JP2000182656A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2000182656A
JP2000182656A JP10356552A JP35655298A JP2000182656A JP 2000182656 A JP2000182656 A JP 2000182656A JP 10356552 A JP10356552 A JP 10356552A JP 35655298 A JP35655298 A JP 35655298A JP 2000182656 A JP2000182656 A JP 2000182656A
Authority
JP
Japan
Prior art keywords
electrode plate
current collector
positive electrode
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10356552A
Other languages
Japanese (ja)
Inventor
Masanobu Kito
賢信 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP10356552A priority Critical patent/JP2000182656A/en
Publication of JP2000182656A publication Critical patent/JP2000182656A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery having excellent reliability with the drop of the cyclic characteristic suppressed, capable of flattening the resistance distribution in its internal electrode body by locating optimally the collection part to take out the current from a positive electrode plate and a negative electrode plate and capable of stable large current discharging by inducing uniform battery reactions in the internal electrode body. SOLUTION: Besides a non-aqueous electrolytic solution, a lithium secondary battery includes an internal electrode body formed by winding a positive electrode plate 2 and a negative electrode plate 3 on a bobbin with a separator interposed. The current collection part 7 of the positive electrode plate 2 is formed in the range ±30% in longitudinal direction (along the X-axis) of the plate 2 from the center position XA between adjoining current collection parts 8A and 8B formed in the negative electrode plate 3 using as reference the length L between XA and the parts 8A and 8B in the condition that the internal electrode body is spread and the two electrode plates 2 and 3 are overlapped. It may also be accepted that the current collection part 8 of the negative electrode plate 3 is located by reference to the center position between adjoining collection parts 7 of the positive electrode plate 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、正極板と負極板
からの電流の取り出しを行う集電部を適切な位置に形成
することにより、電池の内部電極体における抵抗分布を
平坦化せしめ、内部電極体における均一な電池反応を誘
起させて安定した大電流放電を可能とすると共に、サイ
クル特性の低下を抑制した信頼性に優れるリチウム二次
電池に関する。
TECHNICAL FIELD The present invention flattens the resistance distribution in an internal electrode body of a battery by forming a current collecting portion for extracting current from a positive electrode plate and a negative electrode plate at an appropriate position. The present invention relates to a highly reliable lithium secondary battery that induces a uniform battery reaction in an electrode body, enables stable high-current discharge, and suppresses deterioration in cycle characteristics.

【0002】[0002]

【従来の技術】 近年、リチウム二次電池は、携帯電
話、VTR、ノート型コンピュータ等の携帯型電子機器
の電源用電池として、広く用いられるようになってきて
いる。また、リチウム二次電池はエネルギー密度が大き
いことから、前記携帯型電子機器のみならず、最近の環
境問題を背景に、低公害車として積極的に一般への普及
が図られている電気自動車(EV)あるいはハイブリッ
ド電気自動車(HEV)のモータ駆動電源としても注目
を集めている。
2. Description of the Related Art In recent years, lithium secondary batteries have been widely used as power batteries for portable electronic devices such as mobile phones, VTRs, and notebook computers. In addition, since lithium secondary batteries have a high energy density, not only the portable electronic devices but also electric vehicles (eg, electric vehicles, which are being actively spread as low-emission vehicles due to recent environmental problems). It is also attracting attention as a motor drive power supply for EVs or hybrid electric vehicles (HEVs).

【0003】 EV用電池には、所定の加速性能、登坂
性能、継続走行性能等を得るために、大容量、高出力で
あって、充放電サイクル特性(以下、「サイクル特性」
という。)に優れるといった特性が要求される。このよ
うな特性を安定して発揮するためには、特に電池反応の
場である内部電極体及び内部電極体からの集電部の抵抗
を低減することが重要となるのみならず、大電流を安定
して得るために電池反応を均一に行わせて局部的な劣化
を抑制し、サイクル特性の向上を図ることが必要とな
る。
An EV battery has a large capacity, a high output, and charge / discharge cycle characteristics (hereinafter, referred to as “cycle characteristics”) in order to obtain predetermined acceleration performance, climbing performance, continuous running performance, and the like.
That. ) Is required. In order to exhibit such characteristics stably, it is important not only to reduce the resistance of the internal electrode body, which is a field of the battery reaction, and the current collecting portion from the internal electrode body, but also to generate a large current. In order to stably obtain the battery, it is necessary to make the battery reaction uniform, suppress local deterioration, and improve cycle characteristics.

【0004】 ここで、EV用電池の内部電極体として
検討が行われている捲回型内部電極体は、図4に示され
るように、正極板2と負極板3とをセパレータ4を介し
て巻芯9の外周に捲回して構成され、電極板2・3(正
極板2と負極板3の両者を指す。以下同様。)には、そ
れぞれ電極リードとしての正極用タブ5及び負極用タブ
6が配設された構造を有している。
Here, as shown in FIG. 4, a wound type internal electrode body which has been studied as an internal electrode body of an EV battery has a structure in which a positive electrode plate 2 and a negative electrode plate 3 are interposed via a separator 4. Each of the electrode plates 2 and 3 (both the positive electrode plate 2 and the negative electrode plate 3; the same applies hereinafter) is wound around the outer periphery of the core 9 and has a positive electrode tab 5 and a negative electrode tab as electrode leads, respectively. 6 is provided.

【0005】 このような内部電極体1における集電部
は、電極板2・3におけるタブ5・6(正極用タブ5と
負極用タブ6の両者を指す。以下同様。)の取付部分と
なるが、従来のリチウム二次電池は電池容量の小さい小
型電池であったために、電極板2・3の面積が小さく、
そのため電極板2・3に複数の集電部を設けることが必
ずしも必要ではなかった。また、携帯型電子機器の電源
にあっては大電流の放電が通常は必要ではなかった。こ
のため、集電部を設ける位置については、これまで深く
検討はされていなかった。
[0005] The current collecting portion of the internal electrode body 1 is a mounting portion of the tabs 5 and 6 (both the positive electrode tab 5 and the negative electrode tab 6; the same applies hereinafter) in the electrode plates 2.3. However, since the conventional lithium secondary battery was a small battery with a small battery capacity, the area of the electrode plates 2 and 3 was small,
Therefore, it is not always necessary to provide a plurality of current collectors on the electrode plates 2 and 3. In addition, a large current discharge is not normally required for a power supply of a portable electronic device. For this reason, the position where the current collector is provided has not been deeply studied so far.

【0006】[0006]

【発明が解決しようとする課題】 ところが、例えば、
HEVでは加速時にはモータが出力をアシストするモー
ドとなっているため、100A以上の電流が流れること
が頻繁に起こり得る。また、500Aもの電流が短時間
ではあっても流れる場合がある。ここで、内部電極体1
内に抵抗の分布が生じていると、抵抗の小さい部分に大
電流が集中して流れることとなる。この場合には、電極
板2・3に局所的な発熱や膨張収縮が起こり、電極活物
質の劣化や剥離が生じてサイクル特性が低下する問題
や、この発熱によって電解液の一部が蒸発し、電池内圧
が上昇することで電池が破裂する等、種々の問題を生ず
る可能性が高まる。
[Problems to be solved by the invention] However, for example,
The HEV is in a mode in which the motor assists the output during acceleration, so that a current of 100 A or more may frequently flow. Further, a current as high as 500 A may flow even for a short time. Here, the internal electrode body 1
When a resistance distribution occurs in the inside, a large current flows intensively in a portion where the resistance is small. In this case, local heat generation and expansion and contraction occur in the electrode plates 2 and 3, causing deterioration and peeling of the electrode active material, thereby deteriorating the cycle characteristics, and the heat generation partially evaporates the electrolytic solution. In addition, the possibility of various problems, such as the rupture of the battery caused by an increase in the battery internal pressure, increases.

【0007】 そこで、発明者らは、電極板2・3にお
ける集電部の形成位置と電極板2・3の抵抗分布の関係
に着目した。正極板2に複数の集電部を設けた場合に
は、その集電部に近い領域で抵抗が小さくなり、隣り合
う集電部の中央位置付近で抵抗が大きくなると考えら
れ、このような抵抗分布は負極板3についても同様であ
る。
Therefore, the inventors have paid attention to the relationship between the position of the current collector in the electrode plates 2 and 3 and the resistance distribution of the electrode plates 2 and 3. When a plurality of current collectors are provided on the positive electrode plate 2, it is considered that the resistance decreases in a region near the current collector and increases near the center of an adjacent current collector. The distribution is the same for the negative electrode plate 3.

【0008】 従って、図5に示すように、電極板2・
3の捲回時に、正極板2の集電部7(以下、「正極集電
部7」という。)と負極板3の集電部8(以下、「負極
集電部8」という。)が、捲回方向の同じ位置にあるよ
うにした場合、つまり、内部電極体1を展開して電極板
2・3が重なり合った状態において、正極集電部7と負
極集電部8が、電極板2・3の長さ方向(X軸方向)の
ほぼ同位置にあるように設定すると、電極板2・3のそ
れぞれ抵抗の小さい部分どうしが重なり合うと同時に、
抵抗の大きい部分どうしも重なり合うこととなるため、
内部電極体1内での抵抗分布幅が益々大きくなる結果を
招く。
[0008] Therefore, as shown in FIG.
At the time of winding 3, the current collector 7 of the positive electrode plate 2 (hereinafter, referred to as “positive electrode current collector 7”) and the current collector 8 of the negative electrode plate 3 (hereinafter, referred to as “negative electrode current collector 8”). When the inner electrode body 1 is deployed and the electrode plates 2 and 3 are overlapped, that is, when the inner electrode body 1 is developed and the electrode plates 2 and 3 are overlapped, the positive electrode current collector 7 and the negative electrode current collector 8 When the electrodes are set so as to be substantially at the same position in the length direction (X-axis direction) of the electrode plates 2 and 3, portions of the electrode plates 2 and 3 having small resistances overlap each other, and at the same time,
Because the parts with large resistance will also overlap,
The result is that the width of the resistance distribution in the internal electrode body 1 increases more and more.

【0009】 従来は、正極板2の抵抗が負極板3の抵
抗に比べて全体的に大きかったために、内部電極体1内
における抵抗の分布は、正極板2の抵抗の分布に支配さ
れて定まっていった為、このような考え方はされていな
かった。しかし、このような状況においても、内部電極
体1内部における抵抗分布幅を小さくすること、つまり
抵抗分布を平坦化することが好ましいことはいうまでも
ない。また、最近になって、正極活物質自体の低抵抗化
及び/又は導電助剤の添加等による低抵抗化が図られて
いるため、従来問題とされていなかった内部電極体1内
での抵抗分布が電池の充放電特性に大きな影響を及ぼす
ようになってくると考えられる。特に、EV・HEV用
電池のように、大容量、高出力、高耐久性が要求される
用途において、その影響は著しく大きなものとなること
が予想される。
Conventionally, since the resistance of the positive electrode plate 2 is generally higher than the resistance of the negative electrode plate 3, the distribution of the resistance in the internal electrode body 1 is determined by the distribution of the resistance of the positive electrode plate 2. Because of that, this kind of thinking was not done. However, even in such a situation, it is needless to say that it is preferable to reduce the resistance distribution width inside the internal electrode body 1, that is, to flatten the resistance distribution. In addition, recently, since the resistance of the positive electrode active material itself has been reduced and / or the resistance has been reduced by adding a conductive auxiliary agent, the resistance in the internal electrode body 1 which has not been regarded as a problem in the past is considered. It is considered that the distribution greatly affects the charge / discharge characteristics of the battery. In particular, the effects are expected to be extremely large in applications requiring large capacity, high output, and high durability, such as batteries for EVs and HEVs.

【0010】[0010]

【課題を解決するための手段】 本発明は、このような
従来技術の問題点に鑑みてなされたものであり、その目
的とするところは、電極板に設ける集電部の位置を、内
部電極体の抵抗分布が平坦化されるように設定すること
により、内部電極体内での均一な電池反応を誘起して、
大電流の放電を容易ならしめるとともに耐久性、サイク
ル特性をも向上させたリチウム二次電池を提供すること
にある。即ち、本発明によれば、正極板と負極板とをセ
パレータを介して巻芯外周に捲回してなる内部電極体並
びに非水電解液を用いてなるリチウム二次電池であっ
て、当該内部電極体を展開し、当該正極板と当該負極板
が重なり合った状態において、当該正極板若しくは当該
負極板のいずれか一方の電極板の集電部が、当該他の電
極板に形成された隣り合う集電部の中央位置と当該集電
部との間の長さを基準として、当該中央位置から当該電
極板の長さ方向±30%の範囲内に形成されていること
を特徴とするリチウム二次電池、が提供される。
Means for Solving the Problems The present invention has been made in view of such a problem of the related art, and an object of the present invention is to set a position of a current collecting portion provided on an electrode plate to an internal electrode. By setting the resistance distribution of the body to be flat, a uniform battery reaction in the internal electrode body is induced,
An object of the present invention is to provide a lithium secondary battery that facilitates discharging of a large current and has improved durability and cycle characteristics. That is, according to the present invention, there is provided a lithium secondary battery using an internal electrode body and a non-aqueous electrolyte obtained by winding a positive electrode plate and a negative electrode plate around a winding core with a separator interposed therebetween. When the positive electrode plate and the negative electrode plate are overlapped with each other, the current collector of one of the positive electrode plate and the negative electrode plate is connected to the adjacent collector formed on the other electrode plate. The secondary lithium battery is formed within a range of ± 30% of a length direction of the electrode plate from the center position with reference to a length between the center position of the power unit and the power collection unit. A battery is provided.

【0011】 この本発明にリチウム二次電池において
は、一方の電極板の集電部は、他方の電極板に形成され
た隣り合う集電部の中央位置から電極板(正極板である
か、負極板であるかを問わない。)の長さ方向±10%
の範囲内に形成されていることがより好ましく、一方の
電極板の集電部を他方の電極板に形成された隣り合う集
電部の中央位置に設定することが最も好ましい。電極板
における集電部の形成位置は、例えば、内部電極体の一
端面に正負両極の集電部を形成することもできるが、本
発明においては、内部電極体の一方の端面に正極板の集
電部を設け、別の端面に負極板の集電部を設けること
が、安全性、組立容易性等の点から好ましい。
[0011] In the lithium secondary battery according to the present invention, the current collector of one electrode plate is connected to the electrode plate (positive plate or positive electrode) from the center position of the adjacent current collector formed on the other electrode plate. It does not matter whether it is the negative electrode plate.) ± 10% in the length direction
It is more preferable that the current collecting portion of one electrode plate is set at the center of an adjacent current collecting portion formed on the other electrode plate. The formation position of the current collector on the electrode plate may be, for example, a current collector of both positive and negative electrodes formed on one end face of the internal electrode body.In the present invention, the positive electrode plate is formed on one end face of the internal electrode body. It is preferable to provide a current collector and a current collector of the negative electrode plate on another end face from the viewpoint of safety, ease of assembly, and the like.

【0012】 また、正極板及び負極板において、複数
の捲回数に対して1箇所の集電部が形成されている部分
が存在するようにすること、換言すれば、捲回された正
極板もしくは負極板の任意の1巻きに、集電部が形成さ
れていないものが存在するようにすることが好ましい。
このような部位は、一般的に内部電極体の内周部に多く
現れるように形成される。
In addition, in the positive electrode plate and the negative electrode plate, there is provided a portion where one current collecting portion is formed for a plurality of winding times, in other words, the wound positive electrode plate or It is preferable that an arbitrary one turn of the negative electrode plate includes one having no current collector.
Such a portion is generally formed so as to appear more on the inner peripheral portion of the internal electrode body.

【0013】 ところで、集電部の形成方法には、種々
な方法があるが、本発明においては、正極板及び負極板
にそれぞれ電極リードとしての金属箔を溶接することで
集電部を形成する方法が好適に用いられる。また、この
ような集電部の形成に当たって、正極板における一群の
集電部及び負極板における一群の集電部が、それぞれ内
部電極体の端面において、中心角45゜の範囲内に形成
されるようにすることが好ましく、更に一群の集電部が
内部電極体の端面上、略同一動径上に形成されている
と、より電極リード(金属箔)の端子への接合が容易と
なり、好ましい。正極板及び負極板を展開した場合にお
ける正極板の集電部間隔(以下、「正極集電部間隔」と
いう。)及び負極板の集電部間隔(以下、「負極集電部
間隔」という。)は、好適には、内部電極体の外周長さ
以下、かつ、外周長さの1/4以上とされる。なお、正
極集電部間隔及び負極集電部間隔は、前述した長さの範
囲内であって、各集電部間隔の平均値の±20%以内に
あるように、ほぼ一定の間隔を保つことが好ましい。
By the way, there are various methods for forming the current collector. In the present invention, the current collector is formed by welding metal foils as electrode leads to the positive electrode plate and the negative electrode plate, respectively. The method is preferably used. In forming such a current collector, a group of current collectors on the positive electrode plate and a group of current collectors on the negative electrode plate are each formed at an end surface of the internal electrode body within a range of a central angle of 45 °. It is preferable that a group of current collectors be formed on the end face of the internal electrode body and have substantially the same radial diameter. This facilitates bonding of the electrode lead (metal foil) to the terminal, which is preferable. . When the positive electrode plate and the negative electrode plate are unfolded, the interval between the current collectors of the positive electrode plate (hereinafter, referred to as “positive electrode current collector interval”) and the interval between the current collectors of the negative electrode plate (hereinafter, referred to as “negative electrode current collector interval”). ) Is preferably not more than the outer peripheral length of the internal electrode body and not less than 4 of the outer peripheral length. The interval between the positive electrode current collectors and the interval between the negative electrode current collectors are within the above-described range, and are kept substantially constant so as to be within ± 20% of the average value of the intervals between the current collectors. Is preferred.

【0014】 さて、本発明は正極板の抵抗が全体的に
小さい場合に特に顕著に効果が現れる。そこで、正極活
物質としてはマンガン酸リチウムを用いることが好まし
く、特に、化学組成におけるLi/Mnの比が、0.5
より大きいものを用いることが好ましい。また、マンガ
ン酸リチウムは立方晶スピネル構造を有するものである
ことが好ましい。
The present invention is particularly effective when the resistance of the positive electrode plate is small as a whole. Therefore, it is preferable to use lithium manganate as the positive electrode active material. In particular, when the ratio of Li / Mn in the chemical composition is 0.5
It is preferable to use a larger one. Further, the lithium manganate preferably has a cubic spinel structure.

【0015】 こうして得られる優れた出力特性と耐久
性を活かして、本発明のリチウム二次電池は、電気自動
車もしくはハイブリッド電気自動車のモータ駆動用電源
として好適に用いられる。また、抵抗分布の平坦化の効
果が顕著に現れる2Ah以上の電池容量を有する電池
に、本発明は好適に適用される。
Taking advantage of the excellent output characteristics and durability thus obtained, the lithium secondary battery of the present invention is suitably used as a power source for driving a motor of an electric vehicle or a hybrid electric vehicle. Further, the present invention is suitably applied to a battery having a battery capacity of 2 Ah or more in which the effect of flattening the resistance distribution is remarkably exhibited.

【0016】[0016]

【発明の実施の形態】 以下、本発明の実施の形態につ
いて図面を参照しながら説明するが、本発明が以下の実
施の形態に限定されるものでないことはいうまでもな
い。本発明に用いられる内部電極体の基本構成は、先に
図4に示した内部電極体1と同等である。図1は、本発
明のリチウム二次電池に用いられる正極板2及び負極板
3の概略の構成を示す平面図であり、内部電極体1を展
開した状態における正極板2と負極板3を、それらの幅
方向、即ちY軸方向に平行にずらして示したものであ
る。正極板2は、通常、正極集電体12としてのアルミ
ニウム箔やチタン箔の両面に正極活物質14を所定厚み
に塗工することで作製され、安価なアルミニウム箔を用
いることがコスト面から好ましい。正極活物質14の塗
工は、正極活物質粉末に溶剤やバインダ等を添加して作
製されるスラリー或いはペーストを、ロールコータ法等
を用いて正極集電体12に塗布、固着させることで行わ
れる。
Embodiments of the present invention will be described below with reference to the drawings. However, it goes without saying that the present invention is not limited to the following embodiments. The basic configuration of the internal electrode body used in the present invention is the same as that of the internal electrode body 1 previously shown in FIG. FIG. 1 is a plan view showing a schematic configuration of a positive electrode plate 2 and a negative electrode plate 3 used in the lithium secondary battery of the present invention. These are shifted in the width direction, that is, parallel to the Y-axis direction. The positive electrode plate 2 is usually produced by coating the positive electrode active material 14 to a predetermined thickness on both sides of an aluminum foil or a titanium foil as the positive electrode current collector 12, and it is preferable to use an inexpensive aluminum foil from the viewpoint of cost. . The coating of the positive electrode active material 14 is performed by applying a slurry or paste prepared by adding a solvent, a binder, or the like to the positive electrode active material powder to the positive electrode current collector 12 using a roll coater method or the like, and fixing the slurry or paste. Will be

【0017】 正極活物質14としては、マンガン酸リ
チウムやコバルト酸リチウム、ニッケル酸リチウム等の
リチウム遷移金属複合酸化物が好適に用いられるが、本
発明においては、後述するように、正極板2の抵抗が小
さいほど、内部電極体1における抵抗分布の平坦化が効
果的に図られるので、電子伝導性の大きい立方晶スピネ
ル構造を有するマンガン酸リチウム(化学量論組成:L
iMn24)を用いることが、特に好ましい。ここでL
iMn24は、このような化学量論組成を有するものに
限定されるものではなく、結晶構造が維持される限度に
おいて、陽イオンが欠損しあるいは過剰に存在し、一
方、酸素イオンが欠損しあるいは過剰に存在していても
構わない。更に、Mnの一部を他のイオン、例えば、L
i、Fe、Mn、Ni、Mg、Zn、B、Al、Co、
Cr、Si、Ti、Sn、P、V、Sb、Nb、Ta、
Mo、W等の置換元素Mの中から選ばれた1種類以上の
陽イオンで一部置換したものであってもよい。
As the positive electrode active material 14, a lithium transition metal composite oxide such as lithium manganate, lithium cobaltate, and lithium nickelate is preferably used. The lower the resistance, the more effectively the resistance distribution in the internal electrode body 1 is flattened, so that lithium manganate having a cubic spinel structure with high electron conductivity (stoichiometric composition: L
It is particularly preferred to use iMn 2 O 4 ). Where L
iMn 2 O 4 is not limited to those having such a stoichiometric composition, and as long as the crystal structure is maintained, cations are missing or excessive, while oxygen ions are missing. Or it may be present in excess. Further, a part of Mn is converted to another ion such as L.
i, Fe, Mn, Ni, Mg, Zn, B, Al, Co,
Cr, Si, Ti, Sn, P, V, Sb, Nb, Ta,
It may be partially substituted with one or more cations selected from substitution elements M such as Mo and W.

【0018】 また本発明においては、上述したLiM
24の中でも、特に、Li/Mn比が0.5より大き
いものを用いることが好ましく、化学量論組成のものを
用いた場合と比較して、内部抵抗が更に低減される。L
i/Mn比が0.5より大きいものの例としては、Mn
の一部をLiで置換したLi(LiXMn2-X)O4(X
は置換量を表す。)や、Mnの一部をLi以外の前記置
換元素Mで置換したLiMXMn2-X4等を挙げること
ができる。前者のLi/Mn比は(1+X)/(2−
X)、後者のLi/Mn比は1/(2−X)でそれぞれ
与えられるので、X>0の場合には両者のLi/Mn比
は0.5より必ず大きくなる。なお、正極活物質14に
はアセチレンブラック等の炭素微粉末を導電助材として
加えることが好ましい。
In the present invention, the above-described LiM
Among n 2 O 4 , it is particularly preferable to use one having a Li / Mn ratio larger than 0.5, and the internal resistance is further reduced as compared with the case of using a stoichiometric composition. L
Examples of those having an i / Mn ratio greater than 0.5 include Mn
Li (Li x Mn 2-x ) O 4 (X
Represents a substitution amount. ) And LiM X Mn 2 -X O 4 in which a part of Mn is substituted by the above-mentioned substitution element M other than Li. The former Li / Mn ratio is (1 + X) / (2-
X) and the latter Li / Mn ratio are given by 1 / (2-X), respectively, so that when X> 0, the Li / Mn ratio of both is always greater than 0.5. Preferably, fine carbon powder such as acetylene black is added to the positive electrode active material 14 as a conductive additive.

【0019】 一方、負極板3は、負極集電体13とし
ての銅箔若しくはニッケル箔の両面に負極活物質15を
塗工することで作製される。その作製方法は前述した正
極板2の場合と同様である。なお、負極活物質15とし
ては、ソフトカーボンやハードカーボンといったアモル
ファス系炭素質材料や、人造黒鉛や天然黒鉛等の高黒鉛
化炭素質粉末が用いられる。
On the other hand, the negative electrode plate 3 is produced by coating a negative electrode active material 15 on both surfaces of a copper foil or a nickel foil as the negative electrode current collector 13. The manufacturing method is the same as in the case of the positive electrode plate 2 described above. As the negative electrode active material 15, an amorphous carbonaceous material such as soft carbon or hard carbon, or a highly graphitized carbonaceous powder such as artificial graphite or natural graphite is used.

【0020】 こうして作製される正極板2には正極集
電部7が、負極板3には負極集電部8が、それぞれ形成
される。この集電部7・8(正極集電部7と負極集電部
8の両者を指す。以下同様。)の形成は、正極板2と負
極板3を捲回する前後或いは途中のいずれの時点で設け
ても構わない。本発明においては、正極板2と負極板3
を互いに接触しないようにセパレータ4を介して捲回し
つつ、正極板2と負極板3のそれぞれについて、所定の
位置にタブ5・6を超音波溶接等の手段により固定する
ことで、集電部7・8を形成する方法が好適に採用され
る。
A positive electrode current collector 7 is formed on the positive electrode plate 2 thus manufactured, and a negative electrode current collector 8 is formed on the negative electrode plate 3. The formation of the current collectors 7 and 8 (refers to both the positive electrode current collector 7 and the negative electrode current collector 8; the same applies hereinafter) is performed at any time before, during, or after the positive electrode plate 2 and the negative electrode plate 3 are wound. May be provided. In the present invention, the positive electrode plate 2 and the negative electrode plate 3
By winding tabs 5 and 6 at predetermined positions on each of the positive electrode plate 2 and the negative electrode plate 3 by means of ultrasonic welding or the like while winding them through the separator 4 so as not to contact with each other, the current collecting unit The method of forming 7.8 is suitably adopted.

【0021】 ここで、セパレータ4としては、マイク
ロポアを有するリチウムイオン透過性のポリエチレンフ
ィルム(PEフィルム)を、多孔性のリチウムイオン透
過性のポリプロピレンフィルム(PPフィルム)で挟ん
だ三層構造としたものが好適に用いられる。これは、内
部電極体の温度が上昇した場合に、PEフィルムが約1
30℃で軟化してマイクロポアが潰れ、リチウムイオン
の移動すなわち電池反応を抑制する安全機構を兼ねたも
のである。そして、このPEフィルムをより軟化温度の
高いPPフィルムで挟持することによって、PEフィル
ムが軟化した場合においても、PPフィルムが形状を保
持して正極板2と負極板3の接触・短絡を防止し、電池
反応の確実な抑制と安全性の確保が可能となる。
Here, the separator 4 has a three-layer structure in which a lithium-ion permeable polyethylene film (PE film) having micropores is sandwiched between porous lithium-ion permeable polypropylene films (PP films). Are preferably used. This is because when the temperature of the internal electrode body rises, the PE film
It also softens at 30 ° C., crushes the micropores, and also serves as a safety mechanism for suppressing the movement of lithium ions, that is, the battery reaction. By sandwiching the PE film between PP films having a higher softening temperature, even when the PE film is softened, the PP film retains its shape and prevents contact and short circuit between the positive electrode plate 2 and the negative electrode plate 3. In addition, it is possible to reliably suppress the battery reaction and ensure the safety.

【0022】 さて、本発明における集電部7・8は、
内部電極体1を展開し、正極板2と負極板3が重なり合
った状態において、正極板2若しくは負極板3のいずれ
か一方の電極板の集電部が、他の電極板に形成された隣
り合う集電部の中央位置と集電部との間の長さを基準と
して、この中央位置から電極板2・3の長さ方向±30
%の範囲内に形成される。例えば、正極集電部7が、負
極板3に形成された隣り合う集電部8の中央位置と集電
部8との間の長さを基準として、この中央位置から負極
板3の長さ方向±30%の範囲内に形成される。
Now, the current collectors 7 and 8 in the present invention
When the internal electrode body 1 is unfolded and the positive electrode plate 2 and the negative electrode plate 3 are overlapped, the current collector of one of the positive electrode plate 2 and the negative electrode plate 3 is placed adjacent to the other electrode plate. With reference to the length between the central position of the matching current collector and the current collector, from this central position ± 30 in the length direction of the electrode plates 2 and 3
%. For example, the length of the negative electrode plate 3 from the center position of the positive current collector 7 is determined based on the length between the central position of the adjacent current collector 8 formed on the negative electrode plate 3 and the current collector 8. The direction is formed within a range of ± 30%.

【0023】 このことを図1を用いて説明するが、こ
こで先ず、集電部7・8の形成位置を考える場合には、
集電部7・8のいずれか一方の間隔(集電部間隔)を基
準に考える必要がある。そこで本実施形態においては、
負極集電部8の間隔(負極集電部間隔)を基準に考える
こととする。但し、正極集電部7の間隔(正極集電部間
隔)を基準としてもよいことは明らかである。
This will be described with reference to FIG. 1. First, when considering the formation positions of the current collectors 7 and 8,
It is necessary to consider based on either one of the current collectors 7 and 8 (current collector interval). Therefore, in this embodiment,
The interval between the negative electrode current collectors 8 (the interval between the negative electrode current collectors) is considered as a reference. However, it is obvious that the interval between the positive electrode current collectors 7 (the interval between the positive electrode current collectors) may be used as a reference.

【0024】 図1において、負極集電部8中の任意の
隣り合う負極集電部8A・8B間の中央位置をXAと
し、中央位置XAと負極集電部8A又は負極集電部8B
との距離を基準距離Lとする。このとき、正極板2にお
ける1箇所の正極集電部7Aを、中央位置XAを基準と
して、負極板3の長さ方向、即ちX軸の正負両方向にお
けるL×(±0.3)の長さの範囲D内に形成する。
In FIG. 1, a central position between any adjacent negative electrode current collectors 8 A and 8 B in the negative electrode current collector 8 is denoted by XA, and the center position XA and the negative electrode current collector 8 A or the negative electrode current collector 8 B
Is defined as a reference distance L. At this time, one positive electrode current collector 7A on the positive electrode plate 2 is set to have a length of L × (± 0.3) in the length direction of the negative electrode plate 3 with respect to the center position XA, that is, in both the positive and negative directions of the X axis. Within the range D.

【0025】 このように負極集電部8の形成位置によ
り定められる範囲D内に正極集電部7を形成すると、正
極板2における低抵抗な部分と負極板3における高抵抗
な部分が重なり合い、逆に正極板2における高抵抗な部
分と負極板3における低抵抗な部分が重なり合うため
に、内部電極体における抵抗分布が平坦化される。これ
により内部電極体内での電流分布が均一化されて、特に
大電流の放電時に起こりやすい内部電極体1の一部への
電流集中を回避することが可能となる。
When the positive current collector 7 is formed within the range D determined by the position where the negative current collector 8 is formed, the low-resistance portion of the positive electrode plate 2 and the high-resistance portion of the negative electrode plate 3 overlap with each other, Conversely, since the high-resistance portion of the positive electrode plate 2 and the low-resistance portion of the negative electrode plate 3 overlap, the resistance distribution in the internal electrode body is flattened. As a result, the current distribution in the internal electrode body is made uniform, and it is possible to avoid current concentration on a part of the internal electrode body 1 which is likely to occur particularly when a large current is discharged.

【0026】 このような効果を考慮すれば、正極集電
部7Aは、範囲D内のより狭い範囲である中央位置XA
からX軸方向L×(±0.1)の範囲内に形成されてい
ることがより好ましく、最も好ましい状態は、正極集電
部7Aが中央位置XA上にある場合である。図1におい
ては、タブ6が担当する集電面積が等しくなるように負
極集電部8は等間隔に、つまり負極集電部間隔が一定と
なるように形成されており、その結果として正極集電部
7もまた等間隔に形成されることとなる。こうして、タ
ブ5・6に流れる電流をほぼ一定とすることもまた、内
部電極体1内での電流分布の均一化に寄与する。但し、
後述するように、生産性を考慮し、また電池特性が維持
される範囲内で、正極集電部間隔及び/又は負極集電部
間隔を完全には一定としない場合も許容される。
In consideration of such effects, the positive electrode current collector 7 A is located at the center position XA, which is a narrower range within the range D.
Is more preferably formed within the range of L × (± 0.1) in the X-axis direction, and the most preferable state is when the positive electrode current collector 7A is located at the center position XA. In FIG. 1, the negative electrode current collectors 8 are formed at regular intervals, that is, the intervals between the negative electrode current collectors are constant so that the current collection areas handled by the tabs 6 are equal. The electric parts 7 are also formed at equal intervals. Thus, making the current flowing through the tabs 5 and 6 substantially constant also contributes to the uniformity of the current distribution in the internal electrode body 1. However,
As will be described later, the case where the interval between the positive electrode current collectors and / or the interval between the negative electrode current collectors are not completely constant within a range in which the productivity is considered and the battery characteristics are maintained is also allowed.

【0027】 なお、上述した集電部の形成位置に関す
る条件は、選び出した隣り合う集電部の全てについて満
足されていなければならない。例えば、負極板に5箇所
の集電部を設けた場合には、隣り合う負極集電部間の中
央位置は4箇所となる。従って、この中央位置4箇所の
全てについて、正極集電部を中央位置からの一定距離範
囲内に設ける必要がある。何故なら、もし、4箇所の中
央位置の内の1箇所でも上記範囲を外れて正極集電部が
設けられた場合には、その部分においては抵抗分布幅が
大きくなってしまい、電流密度の分布を生ぜしめる結果
となり、好ましくないからである。
Note that the above-described condition regarding the formation position of the current collector must be satisfied for all the selected adjacent current collectors. For example, when five current collectors are provided on the negative electrode plate, the central position between adjacent negative electrode current collectors is four. Therefore, it is necessary to provide the positive electrode current collectors within a certain distance range from the central position in all of the four central positions. This is because if the positive current collector is provided in any one of the four central positions outside the above range, the resistance distribution width becomes large in that part, and the current density distribution becomes large. The result is that it is not preferable.

【0028】 ところで、一般的に正極活物質14の電
子伝導性は負極活物質15の電子伝導性よりも小さいた
めに、内部電極体1の抵抗分布は、抵抗自体の大きい正
極板2の抵抗分布の影響が支配的となる。このことは逆
に、正極板2の抵抗が小さくなるに従って、上述した集
電部7・8の形成位置に起因する抵抗分布の平坦化の効
果が大きく現れることを示唆している。そこで、本発明
においては、抵抗の小さい正極板2が得られるように、
正極活物質14として、前述した種々のLiMn24
用いることが好ましい。
Incidentally, since the electron conductivity of the positive electrode active material 14 is generally smaller than the electron conductivity of the negative electrode active material 15, the resistance distribution of the internal electrode body 1 is the same as the resistance distribution of the positive electrode plate 2 having a large resistance itself. Influence becomes dominant. Conversely, this suggests that as the resistance of the positive electrode plate 2 decreases, the effect of flattening the resistance distribution caused by the formation positions of the current collectors 7 and 8 described above increases. Therefore, in the present invention, a positive electrode plate 2 having a small resistance is obtained.
It is preferable to use the above-described various LiMn 2 O 4 as the positive electrode active material 14.

【0029】 さて、集電部の形成に当たっては、例え
ば、内部電極体の一端面に正負両極の集電部を形成する
こともできるが、この場合には、正負各極のタブどうし
の接触の危険性がある他、電池の正負電極端子を電池端
面にそれぞれ設ける場合には電池ケースを電流路とし、
或いは別に電流路を形成する必要がある等の問題を生ず
る。従って、内部電極体の一方の端面に正極板の集電部
を、別の端面に負極板の集電部をそれぞれ設けて、各端
面側の電池端面に電極端子を設けることが好ましい。つ
まり、図1において、正極板2と負極板3とをY軸方向
への平行移動によってのみ重ね合わせた状態で捲回して
作製される内部電極体を用いることが、安全性、組立容
易性等の点から好ましい。
In forming the current collecting portion, for example, a current collecting portion having both positive and negative electrodes may be formed on one end surface of the internal electrode body. In this case, the contact between the tabs of the positive and negative electrodes may be formed. In addition to the danger, when providing the positive and negative electrode terminals of the battery on the battery end face respectively, the battery case is used as a current path,
Alternatively, there arises a problem that it is necessary to separately form a current path. Therefore, it is preferable that a current collector of the positive electrode plate is provided on one end face of the internal electrode body and a current collector of the negative electrode plate is provided on another end face, and electrode terminals are provided on the battery end faces on each end face side. That is, in FIG. 1, it is possible to use the internal electrode body produced by winding the positive electrode plate 2 and the negative electrode plate 3 in a state of being overlapped only by parallel movement in the Y-axis direction. It is preferable from the point of view.

【0030】 なお、上述の説明によれば、集電部はタ
ブを取り付ける位置をいうが、集電部の形成の形態はタ
ブの溶接によるものに限定されるものではない。例え
ば、集電部の形成位置が上述した所定の範囲内に納めら
れている以上、正負各極の集電体を切り抜き加工してタ
ブに相当する部分を設けた場合には、その部分の根幹の
部分を集電部とみなすことができる。また、タブの形状
は図1に示した長方形のものに限定されず、種々の形状
のものを用いることができ、材料も箔以外に線状のもの
を用いても何ら支障はない。更に、タブは1箇所の集電
部に1枚のみ溶接されなければならないものではなく、
複数枚のタブを範囲D内に溶接することで、集電部を設
けても構わない。
According to the above description, the current collecting portion refers to the position where the tab is attached, but the form of forming the current collecting portion is not limited to the formation of the tab by welding. For example, if the current collector is formed within the above-described predetermined range and the current collectors of the positive and negative poles are cut out to provide a portion corresponding to a tab, the base of that portion is provided. Can be regarded as a current collector. Further, the shape of the tab is not limited to the rectangular shape shown in FIG. 1, and various shapes can be used. Even if the material is a linear material other than the foil, there is no problem. Furthermore, the tab does not have to be welded only once to one current collector,
The current collecting portion may be provided by welding a plurality of tabs within the range D.

【0031】 次に、電池特性を低下させることなく、
電池の組立作業を簡単なものとする集電部の形成条件に
ついて説明する。上述したように、正極集電部間隔及び
/又は負極集電部間隔をそれぞれ等間隔とすることは電
池特性上好ましいが、内部電極体1の内周部と外周部と
では1巻き当たりの周の長さが大きく異なる。従って、
集電部間隔を一定に保ちつつ、しかも、1巻き毎に最低
1箇所の集電部がある構造とすると、集電部間隔は最内
周の長さによって決定され、形成する集電部の数が膨大
なものとなり、タブを電池外部へ電流を取り出すための
電流端子等への取り付ける際の作業性が低下する問題を
生じる。一方、集電部間隔をほぼ一定に保つことなく、
1巻き当たりに少なくとも1箇所の集電部が存在するよ
うな構成とすると、内部電極体の内周部で集電抵抗が小
さくなるため、大電流が流れるときに内周部に電流が集
中して、電極活物質の劣化が促進され、サイクル特性が
低下する事態が生ずる。
Next, without deteriorating the battery characteristics,
The conditions for forming the current collector for simplifying the battery assembling operation will be described. As described above, it is preferable in terms of battery characteristics that the intervals between the positive electrode current collectors and / or the intervals between the negative electrode current collectors be equal, but the inner and outer peripheral portions of the internal electrode body 1 have a circumference per turn. Vary greatly in length. Therefore,
If the structure is such that at least one current collecting portion is provided for each winding while keeping the current collecting portion interval constant, the current collecting portion interval is determined by the length of the innermost circumference, and the current collecting portion to be formed is formed. The number is enormous, and there is a problem that the workability at the time of attaching the tab to a current terminal or the like for extracting a current to the outside of the battery is reduced. On the other hand, without keeping the current collector interval almost constant,
In a configuration in which at least one current collecting portion is present per one turn, the current collecting resistance is reduced at the inner peripheral portion of the internal electrode body, so that when a large current flows, current concentrates on the inner peripheral portion. As a result, the deterioration of the electrode active material is promoted, and the cycle characteristics deteriorate.

【0032】 従って、このような問題を回避するため
に、本発明においては、複数の捲回数に対して1箇所の
集電部が形成されている部分が存在するようにするこ
と、換言すれば、捲回された正極板2もしくは負極板3
の任意の1巻きに、集電部7・8が形成されていない部
位が存在するように集電部間隔を設定することが好まし
い。このような部位は、当然に、内部電極体1の内周部
において多く現れることとなる。
Therefore, in order to avoid such a problem, in the present invention, there should be a portion where one current collecting portion is formed for a plurality of winding times, in other words, , Wound positive electrode plate 2 or negative electrode plate 3
It is preferable to set the current collector interval so that there is a portion where the current collectors 7 and 8 are not formed in any one of the turns. Such portions naturally appear in the inner peripheral portion of the internal electrode body 1.

【0033】 しかしながら、この条件を満足する場合
であっても、集電部間隔が一定に形成されている場合に
は、内部電極体の端面において、集電部がランダムな位
置に形成される問題が残される。この場合、タブと電流
端子等との接合が困難になるばかりでなく、この電流端
子との接続位置によっては、タブにねじれの応力が掛か
ってタブが切断される等、タブが損傷するおそれがあ
る。
However, even if this condition is satisfied, the problem is that the current collectors are formed at random positions on the end face of the internal electrode body if the current collector intervals are formed to be constant. Is left. In this case, it is not only difficult to join the tab to the current terminal or the like, but also depending on the connection position with the current terminal, the tab may be damaged due to the torsion stress being applied to the tab and the tab being cut. is there.

【0034】 そこで、上述した条件に従って集電部が
形成されつつ、更に好ましくは、正極集電部7の一群及
び負極集電部8の一群が、それぞれ内部電極体1の端面
において、それぞれ中心角45゜の範囲内に形成される
ことが好ましい。この状態を図2の内部電極体を端面か
ら見た平面図に示す。正極集電部7は、正極集電部7の
中心が図2中の領域A中に納まるように形成される。こ
の場合、負極集電部8は、内部電極体1の中心ついて領
域Aと点対称な領域B内に形成されることとなる。な
お、領域Aと領域Bは内部電極体1の異なる端面にそれ
ぞれ形成されることが好ましいことは既に述べた。理論
的にこの中心角を考えると、各電極板について、8箇所
の領域を設けることが可能であるが、電池の組立作業性
を考えると、4領域以下とすることが好ましい。
Therefore, while the current collector is formed in accordance with the above-described conditions, more preferably, one group of the positive electrode current collector 7 and one group of the negative electrode current collector 8 are each formed at the center angle at the end face of the internal electrode body 1. Preferably, it is formed within a range of 45 °. This state is shown in a plan view of the internal electrode body of FIG. 2 viewed from the end face. The positive electrode current collector 7 is formed such that the center of the positive electrode current collector 7 is located in the region A in FIG. In this case, the negative electrode current collector 8 is formed in a region B that is point-symmetric with the region A about the center of the internal electrode body 1. Note that it has already been described that the region A and the region B are preferably formed on different end faces of the internal electrode body 1 respectively. Considering this central angle theoretically, it is possible to provide eight regions for each electrode plate. However, considering the workability of assembling the battery, it is preferable that the number be four or less.

【0035】 更に集電部7・8のそれぞれの一群が、
内部電極体1の端面上、上述した中心角45゜の領域内
であって、略同一動径上、つまり径方向の直線上に形成
されていると、よりタブの電流端子への接合が容易とな
って生産性が向上するとともに、タブに加わるねじれ応
力が低減されて、タブの破損が効果的に回避され、好ま
しい。この状態の一実施形態を図3に示す。ほぼ一列に
並ぶように形成された集電部7に対し、集電部8は、巻
芯9の中心について対称な位置において、同様にほぼ一
列に並ぶように形成される。なお、このような正極集電
部7及び負極集電部8の形成位置についての制限は、タ
ブ5・6を領域毎に1箇所に纏めて電流端子等に接続す
る場合に好適に用いられる。
Further, each group of the current collectors 7 and 8 includes:
When formed on the end face of the internal electrode body 1 within the above-described region of the central angle of 45 ° and substantially on the same moving radius, that is, on the straight line in the radial direction, it is easier to join the tab to the current terminal. Thus, the productivity is improved, and the torsional stress applied to the tab is reduced, so that breakage of the tab is effectively avoided, which is preferable. One embodiment of this state is shown in FIG. In contrast to the current collectors 7 formed so as to be substantially aligned, the current collectors 8 are similarly formed so as to be substantially aligned at a position symmetrical with respect to the center of the core 9. Note that such a restriction on the formation positions of the positive electrode current collector 7 and the negative electrode current collector 8 is suitably used when the tabs 5 and 6 are collectively connected to a current terminal or the like at one location for each region.

【0036】 さて、正極集電部間隔及び負極集電部間
隔は、内部電極体1の外周長さ以下で、かつ、その外周
長さの1/4以上とすることが好ましい。前述したよう
に、集電部7・8の形成位置は略同一動径上にあるよう
に設定することが好ましく、ここで集電部7・8の数が
多いほど集電抵抗が小さくなることは明らかであるが、
集電部間隔は、最外周の集電部間隔を基準として、なる
べくその他の集電部間隔がこの基準間隔と等しくなるよ
うにして、しかも、各集電部の位置が略同一動径上に並
ぶようにすることが望ましい。
The interval between the positive electrode current collector and the interval between the negative electrode current collectors is preferably equal to or less than the outer peripheral length of the internal electrode body 1 and equal to or more than 4 of the outer peripheral length. As described above, it is preferable that the positions where the current collectors 7 and 8 are formed be set so as to be substantially on the same radius. Here, the larger the number of the current collectors 7 and 8, the smaller the current collection resistance. Is obvious,
The current collecting unit intervals are set such that the other current collecting unit intervals are equal to this reference interval as much as possible with respect to the outermost peripheral current collecting unit intervals, and the positions of the current collecting units are substantially on the same radius. It is desirable to line up.

【0037】 なお、正極集電部間隔及び負極集電部間
隔は、それぞれ正極集電部間隔及び負極集電部間隔の平
均値の±20%以内にあるように、ほぼ一定の間隔とす
ると、サイクル特性の劣化を招くことがなく、好まし
い。
The intervals between the positive electrode current collectors and the intervals between the negative electrode current collectors are assumed to be substantially constant so as to be within ± 20% of the average of the intervals between the positive electrode current collectors and the negative electrode current collectors, respectively. This is preferable because it does not cause deterioration in cycle characteristics.

【0038】 このような構造を有する抵抗分布の平坦
化が図られた内部電極体を電池ケースに収容し、非水電
解液を充填してなる本発明のリチウム二次電池は、均一
な電池反応の誘起による優れた出力特性と耐久性を有し
ていることから、電気自動車もしくはハイブリッド電気
自動車のモータ駆動用電源として好適に用いられる。ま
た、抵抗分布の平坦化の効果が顕著に現れる2Ah以上
の電池容量を有する電池に、本発明は好適に適用され
る。
The lithium secondary battery of the present invention in which the internal electrode body having such a structure and in which the resistance distribution is flattened is accommodated in a battery case and filled with a non-aqueous electrolyte, has a uniform battery reaction. It has excellent output characteristics and durability due to the induction of, and is suitably used as a power supply for driving a motor of an electric vehicle or a hybrid electric vehicle. Further, the present invention is suitably applied to a battery having a battery capacity of 2 Ah or more in which the effect of flattening the resistance distribution is remarkably exhibited.

【0039】 なお、非水電解液としては、エチレンカ
ーボネート(EC)、ジエチルカーボネート(DE
C)、ジメチルカーボネート(DMC)といった炭酸エ
ステル系のもの、プロピレンカーボネート(PC)やγ
−ブチロラクトン、テトラヒドロフラン、アセトニトリ
ル等の有機溶媒の単独溶媒もしくは混合溶媒に、電解質
としてのLiPF6やLiBF4等のリチウム錯体フッ素
化合物、あるいはLiClO4といったリチウムハロゲ
ン化物等を1種類もしくは2種類以上を溶解した非水電
解液が好適に用いられる。
As the non-aqueous electrolyte, ethylene carbonate (EC), diethyl carbonate (DE)
C), carbonates such as dimethyl carbonate (DMC), propylene carbonate (PC) and γ
- butyrolactone, dissolved in tetrahydrofuran, alone or a mixed solvent of an organic solvent such as acetonitrile, lithium complex fluorine compound such as LiPF 6 and LiBF 4 as an electrolyte, or one or two or more kinds of LiClO 4 lithium halides such as The used non-aqueous electrolyte is suitably used.

【0040】[0040]

【実施例】 以下、本発明を実施例に基づき、更に詳細
に説明するが、本発明はこの実施例に限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0041】(電池の作製)化学量論組成を有するLi
Mn24スピネル(Li/Mn比=0.5)を正極活物
質として、これに導電性を向上させるための炭素粉末
(アセチレンブラック)を添加、混合したものをアルミ
ニウム箔に塗布し、電極面形状が捲回方向長さ3400
mm×幅200mmの正極板2を作製した。一方、負極
板3は、高黒鉛化炭素材料(繊維状粉末)を銅箔に塗布
することで、捲回方向長さ3600mm×幅200mm
のものを作製した。こうして作製した正極板2と負極板
3とをポリプロピレン製のマイクロポーラスセパレータ
4を用いて絶縁しながら捲回して内部電極体を作製し
た。
(Preparation of Battery) Li having a stoichiometric composition
Mn 2 O 4 spinel (Li / Mn ratio = 0.5) was used as a positive electrode active material, and a carbon powder (acetylene black) for improving conductivity was added thereto and mixed, and the mixture was applied to an aluminum foil. Surface shape is winding direction length 3400
A positive electrode plate 2 having a size of 200 mm × width 200 mm was prepared. On the other hand, the negative electrode plate 3 is formed by applying a highly graphitized carbon material (fibrous powder) to a copper foil, so that the length in the winding direction is 3600 mm × 200 mm in width.
Was prepared. The positive electrode plate 2 and the negative electrode plate 3 thus manufactured were wound while being insulated using a microporous separator 4 made of polypropylene to prepare an internal electrode body.

【0042】 なお、この捲回時に、図1に示した位置
関係を満足するように、つまり、隣り合う負極集電部8
のほぼ中央位置に正極集電部7が形成されるように、タ
ブ5・6を電極板2・3の所定位置に超音波溶接により
取り付け、集電部7・8を形成した。ここで、正極用の
タブ5にはアルミニウムを用い、負極用のタブ6には銅
箔を用いた。また、集電部間隔は、電池の円周長より長
くならないように約100mm前後の間隔で、図3記載
の構造を有するように捲回後に集電部7・8が内部電極
体1の端面上のほぼ同一動径上に並ぶように設定した。
使用したタブは30枚であり、内周部においては複数の
捲回数当たりに1枚のタブが配設されている。
It is to be noted that, at the time of this winding, the positional relationship shown in FIG.
The tabs 5 and 6 were attached to predetermined positions of the electrode plates 2 and 3 by ultrasonic welding so that the current collectors 7 and 8 were formed so that the positive electrode current collector 7 was formed substantially at the center position. Here, aluminum was used for the tab 5 for the positive electrode, and copper foil was used for the tab 6 for the negative electrode. The current collectors are spaced at intervals of about 100 mm so as not to be longer than the circumferential length of the battery, and the current collectors 7 and 8 have the end faces of the internal electrode body 1 after being wound so as to have the structure shown in FIG. It was set so as to be lined up on almost the same moving radius.
Thirty tabs were used, and one tab is provided for a plurality of turns in the inner peripheral portion.

【0043】 次に、図6に示す電池構造を有する電池
50を作製した。先ず、作製した内部電極体1のタブ5
・6をそれぞれ正極内部端子74A・負極内部端子74
Bとして用いられているリベットに、かしめ加工により
1箇所で集合接続した。ここで、正極内部端子74Aは
アルミニウム製のリベットであり、同じアルミニウムか
らなる正極蓋71Aに接合されている。また、正極蓋7
1Aの正極内部端子74Aが接合された面と反対の面に
は、同じくアルミニウムからなる雌ネジ形状の正極外部
端子73Aが接合されている。なお、正極外部端子73
A下部には、正極蓋71Aを貫通するように電解液注入
口77が設けられている。
Next, a battery 50 having the battery structure shown in FIG. 6 was manufactured. First, the tab 5 of the produced internal electrode body 1
6 is a positive internal terminal 74A and a negative internal terminal 74, respectively.
The rivet used as B was collectively connected at one place by caulking. Here, the positive electrode internal terminal 74A is a rivet made of aluminum, and is joined to the positive electrode lid 71A made of the same aluminum. In addition, the positive electrode lid 7
A female screw-shaped positive external terminal 73A also made of aluminum is bonded to the surface opposite to the surface to which the positive internal terminal 74A of 1A is bonded. The positive external terminal 73
An electrolyte injection port 77 is provided below A in such a manner as to penetrate the positive electrode cover 71A.

【0044】 負極側の構造も正極側と同様であり、負
極内部端子74B、負極蓋71B、雄ネジ形状の負極外
部端子73Bには全て銅製部材が用いられている。但
し、負極蓋71Bには電解液注入口77は設けられてい
ない。
The structure on the negative electrode side is the same as that on the positive electrode side, and a copper member is used for all of the negative electrode internal terminal 74 B, the negative electrode cover 71 B, and the externally threaded negative electrode external terminal 73 B. However, the electrolyte inlet 77 is not provided in the negative electrode lid 71B.

【0045】 こうして、正負両極の内部端子74A・
74B等を取り付けた内部電極体1を、外径50mm
φ、肉厚1mm、長さ245mmのアルミニウム製の円
筒形電池ケース72に挿入した後、内部電極体1の両端
近傍において、絞り加工を行い、突起部81を電池ケー
ス72に形成した。更に、絶縁材料からなるシール材8
2を用いて電池ケース72と正負両極の蓋71A・71
Bが導通しないように、電池ケース両端をかしめ加工に
より封止した。なお、内部電極体1と電池ケース72の
内周面との間に絶縁性ポリマーフィルム79を配置し
た。
Thus, the positive and negative internal terminals 74 A
The inner electrode body 1 to which 74B or the like has been attached has an outer diameter of 50 mm.
After being inserted into an aluminum cylindrical battery case 72 having a diameter of φ, a thickness of 1 mm, and a length of 245 mm, drawing was performed near both ends of the internal electrode body 1 to form a projection 81 on the battery case 72. Furthermore, a sealing material 8 made of an insulating material
2 and a battery case 72 and positive and negative electrode lids 71A and 71
Both ends of the battery case were sealed by caulking so that B did not conduct. Note that an insulating polymer film 79 was disposed between the internal electrode body 1 and the inner peripheral surface of the battery case 72.

【0046】 続いて、電解液注入口77を上向きとし
て、電池50を減圧雰囲気下に載置し、電解液注入口7
7と巻芯9の中空部分を貫通するように、電解液注入ノ
ズルを電池の底部へ挿入し、所定量の電解液を注入して
十分に内部電極体1への含浸処理を行った。その後、不
活性ガス雰囲気として、不要な電解液を電解液注入ノズ
ルで排出し、電解液注入口77をネジにより封止した。
なお、電解液としては、LiPF6電解質をECとDE
Cの等量混合溶液に溶解したものを用いた。以上の工程
により作製された電池を実施例1の電池とする。
Subsequently, the battery 50 is placed under a reduced pressure atmosphere with the electrolyte injection port 77 facing upward, and the electrolyte injection port 7 is
The electrolyte injection nozzle was inserted into the bottom of the battery so as to penetrate through the hollow portion of the core 7 and the winding core 9, and a predetermined amount of the electrolyte was injected to sufficiently impregnate the internal electrode body 1. Thereafter, an unnecessary electrolyte was discharged with an electrolyte injection nozzle in an inert gas atmosphere, and the electrolyte injection port 77 was sealed with a screw.
The electrolyte was LiPF 6 electrolyte of EC and DE.
The solution dissolved in a mixed solution of the same amount of C was used. The battery manufactured by the above steps is referred to as the battery of Example 1.

【0047】 これに対し、正極活物質としてLi/M
n比=0.55のLiMn24スピネルを用い、その他
の条件は上述した実施例1と同様とした実施例2の電池
を作製した。また、比較例1・2の電池として、製造工
程は実施例1・2の電池と同様であるが、正極板2と負
極板3における集電部7・8の形成位置を、図5に示さ
れるように、捲回方向においてほぼ同位置となるように
した電池を作製した。なお、比較例1の電池では正極活
物質にLi/Mn比=0.5のLiMn24スピネルを
用い、比較例2の電池では正極活物質にLi/Mn比=
0.55のLiMn24スピネルを用いた。そして、作
製した実施例及び比較例の電池について、10A定電流
−4.1V定電圧充電により満充電した。満充電時の電
池容量は、実施例1及び比較例1の電池については25
Ah、実施例2及び比較例2の電池については22Ah
であった。
On the other hand, Li / M
A battery of Example 2 was manufactured using LiMn 2 O 4 spinel having an n ratio of 0.55 and the other conditions were the same as in Example 1 described above. The production process of the batteries of Comparative Examples 1 and 2 is the same as that of the batteries of Examples 1 and 2, but the positions of the current collectors 7 and 8 on the positive electrode plate 2 and the negative electrode plate 3 are shown in FIG. As a result, a battery was prepared in which the positions were substantially the same in the winding direction. In the battery of Comparative Example 1, a LiMn 2 O 4 spinel having a Li / Mn ratio of 0.5 was used as the positive electrode active material.
A 0.55 LiMn 2 O 4 spinel was used. Then, the manufactured batteries of the example and the comparative example were fully charged by 10 A constant current-4.1 V constant voltage charging. The battery capacity at full charge was 25 for the batteries of Example 1 and Comparative Example 1.
Ah, 22 Ah for the batteries of Example 2 and Comparative Example 2.
Met.

【0048】(サイクル特性の評価)実施例1及び比較
例1の電池のサイクル特性の評価は、図7に示される充
放電サイクルを1サイクルとして、これを繰り返すこと
により耐久試験を行った。1サイクルは50%の充電状
態の電池を10C(放電レート)相当の電流250Aに
て9秒間放電した後18秒間休止し、その後175Aで
6秒間充電後、続いて45Aで27秒間充電し、再び5
0%の充電状態とするパターンに設定した。なお、充電
の2回目(45A)の電流値を微調整することにより、
各サイクルにおけるDODのずれを最小限に止めた。ま
た、この耐久試験中の電池容量の変化を知るために、適
宜、0.2Cの電流強さで充電停止電圧4.1V、放電
停止電圧2.5Vとした容量測定を行い、所定のサイク
ル数における放電容量を初回の放電容量で除した値によ
り放電容量の変化率を求めた。なお、実施例2及び比較
例2の電池についてのサイクル特性の評価も同様の方法
によって行ったが、このときの充放電電流の大きさは、
電池容量を考慮して、全て22/25倍した大きさとし
た。
(Evaluation of Cycle Characteristics) The cycle characteristics of the batteries of Example 1 and Comparative Example 1 were evaluated by repeating the charge / discharge cycle shown in FIG. In one cycle, the battery in a 50% charged state was discharged at a current of 250 C corresponding to 10 C (discharge rate) for 9 seconds, paused for 18 seconds, charged at 175 A for 6 seconds, subsequently charged at 45 A for 27 seconds, and then again. 5
The pattern was set to a 0% charged state. By finely adjusting the current value of the second charge (45 A),
The DOD shift in each cycle was kept to a minimum. In order to know the change in the battery capacity during the endurance test, the capacity was measured at a current intensity of 0.2 C at a charge stop voltage of 4.1 V and a discharge stop voltage of 2.5 V. The rate of change of the discharge capacity was determined from the value obtained by dividing the discharge capacity at the first time by the first discharge capacity. The cycle characteristics of the batteries of Example 2 and Comparative Example 2 were also evaluated by the same method.
In consideration of the battery capacity, the sizes were all 22/25 times.

【0049】(試験結果)試験結果を図8に示す。内部
電極体を展開した場合に、正極集電部が隣り合う負極集
電部のほぼ中央位置に形成されている実施例1・2の電
池で放電容量の低下が抑制されている。これは、実施例
1・2の電池では、内部電極体内の抵抗分布が平坦化さ
れているために、内部電極体内で電流分布が生じ難く、
均一な電池反応が誘起された結果、一部の電極活物質に
負荷が掛かって劣化が進むことが回避されたことに大き
く起因すると考えられる。
(Test Results) The test results are shown in FIG. When the internal electrode body is expanded, the discharge capacity of the batteries of Examples 1 and 2 in which the positive electrode current collector is formed substantially at the center of the adjacent negative electrode current collector is suppressed. This is because, in the batteries of Examples 1 and 2, the current distribution hardly occurs in the internal electrodes because the resistance distribution in the internal electrodes is flattened.
It is considered that this is largely due to the fact that a uniform battery reaction was induced, so that a load was applied to some of the electrode active materials and deterioration was prevented from progressing.

【0050】 なお、Li/Mn比が0.5よりも大き
いLiMn24スピネルを用いた実施例2の放電容量の
低下が抑制されている。これは、実施例2の電池の内部
抵抗が、実施例1の電池の内部抵抗よりも小さくなって
いたことから、実施例2の電池においては、正極板の抵
抗自体が低減されて、その抵抗分布幅が負極板の抵抗分
布幅に近づき、その結果、内部電極体の抵抗分布の平坦
化の効果が顕著に現れた結果と考えられる。
It is to be noted that a decrease in the discharge capacity of Example 2 using the LiMn 2 O 4 spinel having a Li / Mn ratio larger than 0.5 is suppressed. This is because the internal resistance of the battery of Example 2 was smaller than the internal resistance of the battery of Example 1, so that in the battery of Example 2, the resistance itself of the positive electrode plate was reduced, and It is considered that the distribution width approaches the resistance distribution width of the negative electrode plate, and as a result, the effect of flattening the resistance distribution of the internal electrode body is remarkably exhibited.

【0051】 一方、比較例1・2の電池では、内部電
極体内における抵抗分布が大きくなるため、抵抗が小さ
くなっている集電部が形成された部分で大電流が流れ易
くなり、このような大電流による電極活物質の劣化が進
み、サイクル特性が低下したものと考えられる。なお、
比較例1と比較例2の放電容量の低下率の差は、上述し
た実施例1と実施例2における放電容量の変化率の差と
同様の原因によるものと考えられる。つまり、Li/M
n比が0.5よりも大きいLiMn24スピネルを用い
た場合には、電池の内部抵抗自体が小さくなるために電
流の集中が起こり難くなり、放電容量の低下が抑制され
たものと考えられる。
On the other hand, in the batteries of Comparative Examples 1 and 2, since the resistance distribution in the internal electrode body is large, a large current easily flows in a portion where the current collecting portion having a small resistance is formed. It is considered that the deterioration of the electrode active material due to the large current progressed, and the cycle characteristics decreased. In addition,
The difference in the rate of decrease in the discharge capacity between Comparative Example 1 and Comparative Example 2 is considered to be due to the same cause as the difference in the rate of change in the discharge capacity between Example 1 and Example 2 described above. That is, Li / M
It is considered that when LiMn 2 O 4 spinel having an n-ratio larger than 0.5 was used, the internal resistance itself of the battery was reduced, so that current concentration hardly occurred, and a decrease in discharge capacity was suppressed. Can be

【0052】[0052]

【発明の効果】 上述の通り、本発明のリチウム二次電
池によれば、内部電極体における抵抗分布が平坦化され
るように集電部の形成位置が最適化されているために内
部電極体内において電池反応が均一に誘起され、これに
よって、出力特性に優れた、特に大電流の放電をも安定
に行うことができる電池が得られるという顕著な効果が
認められる。また、内部電極体内の特定部分への電流集
中が回避されるために、電極活物質の部分的な劣化が抑
制されてサイクル特性の向上が図られるという顕著な効
果を奏する。
As described above, according to the lithium secondary battery of the present invention, the formation position of the current collector is optimized so that the resistance distribution in the internal electrode body is flattened. In this case, a remarkable effect is obtained in that a battery reaction is uniformly induced, thereby obtaining a battery having excellent output characteristics, in particular, capable of stably discharging a large current. In addition, since a current is prevented from being concentrated on a specific portion in the internal electrode body, there is a remarkable effect that partial deterioration of the electrode active material is suppressed and cycle characteristics are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に好適に用いられる電極板における集
電部の形成位置を示す説明図である。
FIG. 1 is an explanatory diagram showing a formation position of a current collector in an electrode plate suitably used in the present invention.

【図2】 本発明のリチウム二次電池に好適に採用され
る電池端面の構造の一実施形態を示す断面図である。
FIG. 2 is a cross-sectional view showing one embodiment of a structure of a battery end face suitably adopted for a lithium secondary battery of the present invention.

【図3】 本発明のリチウム二次電池に好適に採用され
る電池端面の構造の別の実施形態を示す断面図である。
FIG. 3 is a cross-sectional view showing another embodiment of the structure of the battery end face suitably employed in the lithium secondary battery of the present invention.

【図4】 内部電極体の一般的構造を示す斜視図であ
る。
FIG. 4 is a perspective view showing a general structure of an internal electrode body.

【図5】 従来の捲回型内部電極体を展開した状態にお
ける電極板の集電部の配置例を示す平面図である。
FIG. 5 is a plan view showing an example of an arrangement of a current collecting portion of an electrode plate in a state where a conventional wound internal electrode body is developed.

【図6】 本発明のリチウム二次電池に好適に採用され
る電池構造の一実施形態を示す断面図である。
FIG. 6 is a cross-sectional view showing one embodiment of a battery structure suitably adopted for the lithium secondary battery of the present invention.

【図7】 サイクル試験における充放電パターンを示す
説明図である。
FIG. 7 is an explanatory diagram showing a charge / discharge pattern in a cycle test.

【図8】 サイクル試験結果を示すグラフである。FIG. 8 is a graph showing the results of a cycle test.

【符号の説明】[Explanation of symbols]

1…内部電極体、2…正極板、3…負極板、4…セパレ
ータ、5…正極用タブ、6…負極用タブ、7…正極集電
部、8…負極集電部、9…巻芯、12…正極集電体、1
3…負極集電体、14…正極活物質、15…負極活物
質、50…電池、71A…正極蓋、71B…負極蓋、7
2…電池ケース、73A…正極外部端子、73B…負極
外部端子、74A…正極内部端子、74B…負極内部端
子、77…電解液注入口、79…絶縁フィルム、81…
突起部、82…シール材。
DESCRIPTION OF SYMBOLS 1 ... Internal electrode body, 2 ... Positive electrode plate, 3 ... Negative electrode plate, 4 ... Separator, 5 ... Positive electrode tab, 6 ... Negative electrode tab, 7 ... Positive current collector, 8 ... Negative electrode current collector, 9 ... Core , 12 ... positive electrode current collector, 1
3: negative electrode current collector, 14: positive electrode active material, 15: negative electrode active material, 50: battery, 71A: positive electrode cover, 71B: negative electrode cover, 7
2 ... Battery case, 73A ... Positive electrode external terminal, 73B ... Negative electrode external terminal, 74A ... Positive electrode internal terminal, 74B ... Negative electrode internal terminal, 77 ... Electrolyte injection port, 79 ... Insulating film, 81 ...
Projecting portion, 82: sealing material.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA01 BB05 BC06 BD00 BD03 5H014 AA04 HH01 HH04 5H022 AA09 AA18 CC12 CC19 CC22 5H028 AA05 BB07 CC05 CC12 HH00 HH01 5H029 AJ02 AK03 AL07 BJ02 BJ14 DJ05 DJ07 HJ02 HJ19  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference)

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 正極板と負極板とをセパレータを介して
巻芯外周に捲回してなる内部電極体並びに非水電解液を
用いてなるリチウム二次電池であって、 当該内部電極体を展開し、当該正極板と当該負極板が重
なり合った状態において、当該正極板若しくは当該負極
板のいずれか一方の電極板の集電部が、当該他の電極板
に形成された隣り合う集電部の中央位置と当該集電部と
の間の長さを基準として、当該中央位置から当該電極板
の長さ方向±30%の範囲内に形成されていることを特
徴とするリチウム二次電池。
1. A lithium secondary battery using a non-aqueous electrolyte and an internal electrode body obtained by winding a positive electrode plate and a negative electrode plate around a winding core via a separator, wherein the internal electrode body is developed. Then, in a state where the positive electrode plate and the negative electrode plate are overlapped, the current collector of one of the electrode plates of the positive electrode plate or the negative electrode plate is a current collector of an adjacent current collector formed on the other electrode plate. A lithium secondary battery formed within a range of ± 30% of the length of the electrode plate from the center position with reference to the length between the center position and the current collector.
【請求項2】 当該正極板若しくは当該負極板のいずれ
か一方の電極板の集電部が、当該他の電極板に形成され
た隣り合う集電部の中央位置と当該集電部との間の長さ
を基準として、当該中央位置から当該電極板の長さ方向
±10%の範囲内に形成されていることを特徴とする請
求項1記載のリチウム二次電池。
2. The current collector of one of the positive electrode plate and the negative electrode plate is located between a center position of an adjacent current collector formed on the other electrode plate and the current collector. 2. The lithium secondary battery according to claim 1, wherein the electrode is formed within a range of ± 10% of the length of the electrode plate from the center position with respect to the length of the electrode plate.
【請求項3】 当該内部電極体の一方の端面に当該正極
板の集電部が設けられ、別の端面に当該負極板の集電部
が設けられていることを特徴とする請求項1又は2記載
のリチウム二次電池。
3. The current collector of the positive electrode plate is provided on one end face of the internal electrode body, and the current collector of the negative electrode plate is provided on another end face. 2. The lithium secondary battery according to 2.
【請求項4】 当該正極板及び当該負極板において、複
数の捲回数に対して1箇所の集電部が形成されている部
分が存在することを特徴とする請求項1〜3のいずれか
一項に記載のリチウム二次電池。
4. The positive electrode plate and the negative electrode plate each include a portion where one current collecting portion is formed for a plurality of turns. Item 7. The lithium secondary battery according to Item 1.
【請求項5】 当該集電部が、当該正極板及び当該負極
板に電極リードとしての金属箔を溶接することで形成さ
れていることを特徴とする請求項1〜4のいずれか一項
に記載のリチウム二次電池。
5. The current collector according to claim 1, wherein the current collector is formed by welding a metal foil as an electrode lead to the positive electrode plate and the negative electrode plate. The lithium secondary battery according to the above.
【請求項6】 当該負極板における一群の集電部及び当
該正極板における一群の集電部が、それぞれ当該内部電
極体の端面において中心角45゜の範囲内に形成されて
いることを特徴とする請求項1〜5のいずれか一項に記
載のリチウム二次電池。
6. A group of current collectors on the negative electrode plate and a group of current collectors on the positive electrode plate are each formed within a range of a central angle of 45 ° on an end face of the internal electrode body. The lithium secondary battery according to claim 1.
【請求項7】 当該一群の集電部が、当該内部電極体の
端面上において、略同一動径上に形成されていることを
特徴とする請求項6記載のリチウム二次電池。
7. The lithium secondary battery according to claim 6, wherein the group of current collectors is formed on the end face of the internal electrode body with substantially the same radius.
【請求項8】 正極集電部間隔及び負極集電部間隔が、
当該内部電極体の外周長さ以下、かつ、当該外周長さの
1/4以上であることを特徴とする請求項6又は7記載
のリチウム二次電池。
8. The distance between the positive electrode current collector and the distance between the negative electrode current collectors is
The lithium secondary battery according to claim 6, wherein the length is equal to or less than the outer peripheral length of the internal electrode body and equal to or more than 4 of the outer peripheral length.
【請求項9】 正極集電部間隔及び負極集電部間隔が、
それぞれ当該正極集電部間隔及び当該負極集電部間隔の
平均値の±20%以内にあることを特徴とする6〜8の
いずれか一項に記載のリチウム二次電池。
9. The interval between the positive electrode current collector and the interval between the negative electrode current collectors is as follows:
The lithium secondary battery according to any one of claims 6 to 8, wherein each of the distances is within ± 20% of an average value of the interval between the positive electrode current collector and the interval between the negative electrode current collectors.
【請求項10】 正極活物質として、マンガン酸リチウ
ムが用いられていることを特徴とする請求項1〜9のい
ずれか一項に記載のリチウム二次電池。
10. The lithium secondary battery according to claim 1, wherein lithium manganate is used as the positive electrode active material.
【請求項11】 当該マンガン酸リチウムにおけるLi
/Mnの比が、0.5より大きいことを特徴とする請求
項10記載のリチウム二次電池。
11. Li in the lithium manganate
The lithium secondary battery according to claim 10, wherein the ratio of / Mn is larger than 0.5.
【請求項12】 当該マンガン酸リチウムが、立方晶ス
ピネル構造を有することを特徴とする請求項10又は1
1記載のリチウム二次電池。
12. The lithium manganate according to claim 10, wherein the lithium manganate has a cubic spinel structure.
2. The lithium secondary battery according to 1.
【請求項13】 電気自動車もしくはハイブリッド電気
自動車のモータ駆動用電源として用いられることを特徴
とする請求項1〜12のいずれか一項に記載のリチウム
二次電池。
13. The lithium secondary battery according to claim 1, which is used as a power supply for driving a motor of an electric vehicle or a hybrid electric vehicle.
【請求項14】 2Ah以上の電池容量を有することを
特徴とする請求項1〜13のいずれか一項に記載のリチ
ウム二次電池。
14. The lithium secondary battery according to claim 1, having a battery capacity of 2 Ah or more.
JP10356552A 1998-12-15 1998-12-15 Lithium secondary battery Withdrawn JP2000182656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10356552A JP2000182656A (en) 1998-12-15 1998-12-15 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10356552A JP2000182656A (en) 1998-12-15 1998-12-15 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2000182656A true JP2000182656A (en) 2000-06-30

Family

ID=18449604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10356552A Withdrawn JP2000182656A (en) 1998-12-15 1998-12-15 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2000182656A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068271A (en) * 2001-06-13 2003-03-07 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacturing method of positive plate used for lithium secondary battery
WO2006061872A1 (en) * 2004-12-06 2006-06-15 Shin-Kobe Electric Machinery Co., Ltd. Tubular lead battery
EP2075862A1 (en) 2007-12-28 2009-07-01 TDK Corporation Electrode for electrochemical device and electrochemical device
CN102237507A (en) * 2010-05-06 2011-11-09 日立车辆能源株式会社 Secondary battery cell and method of manufacturing the same
JP2012513076A (en) * 2008-11-27 2012-06-07 エムプラス コーポレーション Secondary battery manufacturing method and secondary battery
US11393643B2 (en) * 2018-09-28 2022-07-19 Taiyo Yuden Co., Ltd. Electrochemical device and method of producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068271A (en) * 2001-06-13 2003-03-07 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacturing method of positive plate used for lithium secondary battery
WO2006061872A1 (en) * 2004-12-06 2006-06-15 Shin-Kobe Electric Machinery Co., Ltd. Tubular lead battery
EP2075862A1 (en) 2007-12-28 2009-07-01 TDK Corporation Electrode for electrochemical device and electrochemical device
JP2012513076A (en) * 2008-11-27 2012-06-07 エムプラス コーポレーション Secondary battery manufacturing method and secondary battery
CN102237507A (en) * 2010-05-06 2011-11-09 日立车辆能源株式会社 Secondary battery cell and method of manufacturing the same
US11393643B2 (en) * 2018-09-28 2022-07-19 Taiyo Yuden Co., Ltd. Electrochemical device and method of producing the same

Similar Documents

Publication Publication Date Title
KR100973173B1 (en) Assembled battery
US10559843B2 (en) Non-aqueous electrolyte battery, non-aqueous electrolyte battery pack, and vehicle
US8492028B2 (en) Positive electrode material for non-aqueous electrolyte lithium ion battery and battery using the same
US20010031391A1 (en) Non-aqueous electrolytic solution secondary battery
EP2779280B1 (en) Battery
JP2007257862A (en) Electrode for secondary battery, and secondary battery
CN112204791A (en) Battery and battery pack
EP0910131B1 (en) Lithium secondary battery
JP3403678B2 (en) Method for producing lithium secondary battery and wound electrode body
JP3526786B2 (en) Lithium secondary battery
JP5433164B2 (en) Lithium ion secondary battery
JP4770426B2 (en) Winding type power storage device
US6569557B1 (en) Lithium secondary battery
JP2004172038A (en) Lithium secondary battery
JP2000182656A (en) Lithium secondary battery
JP4688527B2 (en) Lithium secondary battery
CN112470323B (en) Lithium secondary battery
JP2005116321A (en) Lithium secondary battery and its low-temperature characteristic evaluation method
JP2007026724A (en) Secondary battery and battery pack, as well as vehicle mounted therewith
JP2004247192A (en) Lithium secondary battery
JP3196223B2 (en) Battery pack
JP2005327516A (en) Charging method of nonaqueous electrolyte secondary battery
US20240072308A1 (en) Secondary battery and battery pack
JP2002231312A (en) Nonaqueous electrolyte secondary battery
JP2004288405A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307