JP2000184679A - Vcm magnetic circuit - Google Patents

Vcm magnetic circuit

Info

Publication number
JP2000184679A
JP2000184679A JP10353141A JP35314198A JP2000184679A JP 2000184679 A JP2000184679 A JP 2000184679A JP 10353141 A JP10353141 A JP 10353141A JP 35314198 A JP35314198 A JP 35314198A JP 2000184679 A JP2000184679 A JP 2000184679A
Authority
JP
Japan
Prior art keywords
permanent magnet
yoke
magnetization
contact
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10353141A
Other languages
Japanese (ja)
Inventor
Koji Miyata
浩二 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP10353141A priority Critical patent/JP2000184679A/en
Publication of JP2000184679A publication Critical patent/JP2000184679A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the leakage magnetic field of upper and lower parts of a magnetic circuit by installing two permanent magnet thin plates while the plates are brought into contact with an end face, so that the direction of magnetization is different by specified degrees, and at the same time are brought into contact with the outside of each magnetic body yoke with polarity opposite to that of a flat permanent magnet. SOLUTION: A thin-plate permanent magnet 44 (a counter magnet) is provided on the external surface of upper/lower up yokes 41a and 41b in a VCM magnetic circuit. However, in the counter magnet 44, two permanent magnet thin plates are brought into contact each other on an end face, so that the directions of magnetization are different by 180 degrees and are magnetized with polarity opposite to that of a permanent magnet 40 opposing while sandwiching the up yokes 41s and 41b. Also, in the case of magnet one-side arrangement, two permanent magnet thin plates are brought into contact each other on an end face so that the directions of magnetization are different by 180 degrees and are magnetized with polarity opposite to that of a permanent magnet 40. More specifically, the counter magnet 44 is arranged on the upper surface of the upper up yoke 41a and the lower surface of the lower up yoke 41b, thus achieving high flux density and miniaturization, and reducing a leakage magnetic field without increasing costs.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンピュータの記
憶装置であるハードディスクドライブのヘッドアクセス
に用いられるボイスコイルモータの磁気回路に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a magnetic circuit of a voice coil motor used for head access of a hard disk drive as a storage device of a computer.

【0002】[0002]

【従来の技術】コンピュータの記憶装置であるハードデ
ィスクドライブの構成は、図1に平面図で示されるよう
に、記録媒体を塗布した回転するメディアディスク15
に、ピボット12を中心に回転する可動アーム13の先
端に磁気ヘッド14が設けられ、この磁気ヘッド14を
位置決めしてデータの書き込みや読み出しが行われる。
磁気ヘッドの位置決めは、空隙に2極の磁界を発生する
ボイスコイルモータ(以下、VCMという)磁気回路1
0中のコイル11に電流を流し、これを制御することで
行う。なお、メディアディスクのサイズは2.5インチ
や3.5インチが主流である。
2. Description of the Related Art As shown in a plan view in FIG. 1, a hard disk drive as a storage device of a computer has a rotating media disk 15 coated with a recording medium.
In addition, a magnetic head 14 is provided at the tip of a movable arm 13 that rotates about a pivot 12, and the magnetic head 14 is positioned to write or read data.
The positioning of the magnetic head is performed by a voice coil motor (hereinafter referred to as VCM) magnetic circuit 1 that generates a two-pole magnetic field in the air gap.
This is performed by supplying a current to the coil 11 in the zero position and controlling the current. The size of a media disk is 2.5 inches or 3.5 inches.

【0003】図1に示す磁気回路10のA−B断面によ
る概略図を図2に示す。磁気ヘッドアクセスに用いられ
るVCMの磁気回路には、図2(a)に示されるよう
な、2枚の板状の磁性体ヨークすなわちアップヨーク
(以下、アップヨークという)21a、21bが対向し
て配設され、2枚の永久磁石が、磁化の方向が180 度異
なるように互いに端面で接して1枚の板状に配設された
平板状永久磁石(以下、永久磁石という)20a、20
bを該アップヨークの対向面側にそれぞれ接して、空隙
を介して設けた磁石両側配置構造と、図2(b)のよう
に、2枚の板状のアップヨーク21a、21bが対向し
て配設され、2枚の永久磁石が、磁化の方向が180 度異
なるように互いに端面で接して1枚の板状に配設された
平板状永久磁石20bを該アップヨークの対向面側のい
ずれか一方の面に接して設けた磁石片側配置構造があ
る。なお、図2(a)、(b)は側面図である。空隙に
はコイル23が配置され、2枚のアップヨーク21a、
21bはサイドプレート22でつながれる。
FIG. 2 is a schematic view of the magnetic circuit 10 shown in FIG. A magnetic circuit of a VCM used for magnetic head access is provided with two plate-like magnetic yokes, ie, up yokes (hereinafter referred to as up yokes) 21a and 21b, as shown in FIG. Plate permanent magnets (hereinafter referred to as “permanent magnets”) 20a, 20 which are arranged in a single plate shape with two permanent magnets being in contact with each other at their end faces so that the directions of magnetization are different by 180 °.
b is in contact with the opposing surface side of the up yoke, and the two-sided magnet arrangement structure provided with a gap therebetween, and two plate-like up yokes 21a and 21b face each other as shown in FIG. The two permanent magnets are arranged in contact with each other at their end faces so that the directions of magnetization are different by 180 degrees. There is a one-sided magnet arrangement structure provided in contact with one surface. FIGS. 2A and 2B are side views. A coil 23 is arranged in the gap, and two up yokes 21a,
21 b are connected by a side plate 22.

【0004】[0004]

【発明が解決しようとする課題】近年、ハードディスク
ドライブに対して、高容量化、高速化が望まれ、VCM
磁気回路の空隙の磁束密度を上げる要求がある。磁束密
度を上げるには、空隙を狭めるか永久磁石の厚さを厚く
する、あるいは永久磁石の磁気特性を上げる方法があ
る。空隙にはコイルを配置するので寸法には限界があ
り、一般には、永久磁石の高性能化や厚さを増して対応
している。しかし、機器の小型化の要求、特にノート型
パーソナルコンピュータの薄型化に伴い、永久磁石の厚
さを増す場合でも磁気回路の全高を厚くするわけにはい
かない。その分、永久磁石に接するアップヨークを薄く
することになる。
In recent years, higher capacity and higher speed have been desired for hard disk drives.
There is a need to increase the magnetic flux density in the air gap of the magnetic circuit. In order to increase the magnetic flux density, there are methods of narrowing the air gap, increasing the thickness of the permanent magnet, or improving the magnetic properties of the permanent magnet. Since the coil is arranged in the air gap, there is a limit in the dimensions. Generally, the performance is increased by increasing the performance and thickness of the permanent magnet. However, with the demand for miniaturization of equipment, especially the thinning of notebook personal computers, even if the thickness of the permanent magnet is increased, the overall height of the magnetic circuit cannot be increased. Accordingly, the thickness of the up yoke in contact with the permanent magnet is reduced.

【0005】アップヨークは永久磁石の磁束を空隙へ効
率的に流す働きをもっているため、アップヨークが薄く
なると空隙外へ漏れる磁束が増える。磁気回路から外へ
の磁束を漏れ磁場(漏れ磁束)といい、VCM磁気回路
において漏れ磁場が多いと、磁気ヘッドやメディアディ
スクに影響を与え、データの書き込みや読み出し時にエ
ラーを生じ、VCM磁気回路の上下に配置される基板や
ハードディスク以外のメディアディスク、例えばフロッ
ピー(登録商標)ディスクに悪影響を与える。漏れ磁場
の具体的な値としては、図1の磁気ヘッド14部分で2
G以下、メディアディスク15のVCM磁気回路よりで
100G以下、VCM磁気回路10の外面から上下それ
ぞれ10mmのところで100G以下が好ましいとされ
ている。多くのVCM磁気回路の場合、アップヨークの
厚さを十分にとれないので、VCM磁気回路の上下での
漏れ磁場が大きく、問題になっている。磁気ヘッド部分
やメディアディスク部分の漏れ磁場が問題になることは
少ない。
[0005] Since the up yoke has a function of efficiently flowing the magnetic flux of the permanent magnet into the air gap, when the up yoke becomes thinner, the magnetic flux leaking out of the air gap increases. The magnetic flux leaking out of the magnetic circuit is called a leakage magnetic field (leakage magnetic flux). If the leakage magnetic field is large in the VCM magnetic circuit, it affects the magnetic head and the media disk, causing an error when writing or reading data, and causing the VCM magnetic circuit to fail. It adversely affects substrates disposed above and below and media disks other than hard disks, for example, floppy (registered trademark) disks. The specific value of the leakage magnetic field is 2 at the magnetic head 14 in FIG.
It is considered that the G is preferably 100 G or less from the VCM magnetic circuit of the media disk 15, and 100 G or less at each of 10 mm above and below the outer surface of the VCM magnetic circuit 10. In many VCM magnetic circuits, since the thickness of the up yoke cannot be made sufficiently large, the leakage magnetic field above and below the VCM magnetic circuit is large, which is a problem. The leakage magnetic field of the magnetic head portion and the media disk portion rarely causes a problem.

【0006】ここで、VCM磁気回路の上下に発生する
漏れ磁場について図3で説明する。なお、アップヨーク
対向面に直交する方向を、以下、上下方向とする。アッ
プヨーク上方の漏れ磁場は、VCM磁気回路の永久磁石
の磁極が反転する直上で最大となり、磁気回路の対称性
からその方向は水平成分である。図3(a)に示すよう
に、永久磁石35の磁化30をM01、M02、M0
3、M04とし、アップヨーク36a、36bの磁化3
1をM11、M12とモデル化する。サイドプレート
(図示せず)も磁性体であるので磁化は発生するが、ア
ップヨークに比べて薄いので影響度は小さく、説明を単
純にするために省略した。上部アップヨーク36a上方
の漏れ磁場(H)32は、上部アップヨークの磁化と永
久磁石の磁化とによる磁界であり、永久磁石の磁化(M
01〜M04)30によって強められ、上部アップヨー
ク36aの磁化(M11)によって弱められることがわ
かる。また、アップヨーク上方の漏れ磁場32に対する
下部アップヨーク36bの磁化(M12)の影響は、距
離が遠く小さいので無視する。なお、図3(b)に示す
ように、磁場はクーロンの法則によって計算できる各部
の磁性体の磁化の重ね合わせで求められる。クーロンの
法則によれば、図3(a)、(b)に示すアップヨーク
上の漏れ磁場(Hx)32は、磁性体(アップヨーク、
永久磁石)の磁化Mの大きさ(M01〜M04)と、磁
化ベクトル(ベクトルm)と方向ベクトル(ベクトル
r)との角θの余弦および磁性体の体積Vに比例し、距
離r(r01、r11)に反比例する。なお、r01は
永久磁石と漏れ磁場の距離、r11はアップヨークと漏
れ磁場の距離である。すなわち、VCM磁気回路の空隙
の磁束密度を上げるために、永久磁石の磁化を強めた
り、永久磁石の体積を増したり、さらにアップヨークの
体積を減らすことは、アップヨーク上方の漏れ磁場32
を増やすことになる。通常、アップヨークは十分な厚さ
を持っていないので、永久磁石の磁化の効果の方がアッ
プヨークの磁化の効果よりも強く、漏れ磁場32は、ア
ップヨークの磁化と同じ方向を持っている。本発明は、
高磁束密度化と小型化を実現しつつ、低コストでVCM
磁気回路上下の漏れ磁場を低減することを課題とする。
Here, the leakage magnetic field generated above and below the VCM magnetic circuit will be described with reference to FIG. Note that a direction perpendicular to the up yoke facing surface is hereinafter referred to as a vertical direction. The leakage magnetic field above the up yoke is maximum immediately above the reversal of the magnetic pole of the permanent magnet of the VCM magnetic circuit, and its direction is a horizontal component due to the symmetry of the magnetic circuit. As shown in FIG. 3A, the magnetization 30 of the permanent magnet 35 is changed to M01, M02, M0.
3, M04, and magnetization 3 of the up yokes 36a, 36b
1 is modeled as M11 and M12. Since the side plate (not shown) is also a magnetic material, magnetization occurs, but the side plate (not shown) is thinner than the up yoke and thus has a small degree of influence. The leakage magnetic field (H) 32 above the upper up yoke 36a is a magnetic field due to the magnetization of the upper up yoke and the magnetization of the permanent magnet, and the magnetization (M) of the permanent magnet
01 to M04) 30 and weakened by the magnetization (M11) of the upper up yoke 36a. Further, the influence of the magnetization (M12) of the lower up yoke 36b on the leakage magnetic field 32 above the up yoke is ignored because the distance is far and small. As shown in FIG. 3B, the magnetic field is obtained by superimposing the magnetization of the magnetic material of each part, which can be calculated by Coulomb's law. According to Coulomb's law, the leakage magnetic field (Hx) 32 on the up yoke shown in FIGS.
The distance r (r01, r01) is proportional to the magnitude (M01 to M04) of the magnetization M of the permanent magnet, the cosine of the angle θ between the magnetization vector (vector m) and the direction vector (vector r), and the volume V of the magnetic material. r11). Note that r01 is the distance between the permanent magnet and the leakage magnetic field, and r11 is the distance between the up yoke and the leakage magnetic field. In other words, in order to increase the magnetic flux density in the air gap of the VCM magnetic circuit, increasing the magnetization of the permanent magnet, increasing the volume of the permanent magnet, and further reducing the volume of the up yoke require the leakage magnetic field 32 above the up yoke.
Will increase. Usually, since the up yoke does not have a sufficient thickness, the effect of the magnetization of the permanent magnet is stronger than the effect of the magnetization of the up yoke, and the leakage magnetic field 32 has the same direction as the magnetization of the up yoke. . The present invention
VCM at low cost while realizing high magnetic flux density and miniaturization
It is an object to reduce a leakage magnetic field above and below a magnetic circuit.

【0007】[0007]

【課題を解決するための手段】本発明は、2枚の板状の
磁性体ヨークが対向して配設され、2枚の永久磁石が、
磁化の方向が180 度異なるように互いに端面で接して1
枚の板状に配設された平板状永久磁石を該磁性体ヨーク
の対向面側にそれぞれ接して、空隙を介して設けた磁石
両側配置構造の磁気回路であって、2枚の永久磁石薄板
が、磁化の方向が180 度異なるように互いに端面で接し
て、磁性体ヨークを挟んで対向する平板状永久磁石の極
性と逆の極性で各磁性体ヨークの外面に接してそれぞれ
設置されてなることを特徴とするVCM磁気回路であ
る。あるいは、2枚の板状の磁性体ヨークが対向して配
設され、2枚の永久磁石が、磁化の方向が180 度異なる
ように互いに端面で接して1枚の板状に配設された平板
状永久磁石を該磁性体ヨークの対向面側のいずれか一方
に接して設けた磁石片側配置構造の磁気回路であって、
2枚の永久磁石薄板が、磁化の方向が180 度異なるよう
に互いに端面で接して、平板状永久磁石の極性と逆の極
性で各磁性体ヨークの外面に接してそれぞれ設置されて
なることを特徴とするVCM磁気回路である。
According to the present invention, two plate-shaped magnetic yokes are disposed to face each other, and two permanent magnets are provided.
Contact each other at the end faces so that the magnetization directions differ by 180 degrees.
A magnetic circuit having a structure in which two permanent magnets are provided, wherein two permanent magnet thin plates are provided in such a manner that two plate-shaped permanent magnets arranged in the form of two plates are in contact with the opposing surface of the magnetic yoke and provided with a gap therebetween. Are arranged in contact with each other so that the directions of magnetization are 180 degrees different from each other at the end faces, and are in contact with the outer surface of each magnetic yoke with the polarity opposite to the polarity of the flat permanent magnet opposed to the magnetic yoke. A VCM magnetic circuit characterized in that: Alternatively, two plate-shaped magnetic yokes are disposed to face each other, and two permanent magnets are disposed in one plate in contact with each other at their end faces so that the directions of magnetization are different by 180 degrees. A magnetic circuit having a magnet one-sided structure in which a plate-shaped permanent magnet is provided in contact with one of the opposing surfaces of the magnetic yoke,
The two permanent magnet thin plates are placed in contact with each other at their end faces so that the directions of magnetization are different by 180 degrees, and are installed in contact with the outer surface of each magnetic yoke with the polarity opposite to that of the flat permanent magnet. It is a VCM magnetic circuit that is a feature.

【0008】[0008]

【発明の実施の形態】図面によって、本発明をさらに詳
細に説明する。図4の(a)はVCM磁気回路の磁石両
側配置のケースを示し、図4の(b)はVCM磁気回路
の磁石片側配置のケースを示す。先に説明したアップヨ
ーク上下の漏れ磁場を減らすために、本発明のVCM磁
気回路では、上下アップヨーク41a、41bの外面
に、それぞれ薄板状永久磁石44を配設する。以下、こ
の薄板状永久磁石44を、カウンタ磁石44という。図
4(a)に示すように、カウンタ磁石44は、2枚の永
久磁石薄板が、磁化の方向が180 度異なるように互いに
端面で接して、アップヨーク41a、41bを挟んで対
向する永久磁石40の極性と逆の極性に着磁されてい
る。また図4(b)に示す磁石片側配置では、カウンタ
磁石44は、2枚の永久磁石薄板が、磁化の方向が180
度異なるように互いに端面で接して、永久磁石40の極
性と逆の極性に着磁されている。カウンタ磁石は、この
永久磁石の両側配置と片側配置にかかわらず、上下アッ
プヨーク41a、41bの外面に配置される。すなわ
ち、上アップヨーク41aには上面に、また下アップヨ
ーク41bには下面に、それぞれカウンタ磁石44が配
置される。
BRIEF DESCRIPTION OF THE DRAWINGS The invention is explained in more detail by means of the drawings. FIG. 4A shows a case where the magnets of the VCM magnetic circuit are arranged on both sides of the magnet, and FIG. 4B shows a case where the magnets of the VCM magnetic circuit are arranged on one side of the magnet. In order to reduce the leakage magnetic field above and below the up yoke, in the VCM magnetic circuit of the present invention, thin permanent magnets 44 are disposed on the outer surfaces of the upper and lower up yokes 41a and 41b, respectively. Hereinafter, the thin plate-shaped permanent magnet 44 is referred to as a counter magnet 44. As shown in FIG. 4 (a), the counter magnet 44 is composed of two permanent magnet thin plates which are in contact with each other at their end faces so that the directions of magnetization are different by 180 degrees, and which face each other with the up yokes 41a and 41b interposed therebetween. It is magnetized to the polarity opposite to the polarity of 40. Further, in the one-sided magnet arrangement shown in FIG. 4B, the counter magnet 44 is formed by two permanent magnet thin plates having a magnetization direction of 180 °.
The magnets are in contact with each other at their end faces so as to be different from each other, and are magnetized to the polarity opposite to the polarity of the permanent magnet 40. The counter magnets are disposed on the outer surfaces of the upper and lower up yokes 41a and 41b regardless of the arrangement of the permanent magnets on both sides and on one side. That is, the counter magnets 44 are arranged on the upper surface of the upper up yoke 41a and on the lower surface of the lower up yoke 41b.

【0009】図5(a)、(b)に沿って、本発明のV
CM磁気回路でのカウンタ磁石の作用を説明する。上記
で説明したように、従来、アップヨーク上方にはアップ
ヨークの磁化(M11)51と同じ方向に漏れ磁場
(H)52が発生する(図5(a)参照)。図5(b)
に示す本発明のVCM磁気回路では、アップヨーク57
a、57bの外側に配置したカウンタ磁石58で、VC
M磁気回路の漏れ磁場52とは逆の方向に、図中Hcm
で示す磁界55を発生させ、磁界55と漏れ磁場52と
を重ね合わせることにより、漏れ磁場52を相殺して低
減できる。カウンタ磁石58は、2枚の磁化の方向が18
0 度異なるように互いに端面で接して設けられ、永久磁
石56の磁化方向M01、M02、M03、M04とは
逆のM41、M42方向に磁化されている。なお、カウ
ンタ磁石の作る磁場54は、漏れ磁場52を相殺する程
度に弱い磁場でよいので、カウンタ磁石の厚さは0.5
mm程度の薄板でよく、VCM磁気回路の全高を1mm
程度しか増やさないため、磁気回路が大型化する問題は
ほとんど考慮しなくてよい。以上、上アップヨーク57
a上方の漏れ磁場について説明したが、下アップヨーク
57b下方の漏れ磁場も同様にカウンタ磁石58により
低減できる。カウンタ磁石の材質は、板状に圧延したNd
-Fe-B系ボンド磁石や、Sm-Co 系ボンド磁石、フェライ
ト系ボンド磁石などが挙げられる。また、アップヨーク
外面へのカウンタ磁石の固定は、接着剤により行えばよ
い。
FIG. 5A and FIG. 5B show the V of the present invention.
The operation of the counter magnet in the CM magnetic circuit will be described. As described above, conventionally, a leakage magnetic field (H) 52 is generated above the up yoke in the same direction as the magnetization (M11) 51 of the up yoke (see FIG. 5A). FIG. 5 (b)
In the VCM magnetic circuit of the present invention shown in FIG.
a, the counter magnet 58 disposed outside the
In the direction opposite to the leakage magnetic field 52 of the M magnetic circuit, Hcm
By generating the magnetic field 55 indicated by, and superposing the magnetic field 55 and the leakage magnetic field 52, the leakage magnetic field 52 can be canceled out and reduced. The counter magnet 58 has two magnetization directions of 18
The permanent magnets 56 are provided in contact with each other at the end faces so as to differ by 0 degrees, and are magnetized in the M41 and M42 directions opposite to the magnetization directions M01, M02, M03, and M04 of the permanent magnet 56. Since the magnetic field 54 created by the counter magnet may be a magnetic field weak enough to offset the leakage magnetic field 52, the thickness of the counter magnet is 0.5
mm, and the total height of the VCM magnetic circuit is 1 mm.
Since the number of magnetic circuits is increased only, the problem that the magnetic circuit becomes large does not need to be considered. The upper up yoke 57
Although the leakage magnetic field above a has been described, the leakage magnetic field below the lower up yoke 57b can be similarly reduced by the counter magnet 58. The material of the counter magnet is Nd rolled into a plate
-Fe-B-based bonded magnets, Sm-Co-based bonded magnets, ferrite-based bonded magnets, and the like. Further, the counter magnet may be fixed to the outer surface of the up yoke with an adhesive.

【0010】[0010]

【実施例】次に、本発明の実施例を挙げる。 (実施例)磁石両側配置のVCM磁気回路において、図
5(b)のように上下アップヨーク57a、57bの外
面側にカウンタ磁石58を配置して、本発明のVCM磁
気回路の組立を行ったものと、図5(a)のように従来
通りの組立を行ったものとについて、永久磁石の磁極が
反転する直上で上アップヨーク57a上面から上方10
mmの位置での漏れ磁場を測定した。その結果、本発明
のVCM磁気回路の漏れ磁場は5Gであり、従来通りの
ものの漏れ磁場は110Gであった。
Next, examples of the present invention will be described. (Embodiment) In a VCM magnetic circuit in which magnets are arranged on both sides, as shown in FIG. 5B, a counter magnet 58 is arranged on the outer surface side of the upper and lower up yokes 57a and 57b, and the VCM magnetic circuit of the present invention is assembled. 5A and the one assembled in a conventional manner as shown in FIG.
The leakage magnetic field at the position of mm was measured. As a result, the leakage magnetic field of the VCM magnetic circuit of the present invention was 5 G, and the leakage magnetic field of the conventional one was 110 G.

【0011】なお、アップヨークの材質は低炭素鋼(残
留磁化12,000G、保磁力4Oe)とし、VCM磁気回路
の永久磁石はNd-Fe-B焼結磁石で、最大エネルギー積が
45MGOeであった。磁気回路の寸法は空隙3.5m
m、磁石厚さ4.5mm、アップヨーク厚さ4mmであり、
2.5インチハードディスクドライブ用とした。また、
カウンタ磁石の材質は、Nd-Fe-B系磁石の磁粉をゴムを
バインダーとして使い、板状に圧延したもので、最大エ
ネルギー積は6MGOeであった。カウンタ磁石の寸法
は幅30mm、奥行き15mm、厚さ0.5mmの薄板状と
し、この幅を2分割するように磁化の方向が180 度反転
する2極の着磁を行ったものである。上下のカウンタ磁
石は、上下のアップヨークの外面に、カウンタ磁石の磁
極が反転する面と永久磁石の磁極が反転する面とを一致
させて、それぞれ貼設した。
The material of the up yoke was low carbon steel (residual magnetization of 12,000 G, coercive force of 4 Oe), the permanent magnet of the VCM magnetic circuit was an Nd-Fe-B sintered magnet, and the maximum energy product was 45 MGOe. . The size of the magnetic circuit is 3.5 m.
m, magnet thickness 4.5mm, up yoke thickness 4mm,
For 2.5 inch hard disk drive. Also,
The material of the counter magnet was Nd-Fe-B based magnetic powder, which was rolled into a plate using rubber as a binder, and had a maximum energy product of 6MGOe. The size of the counter magnet is a thin plate having a width of 30 mm, a depth of 15 mm, and a thickness of 0.5 mm, and is magnetized with two poles whose magnetization direction is inverted by 180 degrees so as to divide the width into two. The upper and lower counter magnets were attached to the outer surfaces of the upper and lower up yokes, respectively, so that the surfaces where the magnetic poles of the counter magnet were reversed and the surfaces where the magnetic poles of the permanent magnets were reversed were matched.

【0012】[0012]

【発明の効果】本発明によれば、理論的にはゼロにまで
漏れ磁場を減らすことができる。しかも、永久磁石を用
いるので、工程のコストアップもほとんどない。今後の
ハードディスクドライブの高容量化、高速化、小型化か
らくるVCM磁気回路への高磁束密度化と小型化を実現
しつつ、コストを上げずに漏れ磁場対策を行うことがで
き、非常に有効である。
According to the present invention, the leakage magnetic field can be reduced to zero theoretically. Moreover, since a permanent magnet is used, there is almost no increase in the cost of the process. Higher magnetic flux density and miniaturization of VCM magnetic circuits due to higher capacity, higher speed, and smaller size of hard disk drives in the future. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ハードディスクドライブを示す概略平面図であ
る。
FIG. 1 is a schematic plan view showing a hard disk drive.

【図2】従来のハードディスク用VCM磁気回路を説明
する概略断面図であり、(a)は磁石両側配置のケース
を示し、(b)は磁石片側配置のケースを示す。
2A and 2B are schematic cross-sectional views illustrating a conventional VCM magnetic circuit for a hard disk, wherein FIG. 2A shows a case where magnets are arranged on both sides, and FIG. 2B shows a case where magnets are arranged on one side.

【図3】従来のVCM磁気回路を説明する図であり、
(a)はVCM磁気回路の磁化分布を説明する概略断面
図、(b)は磁気双極子の作る磁界を説明する概略図で
ある。
FIG. 3 is a diagram illustrating a conventional VCM magnetic circuit;
(A) is a schematic sectional view for explaining a magnetization distribution of a VCM magnetic circuit, and (b) is a schematic view for explaining a magnetic field generated by a magnetic dipole.

【図4】本発明のVCM磁気回路の概略断面図であり、
(a)は磁石両側配置のケースを示し、(b)は磁石片
側配置のケースを示す。
FIG. 4 is a schematic sectional view of a VCM magnetic circuit of the present invention;
(A) shows a case where magnets are arranged on both sides, and (b) shows a case where magnets are arranged on one side.

【図5】(a)従来のVCM磁気回路の漏れ磁場を説明
する概略断面図である。 (b)本発明におけるカウンタ磁石の作用を説明する概
略断面図である。
FIG. 5A is a schematic cross-sectional view illustrating a leakage magnetic field of a conventional VCM magnetic circuit. (B) It is an outline sectional view explaining an operation of a counter magnet in the present invention.

【符号の説明】[Explanation of symbols]

10‥‥‥‥‥‥VCM磁気回路 11‥‥‥‥‥‥コイル 12‥‥‥‥‥‥ピボット 13‥‥‥‥‥‥可動アーム 14‥‥‥‥‥‥磁気ヘッド 15‥‥‥‥‥‥メディアディスク 20a、20b、35、40、56‥‥‥永久磁石 21a、21b、36a、36b、41a、41b、5
7a、57b‥‥‥アップヨーク 22、42‥‥‥サイドプレート 23、43‥‥‥コイル 30、50‥‥‥永久磁石の磁化 31、51‥‥‥アップヨークの磁化 32、52‥‥‥ヨーク上方の漏れ磁場(上部アップヨ
ークの磁化と永久磁石の磁化による磁界) 44、58‥‥‥カウンタ磁石(薄板状永久磁石) 54‥‥‥‥‥‥カウンタ磁石の磁化 55‥‥‥‥‥‥カウンタ磁石の磁化による磁界 r01‥‥‥‥‥永久磁石と漏れ磁場の距離 r11‥‥‥‥‥アップヨークと漏れ磁場の距離
10 VCM magnetic circuit 11 Coil 12 Pivot 13 Movable arm 14 Magnetic head 15 {Media disks 20a, 20b, 35, 40, 56} Permanent magnets 21a, 21b, 36a, 36b, 41a, 41b, 5
7a, 57b {up yoke 22, 42} side plate 23, 43} coil 30, 50 {permanent magnet magnetization 31, 51} up yoke magnetization 32, 52} yoke Upper leakage magnetic field (magnetic field due to magnetization of upper up yoke and magnetization of permanent magnet) 44, 58 ° Counter magnet (thin plate-shaped permanent magnet) 54 ° Magnetization of counter magnet 55 ° Magnetic field due to magnetization of counter magnet r01 {Distance between permanent magnet and leakage magnetic field r11} Distance between up yoke and leakage magnetic field

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2枚の板状の磁性体ヨークが対向して配
設され、2枚の永久磁石が、磁化の方向が180 度異なる
ように互いに端面で接して1枚の板状に配設された平板
状永久磁石を該磁性体ヨークの対向面側にそれぞれ接し
て、空隙を介して設けた磁気回路であって、2枚の永久
磁石薄板が、磁化の方向が180 度異なるように互いに端
面で接して、磁性体ヨークを挟んで対向する平板状永久
磁石の極性と逆の極性で各磁性体ヨークの外面に接して
それぞれ設置されてなることを特徴とするVCM磁気回
路。
1. Two plate-shaped magnetic yokes are arranged to face each other, and two permanent magnets are arranged in a single plate-like shape in contact with each other at their end faces so that the directions of magnetization differ by 180 degrees. A magnetic circuit provided with a plate-shaped permanent magnet provided in contact with the opposing surface side of the magnetic yoke and provided with an air gap between the two permanent magnet thin plates so that the magnetization directions are different by 180 degrees. A VCM magnetic circuit, wherein the VCM magnetic circuits are provided so as to be in contact with each other at the end faces and in contact with the outer surface of each magnetic yoke with a polarity opposite to the polarity of the plate-shaped permanent magnet facing the magnetic yoke.
【請求項2】 2枚の板状の磁性体ヨークが対向して配
設され、2枚の永久磁石が、磁化の方向が180 度異なる
ように互いに端面で接して1枚の板状に配設された平板
状永久磁石を該磁性体ヨークの対向面側のいずれか一方
に接して設けた磁気回路であって、2枚の永久磁石薄板
が、磁化の方向が180 度異なるように互いに端面で接し
て、該平板状永久磁石の極性と逆の極性で各磁性体ヨー
クの外面に接してそれぞれ設置されてなることを特徴と
するVCM磁気回路。
2. A two plate-shaped magnetic yoke is disposed facing each other, and two permanent magnets are disposed in a single plate shape in contact with each other at their end faces so that the directions of magnetization are different by 180 degrees. A magnetic circuit provided with the provided plate-shaped permanent magnet in contact with one of the opposing surfaces of the magnetic yoke, wherein the two permanent magnet thin plates have end faces that are different from each other so that the magnetization directions are different by 180 degrees. A VCM magnetic circuit, wherein the VCM magnetic circuit is disposed in contact with the outer surface of each magnetic yoke with a polarity opposite to that of the plate-shaped permanent magnet.
JP10353141A 1998-12-11 1998-12-11 Vcm magnetic circuit Pending JP2000184679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10353141A JP2000184679A (en) 1998-12-11 1998-12-11 Vcm magnetic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10353141A JP2000184679A (en) 1998-12-11 1998-12-11 Vcm magnetic circuit

Publications (1)

Publication Number Publication Date
JP2000184679A true JP2000184679A (en) 2000-06-30

Family

ID=18428843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10353141A Pending JP2000184679A (en) 1998-12-11 1998-12-11 Vcm magnetic circuit

Country Status (1)

Country Link
JP (1) JP2000184679A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134808B2 (en) 2009-04-13 2012-03-13 Samsung Electronics Co., Ltd. Hard disk drive
JP2014238899A (en) * 2013-06-07 2014-12-18 日立金属株式会社 Voice coil motor and magnet used for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134808B2 (en) 2009-04-13 2012-03-13 Samsung Electronics Co., Ltd. Hard disk drive
JP2014238899A (en) * 2013-06-07 2014-12-18 日立金属株式会社 Voice coil motor and magnet used for the same

Similar Documents

Publication Publication Date Title
US9076463B2 (en) Magnetic recording head and disk device with the same
US8559134B2 (en) Radio frequency magnetic field assisted recording head, head assembly, amd recording apparatus
JP4161540B2 (en) Magnetic transfer method for perpendicular magnetic recording medium
WO2011052021A1 (en) Magnetic recording device
JP2010040060A (en) Magnetic head for high-frequency field assist recording and magnetic recording apparatus using the same
JP2005293822A (en) Manufacturing method of vertical recording head equipped with tapered trailing edge structure and shield
JP2011198399A (en) Magnetic recording head, magnetic head assembly, and magnetic recording and reproducing apparatus
JP5570745B2 (en) Magnetic recording head, magnetic head assembly, and magnetic recording apparatus
US8675308B2 (en) Magnetic recording head with high frequency oscillator and disk drive with the same
JP2000208322A (en) Permanent magnet adapted for use in actuator motor of disk drive and its manufacture
EP0774153A1 (en) Disk drive including embedded voice coil magnet plates
US7468852B2 (en) Method of demagnetizing magnetic recording medium and apparatus for carrying out same
JP3464988B2 (en) Disk device, yoke incorporated in disk device, and method of manufacturing yoke
JP2000184679A (en) Vcm magnetic circuit
JP3330927B2 (en) Recording method on magnetic recording medium
JP2005166107A (en) Perpendicular magnetic recording disk drive
JP3494902B2 (en) VCM magnetic circuit
JP2000182828A (en) Method of magnetizing vcm magnetic circuit yoke
JP2014149911A (en) Magnetic recording head, magnetic head assembly, and magnetic recording device
US11423930B2 (en) Hard disk drive with composite permanent magnet
JP4028200B2 (en) Perpendicular magnetic recording head and magnetic disk apparatus
JP3856060B2 (en) Magnetic recording method and magnetic head
JP3395292B2 (en) Magnetic head and magnetic recording / reproducing device
JP2019083084A (en) Magnetic recording head and magnetic recording and reproducing device
JPH10289401A (en) Magnetic recorder