JP2000185950A - Stacked optical thin film and its production - Google Patents

Stacked optical thin film and its production

Info

Publication number
JP2000185950A
JP2000185950A JP10366440A JP36644098A JP2000185950A JP 2000185950 A JP2000185950 A JP 2000185950A JP 10366440 A JP10366440 A JP 10366440A JP 36644098 A JP36644098 A JP 36644098A JP 2000185950 A JP2000185950 A JP 2000185950A
Authority
JP
Japan
Prior art keywords
organic compound
thin film
optical thin
film
sublimable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10366440A
Other languages
Japanese (ja)
Other versions
JP3928066B2 (en
Inventor
Takashi Hiraga
隆 平賀
Kunie Chin
國榮 陳
Tetsuo Moriya
哲郎 守谷
Norio Tanaka
教雄 田中
Hiromitsu Yanagimoto
宏光 柳本
Ichiro Ueno
一郎 上野
Koji Tsujita
公二 辻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Victor Company of Japan Ltd
Original Assignee
Agency of Industrial Science and Technology
Dainichiseika Color and Chemicals Mfg Co Ltd
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Dainichiseika Color and Chemicals Mfg Co Ltd, Victor Company of Japan Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP36644098A priority Critical patent/JP3928066B2/en
Publication of JP2000185950A publication Critical patent/JP2000185950A/en
Application granted granted Critical
Publication of JP3928066B2 publication Critical patent/JP3928066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a stacked optical thin film having reduced light scattering, high durability and higher performance by making a sublimable, crystalline organic compound exist as an amorphous compound, a microcrystalline one or solid solution. SOLUTION: When this stacked optical thin film is produced by putting the powder or film of a meltable organic compound between the substrate surface deposited with a sublimable organic compound and the second substrate, by melting the meltable organic compound under a vacuum and heated condition and then by subjecting two substrates to compression bonding, the sublimable organic compound is in at least one kind selected from following states: (1) an amorphous state; (2) a microcrystalline state where the diameter of a crystal grain doesn't exceed one fifth times the wavelength of light applied to the stacked optical thin film; (3) solid solution where the meltable organic compound is adopted as medium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、積層型光学薄膜
およびその製造方法に関するものである。さらに詳しく
は、この発明は、波長選択透過膜、反射膜、光非線形効
果膜、光電変換装置、フォトクロミック素子、熱レンズ
効果素子等の光技術、オプトエレクトロニクス技術に有
用な、高機能性かつ高耐久性の積層型光学薄膜に関し、
更に積層型光学薄膜を高品質、高効率で製造することの
できる新しい製造方法に関するものである。
The present invention relates to a laminated optical thin film and a method for producing the same. More specifically, the present invention is useful for optical technology such as wavelength selective transmission film, reflection film, optical nonlinear effect film, photoelectric conversion device, photochromic device, thermal lens effect device, and optoelectronic technology, and has high functionality and high durability. Regarding the laminated optical thin film,
Further, the present invention relates to a new manufacturing method capable of manufacturing a laminated optical thin film with high quality and high efficiency.

【0002】[0002]

【従来の技術】従来より、各種の組成からなる光学薄膜
が様々な応用分野において使用されており、光の吸収あ
るいは干渉を利用した波長選択透過や反射機能を利用し
たものが古くから知られている。そして特に近年は、レ
ーザー光を利用したオプトエレクトロニクスの分野にお
いて、用途面では光の多重性を利用した情報の多元並列
高速処理のための応用や、現象面では光非線形効果ない
し光電気効果の応用のため、従来とは異なる高い機能を
有する光学薄膜の開発が盛んに進められている。
2. Description of the Related Art Conventionally, optical thin films having various compositions have been used in various application fields, and those utilizing a wavelength selective transmission or reflection function utilizing light absorption or interference have been known for a long time. I have. In recent years, especially in the field of optoelectronics using laser light, in terms of applications, applications for multi-parallel high-speed processing of information using the multiplexing of light, and in terms of phenomena, applications of optical nonlinear effect or photoelectric effect. Therefore, development of an optical thin film having a high function different from the conventional one has been actively promoted.

【0003】このような新しい高機能光学薄膜を形成す
るための素材、その組成として注目されているものに有
機系光学材料がある。この有機系光学材料を用いた有機
系光学薄膜の製造方法についても各種の検討がこれまで
にも進められており、たとえば以下のような方法が知ら
れている。
An organic optical material has attracted attention as a material for forming such a new high-performance optical thin film and as a composition thereof. Various studies have been made on a method of manufacturing an organic optical thin film using the organic optical material, and the following methods are known, for example.

【0004】(1)溶液、分散液、または、展開液を用
いる湿式法 塗布法、ブレードコート法、ロールコート法、スピンコ
ート法、ディッピング法、スプレー法などの塗工法、平
版、凸版、凹版、孔版、スクリーン、転写などの印刷
法、電着法、電解重合法、ミセル電解法(特開昭63−
243298号報)などの電気化学的手法、水の上に形
成させた単分子膜を移し取るラングミア・ブロジェット
法など。
(1) Wet method using solution, dispersion liquid or developing solution Coating method such as coating method, blade coating method, roll coating method, spin coating method, dipping method, spraying method, planographic printing, letterpress printing, intaglio printing, Printing method such as stencil, screen, transfer, etc., electrodeposition method, electrolytic polymerization method, micellar electrolytic method
243298), a Langmuir-Blodgett method of transferring a monomolecular film formed on water, and the like.

【0005】(2)原料モノマーの重合ないし重縮合反
応を利用する方法 モノマーが液体の場合、キャスティング法、リアクショ
ン・インジェクション・モールド法、プラズマ重合法、
光重合法など。
(2) Method of utilizing polymerization or polycondensation reaction of raw material monomers When the monomer is a liquid, a casting method, a reaction injection molding method, a plasma polymerization method,
Photopolymerization method.

【0006】(3)気体分子を用いる方法(加熱による
気化法) 昇華転写法、蒸着法、真空蒸着法、イオンビーム法、ス
パッタリング法、プラズマ重合法、光重合法など。
(3) Method using gas molecules (vaporization method by heating) Sublimation transfer method, evaporation method, vacuum evaporation method, ion beam method, sputtering method, plasma polymerization method, photopolymerization method and the like.

【0007】(4)溶融あるいは軟化を利用する方法 ホットプレス法(特開平4−99609号報)、溶媒再
沈殿・加熱溶融法(特開平6−263885号報)、射
出成形法、延伸法、溶融薄膜の単結晶化方法など。
(4) Method utilizing melting or softening Hot press method (Japanese Patent Application Laid-Open No. 4-99609), solvent reprecipitation / heat melting method (Japanese Patent Application Laid-Open No. 6-263885), injection molding method, stretching method, Single crystallization method of molten thin film.

【0008】(5)真空下に置いた基板上に溶液または
分散液を噴霧する方法 特開平6−306181号報および特開平7−2526
71号報に記載の方法。一般に、有機系光学材料を用い
た有機系光学薄膜を実用に給するためには、基本的要件
として、次のような現象を充分に制御する必要がある。 [1]使用する光の波長帯域における光の散乱。 [2]使用する光の波長帯域における光の吸収。 [3]光照射にともなう温度上昇による揮発成分の蒸発
・発泡。
(5) A method of spraying a solution or a dispersion on a substrate placed in a vacuum. JP-A-6-306181 and JP-A-7-2526
The method described in No. 71. Generally, in order to practically use an organic optical thin film using an organic optical material, it is necessary to sufficiently control the following phenomena as basic requirements. [1] Light scattering in the wavelength band of light used. [2] Light absorption in the wavelength band of light used. [3] Evaporation / foaming of volatile components due to temperature rise due to light irradiation.

【0009】まず、有機系光学材料を用いた有機系光学
薄膜に要求される基本的要件の第1点として、使用する
光の波長帯域における光の散乱が極めて重要である。液
晶ディスプレイの光源光を散乱させ、均一化させるため
の光拡散膜のように、光を散乱させることを目的とする
場合を除き、使用する光の波長帯域における光の散乱は
少なければ少ないほど好ましい。有機系光学薄膜が結晶
性の高い有機化合物を含有している場合、光の散乱を小
さくするためには、結晶性有機化合物の単結晶薄膜を用
いる方法、結晶性有機化合物の結晶サイズを使用する光
の波長帯域における光の波長に比べ著しく小さくする
(例えば、波長の1/10以下とする)方法、結晶性有
機化合物を単独で、あるいは他の成分と共存させて非晶
質として存在させる方法、および、マトリックス材料中
に分子分散させる方法がある。
First, as the first basic requirement of an organic optical thin film using an organic optical material, scattering of light in a wavelength band of light to be used is extremely important. Light scattering of the light source of the liquid crystal display, such as a light diffusing film for homogenizing, except for the purpose of scattering light, the smaller the light scattering in the wavelength band of the light used, the better. . When the organic optical thin film contains an organic compound having high crystallinity, a method using a single crystal thin film of a crystalline organic compound, and a method using a crystal size of the crystalline organic compound are used to reduce light scattering. A method of making the wavelength significantly smaller than the wavelength of light in the light wavelength band (for example, 1/10 or less of the wavelength), and a method of allowing a crystalline organic compound to exist as an amorphous state alone or in combination with other components. And a method of dispersing molecules in a matrix material.

【0010】[0010]

【発明が解決しようとする課題】上記のような従来の成
膜方法を用いて、結晶性の高い有機化合物を含有した光
学薄膜を光散乱が小さくなるよう作成しようとした場
合、次のような種々の課題がある。
When an optical thin film containing an organic compound having a high crystallinity is to be formed so as to reduce light scattering by using the conventional film forming method as described above, the following problem arises. There are various issues.

【0011】結晶性有機化合物の単結晶薄膜の場合、 (1)溶融薄膜の単結晶化方法が各種提案されている
が、この方法を適用できるのは融点を示す化合物に限定
される。 (2)溶融温度における熱分解を避けることは容易でな
い。 (3)単結晶の方位に対応して、膜に異方性が生じるこ
とを避けることができない。
In the case of a single crystal thin film of a crystalline organic compound, (1) Various methods for single crystallization of a molten thin film have been proposed, but this method can be applied only to compounds showing a melting point. (2) It is not easy to avoid thermal decomposition at the melting temperature. (3) Anisotropy in the film cannot be avoided corresponding to the orientation of the single crystal.

【0012】結晶性有機化合物の結晶の場合、 (1)結晶性有機化合物の微結晶を媒体またはマトリッ
クス材料の液状前駆体(例えば重合性オリゴマー、モノ
マーなど)に分散させて湿式で成膜する場合、結晶成長
を防止することは容易でない。特に、可視光線の波長の
1/10以下、すなわち、40nmないし75nmの粒
子サイズで結晶性有機化合物の微結晶を安定に存在させ
るには結晶成長抑制成分や界面活性剤を添加する必要が
ある等、制約が多い。
In the case of a crystal of a crystalline organic compound, (1) a case where microcrystals of the crystalline organic compound are dispersed in a medium or a liquid precursor of a matrix material (for example, a polymerizable oligomer or monomer) to form a film by a wet method; However, it is not easy to prevent crystal growth. In particular, it is necessary to add a crystal growth-inhibiting component or a surfactant in order to stably allow microcrystals of the crystalline organic compound to have a particle size of 1/10 or less of the wavelength of visible light, that is, 40 to 75 nm. , There are many restrictions.

【0013】(2)前記湿式法やキャスティング法で成
膜する場合、媒体またはマトリックス材料の前駆体など
の揮発成分が光学薄膜中に残留することを避けることが
できない。薄膜の厚さが1μmを越えない場合、高真空
下で加熱処理を長時間行うことによって、揮発成分の大
部分を除去することは可能である。しかし、膜厚が、例
えば10μmを越える場合、高真空下で加熱処理を長時
間行ったとしても、揮発成分は光学薄膜中に残留し、光
学薄膜の光パワー耐久性を著しく損なう。すなわち、高
パワー密度の光が通過する際、揮発成分が薄膜中で気化
して気泡となり、光学薄膜を損傷させる。
(2) When a film is formed by the above-mentioned wet method or casting method, it is impossible to avoid that volatile components such as a medium or a precursor of a matrix material remain in the optical thin film. When the thickness of the thin film does not exceed 1 μm, it is possible to remove most of the volatile components by performing the heat treatment under high vacuum for a long time. However, when the film thickness exceeds, for example, 10 μm, even if the heat treatment is performed for a long time under a high vacuum, volatile components remain in the optical thin film, and the optical power durability of the optical thin film is significantly impaired. That is, when light with a high power density passes, the volatile components evaporate in the thin film to form bubbles, which damage the optical thin film.

【0014】結晶性有機化合物を非晶質化させる場合、 (1)結晶性有機化合物の類似構造体を複数種類混合し
て存在させると、速度論的制御によって非平衡状態が実
現、すなわち非晶質化できる。しかしながら、あくまで
準安定状態であり、光照射による温度上昇などをきっか
けにして結晶化が進行する恐れがある。 (2)基板温度を制御することによって非平衡条件で真
空蒸着を行うと、結晶性有機化合物を単独で用いても、
非晶質としての蒸着膜を得ることができる。しかしなが
ら、速度論的に凍結された状態であり、光照射による温
度上昇などをきっかけにして結晶化が進行する恐れがあ
る。
When the crystalline organic compound is made amorphous: (1) When a plurality of similar structures of the crystalline organic compound are mixed and present, a non-equilibrium state is realized by kinetic control, Quality. However, it is in a metastable state to the last, and crystallization may proceed due to a rise in temperature due to light irradiation or the like. (2) When vacuum deposition is performed under non-equilibrium conditions by controlling the substrate temperature, even if a crystalline organic compound is used alone,
An amorphous deposited film can be obtained. However, it is in a kinetic frozen state, and crystallization may proceed due to a temperature rise due to light irradiation or the like.

【0015】マトリックス材料中、分子分散(固溶化)
させる場合、 (1)マトリックス材料が必須であり、溶質成分の高濃
度化に限界がある。 (2)マトリックス材料に固溶化する性質の有機化合物
しか使用できない。
Molecular dispersion (solid solution) in matrix material
In this case, (1) a matrix material is essential, and there is a limit to increasing the concentration of a solute component. (2) Only organic compounds having the property of solid solution in the matrix material can be used.

【0016】次に、有機系光学材料を用いた有機系光学
薄膜に要求される基本的要件の第2点として、使用する
光の波長帯域における光の吸収が極めて重要である。波
長選択透過膜、光電変換装置、熱レンズ効果素子などに
おいて、有機光学材料はその吸収帯域の光に対して使用
される。そこで吸収されたエネルギーのかなりの部分は
熱エルギーに変換される。ここで、有機系光学薄膜が結
晶性の高い有機化合物を含有している場合、該化合物が
結晶として存在すると、吸収された熱が結晶外部へ放散
するのに時間を要するため結果的に結晶内に蓄積されや
すく、容易に熱分解開始温度まで到達し、光学薄膜の光
パワー耐久性が著しく低下する。
Next, as a second basic requirement required for an organic optical thin film using an organic optical material, absorption of light in a wavelength band of light to be used is extremely important. In a wavelength selective transmission film, a photoelectric conversion device, a thermal lens effect element, and the like, an organic optical material is used for light in its absorption band. There, a significant portion of the absorbed energy is converted to thermal energy. Here, when the organic optical thin film contains an organic compound having a high crystallinity, if the compound is present as a crystal, it takes time for the absorbed heat to radiate to the outside of the crystal, and as a result, the inside of the crystal becomes , Easily reach the thermal decomposition start temperature, and the optical power durability of the optical thin film is significantly reduced.

【0017】第3に、有機系光学材料を用いた有機系光
学薄膜から、光照射にともなう温度上昇によって気化す
る成分を徹底的に除去する必要がある。特に高パワーの
レーザー光を収束させて照射するような使用形態におい
て重要である。前述のように、前記湿式法やキャスティ
ング法など湿式で成膜する場合だけでなく、溶融あるい
は軟化を利用する方法や真空下に置いた基板上に溶液ま
たは分散液を噴霧する方法を用いる場合であっても、成
膜材料の段階または成膜工程のいずれかの段階におい
て、有機系光学材料を用いた有機系光学薄膜を徹底的に
脱気処理する必要がある。ここで、有機系光学材料が昇
華性の高い有機化合物を含有している場合、脱気処理の
際、昇華性成分が昇華して失われ、有機系光学材料の組
成が所定の割合から外れてしまうという問題がある。
Third, it is necessary to thoroughly remove components that evaporate due to a temperature rise accompanying light irradiation from an organic optical thin film using an organic optical material. In particular, it is important in a usage form in which a high-power laser beam is converged and irradiated. As described above, not only when forming a film by a wet method such as the wet method or the casting method, but also when using a method utilizing melting or softening or a method of spraying a solution or dispersion liquid on a substrate placed under vacuum. Even in such a case, it is necessary to thoroughly degas the organic optical thin film using the organic optical material at any stage of the film forming material or the film forming process. Here, when the organic optical material contains an organic compound having a high sublimation property, during the deaeration treatment, the sublimable component is sublimated and lost, and the composition of the organic optical material deviates from a predetermined ratio. Problem.

【0018】そこで、この発明は、以上の通りの従来技
術の欠点を解消し、昇華性かつ結晶性の有機化合物を非
晶質状態、微小結晶状態、または固溶体として存在さ
せ、光散乱を低減させた、耐久性の高い、より高機能な
積層型光学薄膜を提供することを目的とする。
Accordingly, the present invention solves the above-mentioned drawbacks of the prior art and reduces the light scattering by allowing a sublimable and crystalline organic compound to exist in an amorphous state, a fine crystalline state, or a solid solution. It is another object of the present invention to provide a highly durable laminated optical thin film having higher functionality.

【0019】この発明は、また、昇華性の高い有機化合
物を所定の割合で含有し、かつ、揮発性の不純物を含有
せず、さらに光照射による非晶質の結晶化や微結晶の結
晶成長を抑制して、高パワー密度の光照射に耐える、よ
り高機能な積層型光学薄膜を効率良く製造するための積
層型光学薄膜の製造方法を提供することを目的としてい
る。
According to the present invention, there is also provided an organic compound having a high sublimation property at a predetermined ratio, containing no volatile impurities, and furthermore, crystallization of amorphous or crystal growth of microcrystals by light irradiation. It is an object of the present invention to provide a method of manufacturing a multilayer optical thin film for efficiently manufacturing a higher-performance multilayer optical thin film that can withstand high-power-density light irradiation.

【0020】[0020]

【課題を解決するための手段】この発明は、上記課題を
解決するために、昇華性有機化合物が蒸着された第1基
板の蒸着面と第2の基板の間に溶融性有機化合物の粉末
または膜を挟み、真空下、加熱して前記溶融性有機化合
物を溶融させる工程および前記第1、第2基板を圧着さ
せる工程によって製造される積層型光学薄膜であって、
前記昇華性有機化合物が、下記の3つの状態からなる群
の中から選択される少なくとも1つの状態にあることを
特徴とする積層型光学薄膜を提供する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method of forming a powder of a fusible organic compound between a deposition surface of a first substrate on which a sublimable organic compound is deposited and a second substrate. Sandwiching a film, heating under vacuum, a step of melting the fusible organic compound and a step of pressing the first and second substrates, a laminated optical thin film produced by the step of:
There is provided a laminated optical thin film wherein the sublimable organic compound is in at least one state selected from the group consisting of the following three states.

【0021】(a)非晶質状態、(b)結晶粒子径が積
層型光学薄膜に照射される光の波長の1/5を越えない
大きさの微小結晶状態、(c)前記溶融性有機化合物を
媒質とする固溶体。
(A) an amorphous state, (b) a microcrystalline state having a crystal particle diameter not exceeding 1/5 of the wavelength of light irradiated to the laminated optical thin film, (c) the fusible organic material A solid solution using a compound as a medium.

【0022】この発明は、また、上記課題を解決するた
めに、昇華性有機化合物が蒸着された2枚の基板の昇華
性有機化合物蒸着面を互いに向かい合わせ、その間に溶
融性有機化合物の粉末または膜を挟み、真空下、加熱し
て前記溶融性有機化合物を溶融させ、更に2枚の基板を
圧着させることによって製造される積層型光学薄膜であ
って、前記昇華性有機化合物が下記の3つの状態の中か
ら選択される少なくとも1つの状態であることを特徴と
する積層型光学薄膜を提供する。
According to the present invention, in order to solve the above-mentioned problems, the sublimable organic compound vapor-deposited surfaces of the two substrates on which the sublimable organic compound is vapor-deposited face each other, and the powder of the fusible organic compound or A laminated optical thin film produced by sandwiching a film, heating under vacuum to melt the fusible organic compound, and pressing two substrates together, wherein the sublimable organic compound comprises the following three components: There is provided a laminated optical thin film characterized by being in at least one state selected from states.

【0023】(a)非晶質状態、(b)結晶粒子径が積
層型光学薄膜に照射される光の波長の1/5を越えない
大きさの微小結晶状態、(c)前記溶融性有機化合物を
媒質とする固溶体。
(A) an amorphous state, (b) a microcrystalline state in which the crystal particle diameter does not exceed 1/5 of the wavelength of light applied to the laminated optical thin film, (c) the fusible organic material A solid solution using a compound as a medium.

【0024】この発明は、また、上記課題を解決するた
めに、少なくとも、第1基板の1面に有機化合物を蒸着
する工程と、前記有機化合物が蒸着された前記第1基板
の蒸着面と第2の基板の間に溶融性有機化合物の粉末ま
たは膜を挟み、真空下、加熱して前記溶融性有機化合物
を溶融させ、更に前記第1、第2基板を圧着させる工程
と、を含むことを特徴とする積層型光学薄膜の製造方法
を提供する。
In order to solve the above-mentioned problems, the present invention provides a method of depositing an organic compound on at least one surface of a first substrate, and a step of depositing an organic compound on the first substrate on which the organic compound is deposited. Sandwiching a powder or a film of a fusible organic compound between the two substrates, heating under vacuum to melt the fusible organic compound, and further pressing the first and second substrates. A method for producing a laminated optical thin film is provided.

【0025】少なくとも、2枚の基板の各々1面に昇華
性有機化合物を蒸着する工程と、前記2枚の基板の前記
有機化合物が蒸着された面を向き合わせ、その間に溶融
性有機化合物の粉末または膜を挟み、真空下、加熱して
前記溶融性有機化合物を溶融させ、更に2枚の基板を圧
着させる工程と、を含むことを特徴とする積層型光学薄
膜の製造方法を提供する。
A step of depositing a sublimable organic compound on at least one surface of each of the two substrates; and a step of facing the surfaces of the two substrates on which the organic compound is deposited, and interposing a powder of the fusible organic compound therebetween. Alternatively, there is provided a method for producing a laminated optical thin film, comprising: a step of sandwiching the film, heating under vacuum to melt the fusible organic compound, and pressing two substrates together.

【0026】いずれの製造方法の場合も、上記の工程に
先んじて、基板表面を例えば高真空下で浄化処理する工
程を行っても良い。また、圧着工程に引き続き、積層膜
の端面から水や酸素が侵入して悪影響を及ぼすのを防ぐ
目的、および、昇華性成分が端面から徐々に昇華して失
われるのを防ぐ目的で2枚の基板の周辺部分にモールデ
ィングを施す工程を加えても良い。
In any of the manufacturing methods, a step of purifying the substrate surface, for example, under a high vacuum may be performed prior to the above steps. Further, following the pressure bonding step, two sheets are used for the purpose of preventing water and oxygen from penetrating from the end face of the laminated film and adversely affecting the same, and for preventing the sublimable component from gradually sublimating and being lost from the end face. A step of molding the peripheral portion of the substrate may be added.

【0027】[0027]

【発明の実施の形態】〔昇華性かつ結晶性有機化合物の
例〕まず、2次非線形光学効果を示す単結晶を形成する
有機低分子化合物を挙げることができる。具体例として
は、尿素およびその誘導体、m−ニトロアニリン、2−
メチル−4−ニトロ−アニリン、2−(N,N−ジメチ
ルアミノ)−5−ニトロアセトアニリド、N,N’−ビ
ス(4−ニトロフェニル)メタンジアミンなどのベンゼ
ン誘導体、4−メトキシ−4’−ニトロビフェニルなど
のビフェニル誘導体、4−メトキシ−4’−ニトロスチ
ルベンなどのスチルベン誘導体、4−ニトロ−3−ピコ
リン=N−オキシド、(S)−(−)−N−(5−ニト
ロ−2−ピリジル)プロリノールなどのピリジン誘導
体、2’,4,4’−トリメトキシカルコンなどのカル
コン誘導体、チエニルカルコン誘導体などを挙げること
ができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [Example of Sublimable and Crystalline Organic Compound] First, an organic low-molecular compound which forms a single crystal exhibiting a second-order nonlinear optical effect can be mentioned. Specific examples include urea and its derivatives, m-nitroaniline, 2-
Benzene derivatives such as methyl-4-nitro-aniline, 2- (N, N-dimethylamino) -5-nitroacetanilide, N, N'-bis (4-nitrophenyl) methanediamine, 4-methoxy-4'- Biphenyl derivatives such as nitrobiphenyl, stilbene derivatives such as 4-methoxy-4'-nitrostilbene, 4-nitro-3-picoline = N-oxide, (S)-(-)-N- (5-nitro-2- Examples thereof include pyridine derivatives such as (pyridyl) prolinol, chalcone derivatives such as 2 ′, 4,4′-trimethoxychalcone, and thienylchalcone derivatives.

【0028】次に、紫外〜可視光線〜近赤外線の波長帯
域において光吸収を示し、昇華性かつ結晶性の有機化合
物(有機色素)の具体例として、ポルフィリン系色素、
フタロシアニン系色素、ナフトキノン系色素、アントラ
キノン系色素、ナフタレンテトラカルボン酸ジイミド系
色素、ペリレンテトラカルボン酸ジイミド系色素などを
挙げることができる。
Next, as a specific example of a sublimable and crystalline organic compound (organic dye), which exhibits light absorption in a wavelength band from ultraviolet to visible light to near infrared, a porphyrin dye,
Examples include phthalocyanine dyes, naphthoquinone dyes, anthraquinone dyes, naphthalenetetracarboxylic diimide dyes, and perylenetetracarboxylic diimide dyes.

【0029】また、フォトクロミック現象を起こし、昇
華性かつ結晶性の有機化合物として、6−ブロモ−
1’,3’−ジヒドロ−1’,3’,3’−トリメチル
−8−ニトロスピロ[2H−1−ベンゾピラン−2,
2’−(2H)−インドール]、5−クロロ−1,3−
ジヒドロ−1,3,3−トリメチルスピロ[2H−イン
ドール−2,3’−[3H]ナフト[2,1−b]
[1,4]オキサジン]、5−クロロ−1,3−ジヒド
ロ−1,3,3−トリメチルスピロ[2H−インドール
−2,3’−[3H]ナフト[9,10−b][1,
4]オキサジン]、6,8−ジブロモ−1’,3’−ジ
ヒドロ−1’,3’,3’−トリメチルスピロ[2H−
1−ベンゾピラン−2,2’−(2H)−インドー
ル]、1’、3’−ジヒドロ−1’,3’,3’−トリ
メチル−6−ニトロスピロ[2H−1−ベンゾピラン−
2,2’−(2H)−インドール]、1’、3’−ジヒ
ドロ−5’−メトキシ−1’,3’,3’−トリメチル
−6−ニトロスピロ[2H−1−ベンゾピラン−2,
2’−(2H)−インドール]、1’、3’−ジヒドロ
−8−メトキシ−1’,3’,3’−トリメチル−6−
ニトロスピロ[2H−1−ベンゾピラン−2,2’−
(2H)−インドール]、1,3−ジヒドロ−1,3,
3−トリメチルスピロ[2H−インドール−2,3’−
[3H]ナフト[2,1−b][1,4]オキサジ
ン]、1,3−ジヒドロ−1,3,3−トリメチルスピ
ロ[2H−インドール−2,3’−[3H]フェナンス
ロ[9,10−b][1,4]オキサジン]、1,3−
ジヒドロ−1,3,3−トリメチルスピロ[2H−イン
ドール−2,3’−[3H]ナフト[2,1−b]ピラ
ン]、1,3−ジヒドロ−5−メトキシー1,3,3−
トリメチルスピロ[2H−インドール−2,3’−[3
H]ナフト[2,1−b]ピラン]などのスピロピラン
類、2,5−ジメチル−3−フリルエチリデンコハク酸
無水物、2,5−ジメチル−3−フリルイロプロピリデ
ンコハク酸無水物などのフルギド類、2,3−ビス
(2,4,5−トリメチル−3−チエニル)マレイン酸
無水物、2,3−ビス(2,4,5−トリメチル−3−
チエニル)マレイミド、cis−1,2−ジシアノ−
1,2−ビス(2,4,5−トリメチル−3−チエニ
ル)エテンなどのジアリールエテン類などを挙げること
ができる。
Further, a photochromic phenomenon occurs, and as a sublimable and crystalline organic compound, 6-bromo-
1 ′, 3′-dihydro-1 ′, 3 ′, 3′-trimethyl-8-nitrospiro [2H-1-benzopyran-2,
2 ′-(2H) -indole], 5-chloro-1,3-
Dihydro-1,3,3-trimethylspiro [2H-indole-2,3 '-[3H] naphtho [2,1-b]
[1,4] oxazine], 5-chloro-1,3-dihydro-1,3,3-trimethylspiro [2H-indole-2,3 ′-[3H] naphtho [9,10-b] [1,
4] oxazine], 6,8-dibromo-1 ′, 3′-dihydro-1 ′, 3 ′, 3′-trimethylspiro [2H-
1-benzopyran-2,2 '-(2H) -indole], 1', 3'-dihydro-1 ', 3', 3'-trimethyl-6-nitrospiro [2H-1-benzopyran-
2,2 ′-(2H) -indole], 1 ′, 3′-dihydro-5′-methoxy-1 ′, 3 ′, 3′-trimethyl-6-nitrospiro [2H-1-benzopyran-2,
2 ′-(2H) -indole], 1 ′, 3′-dihydro-8-methoxy-1 ′, 3 ′, 3′-trimethyl-6
Nitrospiro [2H-1-benzopyran-2,2'-
(2H) -indole], 1,3-dihydro-1,3,3
3-trimethylspiro [2H-indole-2,3'-
[3H] naphtho [2,1-b] [1,4] oxazine], 1,3-dihydro-1,3,3-trimethylspiro [2H-indole-2,3 ′-[3H] phenanthro [9, 10-b] [1,4] oxazine], 1,3-
Dihydro-1,3,3-trimethylspiro [2H-indole-2,3 ′-[3H] naphtho [2,1-b] pyran], 1,3-dihydro-5-methoxy-1,3,3-
Trimethylspiro [2H-indole-2,3 '-[3
Spiropyrans such as [H] naphtho [2,1-b] pyran], 2,5-dimethyl-3-furylethylidene succinic anhydride, Fulgides, 2,3-bis (2,4,5-trimethyl-3-thienyl) maleic anhydride, 2,3-bis (2,4,5-trimethyl-3-
Thienyl) maleimide, cis-1,2-dicyano-
Examples include diarylethenes such as 1,2-bis (2,4,5-trimethyl-3-thienyl) ethene.

【0030】〔有機化合物の蒸着方法〕通常の真空蒸着
の他、大気圧力下における蒸着、窒素、アルゴン、ヘリ
ウムなどの不活性ガス中での蒸着、スパッタリング法、
イオンビーム法、クラスターイオンビーム法、または分
子線エピタキシー法などの蒸着方法を用いることができ
る。
[Evaporation method of organic compound] In addition to ordinary vacuum evaporation, evaporation under atmospheric pressure, evaporation in an inert gas such as nitrogen, argon, helium, and sputtering,
An evaporation method such as an ion beam method, a cluster ion beam method, or a molecular beam epitaxy method can be used.

【0031】[0031]

【実施例】以下、実施例を示し、さらに詳しくこの発明
の方法について説明する。
The present invention will be described below in more detail with reference to Examples.

【0032】〔実施例1〕真空蒸着装置にゲート弁を経
由して接続された基板洗浄用真空容器の内部に中心波長
185nm、出力5Wの紫外線ランプを2灯および中心
波長254nm、出力5Wの紫外線ランプ2灯を、紫外
線が基板表面に照射されるような配置で取り付け、基板
としてガラス板(24mm×30mm×0.15mm)
を1枚以上、搬入した後、真空容器内部に、大気圧下、
直径0.05μmの微粒子を100%捕集するガスフィ
ルターを通過させた清浄な窒素ガスを満たして、内部に
浮遊粉塵(直径0.1μm以上)および汚染性ガスが検
出されなくなるまで雰囲気を清浄化してから直径0.0
5μmの微粒子を100%捕集するガスフィルターを通
過させた酸素ガスを導入し、酸素濃度を60%以上まで
高めてから紫外線ランプを点灯し、1時間に渡り、基板
表面の紫外線照射処理およびオゾン処理を行った。以上
の浄化処理終了後、基板洗浄用真空容器内部を排気し、
10−4Pa以下の高真空状態にしてから、同じく10
−4Pa以下の高真空状態の真空蒸着装置内へ基板を移
送した。予め蒸着源に導入しておいたスピロピラン化合
物の1,3−ジヒドロ−1,3,3−トリメチルスピロ
(2H−インドール−2,3’−[3H]ナフト[2,
1−b][1,4]オキサジン)(アルドリッチ社製)
を抵抗線によって加熱し、150℃まで加熱して、上記
基板上へ真空蒸着した。基板温度の制御は特に行わなか
った。蒸着の進行を水晶振動子式膜厚計でモニターし、
膜厚が0.5μmに到達した時点で蒸着源のシャッター
を閉じ、蒸着を終了した。この段階においては、ガラス
基板上の蒸着膜中、前記スピロピラン化合物は微結晶と
して存在しており、顕著な光散乱を起こし、膜は不透明
である。
EXAMPLE 1 Two ultraviolet lamps having a center wavelength of 185 nm and an output of 5 W and ultraviolet rays having a center wavelength of 254 nm and an output of 5 W were provided inside a vacuum vessel for cleaning a substrate connected to a vacuum deposition apparatus via a gate valve. Two lamps are mounted in such a manner that ultraviolet light is irradiated on the substrate surface, and a glass plate (24 mm × 30 mm × 0.15 mm) is used as the substrate.
After loading one or more sheets into the vacuum container,
Fill with clean nitrogen gas that has passed through a gas filter that collects 100% of fine particles with a diameter of 0.05 μm, and purify the atmosphere until no suspended dust (0.1 μm or more in diameter) and contaminant gas are detected inside. 0.0
Oxygen gas that has passed through a gas filter that collects 100% of 5 μm fine particles is introduced, the oxygen concentration is increased to 60% or more, and then an ultraviolet lamp is turned on. Processing was performed. After the above purification process is completed, the inside of the substrate cleaning vacuum vessel is evacuated,
After a high vacuum of 10 −4 Pa or less,
The substrate was transferred into a vacuum evaporation apparatus under a high vacuum of −4 Pa or less. The spiropyran compound 1,3-dihydro-1,3,3-trimethylspiro (2H-indole-2,3 ′-[3H] naphtho [2,
1-b] [1,4] oxazine) (manufactured by Aldrich)
Was heated to 150 ° C. by a resistance wire and vacuum-deposited on the substrate. The control of the substrate temperature was not particularly performed. Monitor the progress of the deposition with a quartz crystal film thickness meter,
When the film thickness reached 0.5 μm, the shutter of the evaporation source was closed, and the evaporation was terminated. At this stage, the spiropyran compound exists as microcrystals in the deposited film on the glass substrate, causing significant light scattering, and the film is opaque.

【0033】一方、ポリ(メタクリル酸ベンジル)(ア
ルドリッチ社製)0.1gをアセトン19gに溶解した
溶液を撹拌しながらn−ヘキサン300ml中へ注ぎ、
析出した樹脂小塊を濾過し、n−ヘキサン30mlにて
洗浄し、清浄な空気中で溶剤を除去し、粒子外径が50
μm未満の微粉末になるよう粉砕した。このポリ(メタ
クリル酸ベンジル)微粉末を10−4Pa以下の高真空
容器中、徐々に加熱して40℃から50℃の温度範囲で
48時間、脱気処理した。
On the other hand, a solution obtained by dissolving 0.1 g of poly (benzyl methacrylate) (manufactured by Aldrich) in 19 g of acetone was poured into 300 ml of n-hexane with stirring.
The precipitated resin lumps were filtered, washed with 30 ml of n-hexane, and the solvent was removed in clean air.
It was pulverized to a fine powder of less than μm. This poly (benzyl methacrylate) fine powder was gradually heated in a high vacuum container of 10 −4 Pa or less and degassed in a temperature range of 40 ° C. to 50 ° C. for 48 hours.

【0034】清浄な雰囲気下、先に作成したガラス基板
上の前記スピロピラン蒸着膜の上に、高真空脱気処理し
た樹脂微粉末を散布し、その上にもう1枚のガラス基板
(蒸着膜なし)を重ねて置き、これを高真空容器内に設
置した加熱ステージ上に置き、10−4Pa以下まで排
気し、95ないし100℃まで加熱し、一方、95ない
し100℃まで加熱した加圧板を押しつけ、5kgf/
cmの圧力で真空ホットプレスを行った。
In a clean atmosphere, fine resin powder subjected to high vacuum degassing was sprayed on the spiropyran vapor-deposited film on the glass substrate previously prepared, and another glass substrate (with no vapor-deposited film) was spread thereon. ) Are placed on a heating stage placed in a high vacuum container, and the pressure plate is evacuated to 10 −4 Pa or less and heated to 95 to 100 ° C., while the pressure plate heated to 95 to 100 ° C. Pressing, 5kgf /
Vacuum hot pressing was performed at a pressure of cm 2 .

【0035】以上の手順によって、ガラス/前記スピロ
ピラン化合物が固溶化したポリ(メタクリル酸ベンジ
ル)/ガラスという構成の透明な積層型光学薄膜を作成
した。この光学薄膜を透過型光学顕微鏡とクロスニコル
配置に置いた偏光板の組み合わせによって観察し、前記
スピロピラン化合物が微結晶としては存在していないこ
とを確認した。
By the above procedure, a transparent laminated optical thin film having a structure of glass / poly (benzyl methacrylate) in which the spiropyran compound was solid-solution / glass was prepared. This optical thin film was observed with a combination of a transmission optical microscope and a polarizing plate placed in a crossed Nicols arrangement, and it was confirmed that the spiropyran compound was not present as microcrystals.

【0036】また、この積層型光学薄膜の透過スペクト
ルを測定したところ、光散乱の影響は認められず、50
0nmから900nmの範囲において透過率90%以上
であった(500nm未満、紫外線領域にかけては前記
スピロピラン化合物の吸収が存在する)。
When the transmission spectrum of the laminated optical thin film was measured, no influence of light scattering was observed.
The transmittance was 90% or more in the range of 0 nm to 900 nm (less than 500 nm, and absorption of the spiropyran compound exists in the ultraviolet region).

【0037】なお、本実施例の積層型光学薄膜中の前記
スピロピラン化合物が固溶化したポリ(メタクリル酸ベ
ンジル)層の厚さは、ポリ(メタクリル酸ベンジル)微
粉末の散布量、加熱温度(60℃から100℃程度)お
よび加圧処理時間(数分から数十時間)を調整すること
によって、また、必要に応じてスペーサーを併用するこ
とによって、数μmから数百μmの範囲で調節可能であ
る。
The thickness of the poly (benzyl methacrylate) layer in which the spiropyran compound was solubilized in the laminated optical thin film of the present embodiment was determined by the amount of the poly (benzyl methacrylate) fine powder sprayed and the heating temperature (60 ° C.). The temperature can be adjusted in the range of several μm to several hundred μm by adjusting the pressure treatment time (several minutes to several tens of hours) and, if necessary, by using a spacer in combination. .

【0038】本実施例の積層型光学薄膜のレーザー耐力
を調べるため、Nd:YAGレーザーの波長532nm
の高調波を色素レーザーで625nmに変換したレーザ
ー光の出力を調節して、パルス光発振周期10Hz、パ
ルス幅10ns、平均パワー20mWのパルス光を発振
させ、この光を凸レンズにて照射点でのビーム断面積
1.8×10−4cmに集光し、1.13GW/c
のピークパワー密度として本実施例の積層型光学
薄膜[前記スピロピラン化合物が固溶化したポリ(メタ
クリル酸ベンジル)層の厚さ100μm]へ照射した
が、光損傷は起こらなかった。
In order to examine the laser proof strength of the laminated optical thin film of this embodiment, the wavelength of the Nd: YAG laser was 532 nm.
The output of the laser light obtained by converting the higher harmonic wave into 625 nm by a dye laser is adjusted to oscillate pulse light having a pulse light oscillation period of 10 Hz, a pulse width of 10 ns, and an average power of 20 mW. Focus on a beam cross section of 1.8 × 10 −4 cm 2 , 1.13 GW / c
Irradiation was performed at a peak power density of m 2 on the laminated optical thin film of the present example [100 μm in thickness of the poly (benzyl methacrylate) layer in which the spiropyran compound was dissolved), but no optical damage occurred.

【0039】〔比較例1〕実施例1で用いたスピロピラ
ン化合物を実施例1と同様にして蒸着したガラス基板
と、もう1枚のガラス基板(蒸着膜なし)の間に紫外線
硬化樹脂(大日精化工業製「セイカビームVDAL−3
92」)を充填し、紫外線を照射して硬化させ、ガラス
/前記スピロピラン化合物を含む紫外線硬化樹脂層/ガ
ラスという構成の積層型光学薄膜を作成した。ガラス板
上に蒸着された前記スピロピラン化合物は、一部、硬化
前の紫外線硬化樹脂中に溶解するものの、大部分は微結
晶として存在するため光散乱を起こし、得られた積層型
光学薄膜の透過率は50%未満であった。
COMPARATIVE EXAMPLE 1 An ultraviolet curable resin (Dainichi Seiki) was placed between a glass substrate on which the spiropyran compound used in Example 1 was vapor-deposited in the same manner as in Example 1 and another glass substrate (no vapor-deposited film). "Seika Beam VDAL-3"
92 "), and cured by irradiating ultraviolet rays to prepare a laminated optical thin film having a structure of glass / ultraviolet curable resin layer containing the spiropyran compound / glass. Although the spiropyran compound deposited on the glass plate partially dissolves in the ultraviolet curing resin before curing, most of the spiropyran compound exists as microcrystals, causing light scattering, and transmitting through the obtained laminated optical thin film. The percentage was less than 50%.

【0040】この積層型光学薄膜(前記スピロピラン化
合物を含む紫外線硬化樹脂層の厚さ100μm)へ、実
施例1の場合と同様にしてピークパワー密度1.13G
W/cmのレーザー光を照射したところ、1パルス
の照射のみで著しい光損傷が起こった。
A peak power density of 1.13 G was applied to the laminated optical thin film (the thickness of the ultraviolet curable resin layer containing the spiropyran compound was 100 μm) in the same manner as in Example 1.
When laser light of W / cm 2 was irradiated, remarkable optical damage occurred only by irradiation of one pulse.

【0041】〔比較例2〕特開平10−202153号
報に記載の方法に従い、実施例1で用いたスピロピラン
化合物1重量部とポリ(メタクリル酸ベンジル)99重
量部を溶解させたアセトン溶液(固形分0.1重量%)
を、10−4Pa以下の高真空容器中へ置いた基板上へ
噴霧し、このとき、基板の表面温度をポリ(メタクリル
酸ベンジル)の溶融開始温度よりも高い温度(100
℃)に加熱した。なお、前記スピロピラン化合物および
ポリ(メタクリル酸ベンジル)ともに、100℃では分
解しない。その結果、基板上にはポリ(メタクリル酸ベ
ンジル)の平滑な膜が堆積したものの、膜内の前記スピ
ロピラン化合物の濃度を顕微鏡下、紫外線分光吸収スペ
クトル法で測定したところ、位置によるムラが大きいだ
けでなく、平均濃度が通常の塗工法で作成したものより
も著しく低いことが判った。前記スピロピラン化合物
が、真空下の成膜工程において堆積すると同時に、逐
次、加熱された基板表面から昇華して失われたものと推
定される。
Comparative Example 2 An acetone solution containing 1 part by weight of the spiropyran compound used in Example 1 and 99 parts by weight of poly (benzyl methacrylate) was dissolved according to the method described in JP-A-10-202153. 0.1% by weight)
Is sprayed onto a substrate placed in a high vacuum container of 10 −4 Pa or less. At this time, the surface temperature of the substrate is set to a temperature (100) higher than the melting start temperature of poly (benzyl methacrylate).
C). Both the spiropyran compound and poly (benzyl methacrylate) do not decompose at 100 ° C. As a result, although a smooth film of poly (benzyl methacrylate) was deposited on the substrate, the concentration of the spiropyran compound in the film was measured under a microscope by an ultraviolet spectral absorption spectroscopy. However, it was found that the average density was significantly lower than that produced by the ordinary coating method. It is presumed that the spiropyran compound was deposited and sublimated from the heated substrate surface and lost at the same time as it was deposited in the film forming step under vacuum.

【0042】〔比較例3〕実施例1で用いたスピロピラ
ン化合物1重量部とポリ(メタクリル酸ベンジル)99
重量部を溶解させたアセトン溶液(固形分10重量%)
をアプリケーターを用いてスライドガラス上に塗工し
た。乾燥後の膜厚は20μmになるよう調節した。この
塗工膜を、10−4Pa以下へ到達可能な真空容器中、
60℃に加熱し、48時間、加熱処理を行った。処理前
後の膜中の前記スピロピラン濃度減少はごく僅かである
ことが分光分析で確認された。
Comparative Example 3 1 part by weight of the spiropyran compound used in Example 1 and poly (benzyl methacrylate) 99
Acetone solution in which parts by weight are dissolved (solid content 10% by weight)
Was coated on a slide glass using an applicator. The film thickness after drying was adjusted to 20 μm. This coating film is placed in a vacuum vessel capable of reaching 10 −4 Pa or less,
Heating was performed at 60 ° C. for 48 hours. Spectroscopic analysis confirmed that the spiropyran concentration decrease in the film before and after the treatment was very small.

【0043】この塗工膜について、実施例1の場合と同
様にしてレーザー耐力を測定したところ、ピークパワー
密度1.13GW/cmのレーザー光1パルスの照
射のみで照射点に発泡が起こり、更に照射を続けると著
しい光損傷が起こった。光損傷の原因は塗工膜中に残留
した溶媒(アセトン)と推定される。そこで、特開平6
−202179号報に記載されている有機系光材料の試
験方法によって、この塗工膜を分析したところアセトン
の存在が確認された。
When the laser proof strength of this coating film was measured in the same manner as in Example 1, foaming occurred at the irradiation point only by irradiation with one pulse of laser light having a peak power density of 1.13 GW / cm 2 , Continued irradiation caused significant photodamage. The cause of the optical damage is presumed to be the solvent (acetone) remaining in the coating film. Therefore, Japanese Patent Application Laid-Open
The coating film was analyzed by the test method for organic optical materials described in -202179, and the presence of acetone was confirmed.

【0044】〔実施例2〕前記スピロピラン化合物の代
わりにプラチナフタロシアニンを用い、蒸着源の温度を
600℃とした他は実施例1の場合と同様にして、清浄
なガラス基板の表面にプラチナフタロシアニンを蒸着し
た。蒸着の進行を水晶振動子式膜厚計でモニターし、膜
厚が0.2μmに到達した時点で蒸着源のシャッターを
閉じ、蒸着を終了した。
Example 2 Platinum phthalocyanine was used on the surface of a clean glass substrate in the same manner as in Example 1 except that platinum phthalocyanine was used in place of the above spiropyran compound and the temperature of the evaporation source was changed to 600 ° C. Evaporated. The progress of vapor deposition was monitored by a quartz crystal film thickness meter, and when the film thickness reached 0.2 μm, the shutter of the vapor deposition source was closed to terminate vapor deposition.

【0045】このようにして基板上に作成した蒸着膜表
面を走査型電子顕微鏡で観察したところ、上記条件で真
空蒸着したプラチナフタロシアニンは外径30ないし5
0nmの粒子状態で存在していることが判った。この粒
子径は可視光線の波長(400ないし800nm)の1
/5未満であり、光散乱を起こさない大きさである。
When the surface of the deposited film formed on the substrate was observed with a scanning electron microscope, platinum phthalocyanine vacuum-deposited under the above conditions had an outer diameter of 30 to 5 mm.
It turned out that it exists in the particle state of 0 nm. This particle size is one of the wavelengths of visible light (400 to 800 nm).
/ 5, which is a size that does not cause light scattering.

【0046】一方、ポリカーボネイト樹脂(帝人化成製
パンライトL1250)1gをジクロロメタン19gに
溶解した溶液を撹拌しながらn−ヘキサン300ml中
へ注ぎ、析出した樹脂小塊を濾過し、n−ヘキサン30
mlにて洗浄し、清浄な空気中で溶剤を除去し、粒子外
径が50μm未満の微粉末になるよう粉砕した。このポ
リカーボネイト樹脂微粉末を10−4Pa以下の高真空
容器中、徐々に加熱して100℃から120℃の温度範
囲で48時間、脱気処理した。
On the other hand, a solution prepared by dissolving 1 g of polycarbonate resin (Panlite L1250 manufactured by Teijin Chemicals Co., Ltd.) in 19 g of dichloromethane was poured into 300 ml of n-hexane while stirring, and the precipitated resin small lump was filtered.
The powder was washed with water, the solvent was removed in clean air, and pulverized to a fine powder having a particle outer diameter of less than 50 μm. This polycarbonate resin fine powder was gradually heated in a high vacuum container of 10 −4 Pa or less and degassed in a temperature range of 100 ° C. to 120 ° C. for 48 hours.

【0047】清浄な雰囲気下、先に作成したガラス基板
上のプラチナフタロシアニン蒸着膜の上に、高真空脱気
処理した樹脂微粉末を散布し、その上にもう1枚のガラ
ス基板上のプラチナフタロシアニン蒸着膜を重ねて置
き、これを高真空容器内に設置した加熱ステージ上に置
き、10−4Pa以下まで排気し、240ないし260
℃まで加熱し、一方、240ないし260℃まで加熱し
た加圧板を押しつけ、5kgf/cmの圧力で真空
ホットプレスを行った。
In a clean atmosphere, a high vacuum degassed resin fine powder is sprayed on the platinum phthalocyanine vapor-deposited film on the glass substrate previously formed, and platinum phthalocyanine on another glass substrate is further spread thereon. The deposited films are placed one on top of the other, placed on a heating stage placed in a high vacuum vessel, evacuated to 10 −4 Pa or less,
C., while a pressure plate heated to 240 to 260 ° C. was pressed, and vacuum hot pressing was performed at a pressure of 5 kgf / cm 2 .

【0048】以上の手順によって、ガラス/プラチナフ
タロシアニン蒸着膜(膜厚0.2μm)/ポリカーボネ
イト樹脂層/プラチナフタロシアニン蒸着膜(膜厚0.
2μm)/ガラスという構成の積層型光学薄膜を作成し
た。
By the above procedure, glass / platinum phthalocyanine vapor-deposited film (thickness 0.2 μm) / polycarbonate resin layer / platinum phthalocyanine vapor-deposited film (thickness 0.
A laminated optical thin film having a structure of 2 μm) / glass was prepared.

【0049】樹脂粉末の散布量、加熱温度および加圧処
理時間(数分から数時間)を調整することによって、ポ
リカーボネイト樹脂層の膜厚が10μmないし200μ
mものを作成した。
The thickness of the polycarbonate resin layer is adjusted to 10 μm to 200 μm by adjusting the application amount of the resin powder, the heating temperature, and the pressure treatment time (from several minutes to several hours).
m were created.

【0050】ポリカーボネイト樹脂層の厚さ100μm
の場合の、本実施例の積層型光学薄膜の透過スペクトル
を図1に示す。このスペクトルから、プラチナフタロシ
アニンの吸収帯域を除き、高い透過率が得られているこ
とが判る。
The thickness of the polycarbonate resin layer is 100 μm
FIG. 1 shows the transmission spectrum of the laminated optical thin film of this embodiment in the case of (1). From this spectrum, it can be seen that a high transmittance was obtained except for the absorption band of platinum phthalocyanine.

【0051】この積層型光学薄膜(ポリカーボネイト樹
脂層の厚さ100μm)へ、ヘリウム・ネオンレーザー
(発信波長632.6nm、連続発振パワー20mW、
エキスパンドしたビーム直径8mm、ビーム断面のエネ
ルギー分布はガウス分布)を有効開口半径4mm、開口
数0.65の顕微鏡対物レンズにてビームウエスト半径
0.45μmまで収束させて照射した。ビームウエスト
位置は、ビーム入射側のプラチナフタロシアニン蒸着膜
に一致するよう調節した。この位置において、連続照射
されるレーザーパワー密度は3MW/cmである。そ
の結果、8時間の連続照射を行っても、照射点に光損傷
が起こらないことが確認された。
A helium-neon laser (wavelength 632.6 nm, continuous oscillation power 20 mW, helium-neon laser) was applied to this laminated optical thin film (thickness of the polycarbonate resin layer 100 μm).
The expanded beam diameter was 8 mm and the energy distribution of the beam cross section was Gaussian distribution), and the beam was irradiated with a microscope objective lens having an effective aperture radius of 4 mm and a numerical aperture of 0.65 to a beam waist radius of 0.45 μm. The beam waist position was adjusted to match the platinum phthalocyanine vapor deposition film on the beam incident side. At this position, the continuous irradiation laser power density is 3 MW / cm 2 . As a result, it was confirmed that even after the continuous irradiation for 8 hours, no light damage occurred at the irradiation point.

【0052】本実施例の積層型光学薄膜においては、照
射点が空気から遮蔽されているため酸化分解反応が抑制
されること、および、照射点で発生した熱がガラス基板
だけでなく樹脂層へも伝搬することによって円滑に拡散
することによって、光損傷を防ぐことができると推測さ
れる。
In the laminated optical thin film of this embodiment, the oxidizing decomposition reaction is suppressed because the irradiation point is shielded from the air, and the heat generated at the irradiation point is transmitted not only to the glass substrate but also to the resin layer. It is presumed that light damage can be prevented by smooth diffusion by propagation of light.

【0053】〔比較例4〕実施例2で作成したガラス基
板上のプラチナフタロシアニン蒸着膜に、樹脂層を積層
することなく、大気中に曝した状態で、実施例2と同様
にして、波長632.8nm、レーザーパワー密度3M
W/cmのレーザー光を、ガラス基板側から照射した
ところ、数分で照射点からの光散乱が増大した。照射時
間を1秒、10秒、100秒および10分として照射点
を移動して照射実験を行い、各々の照射点を顕微鏡観察
したところ、照射10秒で変色が始まり、照射100秒
で照射点の中心部分には孔が開き、照射10分では孔が
広がり周辺部分が炭化していた。ガラス基板が片側にし
かないため光吸収による温度上昇が照射点に集中するこ
とと、大気に曝されていることによって、結晶形の変化
および昇華による散逸、更に酸化分解反応が進行したも
のと推定される。
COMPARATIVE EXAMPLE 4 The same procedure as in Example 2 was carried out, except that the resin layer was not laminated on the platinum phthalocyanine vapor-deposited film on the glass substrate prepared in Example 2 but the wavelength was 632. .8 nm, laser power density 3M
When a laser beam of W / cm 2 was irradiated from the glass substrate side, light scattering from the irradiation point increased within several minutes. The irradiation time was set to 1 second, 10 seconds, 100 seconds, and 10 minutes, and the irradiation point was moved to perform an irradiation experiment. When each irradiation point was observed with a microscope, discoloration started at 10 seconds and irradiation at 100 seconds. A hole was opened at the center of the sample, and after 10 minutes of irradiation, the hole was widened and the periphery was carbonized. It is presumed that the temperature rise due to light absorption is concentrated at the irradiation point because the glass substrate is only on one side, and that the glass substrate is exposed to the atmosphere, which results in a change in crystal form and dissipation due to sublimation, and further oxidative decomposition reaction has progressed. You.

【0054】[0054]

【発明の効果】以上詳しく説明した通り、この発明によ
って、昇華性かつ結晶性の有機化合物を非晶質状態、微
小結晶状態、または固溶体として存在させ、光散乱を低
減させた、耐久性の高い、より高機能な積層型光学薄膜
を提供することができる。
As described above in detail, according to the present invention, a sublimable and crystalline organic compound is present in an amorphous state, a microcrystalline state, or a solid solution to reduce light scattering and to have high durability. Thus, it is possible to provide a laminated optical thin film having a higher function.

【0055】この発明は、また、昇華性の高い有機化合
物を所定の割合で含有し、かつ、揮発性の不純物を含有
せず、さらに光照射による非晶質の結晶化や微結晶の結
晶成長を抑制して、高パワー密度の光照射に耐える、よ
り高機能な積層型光学薄膜を効率良く製造するための積
層型光学薄膜の製造方法を提供することができる。
The present invention also provides an organic compound having a high sublimation property at a predetermined ratio, does not contain volatile impurities, and further has an amorphous crystallization or crystal growth of microcrystals by light irradiation. Thus, it is possible to provide a method of manufacturing a laminated optical thin film for efficiently producing a more sophisticated laminated optical thin film that can withstand high power density light irradiation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例2の積層型光学薄膜の透過吸収スペク
トルを示す図である。
FIG. 1 is a diagram showing a transmission absorption spectrum of a laminated optical thin film of Example 2.

───────────────────────────────────────────────────── フロントページの続き (74)上記2名の代理人 100075258 弁理士 吉田 研二 (外2名) (72)発明者 平賀 隆 茨城県つくば市梅園1丁目1番4 工業技 術院 電子技術総合研究所内 (72)発明者 陳 國榮 茨城県つくば市梅園1丁目1番4 工業技 術院 電子技術総合研究所内 (72)発明者 守谷 哲郎 茨城県つくば市梅園1丁目1番4 工業技 術院 電子技術総合研究所内 (72)発明者 田中 教雄 東京都中央区日本橋馬喰町1丁目7番6号 大日精化工業株式会社内 (72)発明者 柳本 宏光 東京都中央区日本橋馬喰町1丁目7番6号 大日精化工業株式会社内 (72)発明者 上野 一郎 神奈川県横浜市神奈川区守屋町3丁目12番 地 日本ビクター株式会社内 (72)発明者 辻田 公二 神奈川県横浜市神奈川区守屋町3丁目12番 地 日本ビクター株式会社内 Fターム(参考) 2H048 DA04 GA05 GA09 GA12 GA60 4F100 AG00A AG00C AH00B AH02 AH07 AT00A AT00B AT00C BA03 BA10A BA10C DE01B EC01 EH66 EH66B EJ20 EJ42 EJ59 GB41 GB48 GB56 JM02 JN30 4G061 AA20 AA22 BA03 BA07 CA02 CB03 CB04 CB16 CD02 CD12 DA23 DA24 DA29 DA30 DA42 ──────────────────────────────────────────────────続 き Continuing on the front page (74) The above two agents 100075258 Attorney Kenji Yoshida (two outsiders) (72) Inventor Takashi Hiraga 1-4-1 Umezono, Tsukuba, Ibaraki Pref. Within the research institute (72) Kuniei Chen 1-1-4 Umezono, Tsukuba, Ibaraki Pref.Industrial Technology Research Institute (72) Inventor Tetsuro Moriya 1-1-4 Umezono, Tsukuba, Ibaraki Pref. Inside the Electrotechnical Laboratory (72) Norio Tanaka, Inventor 1-7-6 Nibashi Bakurocho, Chuo-ku, Tokyo Inside Dainichi Seika Kogyo Co., Ltd. (72) Hiromitsu Yanagimoto 1-7-6 Nihonbashi Bakurocho, Chuo-ku, Tokyo (72) Inventor Ichiro Ueno 3-12-12 Moriyacho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Inside of Victor Company of Japan (72) Akira Shaji Kouji Tsujida 3-12 Moriyacho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture F-term (reference) 2J048 DA04 GA05 GA09 GA12 GA60 4F100 AG00A AG00C AH00B AH02 AH07 AT00A AT00B AT00C BA03 BA10A BA10C DE01B EC66E66 EJ20 EJ42 EJ59 GB41 GB48 GB56 JM02 JN30 4G061 AA20 AA22 BA03 BA07 CA02 CB03 CB04 CB16 CD02 CD12 DA23 DA24 DA29 DA30 DA42

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 昇華性有機化合物が蒸着された第1基板
の蒸着面と第2の基板の間に溶融性有機化合物の粉末ま
たは膜を挟み、真空下、加熱して前記溶融性有機化合物
を溶融させる工程および前記第1、第2基板を圧着させ
る工程によって製造される積層型光学薄膜であって、 前記昇華性有機化合物が、下記の3つの状態からなる群
の中から選択される少なくとも1つの状態にあることを
特徴とする積層型光学薄膜。 (a)非晶質状態 (b)結晶粒子径が積層型光学薄膜に照射される光の波
長の1/5を越えない大きさの微小結晶状態 (c)前記溶融性有機化合物を媒質とする固溶体
1. A fusible organic compound powder or film is sandwiched between a deposition surface of a first substrate on which a sublimable organic compound is deposited and a second substrate, and the fusible organic compound is heated by heating under vacuum. A laminated optical thin film manufactured by a step of melting and a step of compressing the first and second substrates, wherein the sublimable organic compound is at least one selected from the group consisting of the following three states: A laminated optical thin film characterized in one of two states. (A) Amorphous state (b) Microcrystalline state in which the crystal particle diameter does not exceed 1/5 of the wavelength of light applied to the laminated optical thin film (c) The fusible organic compound as a medium Solid solution
【請求項2】 昇華性有機化合物が蒸着された2枚の基
板の昇華性有機化合物蒸着面を互いに向かい合わせ、そ
の間に溶融性有機化合物の粉末または膜を挟み、真空
下、加熱して前記溶融性有機化合物を溶融させ、更に2
枚の基板を圧着させることによって製造される積層型光
学薄膜であって、 前記昇華性有機化合物が下記の3つの状態の中から選択
される少なくとも1つの状態であることを特徴とする積
層型光学薄膜。 (a)非晶質状態 (b)結晶粒子径が積層型光学薄膜に照射される光の波
長の1/5を越えない大きさの微小結晶状態 (c)前記溶融性有機化合物を媒質とする固溶体
2. The two substrates on which a sublimable organic compound is vapor-deposited face the sublimable organic compound vapor-deposited surfaces to each other, and a powder or film of a fusible organic compound is interposed therebetween, and heated under vacuum to melt the sublimable organic compound. Melt the organic compound
A laminated optical thin film manufactured by pressing a plurality of substrates, wherein the sublimable organic compound is in at least one state selected from the following three states. Thin film. (A) Amorphous state (b) Microcrystalline state in which the crystal particle diameter does not exceed 1/5 of the wavelength of light applied to the laminated optical thin film (c) The fusible organic compound as a medium Solid solution
【請求項3】 少なくとも、 第1基板の1面に有機化合物を蒸着する工程と、 前記有機化合物が蒸着された前記第1基板の蒸着面と第
2の基板の間に溶融性有機化合物の粉末または膜を挟
み、真空下、加熱して前記溶融性有機化合物を溶融さ
せ、更に前記第1、第2基板を圧着させる工程と、 を含むことを特徴とする積層型光学薄膜の製造方法。
3. a step of depositing an organic compound on at least one surface of the first substrate; and a powder of a fusible organic compound between the deposition surface of the first substrate on which the organic compound is deposited and the second substrate. Or a step of sandwiching the film, heating under vacuum to melt the fusible organic compound, and further pressing the first and second substrates under pressure.
【請求項4】 少なくとも、 2枚の基板の各々1面に昇華性有機化合物を蒸着する工
程と、 前記2枚の基板の前記有機化合物が蒸着された面を向き
合わせ、その間に溶融性有機化合物の粉末または膜を挟
み、真空下、加熱して前記溶融性有機化合物を溶融さ
せ、更に2枚の基板を圧着させる工程と、を含むことを
特徴とする積層型光学薄膜の製造方法。
4. A step of depositing a sublimable organic compound on at least one surface of each of at least two substrates; and opposing the surfaces of the two substrates on which the organic compound has been deposited. A step of sandwiching the powder or film of the above, heating under vacuum to melt the fusible organic compound, and further pressing two substrates under pressure.
JP36644098A 1998-12-24 1998-12-24 Laminated optical thin film and method for producing the same Expired - Lifetime JP3928066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36644098A JP3928066B2 (en) 1998-12-24 1998-12-24 Laminated optical thin film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36644098A JP3928066B2 (en) 1998-12-24 1998-12-24 Laminated optical thin film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000185950A true JP2000185950A (en) 2000-07-04
JP3928066B2 JP3928066B2 (en) 2007-06-13

Family

ID=18486792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36644098A Expired - Lifetime JP3928066B2 (en) 1998-12-24 1998-12-24 Laminated optical thin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3928066B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094867A1 (en) * 2015-12-02 2017-06-08 旭硝子株式会社 Wavelength-selective transparent glass product
KR102243520B1 (en) * 2019-11-20 2021-04-21 포항공과대학교 산학협력단 Novel phthalocyanine nanowire and use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094867A1 (en) * 2015-12-02 2017-06-08 旭硝子株式会社 Wavelength-selective transparent glass product
CN108473366A (en) * 2015-12-02 2018-08-31 旭硝子株式会社 Wavelength selective transmission glass article
JPWO2017094867A1 (en) * 2015-12-02 2018-10-04 Agc株式会社 Wavelength selective transmission glass article
KR102243520B1 (en) * 2019-11-20 2021-04-21 포항공과대학교 산학협력단 Novel phthalocyanine nanowire and use thereof

Also Published As

Publication number Publication date
JP3928066B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP3740557B2 (en) Organic thin film manufacturing method and organic thin film manufacturing apparatus
Ritacco et al. Tuning cholesteric selective reflection in situ upon two‐photon polymerization enables structural multicolor 4D microfabrication
JP2008523453A (en) Porous holographic membrane
JP3682465B2 (en) Resin molded product surface layer modification method and apparatus therefor, and resin molded product with modified surface layer, resin molded product surface layer colored method and apparatus and surface molded resin product with colored surface layer, and Resin molded product with added functionality by modifying the surface layer
JP2000185950A (en) Stacked optical thin film and its production
JP3059972B2 (en) Manufacturing method of organic optical thin film and its equipment
JP2849482B2 (en) Manufacturing method of optical waveguide
Hayashida et al. Photochromic evaporated films of spiropyrans with long alkyl chains
RU2306586C1 (en) Method for manufacturing non-linear limiter of laser radiation and a non-linear limiter of laser radiation
Kawai et al. Photomemory effects in electrical and optical properties of photochromic dye in the non-crystalline solid state
WO2011021625A1 (en) Method for producing polymer material
Yari et al. Glow discharge plasma stabilization of azo dye on PMMA polymer
JP3435691B2 (en) Method for modifying surface layer and functional thin film produced by the method
Clavian et al. Influence of structural and morphological features of zinc (II)-tetraphenylporphyrin thin film on its third order optical nonlinearity at pico and nano second regimes
Yoshida et al. Photochromism of a vacuum-deposited 1′, 3′, 3′-trimethyl-6-hydroxyspiro [2 H-1-benzopyran-2, 2′-indoline] film
Strat et al. Optic and spectral characteristics of some aromatic copolyethers embedded in polymer matrices
JP4635148B2 (en) Wavelength conversion device and wavelength conversion method
Luo et al. Interfacially confined preparation of fumaronitrile-based nanofilms exhibiting broadband saturable absorption properties
JP3914998B2 (en) LAMINATE TYPE THIN FILM OPTICAL DEVICE, LIGHT CONTROL METHOD AND LIGHT CONTROL DEVICE USING THE SAME
JP4724875B2 (en) Method for manufacturing organic electroluminescent device
JP4997513B2 (en) Method for manufacturing organic electroluminescent device
JPH0499609A (en) Method of forming polymer film
Leonard et al. Preparation and characterization of copper (II) tetrasulfonated phthalocyanine nanoparticles formed by laser ablation in poor solvents
Nonoguchi et al. Photopolymerization sensitized by CdTe nanocrystals in ionic liquid: highly efficient photoinduced electron transfer
Nagayama et al. Au colloid formation in polysilane/au layered film and its application as novel optical recording media

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051118

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term