JP2000180092A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2000180092A
JP2000180092A JP10358668A JP35866898A JP2000180092A JP 2000180092 A JP2000180092 A JP 2000180092A JP 10358668 A JP10358668 A JP 10358668A JP 35866898 A JP35866898 A JP 35866898A JP 2000180092 A JP2000180092 A JP 2000180092A
Authority
JP
Japan
Prior art keywords
channel
heat exchanger
fluid
heated
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10358668A
Other languages
Japanese (ja)
Inventor
Hidefumi Araki
秀文 荒木
Koichi Chino
耕一 千野
Mitsugi Nakahara
中原  貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10358668A priority Critical patent/JP2000180092A/en
Publication of JP2000180092A publication Critical patent/JP2000180092A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/108Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/12Safety or protection arrangements; Arrangements for preventing malfunction for preventing overpressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a heat exchanger in which leakage is minimized, if any, heating side fluid is prevented from being mixed with fluid on the side to be heated and detection of leakage is facilitated by providing a buffer channel between a heating side channel and a channel on the side to be heated and providing the buffer channel with a leak detection mechanism. SOLUTION: A buffer channel 23 is provided between the heating side channel 20 and the channel 21 on the side to be heated of a plate fin type heat exchanger. These channels are sectioned by means of a tube plate 25 and a spacer 26 having different shape from channel to channel. A corrugated fin 28 is brazed to the tube plates 25 on the opposite sides in the channel between the tube plates 25. The buffer channel 22 is provided is provided with a pressure gauge which can measure pressure variation on line. According to the structure, leaked fluid, if any, stands in the buffer channel 22 and heating side fluid is prevented from being mixed with fluid on the side to be heated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、可燃性物質や毒物
等、流路から漏えいすることが望ましくない流体を安全
に熱交換させることが可能な熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger capable of safely exchanging heat for a fluid such as a flammable substance or a poison that is not desired to leak from a flow path.

【0002】[0002]

【従来の技術】例えば、特開平10−47080 号公報等に
は、可燃性の液化天然ガス(以下、LNGと称する)と圧
縮空気との熱交換に関する記述があるが、漏えいによる
不測の事象を回避するため、不燃性の中間冷媒を介在さ
せて熱交換させることが提案されている。また、特開平
9−279132 号公報では、LNGと熱交換させるための不
燃性の冷媒についての検討がなされている。
2. Description of the Related Art For example, Japanese Unexamined Patent Publication No. Hei 10-47080 describes a heat exchange between flammable liquefied natural gas (hereinafter, referred to as LNG) and compressed air. In order to avoid this, it has been proposed to perform heat exchange with a nonflammable intermediate refrigerant interposed. In addition,
Japanese Patent Application Laid-Open No. 9-279132 discusses a nonflammable refrigerant for heat exchange with LNG.

【0003】[0003]

【発明が解決しようとする課題】前述の2つの公知例で
は、可燃性のLNGと熱交換させるために不燃性の中間
冷媒を想定しているが、中間冷媒を用いた場合、冷媒を
循環させる機構が必要であるほか、冷媒が液体であるた
めの温度範囲も限定されており、取り扱いが難しいとい
う課題がある。
In the above two known examples, a nonflammable intermediate refrigerant is assumed for heat exchange with combustible LNG. However, when an intermediate refrigerant is used, the refrigerant is circulated. In addition to the need for a mechanism, the temperature range for the refrigerant being a liquid is also limited, and there is a problem that handling is difficult.

【0004】本発明の目的は、例えば可燃性物質や毒物
等、漏えいすることが望ましくない流体を熱交換する熱
交換器において、仮に漏えいがあった場合には漏えい量
を最小限に食い止めることができるに加え、加熱側流体
と被加熱側流体の混合を防ぎ、漏えいの検出が容易に可
能な構造の熱交換器を提供することである。
An object of the present invention is to provide a heat exchanger for exchanging a fluid that is not desirable to leak, such as a flammable substance or a poison, in order to minimize the amount of leak if there is a leak. Another object of the present invention is to provide a heat exchanger having a structure capable of preventing mixing of a heating-side fluid and a heated-side fluid and of easily detecting leakage.

【0005】[0005]

【課題を解決するための手段】熱交換器において、加熱
側流路,被加熱側流路の間に緩衝用流路を設ける。万が
一、加熱側流路または被加熱側流路に漏えいが発生した
場合、漏えいした流体は、隣接する緩衝用流路に排出さ
れ、熱交換する相手側の流体とは混合しない。この緩衝
用流路に漏えい検出機構を備えることにより、漏えい検
出ができる。漏えい検出機構として、例えば、圧力測定
素子あるいは気体成分分析素子を備える。
In the heat exchanger, a buffer passage is provided between the heating-side passage and the heated-side passage. If a leak occurs in the heating-side flow path or the heated-side flow path, the leaked fluid is discharged to the adjacent buffer flow path and does not mix with the fluid of the partner on which heat exchange is performed. By providing a leak detection mechanism in this buffer channel, leak detection can be performed. As the leak detection mechanism, for example, a pressure measuring element or a gas component analyzing element is provided.

【0006】[0006]

【発明の実施の形態】(実施例1)図2に本発明の請求
項1と請求項2に対応する熱交換器を備えた、LNG冷
熱利用型ガスタービン発電システムの一実施例を示す。
本発明の主要な構成要素は、空気を高圧に圧縮する圧縮
機51および52,圧縮された空気とLNG等の燃料を
燃焼させる燃焼器5,高温高圧の燃焼ガスの膨張により
駆動されるガスタービン7,ガスタービン7と同一軸上
に配置される発電機8,ガスタービン7の排気ガスの熱
を回収する再生熱交換器9である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) FIG. 2 shows an embodiment of an LNG cold-heat utilization type gas turbine power generation system equipped with a heat exchanger according to claims 1 and 2 of the present invention.
The main components of the present invention are compressors 51 and 52 for compressing air to high pressure, a combustor for burning compressed air and fuel such as LNG, and a gas turbine driven by expansion of high-temperature and high-pressure combustion gas. 7, a generator 8 disposed on the same axis as the gas turbine 7, and a regenerative heat exchanger 9 for recovering heat of exhaust gas from the gas turbine 7.

【0007】本実施例の特徴となる主要な構成要素は、
LNG貯蔵タンク43から配管40を経由して供給され
るLNGと圧縮空気とを熱交換させる熱交換器60およ
び61である。本実施例では、熱交換器60および61
は、図1に示すようにプレートフィン式を想定してお
り、加熱側流体流路20と被加熱側流体流路21の間に
緩衝用流体流路22が設けてある。
[0007] The main components of the embodiment are as follows.
Heat exchangers 60 and 61 for exchanging heat between the compressed air and LNG supplied from the LNG storage tank 43 via the pipe 40. In this embodiment, the heat exchangers 60 and 61
As shown in FIG. 1, a plate fin type is assumed, and a buffer fluid channel 22 is provided between a heated fluid channel 20 and a heated fluid channel 21.

【0008】図3(A)〜図3(C)に示すように、こ
れらの流路は、チューブプレートと、流路毎に異なる形
状のスペーサ26で区画されている。チューブプレート
に挟まれた流路内には、コルゲートフィン28が両側の
チューブプレートとロウ付けされており、伝熱面積を増
加させ、チューブプレートの剛性を増加させる等の効果
がある。チューブプレート25とスペーサ26は、溶接
により接合され、流路へ連通するヘッダ27の取付位置
も図4に示されるように全て異なる方向に設置してあ
り、流路間の漏えいは基本的に発生しない構造となって
いる。
As shown in FIGS. 3A to 3C, these flow paths are partitioned by a tube plate and a spacer 26 having a different shape for each flow path. Corrugated fins 28 are brazed to the tube plates on both sides in the flow path sandwiched between the tube plates, and have an effect of increasing the heat transfer area and increasing the rigidity of the tube plate. The tube plate 25 and the spacer 26 are joined by welding, and the mounting positions of the header 27 communicating with the flow path are all set in different directions as shown in FIG. 4, so that leakage between the flow paths basically occurs. It does not have a structure.

【0009】加えて、本実施例では、緩衝用流体流路2
2に圧力計30が設置してあり、緩衝用流体流路22の
圧力変化がオンラインで計測可能となっており、万が一
漏えいが発生した場合でも、検出が可能である。また、
万が一漏えいが発生した場合でも、漏えいした流体は、
緩衝用流体流22に滞留し、加熱側流体と被加熱側流体
が混合する可能性は無い。
In addition, in the present embodiment, the buffer fluid passage 2
2, a pressure gauge 30 is installed so that a pressure change in the buffer fluid flow path 22 can be measured online, and even if a leak occurs, it can be detected. Also,
Even if a leak occurs, the leaked fluid will
There is no possibility that the fluid on the heating side and the fluid on the heated side stay in the buffer fluid stream 22 and mix.

【0010】図を用いて本実施例の通常の動作を説明す
る。空気ブロア80により熱交換器60に供給された常
温の空気は、熱交換器60の加熱側流体流路20を通過
する。同時に、ポンプ41で加圧された、温度約−16
2℃のLNGは、熱交換器60の被加熱側流体流路21
を通過する。この時、空気〜加熱側流体流路20のコル
ゲートフィン28〜チューブプレート25〜緩衝用流体
流路22のコルゲートフィン28〜チューブプレート2
5〜被加熱側流体流路21のコルゲートフィン28〜天
然ガスという径路で熱伝達が発生し、熱交換がなされ
る。
The normal operation of this embodiment will be described with reference to the drawings. The normal-temperature air supplied to the heat exchanger 60 by the air blower 80 passes through the heating-side fluid flow path 20 of the heat exchanger 60. At the same time, the temperature of about -16
The 2 ° C. LNG is supplied to the heated fluid passage 21 of the heat exchanger 60.
Pass through. At this time, the corrugated fin 28 of the air-heating-side fluid flow path 20 to the tube plate 25 to the corrugated fin 28 of the buffer fluid flow path 22 to the tube plate 2
Heat is generated and heat is exchanged in a path from the corrugated fin 28 to the natural gas of the fluid channel 21 to be heated 21.

【0011】本実施例では、コルゲートフィン28は全
て熱伝導の良いアルミニウムを使用しているに加え、単
位容積あたりの表面積も非常に大きく、また緩衝用流体
流路22のコルゲートフィン28は特に板厚が厚いもの
を使用しているため、総括熱抵抗は小さい。空気は、−
135℃程度まで冷却され、圧縮機51の作用により7
気圧程度まで圧縮される。この時、冷却されて密度が大
きな空気を圧縮するため、常温の空気を7気圧程度まで
圧縮するのと比較して、非常に少ない動力で圧縮可能で
ある。圧縮された空気は、温度が10℃程度まで上昇す
る。その空気を熱交換器61の加熱側流体流路20に流
入させ、熱交換器60と同様の作用により、再び−13
0℃程度まで冷却する。
In this embodiment, the corrugated fins 28 are all made of aluminum having good heat conductivity, and have a very large surface area per unit volume. The overall thermal resistance is small due to the use of thick ones. The air is-
It is cooled down to about 135 ° C.
Compressed to about atmospheric pressure. At this time, since the air that has been cooled and has a high density is compressed, the air can be compressed with very little power as compared with compressing air at room temperature to about 7 atm. The temperature of the compressed air rises to about 10 ° C. The air is caused to flow into the heating-side fluid flow path 20 of the heat exchanger 61, and by the same operation as the heat exchanger 60, the air flow becomes −13 again.
Cool to about 0 ° C.

【0012】これら熱交換器60および61で加熱され
た天然ガスは、本システムの出口では0℃前後となる
が、配管42経由で別のシステムに供給され、必要な温
度に調整して利用される。熱交換器61を経た7気圧程
度の低温空気を、圧縮機52により46気圧程度までさ
らに圧縮する。この時も、常温の空気を圧縮するのと比
較して、非常に少ない動力で圧縮可能である。圧縮され
た温度0℃程度の高圧空気は、再生熱交換器9により、
280℃程度まで加熱され、燃焼器5でLNG等の燃料
50とともに燃焼させる。
The natural gas heated by the heat exchangers 60 and 61 has a temperature of about 0 ° C. at the outlet of the present system, but is supplied to another system via a pipe 42 and adjusted to a required temperature for use. You. The low-temperature air of about 7 atm passed through the heat exchanger 61 is further compressed by the compressor 52 to about 46 atm. Also at this time, it is possible to compress with very little power as compared with compressing air at room temperature. The compressed high-pressure air at a temperature of about 0 ° C. is regenerated by the regenerative heat exchanger 9.
The fuel is heated to about 280 ° C. and burned in the combustor 5 together with the fuel 50 such as LNG.

【0013】ガスタービン7では、この高温高圧の燃焼
ガスの膨張力により、発電機8が駆動され、電力を発生
する。ガスタービン7の排気ガスは、再生熱交換器9に
より熱回収され、スタック55から大気に排出される。
このシステムの特徴は、LNGが保有する冷熱を利用する
ことにより、通常はガスタービン出力の50〜60%を
消費する空気圧縮機の動力を大幅に削減出来ることであ
り、結果として発電出力が大幅に増加できる。
In the gas turbine 7, the generator 8 is driven by the expansion force of the high-temperature and high-pressure combustion gas to generate electric power. The exhaust gas of the gas turbine 7 is recovered by the regenerative heat exchanger 9 and discharged from the stack 55 to the atmosphere.
The feature of this system is that by using the cold energy possessed by LNG, the power of the air compressor, which normally consumes 50 to 60% of the gas turbine output, can be greatly reduced, resulting in a large power generation output. Can be increased.

【0014】次に、本実施例において、万が一、熱交換
器60または61において漏えいが発生した場合の動作
を説明する。本実施例では、緩衝用流体流路22には、
不燃性の窒素を充填しておく。充填圧力は、最低使用温
度および最高使用温度での圧力を考慮し決定するが、低
温で収縮しても負圧にならない程度が望ましく、例えば
常温で5気圧程度に設定する。万が一、チューブプレー
トのどれかが損傷した場合を想定する。もしも緩衝用流
体流路22の圧力が損傷した流路の間の圧力より高い場
合、緩衝用流体流路から窒素ガスが、圧縮空気または天
然ガスの流路に向け流出する。一方、緩衝用流体流路2
2の圧力が損傷した流路の間の圧力より低い場合、圧縮
空気または天然ガスが、窒素が充填された緩衝用流体流
路へ向け流入する。
Next, the operation of this embodiment in the event that a leak occurs in the heat exchanger 60 or 61 will be described. In the present embodiment, the buffer fluid flow path 22 includes:
Fill with noncombustible nitrogen. The filling pressure is determined in consideration of the pressures at the minimum use temperature and the maximum use temperature. However, it is desirable that the pressure does not become negative even if contracted at a low temperature. For example, it is set to about 5 atm at normal temperature. Assume that one of the tube plates is damaged. If the pressure in the buffer fluid channel 22 is higher than the pressure between the damaged channels, nitrogen gas flows out of the buffer fluid channel into the compressed air or natural gas channel. On the other hand, the buffer fluid passage 2
If the pressure of the second is lower than the pressure between the damaged channels, compressed air or natural gas flows into the nitrogen-filled buffer fluid channel.

【0015】これらの流動現象は、緩衝用流体流路22
の圧力と、損傷した流路の圧力が釣り合い次第終了し、
圧縮空気と天然ガスが混合することは無い。また、これ
ら緩衝用流体の流動が起こると、緩衝用流体流路22の
圧力は、圧縮空気の圧力または天然ガスの圧力と等しい
値に漸近することから、プラントの運転中に圧力計を監
視していれば、速やかに漏えいを検知可能である。ま
た、プラント停止後も、緩衝用流体流路22の圧力は、
初期の窒素の充填圧力と異なる値となり、確実に漏えい
を検知できる。
These flow phenomena are caused by the buffer fluid passage 22
Ends as soon as the pressure of
Compressed air and natural gas do not mix. When the flow of the buffering fluid occurs, the pressure in the buffering fluid passage 22 asymptotically approaches a value equal to the pressure of the compressed air or the pressure of the natural gas. Therefore, the pressure gauge is monitored during the operation of the plant. If it is, the leak can be detected quickly. Further, even after the plant is stopped, the pressure of the buffer fluid passage 22 is
The value becomes different from the initial nitrogen filling pressure, and the leak can be reliably detected.

【0016】(実施例2)図5に本発明の請求項1と請
求項2に対応する熱交換器を備えた、LNG冷熱利用型
ガスタービン発電システムの一実施例を示す。本実施例
では、図6に示すように、熱交換器60および61とし
て、円筒三重管式を想定した。LNGが流れる被加熱側
流体流路21が最も内側の流路であり、圧縮空気が流れ
る加熱側流体流路20は最外周に配置され、緩衝用流体
流路22がこれらの中間に位置する。熱伝達の促進のた
め、加熱側流体流路20および被加熱側流体流路21に
は、フィン29が設置されている。緩衝用流体流路22
には、熱伝導が良い金属製のスペーサ26が備えられて
おり、圧縮空気とLNGの伝熱を促進する。
(Embodiment 2) FIG. 5 shows an embodiment of an LNG cold-heat utilization type gas turbine power generation system provided with a heat exchanger according to claims 1 and 2 of the present invention. In the present embodiment, as shown in FIG. 6, cylindrical heat exchangers 60 and 61 are assumed to be of a cylindrical triple tube type. The heated-side fluid flow path 21 through which LNG flows is the innermost flow path, the heated-side fluid flow path 20 through which compressed air flows is disposed at the outermost periphery, and the buffering fluid flow path 22 is located in the middle of these. Fins 29 are provided in the heating-side fluid flow path 20 and the heated-side fluid flow path 21 to promote heat transfer. Buffer fluid channel 22
Is provided with a spacer 26 made of a metal having good heat conductivity to promote heat transfer between the compressed air and LNG.

【0017】本実施例と、前記図2を用いて説明した実
施例の違いは、緩衝用流体流路22に圧力計30を設置
する代わりに、気体成分分析器31を設置した点であ
る。また、本実施例では、緩衝用流体流路22へ充填す
る窒素ガスの圧力は低めとし、万が一、熱交換器60ま
たは61において漏えいが発生した場合、圧縮空気また
は天然ガスが、緩衝用流体流路へ向け流入するように設
計する。漏えいが発生した場合には、緩衝用流体流路内
へ空気成分や天然ガス成分が混入することにより、気体
成分分析器31の示す気体成分割合が変化し、速やかに
漏えいを検知可能である。
The difference between this embodiment and the embodiment described with reference to FIG. 2 is that a gas component analyzer 31 is provided in place of the pressure gauge 30 in the buffer fluid flow path 22. Further, in this embodiment, the pressure of the nitrogen gas to be charged into the buffer fluid flow path 22 is set to be low, and in the event that a leak occurs in the heat exchanger 60 or 61, the compressed air or natural gas is supplied to the buffer fluid flow path. Designed to flow into the road. When a leak occurs, the air component or the natural gas component is mixed into the buffer fluid flow path, so that the gas component ratio indicated by the gas component analyzer 31 changes, and the leak can be detected quickly.

【0018】本実施例では、緩衝用流体流路22に気体
を充填したが、焼結金属などの多孔質固体を充填しても
よい。その場合は、多孔質内の熱伝導が伝熱を促進す
る。多孔質の間隙に存在する気体が、漏えいの検出に作
用する動作は、前記実施例と同様である。
In this embodiment, the buffer fluid passage 22 is filled with a gas, but it may be filled with a porous solid such as a sintered metal. In that case, heat conduction in the porous material promotes heat transfer. The operation in which the gas existing in the porous gap acts on the detection of leakage is the same as in the above-described embodiment.

【0019】本実施例の別の形態として、熱交換器60
および61に、図7に示すようなプレートフィン・アン
ド・チューブ式を応用することが出来る。通常のプレー
トフィン・アンド・チューブ式熱交換器では、熱交換す
る流体は、シェル側とチューブ側をそれぞれ流れるが、
本発明では、図7に示すように、チューブの一部を加熱
側流体流路20とし、残りのチューブを被加熱側流体流
路21とし、シェル側には緩衝用流体流路22を設け
る。加熱側流体流路20と被加熱側流体流路21のチュ
ーブは、交互に配置されており、多数のフィン29によ
って連結されているため、各流体間の良好な熱伝達性能
を得る事が出来る。万が一、どちらかのチューブに漏え
いが発生した場合、シェル側の緩衝用流体流路22に流
出し、前記実施例と同様の作用により、加熱側流体と被
加熱側流体の混合を防ぎ、漏えいを検出する事が出来
る。
As another form of this embodiment, a heat exchanger 60
And 61, a plate fin and tube type as shown in FIG. 7 can be applied. In a normal plate-fin-and-tube heat exchanger, the fluid to be heat-exchanged flows through the shell side and the tube side, respectively.
In the present invention, as shown in FIG. 7, a part of the tube is used as the heating-side fluid flow path 20, the remaining tube is used as the heated-side fluid flow path 21, and a buffering fluid flow path 22 is provided on the shell side. The tubes of the heating-side fluid flow path 20 and the heated-side fluid flow path 21 are alternately arranged and connected by a large number of fins 29, so that good heat transfer performance between the fluids can be obtained. . In the event that leakage occurs in either of the tubes, it flows out into the buffer side fluid flow path 22 on the shell side, and by the same operation as in the above embodiment, mixing of the heating side fluid and the heated side fluid is prevented, thereby preventing leakage. Can be detected.

【0020】また、図示はしないが、本発明は例えばプ
レート型熱交換器等、他の形式の熱交換器についても全
く同様に適用する事が出来る。
Although not shown, the present invention can be applied to other types of heat exchangers, such as a plate type heat exchanger.

【0021】以上、2つの実施例により、本発明による
熱交換器を備えたLNG冷熱利用発電システムの実施形
態について例示したが、本発明は、これらの他にも、例
えば、液体空気を利用したエネルギー貯蔵発電システム
等、LNGと空気を熱交換させるシステムの全てに適用
可能である。
As described above, the embodiments of the LNG cold heat power generation system equipped with the heat exchanger according to the present invention have been described in the two embodiments. However, the present invention uses liquid air, for example, in addition to these. The present invention is applicable to all systems that exchange heat between LNG and air, such as an energy storage and power generation system.

【0022】[0022]

【発明の効果】本発明によれば、熱交換器に、加熱側流
体流路と被加熱側流体流路に加えさらに緩衝用流路を備
えたことにより、可燃性物質や毒物等、漏えいすること
が望ましくない流体を熱交換する場合に、漏えい量を最
小限に食い止めることができ、加熱側流体と被加熱側流
体の混合を防ぐ。また、緩衝用流路に圧力計や気体成分
分析器を設置することにより、漏えいの検出が容易に可
能となる。本発明をLNG冷熱利用システムの熱交換器に
適用することにより、安全なLNG冷熱利用システムを
提供することができる。
According to the present invention, since the heat exchanger is provided with a buffering flow path in addition to the heating-side fluid flow path and the heated-side fluid flow path, flammable substances and poisons leak. In the case of exchanging heat with a fluid that is not desirable, the amount of leakage can be minimized, and mixing of the heated fluid and the heated fluid is prevented. In addition, by installing a pressure gauge or a gas component analyzer in the buffer channel, it is possible to easily detect leakage. By applying the present invention to the heat exchanger of the LNG cold energy utilization system, a safe LNG cold energy utilization system can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるプレートフィン式熱交換器の斜視
図。
FIG. 1 is a perspective view of a plate-fin heat exchanger according to the present invention.

【図2】本発明の一実施例によるシステム概要図。FIG. 2 is a schematic diagram of a system according to an embodiment of the present invention.

【図3】(A)ないし(C)は本発明による熱交換器の
チューブプレートの構成例を示す断面図。
FIGS. 3A to 3C are cross-sectional views showing a configuration example of a tube plate of a heat exchanger according to the present invention.

【図4】本発明によるプレートフィン式熱交換器の外観
図。
FIG. 4 is an external view of a plate-fin heat exchanger according to the present invention.

【図5】本発明の一実施例によるシステム概要図。FIG. 5 is a schematic diagram of a system according to an embodiment of the present invention.

【図6】本発明による円筒三重管式熱交換器の流路断面
図。
FIG. 6 is a sectional view of a flow channel of the cylindrical triple tube heat exchanger according to the present invention.

【図7】本発明によるプレートフィン・アンド・チュー
ブ式熱交換器の斜視図。
FIG. 7 is a perspective view of a plate fin-and-tube heat exchanger according to the present invention.

【符号の説明】[Explanation of symbols]

5…燃焼器、7…ガスタービン、8…発電機、9…再生
熱交換器、20…加熱側流体流路、21…被加熱側流体
流路、22…緩衝用流体流路、25…チューブプレー
ト、26…スペーサ、27…ヘッダ、28…コルゲート
フィン、29…フィン、30…圧力計、31…気体成分
分析器、41…ポンプ、42…配管、43…LNG貯蔵
タンク、51,52…圧縮機、55…スタック、60,
61…熱交換器、80…空気ブロア。
Reference numeral 5: combustor, 7: gas turbine, 8: generator, 9: regenerative heat exchanger, 20: heating-side fluid channel, 21: heated-side fluid channel, 22: buffering fluid channel, 25: tube Plate, 26 spacer, 27 header, 28 corrugated fin, 29 fin, 30 pressure gauge, 31 gas component analyzer, 41 pump, 42 pipe, 43 LNG storage tank, 51, 52 compression Machine, 55 ... stack, 60,
61: heat exchanger, 80: air blower.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中原 貢 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 Fターム(参考) 2F030 CB02 CC11 CF20 2G067 AA12 AA34 BB11 DD02  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Mitsugu Nakahara 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in the Electric Power & Electronics Development Division, Hitachi, Ltd. 2F030 CB02 CC11 CF20 2G067 AA12 AA34 BB11 DD02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】熱交換器であって、加熱側流体流路と被加
熱側流体流路に加えさらに緩衝用流路を備えたことを特
徴とする熱交換器。
1. A heat exchanger, further comprising a buffering flow path in addition to a heating-side fluid flow path and a heated-side fluid flow path.
【請求項2】請求項1で記述した熱交換器において、緩
衝用流路に漏えい検出機構を備えたことを特徴とする熱
交換器。
2. The heat exchanger according to claim 1, further comprising a leak detecting mechanism in the buffer passage.
JP10358668A 1998-12-17 1998-12-17 Heat exchanger Pending JP2000180092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10358668A JP2000180092A (en) 1998-12-17 1998-12-17 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10358668A JP2000180092A (en) 1998-12-17 1998-12-17 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2000180092A true JP2000180092A (en) 2000-06-30

Family

ID=18460509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10358668A Pending JP2000180092A (en) 1998-12-17 1998-12-17 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2000180092A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100676258B1 (en) * 2005-09-05 2007-02-01 삼성전자주식회사 Heat exchanger
EP1955762A1 (en) 2007-01-16 2008-08-13 Hitachi Plant Technologies, Ltd. Substance manufacturing apparatus and chemical reactors with the apparatus
ITTO20110565A1 (en) * 2011-06-28 2012-12-29 St Microelectronics Srl MULTILAYER STRUCTURE HAVING A MICROFLUID CHANNEL AND A SYSTEM FOR DETECTING LEAKS FROM THE MICROFLUID CHANNEL AND METHOD TO DETECT LOSSES IN A MICROFLUIDIC DEVICE
JP2020012490A (en) * 2018-07-13 2020-01-23 株式会社三井E&Sマシナリー Vaporizer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100676258B1 (en) * 2005-09-05 2007-02-01 삼성전자주식회사 Heat exchanger
EP1955762A1 (en) 2007-01-16 2008-08-13 Hitachi Plant Technologies, Ltd. Substance manufacturing apparatus and chemical reactors with the apparatus
ITTO20110565A1 (en) * 2011-06-28 2012-12-29 St Microelectronics Srl MULTILAYER STRUCTURE HAVING A MICROFLUID CHANNEL AND A SYSTEM FOR DETECTING LEAKS FROM THE MICROFLUID CHANNEL AND METHOD TO DETECT LOSSES IN A MICROFLUIDIC DEVICE
US8931328B2 (en) 2011-06-28 2015-01-13 Stmicroelectronics S.R.L. Multilayer structure having a microfluidic channel and a system for detecting leakage from the microfluidic channel, and method of detecting leakage in a microfluidic device
JP2020012490A (en) * 2018-07-13 2020-01-23 株式会社三井E&Sマシナリー Vaporizer

Similar Documents

Publication Publication Date Title
JP2001280864A (en) Heat exchanger and manufacturing method therefor
CN110044647A (en) A kind of supercritical carbon dioxide printed circuit board performance testing device of heat exchanger
JP2007333353A (en) Micro-channel integrated type laminated structure heat exchanger for super critical refrigerant
US20130219880A1 (en) Heat exchanger
US20160153317A1 (en) System for using the waste heat of an internal combustion engine
JP3150567B2 (en) Gas turbine fuel heating device
GB9929062D0 (en) Heat exchangers
Kim et al. Performance evaluation of a stack cooling system using CO2 air conditioner in fuel cell vehicles
JP2000180092A (en) Heat exchanger
Deserranno et al. Performance testing of a high effectiveness recuperator for high capacity turbo-brayton cryocoolers
Vonk A new type of compact heat exchanger with a high thermal efficiency
Wang et al. Experimental investigation on heat transfer and pressure drop in a microtubine recuperator with cross-wavy primary surface channels
Foerster et al. Compact metallic and ceramic recuperators for gas turbines
Niblick et al. A Lightweight, High-Effectiveness Recuperator for Next-Generation Airborne Cryocoolers
Youchison et al. Thermal performance and flow instabilities in a multi-channel, helium-cooled, porous metal divertor module
CN210004841U (en) system using energy storage type heat exchanger
CN210090650U (en) A test machine for testing battery package
JP3784616B2 (en) Thermoelectric ratio control method for small capacity gas turbine cogeneration system
Bontemps et al. Development of a compact heat exchanger for gas turbine heat recovery
CN219642946U (en) Heat exchange structure of battery
CN113161644B (en) Battery and battery multi-runner plate type phase change heat management system and method
CN112628991B (en) Wind-heat recoverer
CN217876218U (en) Air conditioner compressor protection device
CN217116751U (en) Flat heat pipe and cabinet cooling and debugging system based on heat pipe heat dissipation
CN216342478U (en) Opposed free piston stirling heat engine