JP2000185231A - Catalyst for hydrogenation refining of base oil of lubricating oil - Google Patents

Catalyst for hydrogenation refining of base oil of lubricating oil

Info

Publication number
JP2000185231A
JP2000185231A JP10366396A JP36639698A JP2000185231A JP 2000185231 A JP2000185231 A JP 2000185231A JP 10366396 A JP10366396 A JP 10366396A JP 36639698 A JP36639698 A JP 36639698A JP 2000185231 A JP2000185231 A JP 2000185231A
Authority
JP
Japan
Prior art keywords
mass
catalyst
oils
oxide
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10366396A
Other languages
Japanese (ja)
Inventor
Masao Kiyono
正夫 清野
Hiroshi Mizutani
洋 水谷
Koichi Kondo
弘一 近藤
Takashi Fujikawa
貴志 藤川
Yoshihiro Mizutani
喜弘 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Cosmo Research Institute
Original Assignee
Cosmo Oil Co Ltd
Cosmo Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Cosmo Research Institute filed Critical Cosmo Oil Co Ltd
Priority to JP10366396A priority Critical patent/JP2000185231A/en
Publication of JP2000185231A publication Critical patent/JP2000185231A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for hydrogenation refining for refining a base oil of lubricating oils advantageously used as a base oil to be a main component of various types of lubricating oils such as engine oils, gear oils for gasoline engines and diesel engines and the likes, working fluids, rolling oils, turbine oils to be employed for various purposes for various types of apparatuses such as construction and machining machinery and the likes. SOLUTION: This catalyst comprises an inorganic oxide containing alumina main component as a carrier, not less than 2 mass % to less than 9 mass % of nickel in conversion into oxide, 18-28 mass % of molybdenum in conversion into oxide, and more than 2 mass % and not more than 9 mass % of phosphorus in conversion into oxide deposited on the carrier. The deposition ratio of nickel/ phosphorus in conversion into oxides is not lower than 0.7 and less than 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガソリンエンジン
やディーゼルエンジン等のエンジン油やギヤ油、あるい
は建設・工作用機械等の各種装置類に種々の目的で用い
られる作動油、圧延油、タービン油、その他各種潤滑油
の主成分となる基油として有利に使用される潤滑油基油
を精製するための水素化精製用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to engine oils and gear oils for gasoline engines and diesel engines, and hydraulic oils, rolling oils, and turbine oils used for various purposes in various devices such as construction and machine tools. And a hydrorefining catalyst for refining a lubricating base oil which is advantageously used as a base oil as a main component of various lubricating oils.

【0002】[0002]

【技術背景】上記のような各種の潤滑油は、基油に各種
の添加剤を調合したものであり、この基油の殆どは石油
の重質分を精製して製造される。潤滑油基油を製造する
ための精製技術は、脱ろう処理した(一部フルフラール
抽出処理した)原料に対して高温高圧下で接触水素化を
行う技術であり、この水素化により脱硫・脱窒素・アロ
マ分の水添飽和反応を行うものである。
BACKGROUND ART Various lubricating oils as described above are prepared by mixing various additives with a base oil, and most of the base oils are produced by refining heavy components of petroleum. The refining technology for producing lubricating base oil is a technology in which dewaxed (partially furfural-extracted) feedstock is subjected to catalytic hydrogenation under high temperature and high pressure. This hydrogenation enables desulfurization and denitrification.・ Performs hydrogenation saturation reaction of aroma.

【0003】基油に要求される性能としては、潤滑油自
体の要求特性として温度による粘度変化の小さい高粘度
指数が挙げられることから、熱及び酸化安定性が挙げら
れる。従って、基油からは、粘度指数の低い芳香族炭化
水素を除去する必要がある。最近では、高粘度指数の潤
滑油基油を製造する技術として、水素化分解法に溶剤精
製法、水素化処理法と脱ろう処理を組み合わせる方法が
提案され、その際、溶剤精製や水素化処理によってアロ
マ分を低減あるいは制御することにより、高粘度指数化
と同時に熱や酸化等に対する安定性も向上させようとす
る試みがなされている(特開平3−223392号公
報、同4−36391号公報、同6−116571号公
報、同6−116572号公報参照)が、いずれの方法
においてもアロマ分の低減を効率よく行うことができな
い。
[0003] The performance required of a base oil includes heat and oxidation stability, because a required characteristic of a lubricating oil itself is a high viscosity index with a small change in viscosity with temperature. Therefore, it is necessary to remove aromatic hydrocarbons having a low viscosity index from the base oil. Recently, as a technology for producing a lubricating base oil having a high viscosity index, a method of combining a hydrocracking method with a solvent refining method, and a hydrotreating method with a dewaxing treatment has been proposed. Attempts have been made to reduce or control the aroma content to increase the viscosity index and at the same time to improve the stability against heat, oxidation, etc. (JP-A-3-223392 and JP-A-4-36391). However, none of these methods can efficiently reduce the aroma content.

【0004】また、近年、環境規制の一環として発ガン
性物質に関する規制の強化が検討されており、中でも基
油中の多環芳香族化合物(以下、PCAと略す)に関し
ては3質量%未満に低減させることが社会的ニーズとな
っている。このような低PCA対応基油を製造するため
には、従来の触媒系では、反応温度を通常の運転温度よ
り上昇させ、かつ通油量を減少させることで対応してお
り、装置のシビアリティーが大幅にアップしている。ま
た、シビアリティーのアップに伴い、触媒寿命が短くな
ることが予想される。
In recent years, as a part of environmental regulations, strengthening of regulations on carcinogenic substances has been studied, and in particular, polycyclic aromatic compounds (hereinafter abbreviated as PCA) in base oils have been reduced to less than 3% by mass. Reducing it has become a social need. In order to produce such a base oil compatible with low PCA, the conventional catalyst system responds by raising the reaction temperature above the normal operating temperature and reducing the oil flow rate. Is significantly up. Further, it is expected that the life of the catalyst will be shortened as the severity increases.

【0005】ところで、このような低アロマ基油を製造
するための水素化精製用触媒としては、一般に、アルミ
ナ担体にニッケル、モリブデン、リン、タングステン等
の金属酸化物を担持した触媒や、担体に貴金属を担持し
た触媒が用いられている。
[0005] By the way, as a hydrorefining catalyst for producing such a low-aromatic base oil, a catalyst in which a metal oxide such as nickel, molybdenum, phosphorus, and tungsten is supported on an alumina carrier, or a catalyst that is supported on a carrier is generally used. A catalyst supporting a noble metal is used.

【0006】潤滑油基油の製造方法としては、耐火性無
機酸化物担体に、ニッケル、コバルト、モリブデン、タ
ングステンから選択される少なくとも1種の金属成分
と、所望によりリンを担持した触媒を用いて、ピレン環
を有する四員環縮合多環芳香族成分を低減する方法が提
案(特開平8−3571号公報)されている。また、固
定床流通反応器で、アルミナ担体に12質量%のモリブ
デン、3質量%のニッケル、2.5質量%のリンを担持
した触媒を用いて、潤滑油基油を製造する提案(特開平
6−41548号公報)も見られる。更に、アルミナ担
体にニッケル、モリブデンを含む触媒系と、アルミナ+
Y型ゼオライトにニッケル、モリブデンを含む触媒系の
存在下で、水素化分解を行い、潤滑油基油を製造する提
案(特開平8−259974号公報)も見られる。しか
し、これらの提案はいずれも、触媒の担持金属量や担持
比が最適化されているとは言い難く、脱アロマ活性も不
十分である。
[0006] A method for producing a lubricating base oil comprises using a catalyst in which at least one metal component selected from nickel, cobalt, molybdenum and tungsten and, if desired, phosphorus are supported on a refractory inorganic oxide carrier. A method for reducing the amount of a four-membered condensed polycyclic aromatic component having a pyrene ring has been proposed (JP-A-8-3571). Further, a proposal is made to produce a lubricating base oil in a fixed bed flow reactor using a catalyst in which 12% by mass of molybdenum, 3% by mass of nickel, and 2.5% by mass of phosphorus are supported on an alumina carrier (Japanese Patent Application Laid-Open (JP-A) No) No. 6-41548). Further, a catalyst system containing nickel and molybdenum on an alumina carrier and alumina +
There is also a proposal for producing a lubricating base oil by hydrocracking in the presence of a catalyst system containing nickel and molybdenum in a Y-type zeolite (Japanese Patent Application Laid-Open No. 8-259974). However, none of these proposals suggests that the amount of supported metal or the supported ratio of the catalyst is optimized, and that the dearomatic activity is insufficient.

【0007】[0007]

【発明の目的】本発明は、低アロマの潤滑油基油を製造
するために、アロマ分やPCA分の水添活性が高く、ま
た触媒寿命が長い、高性能な水素化精製用触媒を提供す
ることを目的とする。
The object of the present invention is to provide a high-performance hydrorefining catalyst having a high hydrogenation activity for aroma and PCA and a long catalyst life in order to produce a lubricating base oil having a low aroma. The purpose is to do.

【0008】[0008]

【発明の概要】本発明者らは、上記目的を達成するため
に検討を重ねた結果、低アロマ基油を製造するための水
素化精製用触媒の中で、アルミナを主成分とする無機酸
化物を担体として、ニッケル、モリブデン、リンの各酸
化物を担持した触媒系に関しては、一般には各金属の担
持量が多いほど高活性を示すと考えられているのに反し
て、ニッケルの担持量が低く、かつニッケルとリンの担
持比が所定の値を有する場合に、脱アロマ及び脱PCA
活性が飛躍的に向上するとの知見を得た。
SUMMARY OF THE INVENTION The inventors of the present invention have conducted various studies to achieve the above-mentioned object, and as a result, among the catalysts for hydrorefining for producing a low-aromatic base oil, an inorganic oxide containing alumina as a main component was used. For catalyst systems that support nickel, molybdenum, and phosphorus oxides using the product as a carrier, it is generally thought that the higher the amount of each metal supported, the higher the activity is, whereas the higher the amount of nickel supported, the higher the activity. Is low and the loading ratio of nickel and phosphorus has a predetermined value, dearomatization and deaeration of PCA
It was found that the activity was dramatically improved.

【0009】本発明における潤滑油基油の水素化精製用
触媒は、この知見に基づくもので、アルミナを主成分と
する無機酸化物を担体とし、ニッケルの担持量が酸化物
換算で2質量%以上9質量%未満、モリブデンの担持量
が酸化物換算で18〜28質量%、リンの担持量が酸化
物換算で2質量%より多く9質量%以下であって、かつ
酸化物換算の質量比でニッケル/リンの担持比が0.7
以上1未満であることを特徴とする。
The catalyst for hydrorefining a lubricating base oil according to the present invention is based on this finding, and comprises an inorganic oxide containing alumina as a main component and a nickel loading of 2% by mass in terms of oxide. Not less than 9% by mass, the amount of molybdenum supported is 18 to 28% by mass in terms of oxide, the amount of phosphorus supported is more than 2% by mass and not more than 9% by mass in terms of oxide, and the mass ratio in terms of oxide. And the loading ratio of nickel / phosphorus is 0.7
It is characterized by being less than 1 or more.

【0010】本発明において、担体であるアルミナを主
成分とする無機酸化物としては、種々のものが使用で
き、例えば、アルミナ、シリカ−アルミナ、アルミナ−
ジルコニア、アルミナ−チタニア、アルミナ−ボリア、
アルミナ−クロミア、シリカ−アルミナ−トリア、シリ
カ−アルミナ−ジルコニア、シリカ−アルミナ−マグネ
シア等が挙げられ、好ましくは、アルミナ、シリカ−ア
ルミナ、アルミナ−ボリア、アルミナ−チタニア、アル
ミナ−ジルコニアであり、より好ましくは、アルミナで
あり、特にアルミナとしてはγ−アルミナが好ましい。
これらは、単独で、あるいは2種以上を組み合わせて用
いることができる。これらアルミナを主成分とする無機
酸化物のアルミナ含有量は、85質量%以上、好ましく
は90質量%以上である。
In the present invention, various inorganic oxides containing alumina as a main component as a carrier can be used, for example, alumina, silica-alumina, alumina-alumina.
Zirconia, alumina-titania, alumina-boria,
Alumina-chromia, silica-alumina-tria, silica-alumina-zirconia, silica-alumina-magnesia and the like, preferably, alumina, silica-alumina, alumina-boria, alumina-titania, alumina-zirconia, and more Alumina is preferred, and γ-alumina is particularly preferred as alumina.
These can be used alone or in combination of two or more. The alumina content of the inorganic oxide containing alumina as a main component is 85% by mass or more, preferably 90% by mass or more.

【0011】これらの成分からなる担体の比表面積は、
本発明においては、特に限定されるものではないが、好
ましくは200m/g以上、より好ましくは200〜
600m/g、特に好ましくは250〜500m
gである。担体の細孔容積も、特に限定されないが、好
ましくは0.5〜0.8cc/gである。担体の平均細
孔径も、特に限定されないが、好ましくは50〜80Å
である。
The specific surface area of the carrier comprising these components is as follows:
In the present invention, although not particularly limited, it is preferably 200 m 2 / g or more, more preferably 200 to 200 m 2 / g.
600m 2 / g, particularly preferably 250~500m 2 /
g. The pore volume of the carrier is also not particularly limited, but is preferably 0.5 to 0.8 cc / g. The average pore diameter of the carrier is also not particularly limited, but is preferably 50 to 80 °.
It is.

【0012】担体に含有させる金属成分は、ニッケル、
モリブデンである。ニッケルの担持量は、酸化物換算で
2質量%以上9質量%未満、好ましくは3質量%以上9
質量%未満、より好ましくは3〜6質量%、特に好まし
くは3〜5質量%である。2質量%より少ないと、ニッ
ケルに帰属する活性点が十分に得られず、9質量%以上
では、触媒表面積や細孔容積が大幅に低下する等によ
り、触媒活性の向上が見られない。モリブデンの担持量
は、酸化物換算で18〜28質量%、好ましくは21〜
27質量%、より好ましくは22〜27質量%、特に好
ましくは22〜26質量%である。18質量%より少な
いと、モリブデンに帰属する活性点が十分に得られず、
28質量%より多いと、モリブデンが凝集して活性金属
の分散性が悪くなるばかりか、触媒表面積や細孔容積が
大幅に低下する等により、触媒の活性向上が見られな
い。
The metal component contained in the carrier is nickel,
Molybdenum. The amount of nickel supported is 2% by mass or more and less than 9% by mass, preferably 3% by mass or more and 9% by mass in terms of oxide.
It is less than 3% by mass, more preferably 3 to 6% by mass, particularly preferably 3 to 5% by mass. If the amount is less than 2% by mass, the active sites attributed to nickel cannot be sufficiently obtained. If the amount is 9% by mass or more, the catalytic activity is not improved because the catalyst surface area and pore volume are significantly reduced. The amount of molybdenum supported is 18 to 28% by mass in terms of oxide, preferably 21 to 28% by mass.
It is 27% by mass, more preferably 22 to 27% by mass, particularly preferably 22 to 26% by mass. If the content is less than 18% by mass, the active sites attributed to molybdenum cannot be sufficiently obtained,
If the content is more than 28% by mass, not only does molybdenum agglomerate and the dispersibility of the active metal deteriorates, but also the catalyst surface area and pore volume are significantly reduced, so that the activity of the catalyst is not improved.

【0013】また、本発明では、上記金属と共に、他の
周期律表第6A族、第8族金属から選ばれる水素化活性
成分を担持させることもできる。
Further, in the present invention, a hydrogenation active component selected from other Group 6A and Group 8 metals of the periodic table can be carried together with the above-mentioned metals.

【0014】更に、上記金属成分と共に担持させるリン
の担持量は、酸化物換算で2質量%より多く9質量%以
下、好ましくは4〜8質量%、より好ましくは4〜7質
量%、特に好ましくは4〜6.8質量%である。2質量
%以下では、リンに帰属する活性点が十分に得られず、
9質量%より多いと、活性成分の分散性が悪くなるばか
りか、触媒表面積や細孔容積が大幅に低下する等によ
り、触媒の活性向上が見られない。
Further, the amount of phosphorus to be carried together with the metal component is more than 2% by mass and not more than 9% by mass, preferably 4 to 8% by mass, more preferably 4 to 7% by mass, particularly preferably 4 to 7% by mass in terms of oxide. Is 4 to 6.8% by mass. When the content is 2% by mass or less, the active sites attributed to phosphorus cannot be sufficiently obtained,
If the content is more than 9% by mass, not only the dispersibility of the active component is deteriorated, but also the catalyst surface area and the pore volume are significantly reduced, so that the activity of the catalyst is not improved.

【0015】上記金属成分の内、ニッケル/リンの担持
比(酸化物換算の質量比)は、0.7以上1未満、好ま
しくは0.7より大きく1未満である。0.7未満であ
ると、ニッケルに帰属する活性点が不足して十分な活性
が得られず、1以上であると、リンに帰属する活性点が
不足して触媒の酸性質を向上させる作用が不足し、十分
な活性が得られない。
Among the above metal components, the loading ratio of nickel / phosphorus (mass ratio in terms of oxide) is 0.7 or more and less than 1, preferably more than 0.7 and less than 1. If it is less than 0.7, sufficient activity cannot be obtained due to insufficient active sites attributed to nickel, and if it is 1 or more, the active sites attributed to phosphorus are insufficient to improve the acidity of the catalyst. Is insufficient, and sufficient activity cannot be obtained.

【0016】本発明の触媒は、上記した担体に、上記し
た各成分の化合物を含む溶液を含浸させ、活性成分を担
持させて製造される。これらの化合物としては、次のよ
うなものが使用できる。モリブデン化合物としては、例
えば、モリブドリン酸、モリブデン酸アンモニウム、酸
化モリブデン等が挙げられ、ニッケル化合物としては、
例えば、ニッケルの炭酸塩、酢酸塩、リン酸塩が挙げら
れ、これらは、単独で用いてもよいし、2種以上を組み
合わせて用いてもよい。リン化合物としては、種々のリ
ン酸が挙げられ、具体的には、オルトリン酸、メタリン
酸、ピロリン酸、三リン酸、四リン酸、ポリリン酸等が
挙げられる。
The catalyst of the present invention is produced by impregnating the above-mentioned carrier with a solution containing the compound of each of the above-mentioned components, and carrying the active component. The following can be used as these compounds. Examples of the molybdenum compound include molybdophosphoric acid, ammonium molybdate, molybdenum oxide, and the like.As the nickel compound,
For example, nickel carbonate, acetate and phosphate may be mentioned, and these may be used alone or in combination of two or more. Examples of the phosphorus compound include various phosphoric acids, and specific examples include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, and polyphosphoric acid.

【0017】上記の金属化合物及びリン酸を溶解させる
溶媒は、特に限定されず、種々の溶媒を使用することが
でき、例えば、水、アルコール類、エーテル類、ケトン
類、芳香族類が挙げられ、好ましくは、水、アセトン、
メタノール、エタノール、n−プロパノール、イソプロ
パノール、n−ブタノール、イソブタノール、ヘキサノ
ール、ベンゼン、トルエン、キシレン、ジエチルエーテ
ル、テトラヒドロフラン、ジオキサン等が挙げられ、よ
り好ましくは、水である。
The solvent for dissolving the metal compound and phosphoric acid is not particularly limited, and various solvents can be used. Examples thereof include water, alcohols, ethers, ketones, and aromatics. , Preferably, water, acetone,
Examples include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, hexanol, benzene, toluene, xylene, diethyl ether, tetrahydrofuran, dioxane and the like, and more preferably water.

【0018】活性成分の担持方法は、各成分を一度に担
持させる一段担持方法であっても、多段に分けて担持さ
せる多段担持方法であってもよい。一段担持方法は、上
記担体に、上記各成分の化合物を溶解した溶液を、一度
に含浸させ、乾燥、焼成を行う方法であり、多段担持方
法は、この一連の操作を多段階で行い、所定の担持量を
多段階に分けて担持させる方法である。
The method of loading the active ingredient may be a single-stage loading method in which each component is loaded at once, or a multi-stage loading method in which each component is loaded in multiple stages. The single-stage supporting method is a method of impregnating the carrier with a solution obtained by dissolving the compounds of the respective components at one time, and drying and calcining. Is carried out in multiple stages.

【0019】含浸条件は、一段、多段いずれの担持方法
においても、種々の条件でよく、例えば、温度は50〜
90℃が好ましく、特に70〜80℃が好ましく、含浸
時間は、この温度条件で30分以上が好ましい。また、
攪拌を伴う含浸操作が好ましい。また、乾燥は、風乾、
熱風乾燥、加熱乾燥、凍結乾燥等、種々の乾燥法により
行うことができる。更に、焼成条件は、温度は適宜選定
すればよいが、一般には、400〜550℃が好まし
く、特に450〜500℃が好ましく、焼成時間は、こ
の温度条件で2〜10時間が好ましく、特に3〜5時間
が好ましい。
The impregnation conditions may be various conditions in any one-stage or multi-stage loading method.
The temperature is preferably 90 ° C, particularly preferably 70 to 80 ° C, and the impregnation time is preferably 30 minutes or more under this temperature condition. Also,
An impregnation operation with stirring is preferred. In addition, drying, air drying,
It can be performed by various drying methods such as hot air drying, heat drying, and freeze drying. Further, as for the firing conditions, the temperature may be appropriately selected, but generally, preferably 400 to 550 ° C, particularly preferably 450 to 500 ° C, and the firing time is preferably 2 to 10 hours under this temperature condition, and particularly preferably 3 to 3 hours. ~ 5 hours are preferred.

【0020】以上のようにして調製される本発明触媒の
比表面積、細孔容積は、触媒として機能することができ
れば特に限定されるものではないが、前述の担体の場合
と同様に、難脱アロマ物質及び難脱PCA物質までをも
効率的に除去するためには、比表面積は、160〜30
0m/gが好ましく、より好ましくは180〜250
/g、特に好ましくは180〜230m/gであ
り、細孔容積は、0.3〜0.8cc/gが好ましく、
より好ましくは0.3〜0.6cc/gである。
The specific surface area and pore volume of the catalyst of the present invention prepared as described above are not particularly limited as long as they can function as a catalyst. In order to efficiently remove even aroma substances and even hard-to-remov PCA substances, the specific surface area is 160-30.
0 m < 2 > / g is preferable, More preferably, it is 180-250.
m 2 / g, particularly preferably 180~230m 2 / g, pore volume, 0.3~0.8cc / g are preferred,
More preferably, it is 0.3 to 0.6 cc / g.

【0021】また、触媒の平均細孔径は、60〜120
Å程度でよいが、好ましくは70〜90Å、より好まし
くは73〜80Åである。平均細孔径が大きすぎると、
細孔内への反応物質の拡散性はよいものの、触媒の有効
表面積が小さくなるので、水添活性が低下する。平均細
孔径が小さすぎると、触媒として機能させるのに必要な
物性(比表面積、細孔容積)を得ようとすると、機械的
強度が不足する等、触媒製造上困難な問題が発生する。
The average pore size of the catalyst is 60 to 120.
Although it may be about {}, it is preferably 70 to 90 °, more preferably 73 to 80 °. If the average pore size is too large,
Although the diffusivity of the reactants into the pores is good, the effective surface area of the catalyst is small, so that the hydrogenation activity is reduced. If the average pore diameter is too small, difficulties arise in the production of the catalyst, such as insufficient mechanical strength, in order to obtain physical properties (specific surface area, pore volume) necessary for functioning as a catalyst.

【0022】触媒の細孔径分布(すなわち、平均細孔径
±15Åの細孔径を有する細孔の割合)は、70%以上
が好ましく、より好ましくは80%以上である。細孔径
分布の値が小さく、分布曲線がブロードであると、平均
細孔径が理想的な値であっても、反応に有効な細孔の数
が相対的に少なくなり、高活性な触媒とはならない。
The pore size distribution of the catalyst (that is, the proportion of pores having a pore size of average pore size ± 15 °) is preferably at least 70%, more preferably at least 80%. If the value of the pore size distribution is small and the distribution curve is broad, even if the average pore size is an ideal value, the number of effective pores for the reaction is relatively small, and a highly active catalyst No.

【0023】触媒形状は、特に限定されず、通常、この
種の触媒に用いられる種々の形状、例えば、円柱状、四
葉型等、種々の形状であってよい。大きさは、通常、径
が1/10〜1/22インチ、長さが3.0〜3.6m
mが好ましい。
The shape of the catalyst is not particularly limited, and may be various shapes usually used for this type of catalyst, for example, various shapes such as a columnar shape and a four-leaf type. The size is usually 1/10 to 1/22 inch in diameter and 3.0 to 3.6 m in length.
m is preferred.

【0024】本発明の触媒を用いる原料油としては、原
油の常圧蒸留残油を更に減圧蒸留した留出油を低粘度か
ら高粘度に分離した各種潤滑油留分及び減圧蒸留残油;
該減圧蒸留残油留分を更に溶剤脱歴処理してアスファル
ト分を除去した重質潤滑油留分;該重質潤滑油留分を含
む各種粘度の潤滑油留分;該各種粘度の潤滑油留分を更
に溶剤抽出、溶剤脱ろう等の処理油;等が挙げられ、こ
れらは単独で、あるいは2種以上を組み合わせて使用す
ることができる。
Examples of the feedstock using the catalyst of the present invention include various lubricating oil fractions obtained by further distilling a distillate obtained by further distilling a crude distillation residue from a normal pressure distillation under reduced pressure from a low viscosity to a high viscosity;
A heavy lubricating oil fraction obtained by further removing the asphalt component by subjecting the vacuum distillation residue to a solvent demarcation treatment; a lubricating oil fraction of various viscosities including the heavy lubricating oil fraction; a lubricating oil of various viscosities The fraction may further be treated oil such as solvent extraction and solvent dewaxing; and the like, and these may be used alone or in combination of two or more.

【0025】これらの原料油は、沸点範囲が200〜6
00℃、好ましくは250〜580℃、より好ましくは
270〜550℃であり、アロマ分量が30質量%以
下、好ましくは25質量%以下、より好ましくは23.
5質量%以下、PCA分量が20質量%以下、好ましく
は15質量%以下、より好ましくは13.5質量%以下
が好適である。
These feedstocks have a boiling point range of 200 to 6
00 ° C, preferably 250 to 580 ° C, more preferably 270 to 550 ° C, and the aroma content is 30% by mass or less, preferably 25% by mass or less, more preferably 23.
The amount is preferably 5% by mass or less, and the PCA content is 20% by mass or less, preferably 15% by mass or less, more preferably 13.5% by mass or less.

【0026】本発明の触媒を用いた、上記原料油の水添
反応条件は、圧力(水素分圧)が130〜160kg/
cm、好ましくは140〜150kg/cm、温度
が290〜360℃、好ましくは300〜350℃、よ
り好ましくは320〜350℃、液空間速度(LHS
V)が0.2〜1.0hr−1、好ましくは0.3〜
0.8hr−1、より好ましくは0.4〜0.6hr
−1、水素/油比が500〜1600L/L、好ましく
は850〜1100L/Lが適している。
The conditions for the hydrogenation reaction of the above feedstock using the catalyst of the present invention are such that the pressure (hydrogen partial pressure) is 130 to 160 kg /
cm 2 , preferably 140-150 kg / cm 2 , temperature 290-360 ° C., preferably 300-350 ° C., more preferably 320-350 ° C., liquid hourly space velocity (LHS
V) is 0.2 to 1.0 hr -1 , preferably 0.3 to 1.0 hr -1
0.8 hr -1 , more preferably 0.4 to 0.6 hr
-1 and a hydrogen / oil ratio of 500 to 1600 L / L, preferably 850 to 1100 L / L.

【0027】圧力(水素分圧)が130kg/cm
満であると、難脱アロマ物質及び難脱PCA物質までを
も除去することができず、160kg/cmを超えて
も、難脱アロマ物質及び難脱PCA物質の除去効率が飽
和するのみならず、これだけの高圧に耐え得る高コスト
の設備を要し、不経済となる。温度が290℃未満であ
ると、難脱アロマ物質及び難脱PCA物質をも除去する
ことができず、360℃を超えても、難脱アロマ物質及
び難脱PCA物質の除去効率が飽和し、不経済となる。
LHSVが1.0hr−1を超えると、触媒と原料油と
の接触時間が短くなりすぎて難脱アロマ物質及び難脱P
CA物質までをも除去することができず、0.2hr
−1未満であると、必要以上に接触時間が長くなりす
ぎ、処理効率が低下する。
[0027] When the pressure (hydrogen partial pressure) is less than 130 kg / cm 2, can not be removed until the flame de aroma substances and flame de PCA material, it exceeds 160 kg / cm 2, the flame de Aroma Not only does the removal efficiency of the substance and the hardly-removable PCA substance become saturated, but also expensive equipment that can withstand such a high pressure is required, which is uneconomical. If the temperature is less than 290 ° C., it is not possible to remove the hard-to-desorb aroma substance and the hard-to-reach PCA substance. It is uneconomical.
If the LHSV exceeds 1.0 hr −1 , the contact time between the catalyst and the feed oil becomes too short, and the hard-to-desorb aroma substance and hard-to-desorb P
Unable to remove even the CA substance, 0.2 hr
If it is less than -1 , the contact time becomes excessively long, and the processing efficiency is reduced.

【0028】また、反応条件は、生成油中のアロマ分量
が2.7〜3.2質量%、生成油中のPCA分量が2.
5〜3質量%となるような条件を選定することが好適で
ある。このような条件であれば、上記の触媒の寿命が従
来の典型的な触媒の寿命と同等あるいはそれ以上とな
り、実装置において上記触媒を4年以上使用することが
可能となる。
The reaction conditions are as follows: the aroma content in the product oil is 2.7 to 3.2% by mass, and the PCA content in the product oil is 2.
It is preferable to select a condition that gives 5 to 3% by mass. Under such conditions, the life of the catalyst is equal to or longer than the life of a typical conventional catalyst, and the catalyst can be used for four years or more in an actual device.

【0029】本発明の触媒を用いた、上記の原料油の、
上記の条件での水素化精製を、商業規模で行うには、本
発明の触媒を、適当な反応器に、固定床、移動床又は流
動床として使用し、この反応器に原料油を導入し、所定
の条件で処理すればよい。最も一般的には、本発明の触
媒を固定床として維持し、原料油を、この固定床を上方
から下方に通過するようにする。また、本発明の触媒
は、単独の反応器で使用してもよいし、連続した幾つか
の反応器で使用してもよい。
Using the catalyst of the present invention,
To carry out hydrorefining under the above conditions on a commercial scale, the catalyst of the present invention is used in a suitable reactor as a fixed bed, a moving bed or a fluidized bed, and the feedstock is introduced into the reactor. The processing may be performed under predetermined conditions. Most commonly, the catalyst of the present invention is maintained as a fixed bed, with feedstock passing through the fixed bed from top to bottom. Further, the catalyst of the present invention may be used in a single reactor or may be used in several continuous reactors.

【0030】[0030]

【実施例】以下の実施例及び比較例では、担体として、
比表面積385m/g、細孔容積0.68cc/g、
平均細孔径61Åのγ−アルミナを使用した。
In the following Examples and Comparative Examples,
Specific surface area 385 m 2 / g, pore volume 0.68 cc / g,
Γ-alumina having an average pore diameter of 61 ° was used.

【0031】実施例1 三角フラスコ中で、リン酸4.0gを水39.5gに溶
解させたリン酸水溶液に、炭酸ニッケル5.0gを加
え、75℃に保持しながらスターラーで攪拌し、モリブ
ドリン酸24.5gを徐々に加えた。攪拌は1時間以上
行った。得られた溶液を、ナス型フラスコ中で、アルミ
ナ担体(γ−アルミナ)50gに含浸した。含浸後、窒
素気流中常温で乾燥(風乾)させ、空気気流中120℃
で1時間乾燥させた後、マッフル炉中で500℃にて4
時間焼成を行い、触媒Aを得た。
Example 1 In an Erlenmeyer flask, 5.0 g of nickel carbonate was added to an aqueous solution of phosphoric acid in which 4.0 g of phosphoric acid was dissolved in 39.5 g of water, and the mixture was stirred with a stirrer while maintaining the temperature at 75 ° C. 24.5 g of acid were slowly added. The stirring was performed for 1 hour or more. The obtained solution was impregnated with 50 g of an alumina carrier (γ-alumina) in an eggplant type flask. After impregnation, it is dried (air-dried) at room temperature in a stream of nitrogen, and 120 ° C in a stream of air.
For 1 hour at 500 ° C in a muffle furnace.
Calcination was performed for a period of time to obtain Catalyst A.

【0032】実施例2 リン酸を5.0g、モリブドリン酸を20.5gに変え
た以外は、実施例1と同様の方法で、触媒Bを得た。
Example 2 A catalyst B was obtained in the same manner as in Example 1, except that the phosphoric acid was changed to 5.0 g and the molybdophosphoric acid was changed to 20.5 g.

【0033】比較例1 リン酸を0.9g、炭酸ニッケルを7.4g、モリブド
リン酸を24.2gに変え、1時間以上の攪拌の後、更
に硝酸を加えて1時間以上攪拌を行う以外は、実施例1
と同様の方法で、触媒Cを得た。
Comparative Example 1 Phosphoric acid was changed to 0.9 g, nickel carbonate to 7.4 g, and molybdophosphoric acid to 24.2 g. After stirring for 1 hour or more, nitric acid was further added and stirring was performed for 1 hour or more. Example 1
Catalyst C was obtained in the same manner as described above.

【0034】比較例2 リン酸を4.2g、炭酸ニッケルを7.2g、モリブド
リン酸を22.8gに変えた以外は、比較例1と同様の
方法で、触媒Dを得た。
Comparative Example 2 A catalyst D was obtained in the same manner as in Comparative Example 1, except that the phosphoric acid was changed to 4.2 g, the nickel carbonate to 7.2 g, and the molybdophosphoric acid to 22.8 g.

【0035】比較例3 炭酸ニッケルを炭酸コバルト7.8g、リン酸を4.1
g、モリブドリン酸を31.4gに変えた以外は、比較
例1と同様の方法で、触媒Eを得た。
Comparative Example 3 Nickel carbonate was 7.8 g of cobalt carbonate, and phosphoric acid was 4.1.
g and molybdophosphoric acid were changed to 31.4 g, and a catalyst E was obtained in the same manner as in Comparative Example 1.

【0036】比較例4 三角フラスコ中で、リン酸0.7gを水20gに溶解さ
せたリン酸水溶液に、硝酸ニッケル7.9gを加え、7
5℃に保持しながらスターラーで攪拌し、メタタングス
テン酸アンモニウム30gを水22gに溶解させた水溶
液を徐々に加えた。得られた溶液を、ナス型フラスコ中
で、アルミナ担体(γ−アルミナ)50gに含浸した。
含浸後、窒素気流中常温で乾燥(風乾)させ、空気気流
中120℃で1時間乾燥させた後、マッフル炉中で50
0℃にて4時間焼成を行い、触媒Fを得た。
Comparative Example 4 In an Erlenmeyer flask, 7.9 g of nickel nitrate was added to an aqueous phosphoric acid solution in which 0.7 g of phosphoric acid was dissolved in 20 g of water.
The mixture was stirred with a stirrer while maintaining the temperature at 5 ° C., and an aqueous solution in which 30 g of ammonium metatungstate was dissolved in 22 g of water was gradually added. The obtained solution was impregnated with 50 g of an alumina carrier (γ-alumina) in an eggplant type flask.
After impregnation, it is dried (air-dried) at room temperature in a nitrogen stream, dried at 120 ° C. for 1 hour in an air stream, and then dried in a muffle furnace for 50 hours.
Calcination was performed at 0 ° C. for 4 hours to obtain a catalyst F.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】〔触媒の性能評価例1〕上記実施例及び比
較例で得られた触媒A〜Fの性能を、マイクロリアクタ
ー反応装置を用いて脱アロマ反応を表3に示す条件で行
った際の相対活性で評価した。結果を表4に示した。
[Catalyst Performance Evaluation Example 1] The performances of the catalysts A to F obtained in the above Examples and Comparative Examples were measured using a microreactor reactor under the conditions shown in Table 3 for a dearomatization reaction. Evaluated by relative activity. The results are shown in Table 4.

【0040】[0040]

【表3】 ・原料油:脱アロマ試験用試料 密度(15℃) ;0.8710g/cm 動粘度(40℃);33.53mm/s 硫黄分 ;0.55質量% アロマ分 ;23.5質量% PCA分 ;0.4質量% ・反応条件:触媒量 ;15cc 水素分圧 ;14.71MPa 反応温度 ;320〜350℃(10℃毎に昇温) LHSV ;0.557hr−1 水素/油比;1011L/L ・評価方法:上記原料油のアロマ分と、上記条件で反応させて得た生成油の アロマ分とを測定し、これらの値から数1の式に基づいて反応 速度定数(k)を求め、この定数を用いて各触媒の相対活性を 評価した。Table 3-Feedstock: Sample for dearoma test Density (15 ° C); 0.8710 g / cm 3 Kinematic viscosity (40 ° C); 33.53 mm 2 / s Sulfur content: 0.55 mass% Aroma content: 23 0.5% by mass PCA content; 0.4% by mass Reaction condition: amount of catalyst: 15 cc Hydrogen partial pressure; 14.71 MPa Reaction temperature; 320 to 350 ° C. (heating at every 10 ° C.) LHSV: 0.557 hr −1 hydrogen / Oil ratio; 1011 L / L ・ Evaluation method: Measure the aroma content of the raw material oil and the aroma content of the product oil obtained by reacting under the above conditions, and calculate the reaction rate from these values based on the equation The constant (k) was determined, and the relative activity of each catalyst was evaluated using this constant.

【0041】なお、アロマ分の測定方法は、次の通りと
した。先ず、紫外可視分光光度計を用いて、イソオクタ
ンに希釈した試料の測定を行い、最大吸収における吸光
度を測定して吸光係数を求め、アロマ分との相関をとっ
た換算式を得た。次いで、規定の濃度に希釈した試料の
UV測定を行い、得られた吸光度を、この換算式に代入
してアロマ分を算出した。
The method for measuring the aroma was as follows. First, a sample diluted in isooctane was measured using an ultraviolet-visible spectrophotometer, and the absorbance at the maximum absorption was measured to determine the extinction coefficient, thereby obtaining a conversion formula correlated with the aroma component. Next, UV measurement of the sample diluted to a specified concentration was performed, and the obtained absorbance was substituted into this conversion formula to calculate an aroma component.

【0042】[0042]

【数1】k=LHSV×ln(Co/C) k :反応速度定数 Co:原料中のアロマ分 C :生成油中のアロマ分K = LHSV × ln (Co / C) k: reaction rate constant Co: aroma content in raw material C: aroma content in product oil

【0043】また、表4の相対活性はkα/kβで表し
たものであり、αは対象触媒、βは基準触媒であって、
ここでは触媒Cを基準触媒とし、この触媒Cの活性を1
00とした。
The relative activities in Table 4 are represented by kα / kβ, where α is the target catalyst, β is the reference catalyst,
Here, the catalyst C is used as a reference catalyst, and the activity of the catalyst C is 1
00.

【0044】[0044]

【表4】 [Table 4]

【0045】〔触媒の性能評価例2〕上記実施例及び比
較例で得られた触媒A〜Fの性能を、マイクロリアクタ
ー反応装置を用いて脱PCA反応を表5に示す条件で行
った際の相対活性評価で評価した。結果を表6に示し
た。
[Catalyst Performance Evaluation Example 2] The performances of the catalysts A to F obtained in the above Examples and Comparative Examples were measured using the microreactor reactor under the conditions shown in Table 5 for the de-PCA reaction. The relative activity was evaluated. The results are shown in Table 6.

【0046】[0046]

【表5】 ・原料油:脱PCA試験用試料 密度(15℃) ;0.8885g/cm 動粘度(40℃);10.62mm/s 硫黄分 ;1.65質量% PCA分 ;13.5質量% ・反応条件:触媒量 ;15cc 水素分圧 ;14.71MPa 反応温度 ;320〜350℃(10℃毎に昇温) LHSV ;0.557hr−1 水素/油比;1011L/L ・評価方法:上記原料油のPCA分と、上記条件で反応させて得た生成油の PCA分とを測定し、これらの値から数2の式に基づいて反応 速度定数(k)を求め、この定数を用いて各触媒の相対活性を 評価した。Table 5-Feedstock: Sample for de-PCA test Density (15 ° C); 0.8885 g / cm 3 Kinematic viscosity (40 ° C); 10.62 mm 2 / s Sulfur content; 1.65 mass% PCA content; 13 Reaction conditions: amount of catalyst; 15 cc hydrogen partial pressure; 14.71 MPa reaction temperature; 320 to 350 ° C. (heating every 10 ° C.) LHSV: 0.557 hr- 1 hydrogen / oil ratio; 1011 L / L Evaluation method: The PCA component of the feedstock oil and the PCA component of the product oil obtained by reacting under the above conditions were measured, and from these values, the reaction rate constant (k) was calculated based on the equation (2). The relative activity of each catalyst was evaluated using constants.

【0047】なお、PCA分の測定方法は、IP346
に規定された方法で行った。
The method for measuring PCA is IP346.
The procedure was performed as specified in

【0048】[0048]

【数2】 k=LHSV×〔(1/C)−(1/Co)〕 k :反応速度定数 Co:原料中のPCA分 C :生成油中のPCA分K = LHSV × [(1 / C) − (1 / Co)] k: reaction rate constant Co: PCA content in raw material C: PCA content in product oil

【0049】また、表6の相対活性はkα/kβで表し
たものであり、αは対象触媒、βは基準触媒であって、
ここでは触媒Cを基準触媒とし、この触媒Cの活性を1
00とした。
The relative activities in Table 6 are represented by kα / kβ, where α is the target catalyst, β is the reference catalyst,
Here, the catalyst C is used as a reference catalyst, and the activity of the catalyst C is 1
00.

【0050】[0050]

【表6】 [Table 6]

【0051】[0051]

【発明の効果】本発明によれば、脱アロマ及び脱PCA
活性が非常に高い高活性な潤滑油基油の水素化精製用触
媒を提供することができる。また、触媒の高活性化によ
り反応温度を低く保つことが可能であることから、本発
明の触媒を用いれば、潤滑基油の製造を円滑に行うこと
ができる。従って、本発明の高活性な触媒を用いること
で、処理能力を大幅に向上することができる。
According to the present invention, dearomatization and dePCA
It is possible to provide a highly active catalyst for hydrorefining lubricating base oils having very high activity. Further, since the reaction temperature can be kept low by increasing the activity of the catalyst, the production of a lubricating base oil can be carried out smoothly using the catalyst of the present invention. Therefore, by using the highly active catalyst of the present invention, the processing capacity can be greatly improved.

フロントページの続き (72)発明者 水谷 洋 埼玉県幸手市権現堂1134−2 株式会社コ スモ総合研究所研究開発センター内 (72)発明者 近藤 弘一 埼玉県幸手市権現堂1134−2 株式会社コ スモ総合研究所研究開発センター内 (72)発明者 藤川 貴志 埼玉県幸手市権現堂1134−2 株式会社コ スモ総合研究所研究開発センター内 (72)発明者 水谷 喜弘 埼玉県幸手市権現堂1134−2 株式会社コ スモ総合研究所研究開発センター内 Fターム(参考) 4G069 AA03 AA08 BA01A BA01B BB14B BB16B BC59A BC59B BC68A BC68B BD07A BD07B CC02 DA06 FB14 FC08 Continued on the front page (72) Inventor Hiroshi Mizutani 1134-2, Gongendo, Satte City, Saitama Prefecture Inside the R & D Center of Kosmo Research Institute, Inc. (72) Inventor Koichi Kondo 1134-2, Gongendo, Satte City, Saitama Prefecture Inside the R & D Center of Sumo Research Institute (72) Inventor Takashi Fujikawa 1134-2 Gongendo, Satte City, Saitama Prefecture Inside of the R & D Center Kosumo Research Institute Co., Ltd. (72) Yoshihiro Mizutani 1134- Gongendo, Satte City, Saitama Prefecture 2 F-term in R & D Center, Kosmo Research Institute, Inc. (reference) 4G069 AA03 AA08 BA01A BA01B BB14B BB16B BC59A BC59B BC68A BC68B BD07A BD07B CC02 DA06 FB14 FC08

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アルミナを主成分とする無機酸化物を担
体とし、ニッケルの担持量が酸化物換算で2質量%以上
9質量%未満、モリブデンの担持量が酸化物換算で18
〜28質量%、リンの担持量が酸化物換算で2質量%よ
り多く9質量%以下であって、酸化物換算の質量比でニ
ッケル/リンの担持比が0.7以上1未満である潤滑油
基油の水素化精製用触媒。
An inorganic oxide containing alumina as a main component is used as a carrier, and the supported amount of nickel is 2% by mass or more and less than 9% by mass in terms of oxide, and the supported amount of molybdenum is 18% in terms of oxide.
-28% by mass, the amount of phosphorus supported is more than 2% by mass and not more than 9% by mass in terms of oxide, and the supported ratio of nickel / phosphorus is 0.7 or more and less than 1 in terms of mass ratio in terms of oxide. Catalyst for hydrorefining of oil base oil.
JP10366396A 1998-12-24 1998-12-24 Catalyst for hydrogenation refining of base oil of lubricating oil Pending JP2000185231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10366396A JP2000185231A (en) 1998-12-24 1998-12-24 Catalyst for hydrogenation refining of base oil of lubricating oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10366396A JP2000185231A (en) 1998-12-24 1998-12-24 Catalyst for hydrogenation refining of base oil of lubricating oil

Publications (1)

Publication Number Publication Date
JP2000185231A true JP2000185231A (en) 2000-07-04

Family

ID=18486685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10366396A Pending JP2000185231A (en) 1998-12-24 1998-12-24 Catalyst for hydrogenation refining of base oil of lubricating oil

Country Status (1)

Country Link
JP (1) JP2000185231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112717946A (en) * 2020-12-31 2021-04-30 西北化工研究院有限公司 Spent lubricating oil hydrogenation regeneration catalyst and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112717946A (en) * 2020-12-31 2021-04-30 西北化工研究院有限公司 Spent lubricating oil hydrogenation regeneration catalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
US4673487A (en) Hydrogenation of a hydrocrackate using a hydrofinishing catalyst comprising palladium
US4431525A (en) Three-catalyst process for the hydrotreating of heavy hydrocarbon streams
EP0665280B1 (en) Process for producing a hydrodesulfurization catalyst
RU2528375C2 (en) Method of producing regenerated hydrofining catalyst and method of producing petrochemical product
JP2002518527A (en) Two-stage hydrodesulfurization method
JPH0214745A (en) Catalyst composition and manufacture thereof
JPH0811184B2 (en) Hydroprocessing catalyst for heavy oil
KR20120040150A (en) Process for producing lube base oil, and lube base oil
JP2000000470A (en) Hydrogenation catalyst and method for hydrogenating heavy oil
RU2140966C1 (en) Method of preparing main component of lubricating oil using catalyst with high selectivity of viscosity index
JPH09929A (en) Catalyst for hydrodesulfurization of light oil
CN105579135A (en) Hydroprocessing catalyst for heavy hydrocarbon oil, method for manufacturing hydroprocessing catalyst for heavy hydrocarbon oil, and hydroprocessing method for heavy hydrocarbon oil
WO2002032570A2 (en) Hydrodemetallation catalyst and method for making same
US10703991B2 (en) Ebullated bed process for high conversion of heavy hydrocarbons with a low sediment yield
CA1334194C (en) Hydrotreating catalyst and process
US4601996A (en) Hydrofinishing catalyst comprising palladium
WO2004078886A1 (en) Method of hydrotreating gas oil fraction
US5035793A (en) Hydrotreating catalyst and process
JP2000185231A (en) Catalyst for hydrogenation refining of base oil of lubricating oil
JP3676869B2 (en) Method for producing hydrodesulfurization catalyst for hydrocarbon oil
JP4444690B2 (en) Hydrotreating catalyst precursor, method for producing the same, and method for producing refined hydrocarbon oil
US4957895A (en) Hydrotreating catalyst and process
EP2723494B1 (en) Method of making a hydroprocessing catalyst
WO2004050802A1 (en) Hydroconversion catalyst and method for making the catalyst
JP3457080B2 (en) Method for hydrotreating aromatic compounds in hydrocarbon oils

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918