JP2000182675A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2000182675A
JP2000182675A JP10357161A JP35716198A JP2000182675A JP 2000182675 A JP2000182675 A JP 2000182675A JP 10357161 A JP10357161 A JP 10357161A JP 35716198 A JP35716198 A JP 35716198A JP 2000182675 A JP2000182675 A JP 2000182675A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
battery
secondary battery
temperature
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10357161A
Other languages
Japanese (ja)
Inventor
Katsuyuki Matsuki
勝行 松木
Morio Kobayashi
守夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10357161A priority Critical patent/JP2000182675A/en
Publication of JP2000182675A publication Critical patent/JP2000182675A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a means to shut off a current of a non-aqueous electrolytic solution secondary battery in the event of abnormal rise of its temperature by sensing the temperature rise. SOLUTION: In the event of abnormal rise of the internal temp. of the can 2 of a non-aqueous electrolytic solution secondary battery, the heat is conducted to a safety device outside the can through a lid 4 from a temp. sensing member 21 made of metal and installed inside the can. That is, a temp. sensing member 21 is provided to transmit the temp. information about intra-can abnormal temp. rise to a safety device (to shut off the current with melting of a low-temp. melting member 9 so as to form a current circuit detouring the battery). Accordingly a safety device with good thermal response can be formed at a very low cost, and because the structure is simple and independent of the intra-can wirings, there is no risk of giving a structural load on the intra-can wirings nor a load in terms of assembly on the production process, and it is possible to establish a current shutoff for abnormal temp. rise upon easily sensing the intra-can temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に係り、特に電池内温度を感知し設定温度に達したと
き、電池電流を遮断する安全装置を備えた非水電解液二
次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery provided with a safety device for sensing battery internal temperature and shutting off battery current when a set temperature is reached. Battery.

【0002】[0002]

【従来の技術】リチウムイオン二次電池は、その高体積
エネルギー密度により、またその高重量エネルギー密度
により、従来のNiCd電池、Ni−H電池などに比較
して、小型、軽量化がはかれるという特徴を有してい
る。また、NiCd電池などに生じるいわゆるメモリー
効果なる現象を生じないため、使用上も再充電が簡便に
行えるなど、優れた特徴を有している。
2. Description of the Related Art Due to its high volume energy density and its high weight energy density, lithium ion secondary batteries can be made smaller and lighter than conventional NiCd batteries and Ni-H batteries. have. In addition, since a phenomenon such as a so-called memory effect that occurs in a NiCd battery or the like does not occur, the battery has excellent features such as easy recharging during use.

【0003】しかし、リチウムイオン二次電池は、その
電解液として燃焼性のある有機系の非水電解液を使用し
ているということ、また負極材として用いられている活
物質(例えば炭素材)については、電池のショート等に
よる高温状態にさらされると激しく発熱すること、また
正極材として用いられている活物質(例えばLiCoO
2、LiNiO2、LiMn24等)については高温時に
脱酸素反応による発熱をみるなど、電池を構成する構成
材に発熱、発火を生じる恐れのある部材を有しているた
めに、特に発熱、発火に対しては、十分安全対策を図る
必要がある。
[0003] However, the lithium ion secondary battery uses a combustible organic non-aqueous electrolyte as an electrolyte and an active material (eg, carbon material) used as a negative electrode material. Is that when exposed to a high temperature state due to a short circuit of the battery, etc., it generates heat intensely, and an active material used as a positive electrode material (for example, LiCoO
2 , LiNiO 2 , LiMn 2 O 4, etc.), since the components constituting the battery have members that may generate heat or ignite, for example, heat generation due to a deoxygenation reaction is observed at a high temperature. It is necessary to take sufficient safety measures against ignition.

【0004】例えば、リチウムイオン二次電池は、非水
電解液を使用しているため、極間を移動するリチウムイ
オンのイオン伝導度が含水性電解液に比べて低く、それ
を補うために極をシート状に形成し、それを極めて薄い
(20〜30μm)ポリマーセパレーターを介して、捲
回することによって電極体を形成している。このため極
間のマイクロショートを引き起こしやすい等の問題点を
抱えている。このような極間のマイクロショートによる
短絡防止のために、電池製造工程ではマイクロショート
の原因となるゴミの発生を極力防止するための対策が行
われている。しかしながら、このような防止策を講じて
いるにも関わらず、発熱の原因となるマイクロショート
を発生させるゴミの発生を絶無にはできない。
For example, since a lithium ion secondary battery uses a non-aqueous electrolyte, the ionic conductivity of lithium ions moving between the electrodes is lower than that of a water-containing electrolyte. Is formed into a sheet shape, and is wound through an extremely thin (20 to 30 μm) polymer separator to form an electrode body. For this reason, there is a problem that a micro short circuit between the electrodes is easily caused. In order to prevent such a short circuit due to a micro short circuit between the electrodes, measures are taken in the battery manufacturing process to minimize the generation of dust causing a micro short circuit. However, in spite of taking such preventive measures, the generation of dust that causes micro-shorts, which cause heat generation, cannot be inevitably generated.

【0005】このほかにも、誤使用による電極の短絡も
想定され、単に電池の発熱、発火原因に対する対策を考
えるだけでなく、電池発熱後の対策として、電池がある
一定以上の温度まで発熱したら電流を遮断する対策が考
えられている。例えば、特開平6−203827号公報
に記載の考案のように、電池本体の捲回体巻心部に温度
ヒューズを配置し、電池温度が所定温度以上に昇温した
場合、ヒューズを溶融し、電路を遮断するという方法が
考案されている。すなわち、ヒューズ素子の一端に接続
しているリード線は、電極体の一端(正極)に接続さ
れ、ヒューズの他端は防爆機構および端子を兼ねる封口
蓋群の端子板に接続される。電極の短絡等により電池内
物質の化学反応を誘起し、ガスの発生、温度の過度の上
昇が引き起こされた場合、ヒューズは所定動作温度で電
流を遮断する。これにより、ガスの発生を停止し、電池
の内圧上昇を抑え、破裂を防止する。
[0005] In addition to the above, it is assumed that the electrodes are short-circuited due to misuse. In addition to simply taking measures against the heat generation and ignition cause of the battery, as a countermeasure after the battery is heated, if the battery generates heat to a certain temperature or more. Measures to cut off the current have been considered. For example, as in the invention described in Japanese Patent Application Laid-Open No. 6-203827, a temperature fuse is arranged at the core of the wound body of the battery body, and when the battery temperature rises to a predetermined temperature or higher, the fuse is melted. A method has been devised to cut off the electric circuit. That is, the lead wire connected to one end of the fuse element is connected to one end (positive electrode) of the electrode body, and the other end of the fuse is connected to a terminal plate of a group of sealing lids that also serves as an explosion-proof mechanism and terminals. When a chemical reaction of a substance in the battery is induced due to a short circuit of an electrode or the like, and gas generation or an excessive rise in temperature is caused, the fuse cuts off current at a predetermined operating temperature. As a result, generation of gas is stopped, an increase in the internal pressure of the battery is suppressed, and rupture is prevented.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、電池の
内部にこのような感熱素子を直接設置することは、缶内
の温度上昇に対して迅速に反応すると言う面では有利で
あるが、感熱素子と電極体、および感熱素子とフタ端子
部の間の電気的接続の問題が一方で生じてくる。特に電
池容量が大きくなると、電極体から引き出すタブ部の集
電構造は電流が増大することに伴い、電流路の断面積を
増大させなければならないため、集電構造は電池構造上
大きな制約になる。たとえば、電流値が20A程度の電
流を流す電池の場合、集電タブの幅、厚みは例えば幅1
0mm、厚み0.1mmのタブで単極で8枚程度必要と
なる。このタブ群と感熱素子とを電気的に接続し、その
電気的接続手段を電池内に収納することは、他部品との
干渉、電気的短絡の危険性を回避する構造の必要性、ま
た、これらの接続部を組立時に他部品を傷つけることな
く、干渉させることなく作業しなければならないなどの
問題が生じ、構造上においても製造工程の上においても
問題がある。
However, the direct installation of such a thermosensitive element inside the battery is advantageous in that it responds quickly to a rise in the temperature inside the can, but it is advantageous to install the thermosensitive element. One problem arises with the electrical connection between the electrode body and the thermal element and the lid terminal. In particular, when the battery capacity increases, the current collecting structure of the tab portion drawn out from the electrode body must increase the cross-sectional area of the current path as the current increases, so that the current collecting structure is a great constraint on the battery structure. . For example, in the case of a battery flowing a current of about 20 A, the width and thickness of the current collecting tab are, for example, 1 width.
Approximately 8 single-pole tabs are required for a tab having a thickness of 0 mm and a thickness of 0.1 mm. By electrically connecting the tab group and the thermosensitive element and storing the electrical connection means in the battery, interference with other parts, the need for a structure that avoids the danger of electrical short circuit, and There arises a problem that these connecting portions must be worked without damaging other components and causing interference during assembly, and thus there is a problem in both the structure and the manufacturing process.

【0007】本発明の目的は、上記問題点に鑑みてなさ
れたものであって、電池の集電構造に対する構造上の負
荷を与えることなく、電池内の温度を迅速に感知し、過
大電流を遮断する手段を有する非水電解液二次電池を提
供しようとするものである。
An object of the present invention has been made in view of the above-mentioned problems, and it is possible to quickly sense the temperature inside a battery and apply an excessive current without giving a structural load to a current collecting structure of the battery. An object of the present invention is to provide a non-aqueous electrolyte secondary battery having a shut-off means.

【0008】[0008]

【課題を解決するための手段】上記課題は以下のように
解決される。請求項1記載発明は、正極および負極間に
非水電解液を浸透させた電池本体を、缶内に収納して構
成された非水電解液二次電池において、前記缶内部の温
度を検知し缶外部に伝える温度感知手段と、前記温度感
知手段により缶外部に導かれた缶内熱量によって熱溶融
部材を溶融し、電池電流を遮断する電流遮断手段を具え
たことを特徴とするものである。これにより、缶内の異
常昇温が缶外に容易に導かれ、この熱量によって缶外の
熱溶融部材を溶融することによって、電池の電流が遮断
され、電池の異常昇温による非常事態を未然に防止でき
る。また、請求項2記載発明は、正極および負極をセパ
レータを介して対向させ、渦巻き状に捲回することによ
り電極体を形成し、前記正極および負極間に非水電解液
を浸透させた電池本体と、前記電池本体を収納する外装
缶と、前記外装缶の開口部を塞ぎ、缶内部を封止する缶
フタ部とからなる非水電解液二次電池において、前記電
池内部の温度を感知する金属製の温度感知部材を、缶内
部より缶フタ部を貫通して缶外に導かれるように設置
し、前記温度感知部材により導かれた缶内熱量により、
はんだ、温度ヒューズ等の熱溶融部材を溶融することに
よって、電池電流を遮断する安全装置を装着したことを
特徴とするものである。このような構成によれば、缶内
に設置されている金属製の温度感知部材は、該感知部材
が熱の極めて良好な輸送路として機能するため、容易に
缶内の熱量を缶外に導き、同部材により導かれた缶内熱
量によって、缶外に設置され電池電流路に結線されてい
る熱溶融部材(はんだ、ヒューズ等)が溶融され、電池
の電流路を遮断することが可能となる。このような安全
装置を装着しているため、簡素な構造と確実な動作によ
り、事故を未然に防止できる非水電解液二次電池を提供
することができる。また、請求項3記載発明は、請求項
1または2に記載の非水電解液二次電池において、前記
缶内部の温度を検知する部材は、一部が缶内部の捲回電
極体の捲心部のセンターピン内に位置し、他部が缶外部
の熱溶融部材に接続されていることを特徴とする。その
ため、電池内部の温度検知に最適な部位からの温度情報
を、缶外部の熱溶融部材に容易に導くことができ、感度
の良い安全装置を構成することができる。また、請求項
4記載発明は、請求項1、2または3に記載の非水電解
液二次電池において、前記缶内部の温度を検知する部材
は、前記缶内部に挿入された挿入部と、前記挿入部にね
じ結合され、前記熱溶融部材に接触する接触部とからな
ることを特徴とする。そのため、あらかじめ熱溶融部材
に接触させた接触部を、挿入部にねじ固定でき、電池の
製作組立性が向上する。また、請求項5記載発明は、請
求項1、2または3に記載の非水電解液二次電池におい
て、前記缶内部の温度を検知する部材は、一部が缶内部
に挿入され、他部が熱溶融部材に接触する単一の棒材か
らなることを特徴とする。これにより、温度検知部材が
単一材料なので、確実で安定した熱伝導を期待できる。
また、請求項6記載発明は、請求項1ないし5のうちい
ずれかに記載の非水電解液二次電池において、前記缶内
部の温度を検知する部材は、銅、銅合金、アルミ、ニッ
ケル、ニッケルメッキ鉄、ステンレス、黒鉛等の熱良導
金属からなることを特徴とする。これにより、安価で確
実な熱伝導性能を持つ温度感知部材が得られる。
The above-mentioned object is attained as follows. The invention according to claim 1 is a non-aqueous electrolyte secondary battery configured by housing a battery main body in which a non-aqueous electrolyte is permeated between a positive electrode and a negative electrode in a can, and detects a temperature inside the can. Temperature sensing means for transmitting to the outside of the can, and current interrupting means for interrupting the battery current by melting the heat melting member by the amount of heat in the can guided to the outside of the can by the temperature sensing means. . As a result, the abnormal temperature rise inside the can is easily guided to the outside of the can, and the amount of heat melts the heat melting member outside the can, whereby the battery current is interrupted, and an emergency due to the abnormal temperature rise of the battery is anticipated. Can be prevented. According to a second aspect of the present invention, there is provided a battery body in which a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween and spirally wound to form an electrode body, and a non-aqueous electrolyte is permeated between the positive electrode and the negative electrode. A non-aqueous electrolyte secondary battery comprising: an outer can housing the battery main body; and a can lid for closing the opening of the outer can and sealing the inside of the can. A metal temperature sensing member is installed so as to be guided from the inside of the can through the can lid to the outside of the can, and by the amount of heat in the can guided by the temperature sensing member,
A safety device for interrupting a battery current by melting a heat melting member such as a solder and a thermal fuse is provided. According to such a configuration, the metal temperature sensing member installed in the can easily guides the amount of heat in the can to the outside of the can because the sensing member functions as a very good heat transport path. By the heat in the can guided by the member, the heat melting member (solder, fuse, etc.) installed outside the can and connected to the battery current path is melted, and the current path of the battery can be cut off. . Since such a safety device is mounted, it is possible to provide a nonaqueous electrolyte secondary battery that can prevent an accident with a simple structure and reliable operation. According to a third aspect of the present invention, in the non-aqueous electrolyte secondary battery according to the first or second aspect, a part of the member for detecting the temperature inside the can is a core of the wound electrode body inside the can. And the other part is connected to a heat melting member outside the can. For this reason, temperature information from a portion most suitable for temperature detection inside the battery can be easily led to the heat melting member outside the can, and a sensitive safety device can be configured. According to a fourth aspect of the present invention, in the non-aqueous electrolyte secondary battery according to the first, second or third aspect, the member for detecting the temperature inside the can includes an insertion portion inserted inside the can, And a contact portion which is screwed to the insertion portion and comes into contact with the heat melting member. Therefore, the contact portion that has been brought into contact with the heat melting member in advance can be screw-fixed to the insertion portion, and the fabrication and assemblability of the battery is improved. According to a fifth aspect of the present invention, in the non-aqueous electrolyte secondary battery according to the first, second or third aspect, a part of the member for detecting the temperature inside the can is inserted into the inside of the can and the other part is inserted into the can. Consists of a single bar that contacts the hot-melt member. Thus, since the temperature detecting member is a single material, reliable and stable heat conduction can be expected.
According to a sixth aspect of the present invention, in the non-aqueous electrolyte secondary battery according to any one of the first to fifth aspects, the member for detecting the temperature inside the can is made of copper, a copper alloy, aluminum, nickel, It is made of a heat conductive metal such as nickel-plated iron, stainless steel, and graphite. As a result, a temperature sensing member having inexpensive and reliable heat conduction performance can be obtained.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施形態を、図面
を参照して詳細に説明する。図1は、感熱部材を有する
安全装置を装着した本発明になる非水電解液二次電池で
ある。非水電解液二次電池として、本例ではリチウムイ
オン二次電池の一実施形態を示す。図2は、図1のA−
A断面図であり、図3は、感熱部材を有する安全装置を
装着した本発明になるリチウムイオン二次電池の別の例
である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a non-aqueous electrolyte secondary battery according to the present invention equipped with a safety device having a heat-sensitive member. In this example, an embodiment of a lithium ion secondary battery will be described as a nonaqueous electrolyte secondary battery. FIG. 2 is a cross-sectional view of FIG.
FIG. 3 is a cross-sectional view of A, and FIG. 3 is another example of the lithium ion secondary battery according to the present invention equipped with a safety device having a heat-sensitive member.

【0010】図1において、1は電池本体である。電池
本体1は、正極、負極、セパレータよりなる。正極は厚
み20μmのアルミ箔である正極集電体の両面に、正極
材を厚み80μm両面塗布したものである。正極材は、
正極活物質(例えば、LiMn24、LiCoO2、L
iNiO2)に、伝導材(例えば黒鉛)、樹脂結着材
(例えばPVDF(ポリフッ化ビニリデン)を、それぞ
れ90:7:3のW%比で混合したものである。負極は
厚み15μmの箔である負極集電体の両面に、負極材を
厚み80μm両面塗布したものである。
In FIG. 1, reference numeral 1 denotes a battery body. The battery body 1 includes a positive electrode, a negative electrode, and a separator. The positive electrode is formed by coating a positive electrode material on both sides of a positive electrode current collector, which is an aluminum foil having a thickness of 20 μm, on both sides. The cathode material is
Positive electrode active material (for example, LiMn 2 O 4 , LiCoO 2 , L
A conductive material (for example, graphite) and a resin binder (for example, PVDF (polyvinylidene fluoride)) are mixed at a W% ratio of 90: 7: 3 with iNiO 2. The negative electrode is a 15 μm thick foil. A negative electrode material is coated on both sides of a certain negative electrode current collector with a thickness of 80 μm on both sides.

【0011】負極材は、負極活物質(例えば黒鉛、非晶
質炭素)に樹脂結着材(例えばPVDF(ポリフッ化ビ
ニリデン)を95:5のW%比で混合したものである。
このシート状に裁断された正負それぞれの電極の間に、
セパレータを挟んでロール状に捲いたものが電池本体1
である。セパレータは厚み20μmのPP(ポリプロピ
レン)シート製であり、その表面に微細空孔が無数に空
いている。この電池本体に非水電解液{EC(エチレン
カーボネート)/DMC(ジメチルカーボネート)の
1:2の混合液}を含浸させている。2は電池本体を収
納する外装缶であり、径54mm、厚み0.8mmのア
ルミ製の缶を使用している。3はガスケットでありPP
(ポリプロピレン)製である。電池フタ4と外装缶2の
間の気密性を保持する機能を有する。また、さらにガス
ケット3は、電極タブと外装缶との絶縁機能を持たせる
ために、外装缶1と接する周囲部は缶内に引き伸ばされ
ている。
The negative electrode material is obtained by mixing a negative electrode active material (for example, graphite, amorphous carbon) with a resin binder (for example, PVDF (polyvinylidene fluoride) at a W% ratio of 95: 5).
Between the positive and negative electrodes cut into this sheet shape,
The battery body 1 wound in a roll with a separator interposed
It is. The separator is made of a PP (polypropylene) sheet having a thickness of 20 μm, and has numerous pores on its surface. The battery body was impregnated with a non-aqueous electrolyte {a mixture of EC (ethylene carbonate) / DMC (dimethyl carbonate) at a ratio of 1: 2}. Reference numeral 2 denotes an outer can for housing the battery body, which is an aluminum can having a diameter of 54 mm and a thickness of 0.8 mm. 3 is a gasket and PP
(Polypropylene). It has a function of maintaining airtightness between the battery lid 4 and the outer can 2. Further, the gasket 3 has a peripheral portion in contact with the outer can 1 stretched into the can in order to provide an insulating function between the electrode tab and the outer can.

【0012】4は電池フタであり、非水電解液に侵され
ない材料として、PPS(ポリフェニレンサルファイ
ド)を使用している。フタ4は感熱棒21と、正極タブ
6および負極タブ18との絶縁を保つために、絶縁部4
aを感熱棒周囲に設けている。5は安全装置部を封止す
るフタであり、フタ4との間は超音波溶着により密閉さ
れている。6は正極集電タブである。アルミ製の幅10
mm、厚み0.1mmのリボンであり、本電池では片極
8本使用している。7は正極端子であり幅10mm、厚
み1.0mmのアルミ製である。8は感熱棒21に接続
されて、低温度溶融部材9に感熱棒21からの熱エネル
ギーを伝達する支持部材である。9はカップ11と支持
部材8を接続固定するはんだであり、溶融温度は電池の
安全性を確保するために設定された温度に設定されてい
る。ここでは90℃で溶融するはんだを用いている。1
0はカップであり、はんだ9の収納容器であると同時
に、スイッチバネ12を係止する部材としても機能す
る。このカップ10と支持部材8との間は、はんだ9の
みで支持されている。
Reference numeral 4 denotes a battery lid, which uses PPS (polyphenylene sulfide) as a material which is not affected by the non-aqueous electrolyte. The lid 4 is provided with an insulating portion 4 to keep the heat-sensitive rod 21 insulated from the positive electrode tab 6 and the negative electrode tab 18.
a is provided around the heat-sensitive bar. Reference numeral 5 denotes a lid for sealing the safety device, and the lid and the lid 4 are hermetically sealed by ultrasonic welding. Reference numeral 6 denotes a positive electrode current collecting tab. Aluminum width 10
mm, and a ribbon having a thickness of 0.1 mm. The present battery uses eight single poles. Reference numeral 7 denotes a positive electrode terminal made of aluminum having a width of 10 mm and a thickness of 1.0 mm. Reference numeral 8 denotes a support member that is connected to the heat-sensitive bar 21 and transmits heat energy from the heat-sensitive bar 21 to the low-temperature melting member 9. Reference numeral 9 denotes solder for connecting and fixing the cup 11 and the support member 8, and the melting temperature is set to a temperature set to ensure the safety of the battery. Here, solder that melts at 90 ° C. is used. 1
Reference numeral 0 denotes a cup, which is a storage container for the solder 9 and also functions as a member for locking the switch spring 12. The space between the cup 10 and the support member 8 is supported only by the solder 9.

【0013】12はスイッチバネであり、常温において
は接点13と接点13a間の回路を接続する部材として
機能し、設定温度より缶内温度が上昇し、はんだ9が溶
融すると接点13と接点13a間の回路を切断する部材
として機能する。常温においてスイッチバネ接点が、接
点13および13aと接触しているときは、接触圧によ
り接触抵抗が大きく変化するため、バネ圧により接点に
接触圧が負荷されるようにしている。スイッチ接点の接
触圧の印加はスイッチバネ12のたわみにより与えられ
ている。このたわみ間隔は、感熱棒21の上端に設置さ
れている支持部材8と感熱棒21との間の係合ネジによ
って調節される。
Reference numeral 12 denotes a switch spring, which functions as a member for connecting a circuit between the contact 13 and the contact 13a at normal temperature. When the temperature inside the can rises from a set temperature and the solder 9 melts, the contact between the contact 13 and the contact 13a is formed. It functions as a member for cutting the circuit. When the switch spring contact is in contact with the contacts 13 and 13a at normal temperature, the contact pressure greatly changes the contact resistance due to the contact pressure, so that the contact pressure is applied to the contact by the spring pressure. The application of the contact pressure of the switch contact is given by the deflection of the switch spring 12. The deflection interval is adjusted by an engagement screw between the support member 8 installed on the upper end of the heat-sensitive bar 21 and the heat-sensitive bar 21.

【0014】11はスイッチバネの接点であり、接点1
3および接点13aとの間で、長期にわたり接触抵抗を
安定に保つように特殊コーティングが施されている。接
点13および13aはスイッチバネ接点11と同様に、
特殊コーティングを施して接点の変質を防止している。
14は負極端子であり幅10mm、厚み1.0mmの銅
製である。負極端子14は接点13と接続されており、
負極回路は端子14から接点13を経て、スイッチバネ
12、接点13a、負極外部端子15へと接続されてい
る。23は缶内に設置された感熱棒21をセンターピン
22の内部に導き、その位置を固定するためのキャップ
である。
Reference numeral 11 denotes a switch spring contact.
A special coating is applied between the contact 3 and the contact 13a so as to keep the contact resistance stable for a long time. The contacts 13 and 13a are, like the switch spring contact 11,
Special coating prevents deterioration of the contacts.
Reference numeral 14 denotes a negative electrode terminal made of copper having a width of 10 mm and a thickness of 1.0 mm. The negative terminal 14 is connected to the contact 13,
The negative electrode circuit is connected from the terminal 14 via the contact 13 to the switch spring 12, the contact 13a, and the negative external terminal 15. Reference numeral 23 denotes a cap for guiding the heat-sensitive rod 21 installed in the can into the center pin 22 and fixing the position thereof.

【0015】21は、電池内温度を感知するために設け
られた本発明における温度感知棒(感熱棒)であり、こ
れはキャップ6により、電池本体の捲回軸心内に導か
れ、電極本体の中心部の温度を感知するように導入され
ている。通常の電池反応においては、電極内の電池抵
抗、電解液内でのイオン移動に伴う発熱により、発熱は
電極体内でほぼ均一になっている。発生した熱量は電極
体中心部方向と周囲部方向、もしくは電極体軸の上下方
向へ移動していく。電極端部は、電極を捲回するとき、
短絡を防止するために、セパレータを正負極よりも2.
5mm長くしている。
Reference numeral 21 denotes a temperature sensing rod (heat sensing rod) according to the present invention provided for sensing the temperature inside the battery. The temperature sensing rod 21 is guided by the cap 6 into the winding axis of the battery body. It has been introduced to sense the temperature in the center. In a normal battery reaction, the heat generation is almost uniform in the electrode body due to the battery resistance in the electrode and the heat generated by the ion movement in the electrolyte. The generated heat moves in the direction of the center of the electrode body and in the direction of the periphery, or in the vertical direction of the axis of the electrode body. When winding the electrode,
To prevent a short circuit, the separator should be 2.
5mm longer.

【0016】したがって、電極体端部においては、セパ
レータが2.5mmの断熱層を形成し、上下方向の熱伝
導はこの層に阻まれてしまう。特に缶底では、セパレー
タは缶底絶縁体との間で押しつぶされて、セパレータ間
に隙間がなくなり、電極体を密閉してしまう状態にな
る。一方、電極体の軸心および周囲部方向においては、
周囲部に放熱した熱は外装缶を通して缶外へ放熱される
が、軸心方向へ移動する熱は、軸心部に放熱機構が存在
しないために滞留する。したがって、電極体を全体的に
見た場合、電極体の外周部>軸上部>軸下部>軸心、の
順で放熱されるため、結果的に電極体の中で最も熱の滞
留する場所は軸心部となる。したがって、通常使用にお
ける電池内温度の異常を感知する部位としては、電極体
軸心部が最も適当である。また、一方、電池内でマイク
ロショート、あるいは何らかの異常電池反応が生じた場
合は、一般にそれは局在的反応であるため、缶内温度は
全体的に上昇していくのではなく、異常反応を引き起こ
している部位を中心に上昇していく。しかしその場合で
も、その熱量の移動は、上記のように結局のところ、電
極体軸心部に最も滞留することになる。このため電池内
温度異常の検知部位としては軸心が最も適当である。
Therefore, at the end of the electrode body, the separator forms a heat insulating layer of 2.5 mm, and the heat conduction in the vertical direction is hindered by this layer. In particular, at the bottom of the can, the separator is crushed by the insulator at the bottom of the can, so that there is no gap between the separators and the electrode body is sealed. On the other hand, in the axial center of the electrode body and the peripheral direction,
The heat radiated to the peripheral portion is radiated to the outside of the can through the outer can, but the heat moving in the axial direction stays because the heat radiating mechanism does not exist in the axial portion. Therefore, when the electrode body is viewed as a whole, heat is radiated in the order of the outer peripheral portion of the electrode body> upper shaft> lower shaft> axial center, and as a result, the place where heat stays most in the electrode body is This is the axis. Accordingly, the axis of the electrode body is most suitable as a portion for sensing abnormalities in the battery temperature during normal use. On the other hand, when a micro-short or some abnormal battery reaction occurs in the battery, it is generally a local reaction, so the temperature inside the can does not rise as a whole, but causes an abnormal reaction. It rises around the part where it is. However, even in such a case, the movement of the heat amount ultimately stays at the axial center of the electrode body as described above. For this reason, the axis is most suitable as the detection part of the temperature abnormality in the battery.

【0017】本実施形態では、φ5の銅材よりなる温度
感知棒21を、電極体上部より軸心部へ20mmの所ま
で挿入している。この感熱棒21は、このように一端を
電極体1の軸心空間22aに設置せられ、続いて電極体
上部空間を経過し、フタ4を貫通し、安全装置への締結
部21aへと連継されている。感熱棒21は、φ5、長
さ50mmの銅製部材により構成しているため、本例で
は、1℃の缶内温度変化に対して、3.3J(0.7ca
l)という小さな熱量で缶内温度情報を安全装置部へ伝
達できるため、極めて応答性のよいセンサーとして機能
する。また、電極体上部空間を経由している部位によ
り、電極体表面に発熱反応が生じた場合にも、迅速にそ
の発熱情報を受け取ることができるため、電極体周囲部
での異常反応にも対応できる。
In the present embodiment, the temperature sensing rod 21 made of a copper material of φ5 is inserted from the upper part of the electrode body to the axial center part up to 20 mm. One end of the heat-sensitive rod 21 is thus installed in the axial space 22a of the electrode body 1, then passes through the upper space of the electrode body, penetrates the lid 4, and connects to the fastening portion 21a to the safety device. Has been inherited. Since the heat-sensitive rod 21 is formed of a copper member having a diameter of 5 mm and a length of 50 mm, in this example, a temperature change of 1.3 ° C. (0.7 ca) with respect to a temperature change in the can of 1 ° C.
Since the in-can temperature information can be transmitted to the safety device with a small amount of heat of 1), it functions as an extremely responsive sensor. In addition, even if an exothermic reaction occurs on the surface of the electrode body due to the part passing through the space above the electrode body, it is possible to quickly receive the heat generation information, so it can respond to abnormal reactions around the electrode body it can.

【0018】このように、感熱棒21により伝達されて
きた缶内の熱は支持部材8に伝えられ、支持部材8の温
度を変化させる。支持部材8の温度が、設定されている
はんだ9の溶融する温度になると、はんだ9は溶融し、
カップ10と支持部材8間を固定していた係合力は失わ
れる。カップ9と支持部材8との係合力が失われると、
スイッチバネ12の反力によりカップ9は上方に押し上
げられる。一方、ばね19はスイッチバネ12を下方よ
り上方に押し上げており、はんだ9が溶融するまでは、
はんだ9と支持部材8との係合力によって押し縮められ
た状態に固定されているが、はんだ9と支持部材8との
係合力が失われると、ばね弾性力によってスイッチバネ
12を下方より上方へ押し上げる。この2つの力によ
り、はんだ9が溶融し、カップ10と支持部材8との係
合力が失われると、瞬間的にカップ9は跳ね上がり、跳
ね上がると同時に接点13、13aは切断される。さら
に上方へ押し上げられたカップ9はフタ5の天井20に
達し、そこで停止する。
As described above, the heat in the can transmitted from the heat-sensitive bar 21 is transmitted to the support member 8 and changes the temperature of the support member 8. When the temperature of the supporting member 8 reaches the set temperature at which the solder 9 melts, the solder 9 melts,
The engagement force that fixed between the cup 10 and the support member 8 is lost. When the engagement force between the cup 9 and the support member 8 is lost,
The cup 9 is pushed upward by the reaction force of the switch spring 12. On the other hand, the spring 19 pushes the switch spring 12 upward from below, and until the solder 9 is melted,
Although it is fixed in a compressed state by the engagement force between the solder 9 and the support member 8, when the engagement force between the solder 9 and the support member 8 is lost, the switch spring 12 is moved upward from below by the spring elastic force. Push up. When the solder 9 is melted by these two forces and the engagement force between the cup 10 and the support member 8 is lost, the cup 9 instantaneously jumps up, and at the same time, the contacts 13 and 13a are cut off. The cup 9 further pushed upward reaches the ceiling 20 of the lid 5 and stops there.

【0019】一方、スイッチバネ12は、ばね19によ
り、天井20に達しているカップ9の下端から押しつけ
られ、その押しつけ力は、上端接点16、17へのスイ
ッチバネ12の接点圧を与える。これにより、負極端子
15、端子13a、スイッチ端子11、スイッチバネ1
2、スイッチ端子11、端子13、(図では紙面背後に
回り込み表示されていない)缶内負極端子14、負極タ
ブ18へと継がる回路は接点13で切断され、新たに電
池内回路を迂回して負極端子15、接点16、スイッチ
バネ端子11、スイッチバネ12、スイッチバネ端子1
1、接点17、正極端子7と、継ながれることになる。
On the other hand, the switch spring 12 is pressed from the lower end of the cup 9 reaching the ceiling 20 by the spring 19, and the pressing force applies a contact pressure of the switch spring 12 to the upper contacts 16 and 17. Thereby, the negative electrode terminal 15, the terminal 13a, the switch terminal 11, the switch spring 1
2. The switch terminal 11, the terminal 13, the negative terminal 14 in the can (not shown behind the paper in the drawing), and the circuit connected to the negative tab 18 are cut off at the contact 13 and newly bypass the circuit in the battery. Negative terminal 15, contact 16, switch spring terminal 11, switch spring 12, switch spring terminal 1
1, the contact 17 and the positive electrode terminal 7 are connected.

【0020】なお、以上の説明では、感熱棒すなわち温
度感知棒21は、缶内部に挿入された挿入部と、熱溶融
部材に接触する接触部とを別体に加工し、電池全体とし
ての製作組立性能を向上させているが、単一の部材、例
えば1本の棒として加工し、一端部を缶内部に挿入し他
端部を熱溶融部材に接触させてもよい。単一部材の場合
は熱伝導性能が安定する。
In the above description, the heat sensing rod, that is, the temperature sensing rod 21 is manufactured by separately processing the insertion part inserted into the can and the contact part that comes into contact with the hot-melt member, thereby manufacturing the whole battery. Although the assembling performance is improved, it may be processed as a single member, for example, a single rod, and one end may be inserted into the inside of the can and the other end may be in contact with the heat melting member. In the case of a single member, the heat conduction performance is stable.

【0021】次に、図3に示した本発明の別の実施形態
について説明する。図において、23は電池本体であ
り、図1に説明した電極体と同様に構成されている。2
4は外装缶であり、φ54、缶の厚み0.8mmのアル
ミ製の缶である。25はガスケットであり、PP製の気
密材である。26はフタで、厚み4ミリのPPS(ポリ
フェニレンサルファイド)で成形している。27は安全
装置を密閉するフタ材。28は正極タブであり、幅10
mm、厚み0.1mmのリボンで正極端子29と超音波
溶接により接続されている。33は本発明になる感熱素
子であり、材質は銅材を用いている。34は低温溶融部
材で、幅10mm、厚み2mmの90℃で溶融する温度
ヒューズ材を用いている。37はバネ部材で、36はバ
ネ部材37を収納するブロック部材である。
Next, another embodiment of the present invention shown in FIG. 3 will be described. In the figure, reference numeral 23 denotes a battery main body, which is configured similarly to the electrode body described in FIG. 2
Reference numeral 4 denotes an outer can, which is an aluminum can having a diameter of 54 mm and a can thickness of 0.8 mm. Reference numeral 25 denotes a gasket, which is an airtight material made of PP. Reference numeral 26 denotes a lid formed of 4 mm thick PPS (polyphenylene sulfide). 27 is a lid material for sealing the safety device. Reference numeral 28 denotes a positive electrode tab having a width of 10
It is connected to the positive electrode terminal 29 by ultrasonic welding with a ribbon having a thickness of 0.1 mm and a thickness of 0.1 mm. Reference numeral 33 denotes a thermosensitive element according to the present invention, which is made of a copper material. Numeral 34 denotes a low-temperature melting member which uses a temperature fuse material having a width of 10 mm and a thickness of 2 mm which is melted at 90 ° C. 37 is a spring member, and 36 is a block member for housing the spring member 37.

【0022】電極本体23が異常な電池反応等で発熱す
ると、発生した熱はセンターピン30を通して電池上部
空間38へ移動する。また、熱伝導性の良い集電体によ
り、電池本体23内の熱は集電タブ28、31を通して
空間38へ放出される。こうして電池本体23内の異常
発熱と共に、電池上部空間38の温度も上昇していく
が、缶内温度感知部材33は比熱が小さく(比熱C=
0.38J/G・K)、良導電性の部材である(熱伝導
率κ=403W/m・K)ため、本例の場合、1℃の缶
内温度変化に対して、0.9J(0.22cal)の熱量
で低温度溶融部材34へ伝達可能である。缶内熱量は部
材33を通して部材34へと輸送され、部材34の温度
を上昇させる。温度が設定値90℃になると部材34は
溶融し、缶内負極端子32と外部負極端子35を係合し
ていた拘束力を失う。ばね部材37は、図示左側より右
側へ負極端子35を付勢している。
When the electrode body 23 generates heat due to an abnormal battery reaction or the like, the generated heat moves to the battery upper space 38 through the center pin 30. Further, the heat inside the battery main body 23 is released to the space 38 through the current collecting tabs 28 and 31 by the current collector having good thermal conductivity. In this way, the temperature of the battery upper space 38 also rises along with the abnormal heat generation in the battery body 23, but the in-can temperature sensing member 33 has a small specific heat (specific heat C =
0.38 J / G · K) and a material with good conductivity (thermal conductivity κ = 403 W / m · K). In the case of this example, 0.9 J ( (0.22 cal) can be transmitted to the low-temperature melting member 34. The heat in the can is transported through the member 33 to the member 34 to increase the temperature of the member 34. When the temperature reaches the set value of 90 ° C., the member 34 melts and loses the binding force that has engaged the in-can negative terminal 32 and the external negative terminal 35. The spring member 37 urges the negative terminal 35 from the left side to the right side in the drawing.

【0023】低温度溶融部材34が個体状態にあり、負
極外部端子35を図示状態に固定している状態において
は、ばね37は、ボックス36内部に圧縮された状態で
収納されている。しかし、部材34が溶融すると負極外
部端子35に対する拘束力は失われ、それに伴い、ばね
37は負極外部端子35を壁39の方向へ押しつける。
この押しつけ力により、負極外部端子35はフタ27と
の接合部を中心にして右側へ移動し、移動と共に低温度
溶融部材34は、缶内温度感知部材33との接点部付近
で引きちぎられ、回路31→32→34→35は切断さ
れる。さらに壁39側へ移動すると、負極外部端子35
の接点は正極外部端子29の接点41と接触する。この
接触に対して、ばね37は左方より接点部に接点圧を付
与し、電気的接合を確実なものにする。これにより回路
35→34→32→31→30は、35−32間が切断
され、新たに電池回路を迂回して35→40→41→2
9の回路が開かれることになる。
When the low-temperature melting member 34 is in the solid state and the negative external terminal 35 is fixed in the illustrated state, the spring 37 is stored in a compressed state inside the box 36. However, when the member 34 is melted, the binding force on the negative external terminal 35 is lost, and accordingly, the spring 37 presses the negative external terminal 35 toward the wall 39.
Due to this pressing force, the negative electrode external terminal 35 moves rightward centering on the joint with the lid 27, and along with the movement, the low temperature melting member 34 is torn off near the contact point with the in-can temperature sensing member 33, and the circuit 31 → 32 → 34 → 35 are cut. When further moving toward the wall 39, the negative external terminal 35
Contacts the contact 41 of the positive external terminal 29. In response to this contact, the spring 37 applies a contact pressure to the contact portion from the left to ensure electrical connection. As a result, the circuit 35 → 34 → 32 → 31 → 30 is cut off between 35 and 32 and bypasses the battery circuit anew to 35 → 40 → 41 → 2
9 will be opened.

【0024】[0024]

【発明の効果】以上説明したように、本発明では、電池
缶内の異常昇温に対して、缶内に比熱が小さく、良熱伝
導性の部材を設置し、この部材をフタ部を介して缶外の
安全装置部へと熱を輸送する構成としたために、安価
で、熱応答性の良い安全装置の構成を可能とするもので
ある。また、構造が簡素であり、缶内配線に対しても独
立しているために、缶内配線に構造的負荷や、生産工程
に組立上の負荷を与えることなく、容易に缶内温度を感
知して異常昇温に対する電流遮断を実現する安全装置を
構成できる。
As described above, according to the present invention, a member having a small specific heat and a good thermal conductivity is installed in the battery can against abnormal temperature rise in the battery can, and this member is connected to the battery via the lid. Thus, since the heat is transported to the safety device outside the can, it is possible to configure a safety device that is inexpensive and has good heat responsiveness. In addition, since the structure is simple and independent of the in-can wiring, the in-can temperature can be easily detected without applying a structural load to the in-can wiring or an assembly load in the production process. As a result, a safety device that realizes current interruption for abnormal temperature rise can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水電解液二次電池を示す構造断面図
である。
FIG. 1 is a structural sectional view showing a non-aqueous electrolyte secondary battery of the present invention.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】本発明の非水電解液二次電池において図1の例
とは異なる別の実施形態を示す構造断面図である。
FIG. 3 is a structural sectional view showing another embodiment different from the example of FIG. 1 in the nonaqueous electrolyte secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 電極本体 2 外装缶 3 ガスケット 4 安全装置フタ 5 安全装置上フタ 6 正極タブ 7 正極端子 8 支持部材 9 低温度溶融はんだ 10 カップ 11 スイッチバネ接点 12 スイッチバネ 13 負極接点 13a 負極接点 14 負極缶内端子 15 負極外部端子 16 負極接点 17 正極端子 18 負極タブ 19 跳ね上げバネ 20 安全装置フタ天井部 21 缶内温度感知棒 22 センターピン 22a 捲回体軸心部空間 23 センターキャップ 24 下部絶縁体 25 ガスケット 26 安全装置フタ 27 安全装置上フタ 28 正極タブ 29 正極端子 30 センターピン 31 負極タブ 32 負極缶内端子 33 缶内温度感知部材 34 低温度溶融部材 35 負極外部端子 36 ばね収納ブロック 37 ばね 38 缶内上部空間 39 ストップウォール 40 負極外部端子接点 41 正極外部端子接点 42 外装缶 43 下部絶縁体 DESCRIPTION OF SYMBOLS 1 Electrode main body 2 Outer can 3 Gasket 4 Safety device lid 5 Safety device upper lid 6 Positive electrode tab 7 Positive electrode terminal 8 Support member 9 Low temperature melting solder 10 Cup 11 Switch spring contact 12 Switch spring 13 Negative contact 13a Negative contact 14 Inside negative electrode can Terminal 15 Negative external terminal 16 Negative contact 17 Positive electrode terminal 18 Negative tab 19 Bounce spring 20 Safety device lid ceiling 21 Temperature sensing rod in can 22 Center pin 22a Wound body shaft center space 23 Center cap 24 Lower insulator 25 Gasket 26 Safety Device Lid 27 Safety Device Upper Lid 28 Positive Electrode Tab 29 Positive Electrode Terminal 30 Center Pin 31 Negative Electrode Tab 32 Negative Terminal Inside Terminal 33 Can Temperature Sensing Member 34 Low Temperature Melting Member 35 Negative External Terminal 36 Spring Storage Block 37 Spring 38 Inside the Can Upper space 39 Stop wall 4 0 Negative external terminal contact 41 Positive external terminal contact 42 Outer can 43 Lower insulator

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H022 AA09 CC03 KK01 5H029 AJ12 AK03 AL07 AM03 AM05 AM07 BJ27 5H030 AA07 AA10 AS20 FF22  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H022 AA09 CC03 KK01 5H029 AJ12 AK03 AL07 AM03 AM05 AM07 BJ27 5H030 AA07 AA10 AS20 FF22

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 正極および負極間に非水電解液を浸透さ
せた電池本体を、缶内に収納して構成された非水電解液
二次電池において、前記缶内部の温度を検知し缶外部に
伝える温度感知手段と、前記温度感知手段により缶外部
に導かれた缶内熱量によって熱溶融部材を溶融し、電池
電流を遮断する電流遮断手段を具えたことを特徴とする
非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery in which a battery main body in which a non-aqueous electrolyte is permeated between a positive electrode and a negative electrode is housed in a can. A non-aqueous electrolyte solution comprising: a temperature sensing means for transmitting the heat to the outside of the can by means of the temperature sensing means; Next battery.
【請求項2】 正極および負極をセパレータを介して対
向させ、渦巻き状に捲回することにより電極体を形成
し、前記正極および負極間に非水電解液を浸透させた電
池本体と、前記電池本体を収納する外装缶と、前記外装
缶の開口部を塞ぎ、缶内部を封止する缶フタ部とからな
る非水電解液二次電池において、前記電池内部の温度を
感知する金属製の温度感知部材を、缶内部より缶フタ部
を貫通して缶外に導かれるように設置し、前記温度感知
部材により導かれた缶内熱量により、はんだ、温度ヒュ
ーズ等の熱溶融部材を溶融することによって、電池電流
を遮断する安全装置を装着したことを特徴とする非水電
解液二次電池。
2. A battery body in which a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween and spirally wound to form an electrode body, and a non-aqueous electrolyte is permeated between the positive electrode and the negative electrode. In a non-aqueous electrolyte secondary battery comprising an outer can for housing the main body and a can lid for closing the opening of the outer can and sealing the inside of the can, a metal temperature for sensing the temperature inside the battery The sensing member is installed so as to be guided from the inside of the can through the can lid portion to the outside of the can, and the heat in the can guided by the temperature sensing member is used to melt a heat melting member such as a solder and a temperature fuse. A non-aqueous electrolyte secondary battery comprising a safety device for interrupting battery current.
【請求項3】 請求項1または2に記載の非水電解液二
次電池において、前記缶内部の温度を検知する部材は、
缶内部の先端を捲回電極体の捲心部のセンターピン内に
位置させ、缶外部では熱溶融部材に接続されていること
を特徴とする非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the member for detecting a temperature inside the can is:
A non-aqueous electrolyte secondary battery characterized in that a tip inside a can is positioned inside a center pin of a core portion of a wound electrode body, and connected to a heat melting member outside the can.
【請求項4】 請求項1、2または3に記載の非水電解
液二次電池において、前記缶内部の温度を検知する部材
は、前記缶内部に挿入された挿入部と、前記挿入部にね
じ結合され、前記熱溶融部材に接触する接触部とからな
ることを特徴とする非水電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the member for detecting the temperature inside the can includes an insertion part inserted into the can and an insertion part inserted into the can. A non-aqueous electrolyte secondary battery, comprising: a screw-coupled contact portion that is in contact with the heat melting member.
【請求項5】 請求項1、2または3に記載の非水電解
液二次電池において、前記缶内部の温度を検知する部材
は、一部が缶内部に挿入され、他部が熱溶融部材に接触
する単一の棒材からなることを特徴とする非水電解液二
次電池。
5. The non-aqueous electrolyte secondary battery according to claim 1, 2 or 3, wherein a part of the member for detecting the temperature inside the can is inserted into the can and another part is a heat melting member. A non-aqueous electrolyte secondary battery comprising a single rod material that contacts the battery.
【請求項6】 請求項1ないし5のうちいずれかに記載
の非水電解液二次電池において、前記缶内部の温度を検
知する部材は、銅、銅合金、アルミ、ニッケル、ニッケ
ルメッキ鉄、ステンレス、黒鉛等の熱良導金属からなる
ことを特徴とする非水電解液二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein the member for detecting the temperature inside the can is made of copper, copper alloy, aluminum, nickel, nickel-plated iron, A non-aqueous electrolyte secondary battery comprising a heat conductive metal such as stainless steel or graphite.
JP10357161A 1998-12-16 1998-12-16 Non-aqueous electrolyte secondary battery Pending JP2000182675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10357161A JP2000182675A (en) 1998-12-16 1998-12-16 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10357161A JP2000182675A (en) 1998-12-16 1998-12-16 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000182675A true JP2000182675A (en) 2000-06-30

Family

ID=18452704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10357161A Pending JP2000182675A (en) 1998-12-16 1998-12-16 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000182675A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130061018A (en) * 2011-11-30 2013-06-10 삼성에스디아이 주식회사 Secondary battery
JP2015118756A (en) * 2013-12-17 2015-06-25 住友電気工業株式会社 Molten salt battery
KR101802926B1 (en) 2011-04-25 2017-11-29 에스케이이노베이션 주식회사 Battery having Sensing Assembly Structure for Processing Signal of Cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101802926B1 (en) 2011-04-25 2017-11-29 에스케이이노베이션 주식회사 Battery having Sensing Assembly Structure for Processing Signal of Cell
KR20130061018A (en) * 2011-11-30 2013-06-10 삼성에스디아이 주식회사 Secondary battery
KR101695992B1 (en) * 2011-11-30 2017-01-13 삼성에스디아이 주식회사 Secondary battery
JP2015118756A (en) * 2013-12-17 2015-06-25 住友電気工業株式会社 Molten salt battery
WO2015093173A1 (en) * 2013-12-17 2015-06-25 住友電気工業株式会社 Molten salt cell
CN105830274A (en) * 2013-12-17 2016-08-03 住友电气工业株式会社 Molten salt cell
US10044023B2 (en) 2013-12-17 2018-08-07 Sumitomo Electric Industries, Ltd. Molten salt battery

Similar Documents

Publication Publication Date Title
EP1932196B1 (en) Secondary battery having an improved safety
TWI237918B (en) Lead terminal and power supply device
US9099732B2 (en) Rechargeable battery having a fuse with an insulating blocking member
EP1756891B1 (en) Electrochemical device comprising electrode lead having protection device
CA2381376C (en) Header for rechargeable lithium batteries
JP4558671B2 (en) Secondary battery
EP1422771A1 (en) Non-aqueous electrolytic secondary battery
JPH10326610A (en) Non-aqueous electrolyte secondary battery
KR100305101B1 (en) Explosion-proof secondary battery
WO2010053100A1 (en) Sealed battery
JP2000182598A (en) Nonaqueous electrolyte secondary battery and electrothermal relay for battery
JP2019153440A (en) Secondary battery and battery pack including the same
KR19980071780A (en) Lithium secondary battery having thermal switch
JP4501361B2 (en) Secondary battery
KR101203332B1 (en) Sealed battery
JP2011210390A (en) Battery and battery module
WO2015129404A1 (en) Current cutoff device and power storage device provided with same
JPH117931A (en) Secondary battery
JPH1140203A (en) Secondary battery
JPH10340714A (en) Battery-sealing body
US20140127541A1 (en) Cylindrical secondary battery and battery system
US8685555B2 (en) Thermo-mechanically activated current interrupter
JPH10214613A (en) Nonaqueous electrolyte secondary battery and assembled battery using the same
JPH1140204A (en) Secondary battery
JP2000182675A (en) Non-aqueous electrolyte secondary battery