtc tgattcatca ctgggcacgc gttgcgtgcc caatctcaat actcttttca 4415 Asp Val gatctgaatg gatagaacat c atg aac tta cac gaa tac cag gct aaa cag 4466 Met Asn Leu His Glu Tyr Gln Ala Lys Gln 1 5 10 ctg ttt gca cgg tat ggc atg cca gca ccg acc ggc tac gcc tgt act 4514 Leu Phe Ala Arg Tyr Gly Met Pro Ala Pro Thr Gly Tyr Ala Cys Thr 15 20 25 aca cca cgt gaa gca gaa gaa gcg gca tcg aaa atc ggt gca 4556 Thr Pro Arg Glu Ala Glu Glu Ala Ala Ser Lys Ile Gly Ala 30 35 40<210> 1 <211> 4556 <212> DNA <213> Enterobacter agglomerans <220> <221> CDS <222> (2) .. (121) <220> <221> CDS <222> (322 ) .. (3129) <220> <221> CDS <222> (3145) .. (4368) <220> <221> CDS <222> (4437) .. (4556) <400> 1 t gca ttc agc gtt ttc cgc tgt cac agc atc atg aac tgt gta agt gtt 49 Ala Phe Ser Val Phe Arg Cys His Ser Ile Met Asn Cys Val Ser Val 1 5 10 15 tgt cct aaa ggg cta aac ccg acg cgc gct atc ggc cac att aag tcg 97 Cys Pro Lys Gly Leu Asn Pro Thr Arg Ala Ile Gly His Ile Lys Ser 20 25 30 atg ctg ctg caa cgc agc gcg tagttatacc accgggaacc tcaggttccc 148 Met Leu Leu Gln Arg Ser Ala 35 ggtc gcatt gcattc gcattc gtaaacag gcatt gcattc gtaaacg gcattc gtaaacg ctcactacgg caaaccgcga 268 aagcggcaac aaatgaaacc tcaaaaaagc ataacattgc ttaagggatc aca atg 324 Met 1 cag aac agc gcg atg aag ccc tgg ctg gac tcc tcc tgg ctg gcc ggc 372 Gln Asg Ser Pg Tg Asp Serg Asp Ser Gl Asp Ser Pg aat cag tct tac ata gag caa ctc ta t gag gat ttc ctg acc gat 420 Ala Asn Gln Ser Tyr Ile Glu Gln Leu Tyr Glu Asp Phe Leu Thr Asp 20 25 30 cct gac tct gtg gat gca gtg tgg cgc tcg atg ttc caa cag tta cca 468 Pro Asp Ser Val Asp Ala Val Trp Arg Ser Met Phe Gln Gln Leu Pro 35 40 45 ggc acg gga gtg aaa cct gag cag ttc cac tcc gca act cgc gaa tat 516 Gly Thr Gly Val Lys Pro Glu Gln Phe His Ser Ala Thr Arg Glu Tyr 50 55 60 65 ttc cgt cgc ctg gcg aaa gac gca tct cgt tac acc tcc tca gtt acc 564 Phe Arg Arg Leu Ala Lys Asp Ala Ser Arg Tyr Thr Ser Ser Val Thr 70 75 80 gat ccg gca acc aac tcc aaa caa gtg aaa gtg ctg cag ctg att aac 612 Asp Pro Ala Thr Asn Ser Lys Gln Val Lys Val Leu Gln Leu Ile Asn 85 90 95 gcg ttt cgt ttc cgc gga cat cag gaa gca aat ctc gat ccg ctt ggc 660 Ala Phe Arg Phe Arg Gly His Gln Glu Ala Asn Leu Asp Pro Leu Gly 100 105 110 ctg tgg aaa cag gac cgc gtt gcc gat ctc gat cct gcc ttt cac gat 708 Leu Trp Lys Gln Asp Arg Val Ala Asp Leu Asp Pro Ala Phe His Asp 115 120 125 ctg acc gac gcc gat ttt cag gaa agc ttt aa c gta ggt tct ttt gcc 756 Leu Thr Asp Ala Asp Phe Gln Glu Ser Phe Asn Val Gly Ser Phe Ala 130 135 140 145 att ggc aaa gaa acc atg aag ctg gcc gat ctg ttc gac gcg ctg aag 804 Ile Gly Lys Glu Thr Met Lys Leu Ala Asp Leu Phe Asp Ala Leu Lys 150 155 160 cag acc tac tgt ggc tcg att ggt gca gag tat atg cac atc aat aac 852 Gln Thr Tyr Cys Gly Ser Ile Gly Ala Glu Tyr Met His Ile Asn Asn 165 170 175 acc gaa gag aaa cgc tgg atc cag cag cgt atc gaa tcc ggt gcg agc 900 Thr Glu Glu Lys Arg Trp Ile Gln Gln Arg Ile Glu Ser Gly Ala Ser 180 185 190 cag acg tca ttc agt ggc gaa gag aaa aaa ggt ttc ctg 948 Gln Thr Ser Phe Ser Gly Glu Glu Lys Lys Gly Phe Leu Lys Glu Leu 195 200 205 acc gcg gca gaa ggg ctg gaa aaa tat ctg ggc gcg aaa ttc ccg ggt 996 Thr Ala Ala Glu Gly Leu Glu Lys Tyr Lys Phe Pro Gly 210 215 220 225 gca aaa cgt ttc tcg ctg gaa ggc ggt gat gcg ctg gtg ccg atg ctg 1044 Ala Lys Arg Phe Ser Leu Glu Gly Gly Asp Ala Leu Val Pro Met Leu 230 235 240 cgc gag atg g cg ggc aaa agc ggc aca cgt gaa gtg gta 1092 Arg Glu Met Ile Arg His Ala Gly Lys Ser Gly Thr Arg Glu Val Val 245 250 255 ctg ggg atg gcg cac cgt ggc cgt ctt aac gta ctg att aac gta Gly Met G140 G140 Ala His Arg Gly Arg Leu Asn Val Leu Ile Asn Val Leu 260 265 270 ggt aaa aag cca cag gat ctg ttc gac gaa ttc tcc ggt aaa cac aaa 1188 Gly Lys Lys Pro Gln Asp Leu Phe Asp Glu Phe Ser Gly Lys His Lys 275 280 285 gag cat ctg ggc acc ggt gat gtg aag tat cac atg ggc ttc tct tcg 1236 Glu His Leu Gly Thr Gly Asp Val Lys Tyr His Met Gly Phe Ser Ser 290 295 300 305 gat att gaa acc gaa ggt ggt ctg gtg cat gcg ctg gcg ttt aac 1284 Asp Ile Glu Thr Glu Gly Gly Leu Val His Leu Ala Leu Ala Phe Asn 310 315 320 ccg tct cac ctg gaa att gtc agc ccg gtg gtc atg gga tcg gta cgt 1332 Pro Ser His Leu Glu Pro Val Val Met Gly Ser Val Arg 325 330 335 gca cgt ctc gat cgt ctg gcc gaa ccg gtc agc aat aaa gtg ttg cct 1380 Ala Arg Leu Asp Arg Leu Ala Glu Pro Val Ser Asn Lys Val Leu Pro 340 345 350 atc ac c att cac ggt gat gcg gcg gtg att ggt cag ggc gtg gtt cag 1428 Ile Thr Ile His Gly Asp Ala Ala Val Ile Gly Gln Gly Val Val Gln 355 360 365 gaa acc ctg aac atg tct cag gcg cgc ggc gc gg ggc acg 1476 Glu Thr Leu Asn Met Ser Gln Ala Arg Gly Tyr Glu Val Gly Gly Thr 370 375 380 385 gta cgt atc gtc att aac aac cag gtt ggt ttt acc acc tcc aac ccg 1524 Val Arg Ile Val Ile Asn Asn Gln Val Gly Phe Thr Thr Ser Asn Pro 390 395 400 aaa gat gcg cgt tca acc ccg tac tgt act gac atc ggc aag atg gtg 1572 Lys Asp Ala Arg Ser Thr Pro Tyr Cys Thr Asp Ile Gly Lys Met Val 405 410 415 ctg gca ccg att ttc cac gtc aat gct gac gat ccg gaa gcg gtg gcc 1620 Leu Ala Pro Ile Phe His Val Asn Ala Asp Asp Pro Glu Ala Val Ala 420 425 430 ttt gtt acc cgc ctg gcg ctg gac tat cgc aac acc ttc aaa cgc gat 1668 Arg Leu Ala Leu Asp Tyr Arg Asn Thr Phe Lys Arg Asp 435 440 445 gtg ttt atc gat ctg gtg tgc tat cgc cgt cat ggt cac aac gag gcg 1716 Val Phe Ile Asp Leu Val Cys Tyr Arg Arg His Gly His Asn Glu 450 455 460 465 gat gag cca agt gct acc cag ccg ttg atg tac cag aaa atc aaa aag 1764 Asp Glu Pro Ser Ala Thr Gln Pro Leu Met Tyr Gln Lys Ile Lys Lys 470 475 480 cat ccg acg ccg cgt aaa att tac gcc gat cgt ctg gaa ggc gaa ggt 1812 His Pro Thr Pro Arg Lys Ile Tyr Ala Asp Arg Leu Glu Gly Glu Gly 485 490 495 gtc gcg tcg cag gaa gat gcc acc gag atg gtg aac ctg tac cgc gat 1860 G Alu Ala Ser Gln Thr Glu Met Val Asn Leu Tyr Arg Asp 500 505 510 gcg ctc gat gcg ggc gaa tgc gtg gtg ccg gaa tgg cgt ccg atg agc 1908 Ala Leu Asp Ala Gly Glu Cys Val Val Pro Glu Trp Arg Pro Met Ser 515 c tcc ttc acg tgg tcg cct tat ctg aac cac gaa tgg gat gag 1956 Leu His Ser Phe Thr Trp Ser Pro Tyr Leu Asn His Glu Trp Asp Glu 530 535 540 540 545 cct tat ccg gca cag gtt gac atg aaa cgc ctg agga ttg 2004 Pro Tyr Pro Ala Gln Val Asp Met Lys Arg Leu Lys Glu Leu Ala Leu 550 555 560 cgt atc agc cag gtc cct gag cag att gaa gtg cag tcg cgc gtg gcc 2052 Arg Ile Ser Gln Val Pro Glu Gln Ilu Glu Val Gln Ser Arg Val Ala 565 570 575 aag atc tat aac gat cgc aag ctg atg gcc gaa ggc gag aaa gcg ttc 2100 Lys Ile Tyr Asn Asp Arg Lys Leu Met Ala Glu Gly Glu Lys Ala Phe 580 585 590 gac ggg gag aat ctg gcg tac gcc acg ctg gtg gat gaa 2148 Asp Trp Gly Gly Ala Glu Asn Leu Ala Tyr Ala Thr Leu Val Asp Glu 595 600 605 ggt att ccg gtt cgc ctc tcg ggt gaa gac tcc ggtcgt gacc Pro Val Arg Leu Ser Gly Glu Asp Ser Gly Arg Gly Thr Phe 610 615 620 625 ttc cat cgc cac gcg gtc gtg cac aac cag gct aac ggt tca acc tat 2244 Phe His Arg His Ala Val Val His Asn Gln Ala Asn Gly Ser Thr Tyr 630 635 640 acg ccg ctg cac cat att cat aac agc cag ggc gag ttc aaa gtc tgg 2292 Thr Pro Leu His His Ile His Asn Ser Gln Gly Glu Phe Lys Val Trp 645 650 655 gat tcg gtg ctg tct gaga gag gc g gcg ttt gaa tac ggt tac 2340 Asp Ser Val Leu Ser Glu Glu Ala Val Leu Ala Phe Glu Tyr Gly Tyr 660 665 670 gcc acg gct gag ccg cgc gtg ctg acc atc tgg gaa gcg cag ttt ggt 2388 Ala Thr Ala Glu A rg Val Leu Thr Ile Trp Glu Ala Gln Phe Gly 675 680 685 gac ttt gcc aac ggt gct cag gtg gtg att gac cag ttc atc agc tct 2436 Asp Phe Ala Asn Gly Ala Gln Val Val Ile Asp Gln Phe Ile Ser Ser 690 6700 705 ggc gaa cag aag tgg ggc cgt atg tgt ggc ctg gtg atg ttg ctg ccg 2484 Gly Glu Gln Lys Trp Gly Arg Met Cys Gly Leu Val Met Leu Leu Pro 710 715 720 cat ggc tac gaa ggt cg gcc gcc gcc gcc cgt ctg gaa 2532 His Gly Tyr Glu Gly Gln Gly Pro Glu His Ser Ser Ala Arg Leu Glu 725 730 735 cgc tat ctg caa ctt tgc gcc gag cag aac atg cag gtt tgc gtc ccg 2580 Arg Tyr Leu Gln Leu Cys AG Met Gln Val Cys Val Pro 740 745 750 tcg acg ccg gct cag gtg tat cac atg ctg cgc cgt cag gcg ctg cgc 2628 Ser Thr Pro Ala Gln Val Tyr His Met Leu Arg Arg Gln Ala Leu Arg 755 760 765 ggg atgcgc ctg gtg gtg atg tcg ccg aag tcg ctg tta cgc 2676 Gly Met Arg Arg Pro Leu Val Val Met Ser Pro Lys Ser Leu Leu Arg 770 775 780 785 cat cat cca ctg gcg atc tcg tcg ctg gat gag ctg gca ag 4 His Pro Leu Ala Ile Ser Ser Leu Asp Glu Leu Ala Asn Gly Ser Phe 790 795 800 cag ccg gcc att ggt gag atc gac gat ctg gat ccg cag ggc gtg aaa 2772 Gln Pro Ala Ile Gly Glu Ile Asp Asp Leu Asp Pro Gln Gly Val Lys 805 810 815 cgc gtc gtg ctg tgc tcc ggt aag gtt tac tac gat ctg ctg gaa cag 2820 Arg Val Val Leu Cys Ser Gly Lys Val Tyr Tyr Asp Leu Leu Glu Gln 820 825 830 cgt cgt aaa gac gag gtt gcc atc gtg cgc atc gaa cag 2868 Arg Arg Lys Asp Glu Lys Thr Asp Val Ala Ile Val Arg Ile Glu Gln 835 840 845 ctt tac ccg ttc ccg cat cag gcg gta cag gaa gca ttg aaa gcc Tat Pro 2916 Leu His Gln Ala Val Gln Glu Ala Leu Lys Ala Tyr 850 855 860 865 tct cac gta cag gac ttt gtc tgg tgc cag gaa gag cct ctg aac cag 2964 Ser His Val Gln Asp Phe Val Trp Cys Gln Glu Glu Pro Leu Asn Gln 870 875 880 ggc gcc tgg tac tgt agc cag cat cat ttc cgt gat gtc gtg ccg ttt 3012 Gly Ala Trp Tyr Cys Ser Gln His His Phe Arg Asp Val Val Pro Phe 885 890 895 895 ggt gcc acc ctg cgt tat gca ggt cgc ccg gca tc gct tct ccg gcc 3060 Gly Ala Thr Leu Arg Tyr Ala Gly Arg Pro Ala Ser Ala Ser Pro Ala 900 905 910 gtg ggt tat atg tcc gta cac caa caa cag cag caa gac ctg gtt aat 3108 Val Gly Tyr Met Ser Val His Gln Gln Gln Gln Gln Asp Leu Val Asn 915 920 925 gac gca ctg aac gtc aat taattaaaag gaaagata atg agt agc gta gat 3159 Asp Ala Leu Asn Val Asn Met Ser Ser Val Asp 930 935 1 5 att ctc gtt ccc gac ctg cct gcat gat gcc aca gta gca 3207 Ile Leu Val Pro Asp Leu Pro Glu Ser Val Ala Asp Ala Thr Val Ala 10 15 20 acc tgg cac aag aaa cca ggc gat gca gtc agc cgc gat gaa gtc atc 3255 Thr Trp His Lys Lys Pro Gly Asp Ala Val Ser Arg Asp Glu Val Ile 25 30 35 gtc gaa att gaa act gac aaa gtc gtg ctg gaa gtg ccg gca tct gcc 3303 Val Glu Ile Glu Thr Asp Lys Val Val Leu Glu Val Pro Ala Ser Ala 40 45 50 gat ggc gtg ctg gaa gcc gtg ctg gaa gac gaa ggg gca acc gtt acg 3351 Asp Gly Val Leu Glu Ala Val Leu Glu Asp Glu Gly Ala Thr Val Thr 55 60 65 tcc cgc cag atc ctg ggt cgc ctg aaa gaa ggc gac agt gc 399 Ser Arg Gln Ile Leu Gly Arg Leu Lys Glu Gly Asn Ser Ala Gly Lys 70 75 80 85 gaa agc agt gcc aaa gcg gaa agc aat gac acc acg cca gcc cag cgt 3447 Glu Ser Ser Ala Lys Ala Glu Ser Asn Asp Thr Thr Pro Ala Gln Arg 90 95 100 cag aca gcg tcg ctt gaa gaa gag agc agc gat gcg ctc agc ccg gcg 3495 Gln Thr Ala Ser Leu Glu Glu Glu Ser Ser Asp Ala Leu Ser Pro Ala 105 110 115 atc cgt cgc ctg att g cat aat ctt gac gct gcg cag atc aaa 3543 Ile Arg Arg Leu Ile Ala Glu His Asn Leu Asp Ala Ala Gln Ile Lys 120 125 130 ggc acc ggc gta ggc gga cgt tta acg cgt gaa gac gtt gaa aaa cat 3591 Gly Thr G Val Gly Gly Arg Leu Thr Arg Glu Asp Val Glu Lys His 135 140 145 ctg gcg aac aaa ccg cag gct gag aaa gcc gcc gcg cca gcg gcg ggt 3639 Leu Ala Asn Lys Pro Gln Ala Glu Lys Ala Ala Ala Pro Ala Ala Gly 150 155 160 165 gca gca acg gct cag cag cct gtt gcc aac cgc agc gaa aaa cgt gtt 3687 Ala Ala Thr Ala Gln Gln Pro Val Ala Asn Arg Ser Glu Lys Arg Val 170 175 180 ccg atg acg cgt tta cgt aag cgc gtc gc gagctg ctg gaa gcc 3735 Pro Met Thr Arg Leu Arg Lys Arg Val Ala Glu Arg Leu Leu Glu Ala 185 190 195 aag aac agc acc gcc atg ttg acg acc ttc aac gaa atc aac atg aag 3783 Lys Asn Ser Thr Ala Met Leu Thr Phe Asn Glu Ile Asn Met Lys 200 205 210 ccg att atg gat ctg cgt aag cag tac ggc gat gcg ttc gag aag cgt 3831 Pro Ile Met Asp Leu Arg Lys Gln Tyr Gly Asp Ala Phe Glu Lys Arg 215 220 225 cac ggt ctg ggc ttt atg tct ttc tac atc aag gcc gtg gtc 3879 His Gly Val Arg Leu Gly Phe Met Ser Phe Tyr Ile Lys Ala Val Val 230 235 240 245 gaa gcg ctg aag cgt tat cca gaa gtc aac gcc tct atc gat 3 Glu Ala Leu Lys Arg Tyr Pro Glu Val Asn Ala Ser Ile Asp Gly Glu 250 255 260 gac gtg gtg tac cac aac tat ttc gat gtg agt att gcc gtc tct acg 3975 Asp Val Val Tyr His Asn Tyr Phe Asp Val Ser Ile Ala Val Ser Thr 265 270 275 cca cgc gga ctg gtg acg cct gtc ctg cgt gac gtt gat gcg ctg agc 4023 Pro Arg Gly Leu Val Thr Pro Val Leu Arg Asp Val Asp Ala Leu Ser 280 285 290 atg gct gac atc gag aag aaa a tt aaa gaa ctg gca gtg aaa ggc cgt 4071 Met Ala Asp Ile Glu Lys Lys Ile Lys Glu Leu Ala Val Lys Gly Arg 295 300 305 gac ggc aag ctg acg gtt gac gat ctg acg ggc ggt aac ttt acc atc 4119 Thr Val Asp Asp Leu Thr Gly Gly Asn Phe Thr Ile 310 315 320 325 acc aac ggt ggt gtg ttc ggt tcg ctg atg tct acg cca atc atc aac 4167 Thr Asn Gly Gly Val Phe Gly Ser Leu Met Ser Thr Pro Ile Ile Asn 330 335 340 ccg cca cag agc gcg att ctg ggc atg cac gcc att aaa gat cgt cct 4215 Pro Pro Gln Ser Ala Ile Leu Gly Met His Ala Ile Lys Asp Arg Pro 345 350 355 atg gcg gtc aat ggt cag gtt gtg atc ct atg tac ctg gct 4263 Met Ala Val Asn Gly Gln Val Val Ile Leu Pro Met Met Tyr Leu Ala 360 365 370 ctc tcc tac gat cac cgt tta atc gat ggt cgt gaa tct gtc ggc tat 4311 Leu Ser Tyr Asp His Arg Leu Ile Asp Gly Arg Glu Ser Val Gly Tyr 375 380 385 ctg gtc gcg gtg aaa gag atg ctg gaa gat ccg gcg cgt ctg ctg ctg 4359 Leu Val Ala Val Lys Glu Met Leu Glu Asp Pro Ala Arg Leu Leu Leu 390 at 395 400 c tgattcatca ctgggcacgc gttgcgtgcc caatctcaat actcttttca 4415 Asp Val gatctgaatg gatagaacat catg aac tta cac gaa tac cag gct aaa cag 4466 Met Asn Leu His Glu Tyr Gln Ala Lys Gln 1 5 10 cg cg ccc gcc cg ccc gcc ccc gcc ccc gcc ccc gcc cg ccc gcc ccc gcc ccc gcc tgt act 4514 Leu Phe Ala Arg Tyr Gly Met Pro Ala Pro Thr Gly Tyr Ala Cys Thr 15 20 25 aca cca cgt gaa gca gaa gaa gcg gca tcg aaa atc ggt gca 4556 Thr Pro Arg Glu Ala Glu Glu Ala Ala Ser Lys Ile Gly Ala 30 35 40

【0078】 <210> 2 <211> 39 <212> PRT <213> Enterobacter agglomerans <400> 2 Ala Phe Ser Val Phe Arg Cys His Ser Ile Met Asn Cys Val Ser Val 1 5 10 15 Cys Pro Lys Gly Leu Asn Pro Thr Arg Ala Ile Gly His Ile Lys Ser 20 25 30 Met Leu Leu Gln Arg Ser Ala 35<210> 2 <211> 39 <212> PRT <213> Enterobacter agglomerans <400> 2 Ala Phe Ser Val Phe Arg Cys His Ser Ile Met Asn Cys Val Ser Val 1 5 10 15 Cys Pro Lys Gly Leu Asn Pro Thr Arg Ala Ile Gly His Ile Lys Ser 20 25 30 Met Leu Leu Gln Arg Ser Ala 35

【0079】 <210> 3 <211> 935 <212> PRT <213> Enterobacter agglomerans <400> 3 Met Gln Asn Ser Ala Met Lys Pro Trp Leu Asp Ser Ser Trp Leu Ala 1 5 10 15 Gly Ala Asn Gln Ser Tyr Ile Glu Gln Leu Tyr Glu Asp Phe Leu Thr 20 25 30 Asp Pro Asp Ser Val Asp Ala Val Trp Arg Ser Met Phe Gln Gln Leu 35 40 45 Pro Gly Thr Gly Val Lys Pro Glu Gln Phe His Ser Ala Thr Arg Glu 50 55 60 Tyr Phe Arg Arg Leu Ala Lys Asp Ala Ser Arg Tyr Thr Ser Ser Val 65 70 75 80 Thr Asp Pro Ala Thr Asn Ser Lys Gln Val Lys Val Leu Gln Leu Ile 85 90 95 Asn Ala Phe Arg Phe Arg Gly His Gln Glu Ala Asn Leu Asp Pro Leu 100 105 110 Gly Leu Trp Lys Gln Asp Arg Val Ala Asp Leu Asp Pro Ala Phe His 115 120 125 Asp Leu Thr Asp Ala Asp Phe Gln Glu Ser Phe Asn Val Gly Ser Phe 130 135 140 Ala Ile Gly Lys Glu Thr Met Lys Leu Ala Asp Leu Phe Asp Ala Leu 145 150 155 160 Lys Gln Thr Tyr Cys Gly Ser Ile Gly Ala Glu Tyr Met His Ile Asn 165 170 175 Asn Thr Glu Glu Lys Arg Trp Ile Gln Gln Arg Ile Glu Ser Gly Ala 180 185 190 Ser Gln Thr Ser Phe Ser Gly Glu Glu Lys Lys Gly Phe Leu Lys Glu 195 200 205 Leu Thr Ala Ala Glu Gly Leu Glu Lys Tyr Leu Gly Ala Lys Phe Pro 210 215 220 Gly Ala Lys Arg Phe Ser Leu Glu Gly Gly Asp Ala Leu Val Pro Met 225 230 235 240 Leu Arg Glu Met Ile Arg His Ala Gly Lys Ser Gly Thr Arg Glu Val 245 250 255 Val Leu Gly Met Ala His Arg Gly Arg Leu Asn Val Leu Ile Asn Val 260 265 270 Leu Gly Lys Lys Pro Gln Asp Leu Phe Asp Glu Phe Ser Gly Lys His 275 280 285 Lys Glu His Leu Gly Thr Gly Asp Val Lys Tyr His Met Gly Phe Ser 290 295 300 Ser Asp Ile Glu Thr Glu Gly Gly Leu Val His Leu Ala Leu Ala Phe 305 310 315 320 Asn Pro Ser His Leu Glu Ile Val Ser Pro Val Val Met Gly Ser Val 325 330 335 Arg Ala Arg Leu Asp Arg Leu Ala Glu Pro Val Ser Asn Lys Val Leu 340 345 350 Pro Ile Thr Ile His Gly Asp Ala Ala Val Ile Gly Gln Gly Val Val 355 360 365 Gln Glu Thr Leu Asn Met Ser Gln Ala Arg Gly Tyr Glu Val Gly Gly 370 375 380 Thr Val Arg Ile Val Ile Asn Asn Gln Val Gly Phe Thr Thr Ser Asn 385 390 395 400 Pro Lys Asp Ala Arg Ser Thr Pro Tyr Cys Thr Asp Ile Gly Lys Met 405 410 415 Val Leu Ala Pro Ile Phe His Val Asn Ala Asp Asp Pro Glu Ala Val 420 425 430 Ala Phe Val Thr Arg Leu Ala Leu Asp Tyr Arg Asn Thr Phe Lys Arg 435 440 445 Asp Val Phe Ile Asp Leu Val Cys Tyr Arg Arg His Gly His Asn Glu 450 455 460 Ala Asp Glu Pro Ser Ala Thr Gln Pro Leu Met Tyr Gln Lys Ile Lys 465 470 475 480 Lys His Pro Thr Pro Arg Lys Ile Tyr Ala Asp Arg Leu Glu Gly Glu 485 490 495 Gly Val Ala Ser Gln Glu Asp Ala Thr Glu Met Val Asn Leu Tyr Arg 500 505 510 Asp Ala Leu Asp Ala Gly Glu Cys Val Val Pro Glu Trp Arg Pro Met 515 520 525 Ser Leu His Ser Phe Thr Trp Ser Pro Tyr Leu Asn His Glu Trp Asp 530 535 540 Glu Pro Tyr Pro Ala Gln Val Asp Met Lys Arg Leu Lys Glu Leu Ala 545 550 555 560 Leu Arg Ile Ser Gln Val Pro Glu Gln Ile Glu Val Gln Ser Arg Val 565 570 575 Ala Lys Ile Tyr Asn Asp Arg Lys Leu Met Ala Glu Gly Glu Lys Ala 580 585 590 Phe Asp Trp Gly Gly Ala Glu Asn Leu Ala Tyr Ala Thr Leu Val Asp 595 600 605 Glu Gly Ile Pro Val Arg Leu Ser Gly Glu Asp Ser Gly Arg Gly Thr 610 615 620 Phe Phe His Arg His Ala Val Val His Asn Gln Ala Asn Gly Ser Thr 625 630 635 640 Tyr Thr Pro Leu His His Ile His Asn Ser Gln Gly Glu Phe Lys Val 645 650 655 Trp Asp Ser Val Leu Ser Glu Glu Ala Val Leu Ala Phe Glu Tyr Gly 660 665 670 Tyr Ala Thr Ala Glu Pro Arg Val Leu Thr Ile Trp Glu Ala Gln Phe 675 680 685 Gly Asp Phe Ala Asn Gly Ala Gln Val Val Ile Asp Gln Phe Ile Ser 690 695 700 Ser Gly Glu Gln Lys Trp Gly Arg Met Cys Gly Leu Val Met Leu Leu 705 710 715 720 Pro His Gly Tyr Glu Gly Gln Gly Pro Glu His Ser Ser Ala Arg Leu 725 730 735 Glu Arg Tyr Leu Gln Leu Cys Ala Glu Gln Asn Met Gln Val Cys Val 740 745 750 Pro Ser Thr Pro Ala Gln Val Tyr His Met Leu Arg Arg Gln Ala Leu 755 760 765 Arg Gly Met Arg Arg Pro Leu Val Val Met Ser Pro Lys Ser Leu Leu 770 775 780 Arg His Pro Leu Ala Ile Ser Ser Leu Asp Glu Leu Ala Asn Gly Ser 785 790 795 800 Phe Gln Pro Ala Ile Gly Glu Ile Asp Asp Leu Asp Pro Gln Gly Val 805 810 815 Lys Arg Val Val Leu Cys Ser Gly Lys Val Tyr Tyr Asp Leu Leu Glu 820 825 830 Gln Arg Arg Lys Asp Glu Lys Thr Asp Val Ala Ile Val Arg Ile Glu 835 840 845 Gln Leu Tyr Pro Phe Pro His Gln Ala Val Gln Glu Ala Leu Lys Ala 850 855 860 Tyr Ser His Val Gln Asp Phe Val Trp Cys Gln Glu Glu Pro Leu Asn 865 870 875 880 Gln Gly Ala Trp Tyr Cys Ser Gln His His Phe Arg Asp Val Val Pro 885 890 895 Phe Gly Ala Thr Leu Arg Tyr Ala Gly Arg Pro Ala Ser Ala Ser Pro 900 905 910 Ala Val Gly Tyr Met Ser Val His Gln Gln Gln Gln Gln Asp Leu Val 915 920 925 Asn Asp Ala Leu Asn Val Asn 930 935<210> 3 <211> 935 <212> PRT <213> Enterobacter agglomerans <400> 3 Met Gln Asn Ser Ala Met Lys Pro Trp Leu Asp Ser Ser Trp Leu Ala 1 5 10 15 Gly Ala Asn Gln Ser Tyr Ile Glu Gln Leu Tyr Glu Asp Phe Leu Thr 20 25 30 Asp Pro Asp Ser Val Asp Ala Val Trp Arg Ser Met Phe Gln Gln Leu 35 40 45 Pro Gly Thr Gly Val Lys Pro Glu Gln Phe His Ser Ala Thr Arg Glu 50 55 60 Tyr Phe Arg Arg Leu Ala Lys Asp Ala Ser Arg Tyr Thr Ser Ser Val 65 70 75 80 Thr Asp Pro Ala Thr Asn Ser Lys Gln Val Lys Val Leu Gln Leu Ile 85 90 95 Asn Ala Phe Arg Phe Arg Gly His Gln Glu Ala Asn Leu Asp Pro Leu 100 105 110 Gly Leu Trp Lys Gln Asp Arg Val Ala Asp Leu Asp Pro Ala Phe His 115 120 125 Asp Leu Thr Asp Ala Asp Phe Gln Glu Ser Phe Asn Val Gly Ser Phe 130 135 140 Ala Ile Gly Lys Glu Thr Met Lys Leu Ala Asp Leu Phe Asp Ala Leu 145 150 155 160 Lys Gln Thr Tyr Cys Gly Ser Ile Gly Ala Glu Tyr Met His Ile Asn 165 170 175 Asn Thr Glu Glu Lys Arg Trp Ile Gln Gln Arg Ile Glu Ser Gly Ala 180 185 190 Ser Gln Thr Ser Phe Ser Gly Glu Glu Lys Lys Gly Phe Leu Lys Glu 195 200 205 Leu Thr Ala Ala Glu Gly Leu Glu Lys Tyr Leu Gly Ala Lys Phe Pro 210 215 220 Gly Ala Lys Arg Phe Ser Leu Glu Gly Gly Asp Ala Leu Val Pro Met 225 230 235 240 Leu Arg Glu Met Ile Arg His Ala Gly Lys Ser Gly Thr Arg Glu Val 245 250 255 Val Leu Gly Met Ala His Arg Gly Arg Leu Asn Val Leu Ile Asn Val 260 265 270 Leu Gly Lys Lys Pro Gln Asp Leu Phe Asp Glu Phe Ser Gly Lys His 275 280 285 Lys Glu His Leu Gly Thr Gly Asp Val Lys Tyr His Met Gly Phe Ser 290 295 300 Ser Asp Ile Glu Thr Glu Gly Gly Leu Val His Leu Ala Leu Ala Phe 305 310 315 320 Asn Pro Ser His Leu Glu Ile Val Ser Pro Val Val Met Gly Ser Val 325 330 335 Arg Ala Arg Leu Asp Arg Leu Ala Glu Pro Val Ser Asn Lys Val Leu 340 345 350 Pro Ile Thrile Ile His Gly Asp Ala Ala Val Ile Gly Gln Gly Val Val 355 360 365 Gln Glu Thr Leu Asn Met Ser Gln Ala Arg Gly Tyr Glu Val Gly Gly 370 375 380 Thr Val Arg Ile Val Ile Asn Asn Gln Val Gly Phe Thr Thr Ser Asn 385 390 395 400 400 Pro Lys AspAla Arg Ser Thr Pro Tyr Cys Thr Asp Ile Gly Lys Met 405 410 415 Val Leu Ala Pro Ile Phe His Val Asn Ala Asp Asp Pro Glu Ala Val 420 425 430 Ala Phe Val Thr Arg Leu Ala Leu Asp Tyr Arg Asn Thr Phe Lys Arg 435 440 445 Asp Val Phe Ile Asp Leu Val Cys Tyr Arg Arg His Gly His Asn Glu 450 455 460 Ala Asp Glu Pro Ser Ala Thr Gln Pro Leu Met Tyr Gln Lys Ile Lys 465 470 475 480 480 Lys His Pro Thr Pro Arg Lys Ile Tyr Ala Asp Arg Leu Glu Gly Glu 485 490 495 Gly Val Ala Ser Gln Glu Asp Ala Thr Glu Met Val Asn Leu Tyr Arg 500 505 510 Asp Ala Leu Asp Ala Gly Glu Cys Val Val Pro Glu Trp Arg Pro Met 515 520 525 Ser Leu His Ser Phe Thr Trp Ser Pro Tyr Leu Asn His Glu Trp Asp 530 535 540 Glu Pro Tyr Pro Ala Gln Val Asp Met Lys Arg Leu Lys Glu Leu Ala 545 550 555 560 Leu Arg Ile Ser Gln Val Pro Glu Gln Ile Glu Val Gln Ser Arg Val 565 570 575 Ala Lys Ile Tyr Asn Asp Arg Lys Leu Met Ala Glu Gly Glu Lys Ala 580 585 590 Phe Asp Trp Gly Gly Ala Glu Asn Leu Ala Tyr Ala Thr Leu Val Asp 595 600 605 Glu Gly Ile ProVal Arg Leu Ser Gly Glu Asp Ser Gly Arg Gly Thr 610 615 620 Phe Phe His Arg His Ala Val Val His Asn Gln Ala Asn Gly Ser Thr 625 630 635 640 Tyr Thr Pro Leu His His Ile His Asn Ser Gln Gly Glu Phe Lys Val 645 650 655 Trp Asp Ser Val Leu Ser Glu Glu Ala Val Leu Ala Phe Glu Tyr Gly 660 665 670 Tyr Ala Thr Ala Glu Pro Arg Val Leu Thr Ile Trp Glu Ala Gln Phe 675 680 685 Gly Asp Phe Ala Asn Gly Ala Gln Val Val Ile Asp Gln Phe Ile Ser 690 695 700 Ser Gly Glu Gln Lys Trp Gly Arg Met Cys Gly Leu Val Met Leu Leu 705 710 715 715 720 Pro His Gly Tyr Glu Gly Gln Gly Pro Glu His Ser Ser Ala Arg Leu 725 730 735 Glu Arg Tyr Leu Gln Leu Cys Ala Glu Gln Asn Met Gln Val Cys Val 740 745 750 Pro Ser Thr Pro Ala Gln Val Tyr His Met Leu Arg Arg Gln Ala Leu 755 760 765 arg Arg Gly Met Arg Arg Pro Leu Val Val Met Ser Pro Lys Ser Leu Leu 770 775 780 Arg His Pro Leu Ala Ile Ser Ser Leu Asp Glu Leu Ala Asn Gly Ser 785 790 795 800 Phe Gln Pro Ala Ile Gly Glu Ile Asp Asp Leu Asp Pro Gln Gly Val 805 810 815 Lys Arg Val ValLeu Cys Ser Gly Lys Val Tyr Tyr Asp Leu Leu Glu 820 825 830 Gln Arg Arg Lys Asp Glu Lys Thr Asp Val Ala Ile Val Arg Ile Glu 835 840 845 Gln Leu Tyr Pro Phe Pro His Gln Ala Val Gln Glu Ala Leu Lys Ala 850 855 860 Tyr Ser His Val Gln Asp Phe Val Trp Cys Gln Glu Glu Pro Leu Asn 865 870 875 880 Gln Gly Ala Trp Tyr Cys Ser Gln His His Phe Arg Asp Val Val Pro 885 890 895 Phe Gly Ala Thr Leu Arg Tyr Ala Gly Arg Pro Ala Ser Ala Ser Pro 900 905 910 Ala Val Gly Tyr Met Ser Val His Gln Gln Gln Gln Gln Asp Leu Val 915 920 925 Asn Asp Ala Leu Asn Val Asn 930 935

【0080】 <210> 4 <211> 407 <212> PRT <213> Enterobacter agglomerans <400> 4 Met Ser Ser Val Asp Ile Leu Val Pro Asp Leu Pro Glu Ser Val Ala 1 5 10 15 Asp Ala Thr Val Ala Thr Trp His Lys Lys Pro Gly Asp Ala Val Ser 20 25 30 Arg Asp Glu Val Ile Val Glu Ile Glu Thr Asp Lys Val Val Leu Glu 35 40 45 Val Pro Ala Ser Ala Asp Gly Val Leu Glu Ala Val Leu Glu Asp Glu 50 55 60 Gly Ala Thr Val Thr Ser Arg Gln Ile Leu Gly Arg Leu Lys Glu Gly 65 70 75 80 Asn Ser Ala Gly Lys Glu Ser Ser Ala Lys Ala Glu Ser Asn Asp Thr 85 90 95 Thr Pro Ala Gln Arg Gln Thr Ala Ser Leu Glu Glu Glu Ser Ser Asp 100 105 110 Ala Leu Ser Pro Ala Ile Arg Arg Leu Ile Ala Glu His Asn Leu Asp 115 120 125 Ala Ala Gln Ile Lys Gly Thr Gly Val Gly Gly Arg Leu Thr Arg Glu 130 135 140 Asp Val Glu Lys His Leu Ala Asn Lys Pro Gln Ala Glu Lys Ala Ala 145 150 155 160 Ala Pro Ala Ala Gly Ala Ala Thr Ala Gln Gln Pro Val Ala Asn Arg 165 170 175 Ser Glu Lys Arg Val Pro Met Thr Arg Leu Arg Lys Arg Val Ala Glu 180 185 190 Arg Leu Leu Glu Ala Lys Asn Ser Thr Ala Met Leu Thr Thr Phe Asn 195 200 205 Glu Ile Asn Met Lys Pro Ile Met Asp Leu Arg Lys Gln Tyr Gly Asp 210 215 220 Ala Phe Glu Lys Arg His Gly Val Arg Leu Gly Phe Met Ser Phe Tyr 225 230 235 240 Ile Lys Ala Val Val Glu Ala Leu Lys Arg Tyr Pro Glu Val Asn Ala 245 250 255 Ser Ile Asp Gly Glu Asp Val Val Tyr His Asn Tyr Phe Asp Val Ser 260 265 270 Ile Ala Val Ser Thr Pro Arg Gly Leu Val Thr Pro Val Leu Arg Asp 275 280 285 Val Asp Ala Leu Ser Met Ala Asp Ile Glu Lys Lys Ile Lys Glu Leu 290 295 300 Ala Val Lys Gly Arg Asp Gly Lys Leu Thr Val Asp Asp Leu Thr Gly 305 310 315 320 Gly Asn Phe Thr Ile Thr Asn Gly Gly Val Phe Gly Ser Leu Met Ser 325 330 335 Thr Pro Ile Ile Asn Pro Pro Gln Ser Ala Ile Leu Gly Met His Ala 340 345 350 Ile Lys Asp Arg Pro Met Ala Val Asn Gly Gln Val Val Ile Leu Pro 355 360 365 Met Met Tyr Leu Ala Leu Ser Tyr Asp His Arg Leu Ile Asp Gly Arg 370 375 380 Glu Ser Val Gly Tyr Leu Val Ala Val Lys Glu Met Leu Glu Asp Pro 385 390 395 400 Ala Arg Leu Leu Leu Asp Val 405<210> 4 <211> 407 <212> PRT <213> Enterobacter agglomerans <400> 4 Met Ser Ser Val Asp Ile Leu Val Pro Asp Leu Pro Glu Ser Val Ala 1 5 10 15 Asp Ala Thr Val Ala Thr Trp His Lys Lys Pro Gly Asp Ala Val Ser 20 25 30 Arg Asp Glu Val Ile Val Glu Ile Glu Thr Asp Lys Val Val Leu Glu 35 40 45 Val Pro Ala Ser Ala Asp Gly Val Leu Glu Ala Val Leu Glu Asp Glu 50 55 60 Gly Ala Thr Val Thr Ser Arg Gln Ile Leu Gly Arg Leu Lys Glu Gly 65 70 75 80 Asn Ser Ala Gly Lys Glu Ser Ser Ala Lys Ala Glu Ser Asn Asp Thr 85 90 95 Thr Pro Ala Gln Arg Gln Thr Ala Ser Leu Glu Glu Glu Ser Ser Asp 100 105 110 Ala Leu Ser Pro Ala Ile Arg Arg Leu Ile Ala Glu His Asn Leu Asp 115 120 125 Ala Ala Gln Ile Lys Gly Thr Gly Val Gly Gly Arg Leu Thr Arg Glu 130 135 140 Asp Val Glu Lys His Leu Ala Asn Lys Pro Gln Ala Glu Lys Ala Ala 145 150 155 160 Ala Pro Ala Ala Gly Ala Ala Thr Ala Gln Gln Pro Val Ala Asn Arg 165 170 175 Ser Glu Lys Arg Val Pro Met Thr Arg Leu Arg Lys Arg Val Ala Glu 180 185 190 Arg Leu Leu Glu Ala Lys Asn Ser Thr Ala Met Leu Thr Thr Phe Asn 195 200 205 Glu Ile Asn Met Lys Pro Ile Met Asp Leu Arg Lys Gln Tyr Gly Asp 210 215 220 Ala Phe Glu Lys Arg His Gly Val Arg Leu Gly Phe Met Ser Phe Tyr 225 230 235 240 Ile Lys Ala Val Val Glu Ala Leu Lys Arg Tyr Pro Glu Val Asn Ala 245 250 255 Ser Ile Asp Gly Glu Asp Val Val Tyr His Asn Tyr Phe Asp Val Ser 260 260 265 270 Ile Ala Val Ser Thr Pro Arg Gly Leu Val Thr Pro Val Leu Arg Asp 275 280 285 Val Asp Ala Leu Ser Met Ala Asp Ile Glu Lys Lys Ile Lys Glu Leu 290 295 300 Ala Val Lys Gly Arg Asp Gly Lys Leu Thr Val Asp Asp Leu Thr Gly 305 310 315 320 Gly Asn Phe Thr Ile Thr Asn Gly Gly Val Phe Gly Ser Leu Met Ser 325 330 335 Thr Pro Ile Ile Asn Pro Pro Gln Ser Ala Ile Leu Gly Met His Ala 340 345 350 Ile Lys Asp Arg Pro Met Ala Val Asn Gly Gln Val Val Ile Leu Pro 355 360 365 Met Met Tyr Leu Ala Leu Ser Tyr Asp His Arg Leu Ile Asp Gly Arg 370 375 380 Glu Ser Val Gly Tyr Leu Val Ala Val Lys Glu Met Leu Glu Asp Pro 385 390 395 400 Ala Arg LeuLeu Leu Asp Val 405

【0081】 <210> 5 <211> 40 <212> PRT <213> Enterobacter agglomerans <400> 5 Met Asn Leu His Glu Tyr Gln Ala Lys Gln Leu Phe Ala Arg Tyr Gly 1 5 10 15 Met Pro Ala Pro Thr Gly Tyr Ala Cys Thr Thr Pro Arg Glu Ala Glu 20 25 30 Glu Ala Ala Ser Lys Ile Gly Ala 35 40<210> 5 <211> 40 <212> PRT <213> Enterobacter agglomerans <400> 5 Met Asn Leu His Glu Tyr Gln Ala Lys Gln Leu Phe Ala Arg Tyr Gly 1 5 10 15 Met Pro Ala Pro Thr Gly Tyr Ala Cys Thr Thr Pro Arg Glu Ala Glu 20 25 30 Glu Ala Ala Ser Lys Ile Gly Ala 35 40

【0082】 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 6 gtcgacaata gccygaatct gttctggtcg 30<210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 6 gtcgacaata gccygaatct gttctggtcg 30

【0083】 <210> 7 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 7 aagcttatcg acgctcccct ccccaccgtt 30<210> 7 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 7 aagcttatcg acgctcccct ccccaccgtt 30

【図面の簡単な説明】[Brief description of the drawings]

【図1】 gltA遺伝子、ppc遺伝子およびgdh
A遺伝子を有するプラスミドpMWCPGの構築を示す
図。
FIG. 1. gltA gene, ppc gene and gdh
The figure which shows construction of the plasmid pMWCPG which has A gene.

【図2】 gdhA遺伝子を有するプラスミドpSTV
Gの構築を示す図。
FIG. 2 Plasmid pSTV having gdhA gene
The figure which shows construction of G.

【図3】 広宿主域プラスミドRSF1010の複製起
点とテトラサイクリン耐性遺伝子を含むプラスミドRS
F−Tetの構築を示す図。
FIG. 3. Plasmid RS containing the origin of replication of the broad host range plasmid RSF1010 and the tetracycline resistance gene
The figure which shows construction of F-Tet.

【図4】 広宿主域プラスミドRSF1010の複製起
点、テトラサイクリン耐性遺伝子、gltA遺伝子、p
pc遺伝子およびgdhA遺伝子を有するプラスミドR
SFCPGの構築を示す図。
FIG. 4. Origin of replication of broad host range plasmid RSF1010, tetracycline resistance gene, gltA gene, p
Plasmid R having pc and gdhA genes
The figure which shows construction of SFCPG.

【図5】 gltA遺伝子を有するプラスミドpMWC
Bの構築を示す図。
FIG. 5: Plasmid pMWC having gltA gene
The figure which shows construction of B.

【図6】 pTWVEK101のエンテロバクター・ア
グロメランス由来DNA断片の制限酵素地図。
FIG. 6 is a restriction map of a DNA fragment derived from Enterobacter agglomerans of pTWVEK101.

【図7】 エンテロバクター・アグロメランス由来のs
ucA遺伝子の塩基配列から予想されるアミノ酸配列
と、エシェリヒア・コリ由来のものとの比較を示す図。
上段:エンテロバクター・アグロメランス、下段:エシ
ェリヒア・コリ(以下、同様)。
FIG. 7: s from Enterobacter agglomerans
The figure which shows the comparison of the amino acid sequence predicted from the base sequence of a ucA gene, and the thing derived from Escherichia coli.
Upper: Enterobacter agglomerans, Lower: Escherichia coli (hereinafter the same).

【図8】 エンテロバクター・アグロメランス由来のs
ucB遺伝子の塩基配列から予想されるアミノ酸配列
と、エシェリヒア・コリ由来のものとの比較を示す図。
FIG. 8: s from Enterobacter agglomerans
The figure which shows the comparison of the amino acid sequence predicted from the base sequence of ucB gene, and the thing derived from Escherichia coli.

【図9】 エンテロバクター・アグロメランス由来のs
dhB遺伝子の塩基配列から予想されるアミノ酸配列
と、エシェリヒア・コリ由来のものとの比較を示す図。
FIG. 9: s from Enterobacter agglomerans
The figure which shows the comparison of the amino acid sequence predicted from the base sequence of a dhB gene, and the thing derived from Escherichia coli.

【図10】 エンテロバクター・アグロメランス由来の
sucC遺伝子の塩基配列から予想されるアミノ酸配列
と、エシェリヒア・コリ由来のものとの比較を示す図。
FIG. 10 is a view showing a comparison between the amino acid sequence predicted from the nucleotide sequence of the sucC gene derived from Enterobacter agglomerans and that derived from Escherichia coli.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12R 1:01) (C12N 1/20 C12R 1:425) (C12P 13/14 C12R 1:01) (C12P 13/14 C12R 1:425) (72)発明者 松井 和彦 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社発酵技術研究所内 (72)発明者 守屋 美加 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社発酵技術研究所内 (72)発明者 伊藤 久生 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社発酵技術研究所内 (72)発明者 原 吉彦 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社発酵技術研究所内 Fターム(参考) 4B024 AA03 BA74 GA19 4B064 AE19 CA02 DA01 DA10 DA16 4B065 AA01X AA48X AC15 BA22 CA17 CA41 CA44 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C12R 1:01) (C12N 1/20 C12R 1: 425) (C12P 13/14 C12R 1:01) (C12P 13/14 C12R 1: 425) (72) Inventor Kazuhiko Matsui 1-1, Suzukicho, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Ajinomoto Co., Inc. Fermentation Research Laboratory (72) Mika Moriya Suzukicho, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture 1-1 Ajinomoto Co., Ltd. Fermentation Technology Research Laboratories (72) Inventor Hisao Ito 1-1 Ajinomoto Co., Ltd. Fermentation Technology Research Laboratories, Kawasaki City, Kawasaki City, Kanagawa Prefecture (72) Inventor Yoshihiko Hara Kawasaki City, Kanagawa Prefecture 1-1 Fuzume, Ajinomoto Co., Ltd. Fermentation Technology Research Laboratories, Ajinomoto Co., Ltd. 4B024 AA03 BA74 GA19 4B064 AE19 CA02 DA01 DA10 DA16 4B065 AA01X AA48X AC15 BA22 CA1 7 CA41 CA44

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 エンテロバクター属あるいはセラチア属
に属し、下記の性質の少なくとも一方を有し、かつL−
グルタミン酸生産能を有する微生物: (a)L−グルタミン酸の生合成反応を触媒する酵素の
活性が高められている、(b)L−グルタミン酸の生合
成経路から分岐してL−グルタミン酸以外の化合物を生
成する反応を触媒する酵素の活性が低下または欠損して
いる。
1. A genus belonging to the genus Enterobacter or Serratia, having at least one of the following properties, and
A microorganism capable of producing glutamic acid: (a) an activity of an enzyme that catalyzes a biosynthesis reaction of L-glutamic acid is enhanced, and (b) a compound other than L-glutamic acid that is branched from the L-glutamic acid biosynthetic pathway. The activity of the enzyme that catalyzes the resulting reaction is reduced or missing.
【請求項2】 L−グルタミン酸の生合成反応を触媒す
る酵素が、クエン酸シンターゼ、フォスフォエノールピ
ルベートカルボキシラーゼ、およびグルタミン酸デヒド
ロゲナーゼから選ばれる請求項1記載の微生物。
2. The microorganism according to claim 1, wherein the enzyme that catalyzes the biosynthesis reaction of L-glutamic acid is selected from citrate synthase, phosphoenolpyruvate carboxylase, and glutamate dehydrogenase.
【請求項3】 L−グルタミン酸の生合成反応を触媒す
る酵素が、クエン酸シンターゼ、フォスフォエノールピ
ルベートカルボキシラーゼ、およびグルタミン酸デヒド
ロゲナーゼのすべてである請求項2記載の微生物。
3. The microorganism according to claim 2, wherein the enzyme that catalyzes the biosynthesis reaction of L-glutamic acid is all of citrate synthase, phosphoenolpyruvate carboxylase, and glutamate dehydrogenase.
【請求項4】 L−グルタミン酸の生合成経路から分岐
してL−グルタミン酸以外の化合物を生成する反応を触
媒する酵素がα−ケトグルタル酸デヒドロゲナーゼであ
る請求項1〜3のいずれか一項に記載の微生物。
4. The enzyme according to claim 1, wherein the enzyme that catalyzes a reaction for producing a compound other than L-glutamic acid by branching off from the L-glutamic acid biosynthetic pathway is α-ketoglutarate dehydrogenase. Microorganisms.
【請求項5】 微生物がエンテロバクター・アグロメラ
ンスまたはセラチア・リクエファシエンスに属する請求
項1〜4のいずれか一項に記載の微生物。
5. The microorganism according to any one of claims 1 to 4, wherein the microorganism belongs to Enterobacter agglomerans or Serratia requifaciens.
【請求項6】 請求項1〜5のいずれか一項に記載の微
生物を液体培地に培養し、培地中にL−グルタミン酸を
生成蓄積せしめ、これを該培地から採取することを特徴
とするL−グルタミン酸の製造法。
6. The method according to claim 1, wherein the microorganism according to claim 1 is cultured in a liquid medium, L-glutamic acid is produced and accumulated in the medium, and the L-glutamic acid is collected from the medium. -A method for producing glutamic acid.
JP06834399A 1998-03-18 1999-03-15 L-glutamic acid-producing bacterium and method for producing L-glutamic acid Expired - Lifetime JP4144098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06834399A JP4144098B2 (en) 1998-03-18 1999-03-15 L-glutamic acid-producing bacterium and method for producing L-glutamic acid

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP10-69068 1998-03-18
JP6906898 1998-03-18
JP29712998 1998-10-19
JP10-297129 1998-10-19
JP06834399A JP4144098B2 (en) 1998-03-18 1999-03-15 L-glutamic acid-producing bacterium and method for producing L-glutamic acid

Publications (2)

Publication Number Publication Date
JP2000189169A true JP2000189169A (en) 2000-07-11
JP4144098B2 JP4144098B2 (en) 2008-09-03

Family

ID=27299713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06834399A Expired - Lifetime JP4144098B2 (en) 1998-03-18 1999-03-15 L-glutamic acid-producing bacterium and method for producing L-glutamic acid

Country Status (1)

Country Link
JP (1) JP4144098B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171961A (en) * 2000-12-11 2002-06-18 Japan Tobacco Inc New yeast and yeast extract
JP2002238593A (en) * 2001-02-20 2002-08-27 Ajinomoto Co Inc Method for producing l-glutamic acid
JP2002238591A (en) * 2001-02-20 2002-08-27 Ajinomoto Co Inc Method for producing l-glutamic acid
JP2005278643A (en) * 2004-03-04 2005-10-13 Ajinomoto Co Inc L-glutamic acid-producing microorganism and method for producing l-glutamic acid
WO2008075483A1 (en) 2006-12-19 2008-06-26 Ajinomoto Co., Inc. Process for production of l-amino acid
WO2008090770A1 (en) 2007-01-22 2008-07-31 Ajinomoto Co., Inc. Microorganism capable of producing l-amino acid, and method for production of l-amino acid
WO2008114721A1 (en) 2007-03-14 2008-09-25 Ajinomoto Co., Inc. Microorganism capable of producing l-glutamic acid-type amino acid, and method for production of amino acid
WO2008133161A1 (en) 2007-04-17 2008-11-06 Ajinomoto Co., Inc. Method for production of acidic substance having carboxyl group
WO2010027022A1 (en) 2008-09-05 2010-03-11 味の素株式会社 Bacterium capable of producing l-amino acid, and method for producing l-amino acid
WO2011024583A1 (en) 2009-08-25 2011-03-03 味の素株式会社 Process for production of l-amino acid
US8222007B2 (en) 2006-08-18 2012-07-17 Ajinomoto Co., Inc. L-glutamic acid producing bacterium and a method for producing L-glutamic acid
WO2012147989A1 (en) 2011-04-25 2012-11-01 Ajinomoto Co.,Inc. A method for producing an l-amino acid belonging to the glutamate family, using a coryneform bacterium
WO2013069634A1 (en) 2011-11-11 2013-05-16 味の素株式会社 Method for producing target substance by fermentation

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171961A (en) * 2000-12-11 2002-06-18 Japan Tobacco Inc New yeast and yeast extract
JP4638591B2 (en) * 2000-12-11 2011-02-23 日本たばこ産業株式会社 New yeast and yeast extract
JP2002238593A (en) * 2001-02-20 2002-08-27 Ajinomoto Co Inc Method for producing l-glutamic acid
JP2002238591A (en) * 2001-02-20 2002-08-27 Ajinomoto Co Inc Method for producing l-glutamic acid
JP4599726B2 (en) * 2001-02-20 2010-12-15 味の素株式会社 Method for producing L-glutamic acid
JP4599725B2 (en) * 2001-02-20 2010-12-15 味の素株式会社 Method for producing L-glutamic acid
JP2005278643A (en) * 2004-03-04 2005-10-13 Ajinomoto Co Inc L-glutamic acid-producing microorganism and method for producing l-glutamic acid
JP4665558B2 (en) * 2004-03-04 2011-04-06 味の素株式会社 L-glutamic acid-producing microorganism and method for producing L-glutamic acid
US8222007B2 (en) 2006-08-18 2012-07-17 Ajinomoto Co., Inc. L-glutamic acid producing bacterium and a method for producing L-glutamic acid
WO2008075483A1 (en) 2006-12-19 2008-06-26 Ajinomoto Co., Inc. Process for production of l-amino acid
WO2008090770A1 (en) 2007-01-22 2008-07-31 Ajinomoto Co., Inc. Microorganism capable of producing l-amino acid, and method for production of l-amino acid
WO2008114721A1 (en) 2007-03-14 2008-09-25 Ajinomoto Co., Inc. Microorganism capable of producing l-glutamic acid-type amino acid, and method for production of amino acid
EP2657332A1 (en) 2007-03-14 2013-10-30 Ajinomoto Co., Inc. Methods for producing an amino acid of the L-glutamic acid family
WO2008133161A1 (en) 2007-04-17 2008-11-06 Ajinomoto Co., Inc. Method for production of acidic substance having carboxyl group
WO2010027022A1 (en) 2008-09-05 2010-03-11 味の素株式会社 Bacterium capable of producing l-amino acid, and method for producing l-amino acid
WO2011024583A1 (en) 2009-08-25 2011-03-03 味の素株式会社 Process for production of l-amino acid
WO2012147989A1 (en) 2011-04-25 2012-11-01 Ajinomoto Co.,Inc. A method for producing an l-amino acid belonging to the glutamate family, using a coryneform bacterium
WO2013069634A1 (en) 2011-11-11 2013-05-16 味の素株式会社 Method for producing target substance by fermentation

Also Published As

Publication number Publication date
JP4144098B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
EP1462523B1 (en) L-Glutamic acid-producing bacterium and method for producing L-glutamic acid
KR100638497B1 (en) L-Glutamic acid-producing bacterium and method for producing L-glutamic acid
JP4427878B2 (en) Method for producing L-glutamic acid by fermentation method with precipitation
US6596517B2 (en) Method for producing L-glutamic acid
JP4285582B2 (en) L-glutamic acid-producing bacterium and method for producing L-glutamic acid
JP4599726B2 (en) Method for producing L-glutamic acid
AU2003202509A1 (en) Method for producing L-amino acid
JP4292724B2 (en) Organic nitrogen-containing composition and fertilizer containing the same
JP4144098B2 (en) L-glutamic acid-producing bacterium and method for producing L-glutamic acid
JP3921866B2 (en) L-glutamic acid-producing bacterium and method for producing L-glutamic acid
JP4144131B2 (en) L-glutamic acid-producing bacterium and method for producing L-glutamic acid
JP4599725B2 (en) Method for producing L-glutamic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term