JP2000178369A - Surface modification method for molded fluororesin item - Google Patents

Surface modification method for molded fluororesin item

Info

Publication number
JP2000178369A
JP2000178369A JP35451198A JP35451198A JP2000178369A JP 2000178369 A JP2000178369 A JP 2000178369A JP 35451198 A JP35451198 A JP 35451198A JP 35451198 A JP35451198 A JP 35451198A JP 2000178369 A JP2000178369 A JP 2000178369A
Authority
JP
Japan
Prior art keywords
fluororesin
treatment
discharge treatment
discharge
item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35451198A
Other languages
Japanese (ja)
Inventor
Yoshinari Takayama
嘉也 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP35451198A priority Critical patent/JP2000178369A/en
Publication of JP2000178369A publication Critical patent/JP2000178369A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface modification method by which the surface of a molded fluororesin item can be modified so that the surface after the modification exhibits an excellent abrasion resistance and a stable strong adhesion to various adhesives and rubbers and which is advantageous in terms of cost by heating the item to its m.p. or higher before or after subjecting the item to an electrical discharge treatment in an atmosphere containing an unsaturated hydrocabon. SOLUTION: In a surface modification method of a molded fluororesin item by subjecting it to an electrical discharge treatment in an atmosphere containing an unsaturated hydrocarbon, the item is heated to the m.p. or higher, preferably to a temperature between about the m.p. +15 deg.C and about the m.p. +100 deg.C for 5 sec to 1 hr at least before or after the discharge treatment. This method can impart a sufficient adhesiveness even to polytetrafluoroethylene, i.e., a fluororesin which can not be given a sufficient adhesiveness by an electrical discharge treatment alone. The heating temperature is preferably 342-427 deg.C in the case of polytetrafluoroethylene.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加熱処理と放電処
理とにより、フッ素樹脂フィルム等のフッ素樹脂成形物
の表面を改質するための表面改質方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface modification method for modifying the surface of a fluororesin molding such as a fluororesin film by heat treatment and discharge treatment.

【0002】[0002]

【従来の技術】フッ素樹脂は防汚性、耐熱性、耐薬品
性、透明性、耐紫外線劣化性、耐候性、撥水撥油性など
他の樹脂に見られない優れた特性を有している。その反
面、フッ素樹脂はその特徴である難接着性のため、他の
材料との複合化が困難である。また、フッ素樹脂に他の
材料を被着させるには、接着剤を介して行なう必要が有
るが、この接着剤との密着性も悪く、そのためフッ素樹
脂側の接着表面を改質し、接着剤の密着性を高める試み
がなされている。
2. Description of the Related Art Fluororesins have excellent properties that are not found in other resins, such as antifouling properties, heat resistance, chemical resistance, transparency, ultraviolet light degradation resistance, weather resistance, and water and oil repellency. . On the other hand, fluororesins are difficult to combine with other materials due to their characteristic poor adhesion. In addition, in order to apply another material to the fluororesin, it is necessary to carry out through an adhesive, but the adhesion with the adhesive is poor, and therefore, the adhesive surface on the fluororesin side is modified, and Attempts have been made to increase the adhesiveness of the material.

【0003】フッ素樹脂成形物の表面改質方法として
は、特公昭63−10176号公報に記載の火炎処理、
金属ナトリウム処理に代表される化学処理や、エキシマ
レーザー、プラズマ等による放電処理が知られている。
しかしながら金属ナトリウム処理では引火の危険性や溶
剤の多量使用による環境への問題や、改質された部分が
紫外線や熱に弱いという特性上の問題があった。また、
エキシマレーザーを用いる方法では、処理面積が小さく
ランニングコストが高いという欠点が有る。
[0003] As a method for modifying the surface of a fluororesin molding, a flame treatment described in JP-B-63-10176 can be used.
2. Description of the Related Art Chemical treatment typified by metal sodium treatment and discharge treatment by excimer laser, plasma, or the like are known.
However, the treatment with metallic sodium has a danger of ignition, a problem with the environment due to the use of a large amount of solvent, and a problem with characteristics that the modified portion is vulnerable to ultraviolet rays and heat. Also,
The method using the excimer laser has a disadvantage that the processing area is small and the running cost is high.

【0004】大気圧プラズマ処理については、例えば、
特開平5−92530号公報には、相手材である接着剤
の官能基と同じか親和性がある官能基を有する有機化合
物を含む不活性ガス雰囲気中で、フッ素フィルムを放電
処理する方法が開示されている。しかし、この方法によ
ると常温常圧で液状の有機化合物を放電空間にガス状及
び微粒子状にして供給する際に分散性が悪く、また当該
有機化合物は放電空間でフラグメンテーションされ出発
物質の状態を維持するのが難しく、そのため所望の官能
基をフッ素フィルム表面に形成しにくいと言う問題があ
る。
[0004] Regarding the atmospheric pressure plasma processing, for example,
JP-A-5-92530 discloses a method for discharging a fluorine film in an inert gas atmosphere containing an organic compound having a functional group having the same or an affinity as the functional group of an adhesive as a mating material. Have been. However, according to this method, the dispersibility is poor when the liquid organic compound is supplied to the discharge space in the form of gas and fine particles at normal temperature and normal pressure, and the organic compound is fragmented in the discharge space and maintains the state of the starting material. Therefore, there is a problem that it is difficult to form a desired functional group on the surface of the fluorine film.

【0005】また、特開平6−107828号公報に
は、大気圧プラズマによる表面改質方法として、希ガス
70モル%以上とCO2 とCn2n+2(n=1〜4)で
示される炭化水素とを用いる方法が開示されているが、
ガス系が複雑で制御が難しく、また添加ガスとしての炭
化水素は反応性に乏しい飽和炭化水素のため、良好な接
着力を維持するにはあまり処理速度が上げられないと言
う問題がある。
Japanese Patent Application Laid-Open No. Hei 6-107828 discloses a method of modifying a surface by atmospheric pressure plasma in which noble gas is used in an amount of 70 mol% or more, CO 2 and C n H 2n + 2 (n = 1 to 4). A method using a hydrocarbon is disclosed,
The gas system is complicated and difficult to control, and the hydrocarbon as an additive gas is a saturated hydrocarbon having low reactivity, so that there is a problem that the processing speed cannot be increased so much to maintain good adhesive strength.

【0006】[0006]

【発明が解決しようとする課題】更に、特開平1−30
6569号公報や特開平2−15171号公報では、大
気圧中でグロー放電を行い、これを使って色々なポリマ
ーの表面改質を試みているが、単独の表面処理で充分な
特性が得られるとは言い難いものであった。
SUMMARY OF THE INVENTION Further, Japanese Patent Laid-Open No.
In JP-A-6569 and JP-A-2-15171, glow discharge is carried out at atmospheric pressure, and surface modification of various polymers is attempted using the glow discharge, but sufficient properties can be obtained by a single surface treatment. It was hard to say.

【0007】一方、表面処理の組み合わせも試みられて
おり、例えば、特開平6−220228号公報には、フ
ッ素樹脂表面を低温プラズマ処理した後、エキシマレー
ザーを照射する方法が開示されている。しかし、これに
ついてもコストが高いという問題がある。
On the other hand, combinations of surface treatments have been attempted. For example, Japanese Patent Application Laid-Open No. 6-220228 discloses a method in which a fluororesin surface is subjected to low-temperature plasma treatment and then irradiated with an excimer laser. However, this also has a problem that the cost is high.

【0008】本発明は、かかる従来技術の諸問題点に鑑
みなされたものであり、その目的は、各種接着剤やゴム
等に対して安定的に高い接着性が得られ、また耐摩耗性
に優れており、しかもコスト的にも有利な表面改質法を
提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to stably obtain high adhesiveness to various adhesives and rubbers and to improve abrasion resistance. An object of the present invention is to provide a surface modification method which is excellent and is advantageous in cost.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく、放電処理と併用する処理について鋭意研
究したところ、不飽和炭化水素を含有する雰囲気下で放
電処理を行う前又は後に、フッ素樹脂を融点以上に加熱
する処理を行うことにより、耐摩耗性に優れ、各種接着
剤やゴム等に対して安定的に高い接着性が得られること
を見出し、本発明を完成するに至った。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies on the treatment used in combination with the discharge treatment. Later, by performing the treatment of heating the fluororesin above the melting point, it is excellent in abrasion resistance, found that high adhesiveness can be obtained stably to various adhesives and rubber, etc., to complete the present invention Reached.

【0010】即ち、本発明の表面改質方法は、フッ素樹
脂成形物に対し不飽和炭化水素を含有する雰囲気下で放
電処理を行う表面改質方法において、その放電処理の少
なくとも前か後に、フッ素樹脂成形物の融点以上での加
熱処理を行う工程を含むことを特徴とする。ここで、
「放電処理の少なくとも前か後に加熱処理を行う」と
は、放電処理の前後の両方に加熱処理を行う場合をも包
含する概念であり、更に放電処理の前に加熱処理を行う
場合には、フッ素樹脂成形物の製造時に加熱処理を行っ
たものが包含される。
That is, the surface modification method of the present invention is a surface modification method in which a discharge treatment is performed on a fluororesin molded article in an atmosphere containing an unsaturated hydrocarbon. The method includes a step of performing a heat treatment at a temperature equal to or higher than the melting point of the resin molded product. here,
`` Perform the heat treatment at least before or after the discharge treatment '' is a concept that includes the case where the heat treatment is performed both before and after the discharge treatment.If the heat treatment is further performed before the discharge treatment, Those that have been subjected to a heat treatment during the production of the fluororesin molded article are included.

【0011】前記フッ素樹脂成形物の材質や形状等とし
ては、後述のように種々のものが挙げられるが、前記フ
ッ素樹脂成形物が、ポリテトラフルオロエチレン(PT
FE)のフィルム又はシート状物であることが好まし
い。
As the material and the shape of the fluororesin molding, various ones can be mentioned as described later, and the fluororesin molding is made of polytetrafluoroethylene (PT).
It is preferably a film or sheet of FE).

【0012】その際、前記加熱処理は342〜427℃
の範囲内の温度で行われるものであることが好ましい。
At this time, the heat treatment is performed at 342 to 427 ° C.
The temperature is preferably in the range of

【0013】〔作用効果〕そして、本発明の表面改質方
法によると、後述の実施例の結果が示すように、耐摩耗
性に優れ、各種接着剤、ゴム等に対し高い接着性を得る
ことが出来る。その理由は詳細は明らかでないが次のよ
うに考える。つまり、融点以上に加熱処理を行う事で、
フッ素樹脂の表面に発生した微小な突起により、その後
の放電処理における官能基の結合がより密になり、しか
も強固になったこと、これに加えフッ素樹脂そのものの
弾性率、引張強度が向上したことから、加熱処理基材の
放電処理面を接着剤等と貼り合わせ、剥離する際の強度
が向上したと考えられる。その際、放電処理によって表
面にカルボキシル基等酸素を含んだ親水性の官能基が厚
く形成されるため、各種接着剤と安定的に接着性が得ら
れ、耐摩耗性に優れると考えられる。
According to the surface modification method of the present invention, as shown in the results of the examples described below, excellent wear resistance and high adhesion to various adhesives, rubbers, etc. can be obtained. Can be done. The reason is not clear, but is considered as follows. In other words, by performing the heat treatment above the melting point,
The small protrusions generated on the surface of the fluororesin made the bonding of functional groups more dense and stronger in the subsequent discharge treatment, and in addition, the elastic modulus and tensile strength of the fluororesin itself improved. From this, it is considered that the strength at the time of bonding and peeling the discharge treatment surface of the heat treatment base material with an adhesive or the like was improved. At that time, since the surface of the hydrophilic functional group containing oxygen, such as a carboxyl group, is formed thick by the discharge treatment, it is considered that the adhesiveness is stably obtained with various adhesives and the abrasion resistance is excellent.

【0014】また、前記フッ素樹脂成形物が、ポリテト
ラフルオロエチレン(PTFE)のフィルム又はシート
状物である場合、他のフッ素樹脂と比較して、加熱処理
と放電処理との併用の効果が顕著になり、特に本発明が
有効なものになる。即ち、他のフッ素樹脂では、放電処
理のみでも、ある程度の接着性の改善効果が期待できる
のに対し、ポリテトラフルオロエチレン(PTFE)で
は、比較例に示すように放電処理のみでは十分な接着性
が得られないところ、本発明の如き併用処理を行うこと
により、十分な接着性を実現することができる。また、
フッ素樹脂成形物がフィルム又はシート状物であるた
め、加熱処理を短時間に連続的に行うことができる。
When the fluororesin molding is a polytetrafluoroethylene (PTFE) film or sheet, the effect of the combined use of heat treatment and discharge treatment is remarkable as compared with other fluororesins. And the present invention is particularly effective. In other words, in the case of other fluororesins, an effect of improving the adhesiveness to some extent can be expected only by the discharge treatment, whereas in the case of polytetrafluoroethylene (PTFE), as shown in the comparative example, only the discharge treatment has a sufficient adhesiveness. However, by performing the combined treatment as in the present invention, sufficient adhesiveness can be realized. Also,
Since the fluororesin molding is a film or sheet, the heat treatment can be performed continuously in a short time.

【0015】その際、前記加熱処理が342〜427℃
の範囲内の温度で行われる場合、後述の実施例の結果が
示すように、342℃の温度を境に接着力が臨界的に上
昇し、接着力の改善効果が特に顕著になる。また、42
7℃を越えると、接着特性に差が見られないにもかかわ
らず、成形時の引張強度の低下による基材の破れや、成
形後の顕著な寸法変化、シワと外観的な問題を引き起こ
し易くなる傾向が生じる。
At this time, the heat treatment is performed at 342 to 427 ° C.
When performed at a temperature within the range described above, as shown in the results of Examples described later, the adhesive force increases critically at a temperature of 342 ° C., and the effect of improving the adhesive force is particularly remarkable. Also, 42
When the temperature exceeds 7 ° C., although there is no difference in the adhesive properties, the substrate tends to be broken due to a decrease in tensile strength at the time of molding, a remarkable dimensional change after molding, and wrinkles and appearance problems are likely to occur. Tend to occur.

【0016】また、前記加熱処理に先立って、不活性ガ
ス雰囲気下で電子線照射処理を行うことが好ましく、そ
の場合、後述の実施例の結果が示すように、更に接着力
の向上がみられる。なお、不活性ガス雰囲気下とするこ
とにより、フッ素樹脂の分解劣化を抑制することができ
る。
Further, prior to the heat treatment, it is preferable to carry out an electron beam irradiation treatment in an inert gas atmosphere. In this case, as shown in the results of Examples described later, the adhesion is further improved. . Note that by setting the inert gas atmosphere, the decomposition and degradation of the fluororesin can be suppressed.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て、フッ素樹脂成形物、加熱処理、放電処理の順で説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in the order of a fluororesin molded article, heat treatment, and discharge treatment.

【0018】(フッ素樹脂成形物)処理されるフッ素樹
脂成形物の形態としては、フィルム状、シート状、板
状、チューブ状、バルク状など種々の形態が挙げられる
が、前述の理由、及び放電電極間へ配置して効率良く処
理が行えることから、フィルム又はシート状物が好まし
い。また、フィルム又はシート状物は多孔質体でもよ
く、また積層体でもよい。
(Fluororesin Molded Article) The form of the fluororesin molded article to be treated includes various forms such as a film, a sheet, a plate, a tube, and a bulk. A film or a sheet-like material is preferable because it can be disposed between the electrodes for efficient processing. The film or sheet may be a porous body or a laminate.

【0019】フッ素樹脂としては、分子内にフッ素原子
を含むものであればよく、特に限定されるものではな
い。具体的にはポリテトラフルオロエチレン(PTF
E)とその変性物、テトラフルオロエチレン−パーフル
オロアルキルビニルエーテル共重合体(PFA)、テト
ラフルオロエチレン−エチレン共重合体(ETFE)、
テトラフルオロエチレン−ヘキサフルオロプロピレン共
重合体(FEP)、テトラフルオロエチレン−フッ化ビ
ニリデン共重合体(TFE/VdF)、テトラフルオロ
エチレン−ヘキサフルオロプロピレン−パーフルオロア
ルキルビニルエーテル共重合体(EPA)、ポリクロロ
トリフルオロエチレン(PCTFE)、クロロトリフル
オロエチレン−エチレン共重合体(ECTFE)、クロ
ロトリフルオロエチレン−フッ化ビニリデン共重合体
(CTFE/VdF)、ポリフッ化ビニリデン(PVd
F)、ポリフッ化ビニル(PVF)などが挙げられる。
なかでも前述のようにポリテトラフルオロエチレン(P
TFE)が好ましい。
The fluororesin is not particularly limited as long as it contains a fluorine atom in the molecule. Specifically, polytetrafluoroethylene (PTF
E) and its modified products, tetrafluoroethylene-perfluoroalkylvinyl ether copolymer (PFA), tetrafluoroethylene-ethylene copolymer (ETFE),
Tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-vinylidene fluoride copolymer (TFE / VdF), tetrafluoroethylene-hexafluoropropylene-perfluoroalkylvinyl ether copolymer (EPA), poly Chlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene-ethylene copolymer (ECTFE), chlorotrifluoroethylene-vinylidene fluoride copolymer (CTFE / VdF), polyvinylidene fluoride (PVd)
F), polyvinyl fluoride (PVF) and the like.
Among them, as described above, polytetrafluoroethylene (P
TFE) is preferred.

【0020】フッ素樹脂のフィルム等の成形物は、各種
材質に応じた公知の方法で製造することができ、フィル
ム又はシート状物は、例えば、フッ素樹脂パウダーを圧
縮焼成した後、切削法により成形する方法や、フッ素樹
脂パウダーに助剤を混ぜて押出し後、圧延成形する方法
などにより製造することができる。このような製法で得
られたフィルム等に対しては、別途、加熱処理を行う必
要があるが、融点以上の加熱によりフッ素樹脂成形物を
製造し、しかも製造時の表面がそのまま維持される場合
は、別途、加熱処理を行う必要はない。例えば、PTF
Eパウダーを分散さえた水溶液をアルミ箔等の支持体に
塗工し、融点以上の湿度で融着して得られるフィルム等
の場合、既に加熱処理を経ているため、直接、放電処理
を行えばよい。これは、バルク状の成形物についても同
様である。
A molded article such as a fluororesin film can be produced by a known method corresponding to various materials, and a film or a sheet-like substance is formed by, for example, compressing and firing a fluororesin powder and then cutting it by a cutting method. Or a method in which an auxiliary agent is mixed with a fluororesin powder, extruded, and then roll-molded. For films and the like obtained by such a production method, it is necessary to separately perform a heat treatment, but when a fluororesin molded article is produced by heating at a temperature equal to or higher than the melting point, and the surface during production is maintained as it is. Does not require a separate heat treatment. For example, PTF
In the case of a film or the like obtained by applying an aqueous solution in which E powder is dispersed to a support such as an aluminum foil and fusing it at a humidity higher than the melting point, since a heat treatment has already been performed, if a direct discharge treatment is performed, Good. This is the same for bulk molded products.

【0021】(加熱処理)加熱処理は、放電処理の少な
くとも前か後に行われる。加熱処理における加熱温度
は、各種フッ素樹脂の融点以上であり、好ましくは融点
+15℃〜融点+100℃程度の範囲内である。例えば
PTFEの場合、融点である327℃以上で加熱処理を
行い、好ましくは342〜427℃、更に好ましくは3
50℃〜380℃で加熱処理を行う。
(Heat treatment) The heat treatment is performed at least before or after the discharge treatment. The heating temperature in the heat treatment is equal to or higher than the melting points of various fluororesins, and is preferably in the range of about + 15 ° C to + 100 ° C. For example, in the case of PTFE, heat treatment is performed at a melting point of 327 ° C. or higher, preferably 342 to 427 ° C., and more preferably 3 to 427 ° C.
The heat treatment is performed at 50C to 380C.

【0022】融点+15℃未満の加熱温度では、加熱処
理の効果がゆるやかで、また融点+100℃を越えると
接着特性に顕著な差が見られないにもかかわらず、成形
時の引張強度の低下による基材の破れや、成形後の顕著
な寸法変化、シワと外観的な問題を引き起こし易くなる
傾向がある。
If the heating temperature is lower than the melting point + 15 ° C., the effect of the heat treatment is slow. If the heating temperature is higher than the melting point + 100 ° C., no remarkable difference is observed in the adhesive properties. There is a tendency for the substrate to be easily broken, a dimensional change after molding, wrinkles and appearance problems.

【0023】加熱時間は5sec以上1hr以下が好ま
しい。5sec未満では温度、基材厚にもよるが、バル
ク方向、面方向において熱の伝わりが不十分となり、接
着特性を発現しにくい傾向がある。1hrを越えるとフ
ッ素樹脂の分解が進み、フッ化水素等の有害物質の発生
が多く、また生産性も低くなる傾向がある。
The heating time is preferably from 5 seconds to 1 hour. If it is less than 5 sec, although depending on the temperature and the thickness of the base material, the heat transfer is insufficient in the bulk direction and the plane direction, and the adhesive property tends to be hardly exhibited. If it exceeds 1 hour, the decomposition of the fluororesin proceeds, harmful substances such as hydrogen fluoride are generated, and the productivity tends to decrease.

【0024】使用する加熱装置は縦型でも横型でもよ
い。横型の場合、巻き出し側の速度より巻き取り側の速
度を大きくするなどして基材にテンションをかければ、
外観的にも良好となる。縦型の場合、加熱部に対し基材
を下から上に搬送すると、過剰のテンションが発生し、
基材の伸びを制御し難くなるので、上から下に搬送する
のが好ましい。なお、加熱装置は連続式でもバッチ式で
もよい。
The heating device used may be a vertical type or a horizontal type. In the case of horizontal type, if tension is applied to the substrate by increasing the speed on the winding side from the speed on the unwinding side,
The appearance is also good. In the case of the vertical type, when the base material is transported from the bottom to the heating unit, excessive tension occurs,
Since it is difficult to control the elongation of the base material, it is preferable to convey the base material from top to bottom. The heating device may be a continuous type or a batch type.

【0025】加熱装置の加熱に使用する熱源は、前記の
温度範囲に加熱可能であれば何れでもよいが、好ましく
は赤外線であり、高温が得られ易い点から、特に波長が
0.8〜5μmのものが好ましい。この時、基材へ均一
に熱が伝わるように赤外線ヒーターを隙間なく並べた
り、千鳥状に配置すると良い。それでもシワが発生した
場合、加熱処理された基材をもう一度融点付近の温度で
加熱された曲面ロールに沿わせながら流したり、圧力を
かけた2本の加熱ロールで挟んで流せば、シワが取り除
けて好ましい。但し、曲面ロールに沿わす場合、沿わし
た側では接着力が出現し難いため、反対側を放電処理す
るのが好ましい。
The heat source used for heating the heating device may be any heat source as long as it can be heated to the above-mentioned temperature range. However, it is preferably infrared light, and the wavelength is particularly preferably 0.8 to 5 μm because it is easy to obtain a high temperature. Are preferred. At this time, it is preferable to arrange infrared heaters without gaps or to arrange them in a staggered manner so that heat is uniformly transmitted to the base material. If wrinkles still occur, remove the wrinkles by flowing the heat-treated substrate again along a curved roll heated at a temperature near the melting point, or by sandwiching it between two heated rolls under pressure. Preferred. However, in the case of following the curved roll, it is preferable to perform the discharge treatment on the opposite side because the adhesive force is hard to appear on the side along the curved roll.

【0026】加熱後の冷却は、空気や窒素を吹き付ける
空冷法でも、水に浸漬したり、吹き付けたりする水冷法
でも特に限定しないが、基材面に対し均一な冷却速度で
あることが好ましい。冷却速度が速い部分は遅い部分に
比べ、透明になり易く外観的にばらついたものになり易
いためである。なお、本発明では、通常、常温で放電処
理を行うため、フッ素樹脂を50℃以下、特に30℃以
下に冷却してから、放電処理を行うのが好ましい。
The cooling after the heating is not particularly limited to an air cooling method in which air or nitrogen is blown, or a water cooling method in which the substrate is immersed or sprayed in water. This is because a portion having a high cooling rate tends to be transparent and has a variation in appearance as compared with a portion having a low cooling rate. In the present invention, since the discharge treatment is usually performed at room temperature, the discharge treatment is preferably performed after the fluororesin is cooled to 50 ° C. or lower, particularly 30 ° C. or lower.

【0027】(放電処理)放電処理は不飽和炭化水素を
含有する雰囲気下で行われる。放電処理の形態として
は、グロー放電、コロナ放電などのプラズマを生じさせ
得る各種放電(いわゆるプラズマ放電)や、その他、気
相中の分子又はフッ素樹脂等を活性化させることができ
る各種放電がいずれも採用可能である。これらは、特公
昭37−17485号公報、特公昭49−12900号
公報、米国特許第3296011号明細書等に開示され
ている。また、放電雰囲気の圧力としては、上記各種放
電に応じた圧力を設定すればよい。そして、放電処理を
行う表面改質装置も、各種放電処理の形態や圧力に応じ
た装置を適宜選定すればよい。本発明では、中でも設備
費や処理コストの観点から、前記放電処理が500〜1
000torrの圧力下でプラズマを生じさせるもの
(以下、「大気圧プラズマ処理」という)であることが
好ましい。
(Discharge treatment) The discharge treatment is performed in an atmosphere containing unsaturated hydrocarbon. Examples of the form of the discharge treatment include various discharges that can generate plasma such as glow discharge and corona discharge (so-called plasma discharge), and various discharges that can activate molecules in a gas phase or fluororesin. Can also be adopted. These are disclosed in JP-B-37-17485, JP-B-49-12900, and U.S. Pat. No. 3,296,011. Further, the pressure of the discharge atmosphere may be set to a pressure corresponding to the above-described various discharges. As the surface reforming device for performing the discharge treatment, a device according to the form and pressure of various kinds of discharge treatment may be appropriately selected. In the present invention, in particular, from the viewpoint of equipment costs and processing costs, the discharge processing is performed at 500 to 1%.
It is preferable to generate plasma under a pressure of 000 torr (hereinafter referred to as "atmospheric pressure plasma processing").

【0028】上記放電処理が行われる雰囲気は、不飽和
炭化水素を含有するが、不飽和炭化水素としては、エチ
レン、プロピレン、ブチレン等のアルケン、又はアルキ
ン等が挙げられる。放電処理における反応性を考慮する
と、好ましくは炭素数2〜4のアルキンから選ばれる1
種以上であるが、かかるアルキンとしては、アセチレ
ン、メチルアセチレン、1−ブチン、2−ブチン等が挙
げられ、特にアセチレンが好ましい。
The atmosphere in which the discharge treatment is performed contains unsaturated hydrocarbons, and examples of unsaturated hydrocarbons include alkenes such as ethylene, propylene and butylene, and alkynes. In consideration of the reactivity in the discharge treatment, 1 is preferably selected from alkynes having 2 to 4 carbon atoms.
Although it is more than one kind, examples of such alkyne include acetylene, methylacetylene, 1-butyne, 2-butyne and the like, and acetylene is particularly preferable.

【0029】また、放電雰囲気中に含有される他の成分
としては、ヘリウム、アルゴン、ネオン、クリプトン、
キセノン等の稀ガスや窒素等の不活性ガスが挙げられ
る。また、上記アルキンの添加による本発明の効果を損
なわない範囲で、反応性の有機化合物、又は無機化合物
を含有してもよい。
Further, other components contained in the discharge atmosphere include helium, argon, neon, krypton, and the like.
A rare gas such as xenon or an inert gas such as nitrogen may be used. Further, a reactive organic compound or an inorganic compound may be contained as long as the effect of the present invention by addition of the alkyne is not impaired.

【0030】以下、本発明の好ましい形態である、フッ
素樹脂フィルムを大気圧プラズマ処理する例を挙げて説
明する。図1は、大気圧プラズマ処理に用いられる装置
の一例の概略構成図である。当該装置は、プラズマ放電
を形成するための高電圧印加手段と、ガスの導入・排出
を行って酸素濃度と圧力を維持する処理室11と、アセ
チレン又はアセチレンを含む混合ガスを放電空間に導入
するための供給手段と、フッ素樹脂フィルム1を搬送し
つつ繰り出し及び巻き取りを行う搬送機構の4つの要素
から構成されている。
Hereinafter, a preferred embodiment of the present invention will be described with reference to an example in which a fluororesin film is subjected to an atmospheric pressure plasma treatment. FIG. 1 is a schematic configuration diagram of an example of an apparatus used for atmospheric pressure plasma processing. The apparatus includes a high-voltage applying means for forming a plasma discharge, a processing chamber 11 for introducing and discharging a gas to maintain an oxygen concentration and a pressure, and introducing acetylene or a mixed gas containing acetylene into a discharge space. And a transport mechanism for feeding and winding the fluororesin film 1 while transporting it.

【0031】高電圧印加手段は、高周波電源9に接続さ
れ誘電体3aで被覆された高電圧印加側電極3と、主ロ
ール2のシリコンゴム層2bの下層に設けた接地側電極
2aで構成される。処理室11には、不活性ガスボンベ
10bが流量計10aを介して接続されると共に、排気
口8より排気が行われ、真空計6と酸素濃度計7とによ
り、酸素濃度と圧力とが監視される。アセチレン等の供
給手段は、アセチレン等のガスボンベ4c、流量計4
b、及びノズル4cで構成されている。搬送機構は、図
示してないフッ素樹脂フィルム1の繰り出し部及び巻き
取り部と、処理室11の入口と出口に設けた回転ロール
5aと、高電圧印加側電極3に対向する主ロール2と、
その前後に設けた支持ロール5bとにより構成される。
The high voltage application means is composed of a high voltage application side electrode 3 connected to a high frequency power supply 9 and covered with a dielectric 3a, and a ground side electrode 2a provided below the silicon rubber layer 2b of the main roll 2. You. An inert gas cylinder 10b is connected to the processing chamber 11 via a flow meter 10a, exhausted from an exhaust port 8, and an oxygen concentration and a pressure are monitored by a vacuum gauge 6 and an oxygen concentration meter 7. You. A supply means of acetylene or the like includes a gas cylinder 4c of acetylene or the like, a flow meter 4
b and the nozzle 4c. The transport mechanism includes a feeding unit and a winding unit (not shown) of the fluororesin film 1, a rotating roll 5 a provided at an entrance and an exit of the processing chamber 11, and a main roll 2 facing the high-voltage application side electrode 3.
It is composed of support rolls 5b provided before and after that.

【0032】高圧印加電極3の形状は特に限定されるも
のではないが、被処理物が広幅のフィルムの場合、棒状
のものが均一な処理が施せるため好ましい。接地電極2
a(主ロール2)は、被処理物であるフッ素樹脂フィル
ム1を搬送する機能も有するため筒状が好ましい。また
電極間距離は1〜5mmに設定し、設定値に対し−10
%〜+10%に保つことが放電を安定させる上で好まし
い。1mm未満では電極間距離の均一性を維持するのが
難しく、5mmより大きいと電圧の負荷が大きくなる傾
向がある。電極間距離のバラツキが設定値に対し−10
%〜+10%を上回ると電極間の最短部分で短絡する傾
向がある。電圧印加には高周波電源9を用いるが、周波
数は低周波(kHz)、高周波(MHz)、マイクロ波
(GHz)と任意に選択することができるが、周波数を
高くすると放電の制御や冷却コントロールが難しくなる
ので200kHz以下が好ましい。またアセチレンガス
を含む単独あるいは複合ガスを効率良く重合反応等させ
るには1kHz以上が好ましい。更に好ましくは20〜
80kHzである。低周波の場合もアーク放電を防止す
るため電極の片方または両方にガラス、ゴム、セラミッ
クス等の誘電体で被覆するするのが好ましい。
The shape of the high-voltage application electrode 3 is not particularly limited, but when the object to be processed is a wide film, a rod-shaped object is preferable because a uniform processing can be performed. Ground electrode 2
The a (main roll 2) preferably has a cylindrical shape because it also has a function of transporting the fluororesin film 1, which is an object to be processed. The distance between the electrodes is set to 1 to 5 mm, and -10 to the set value.
% To + 10% is preferable for stabilizing discharge. If it is less than 1 mm, it is difficult to maintain the uniformity of the distance between the electrodes, and if it is more than 5 mm, the voltage load tends to increase. The variation of the distance between the electrodes is -10 against the set value.
If it exceeds% to + 10%, a short circuit tends to occur at the shortest part between the electrodes. The high frequency power supply 9 is used for voltage application, and the frequency can be arbitrarily selected from a low frequency (kHz), a high frequency (MHz), and a microwave (GHz). Since it becomes difficult, 200 kHz or less is preferable. In addition, the frequency is preferably 1 kHz or more in order to efficiently perform a polymerization reaction of a single gas or a composite gas containing an acetylene gas. More preferably, 20 to
80 kHz. Even in the case of low frequency, it is preferable to coat one or both of the electrodes with a dielectric such as glass, rubber, ceramics, etc. in order to prevent arc discharge.

【0033】処理室11はアルゴン、へリウム、窒素等
の不活性ガスを充満して酸素濃度と圧力を調整するため
に、不活性ガスの導入系とアセチレンを有する添加ガス
とその分解ガスを排出するための排気系を設置した密閉
型が好ましい。このため、接処理物であるフッ素樹脂フ
ィルム1を処理外部の大気中から導く場合、空気の混入
を防止するため、搬送の入口と出口にはクロムめっき等
摩擦抵抗が少ない金属で被覆された回転ロール5aでフ
ィルムを挟み込むのが好ましい。入口、出口のいずれも
ゴムのように摩擦抵抗の大きいロールでフィルムを挟ん
で搬送した場合、処理後の接着力が低下する傾向があ
る。
The treatment chamber 11 is filled with an inert gas such as argon, helium, or nitrogen to adjust the oxygen concentration and the pressure so as to discharge an inert gas introduction system, an additive gas containing acetylene, and a decomposition gas thereof. It is preferable to use a hermetic type in which an exhaust system is installed for the purpose. For this reason, when the fluororesin film 1 to be treated is guided from the atmosphere outside the processing, the entrance and the exit of the conveyance are coated with a metal having a low frictional resistance such as chrome plating to prevent air from being mixed. It is preferable to sandwich the film between the rolls 5a. When the film is conveyed between rolls having a large frictional resistance such as rubber at both the entrance and the exit, the adhesive strength after treatment tends to decrease.

【0034】処理室11の酸素濃度は1〜1000pp
mに設定するのが良く、好ましくは5〜200ppmで
ある。1ppm未満では酸素濃度の調整が難しく、10
00ppmより大きいと接着剤との接着力が低下する傾
向がある。また圧力は500〜1000torrが好ま
しい。500torr未満では圧力調整が難しく、10
00torrより大きいと放電が安定しにくい傾向があ
る。
The oxygen concentration in the processing chamber 11 is 1 to 1000 pp
m, preferably 5 to 200 ppm. If it is less than 1 ppm, it is difficult to adjust the oxygen concentration.
If it is more than 00 ppm, the adhesive strength with the adhesive tends to decrease. The pressure is preferably 500 to 1000 torr. If the pressure is less than 500 torr, it is difficult to adjust the pressure.
If it is larger than 00 torr, the discharge tends to be difficult to stabilize.

【0035】ノズル4aの吹き出し位置は、アセチレン
等の導入量にもよるが、ノズルの吹き出し口が、プラズ
マ放電の領域に向いていること及びプラズマ放電領域と
フッ素樹脂フィルムの交わる部分から1〜50mmの距
離に吹き出し口が存在することが好ましい。1mmより
小さいとプラズマ領域におけるアセチレンの分布格差が
大きくなり、これが処理バラツキ、接着特性バラツキに
繋がる傾向がある。また50mmより大きいと処理の均
一性は増すが、ガス濃度が希薄になり接着特性を低下さ
せる傾向がある。なお、このような濃度低下を解消する
ために、放電領域の近傍にカバー体を設けて、その内部
にアセチレン等を供給しつつ、一部が排気されるように
構成してもよい。
The blowing position of the nozzle 4a depends on the introduction amount of acetylene or the like, but the blowing port of the nozzle is directed to the plasma discharge region and 1 to 50 mm from the intersection of the plasma discharge region and the fluororesin film. It is preferable that the outlet is present at a distance of. If it is less than 1 mm, the distribution difference of acetylene in the plasma region becomes large, and this tends to lead to variations in processing and adhesive characteristics. If it is larger than 50 mm, the uniformity of the treatment increases, but the gas concentration tends to be low and the adhesive properties tend to be low. In order to eliminate such a decrease in concentration, a cover may be provided in the vicinity of the discharge region so that acetylene or the like is supplied into the cover and a part of the cover is exhausted.

【0036】更に、アセチレン導入量は、プラズマ放電
領域と処理速度によって異なるが、基材幅250mmの
フッ素樹脂フィルムを厚さ20mm、幅300mmのア
ルミ電極と直径100mm、幅400mmの接地電極の
間のプラズマ領域に搬送速度1m/minで通過させ処
理する場合、アセチレン導入量は0.1〜10L/mi
nが好ましい。0.1L/min未満では形成される官
能基の量が少なく、接着剤との接着力も低下する傾向が
ある。10L/minより大きいと粉状の分解物が堆積
しやすくなり これによって接着力が発現しにくい傾向
がある。このような導入量は、放電領域におけるアセチ
レンの濃度で、0.01〜10体積%にほぼ相当する。
Further, the amount of acetylene introduced varies depending on the plasma discharge region and the processing speed. However, a fluororesin film having a base material width of 250 mm is coated between an aluminum electrode having a thickness of 20 mm and width of 300 mm and a ground electrode having a diameter of 100 mm and width of 400 mm. When passing through the plasma region at a transport speed of 1 m / min for processing, the amount of acetylene introduced is 0.1 to 10 L / mi.
n is preferred. If it is less than 0.1 L / min, the amount of the functional group formed is small, and the adhesive strength with the adhesive tends to decrease. If it is more than 10 L / min, a powdery decomposition product is apt to be deposited, whereby the adhesive strength tends to be hardly developed. Such an introduction amount substantially corresponds to 0.01 to 10% by volume in the concentration of acetylene in the discharge region.

【0037】(その他)本発明においては、前記の加熱
処理に先立って、不活性ガス雰囲気下で電子線照射処理
を行うことが好ましい。使用する不活性ガスとしては、
前記の放電処理の場合と同様のものを用いることができ
る。
(Others) In the present invention, it is preferable to perform an electron beam irradiation treatment in an inert gas atmosphere prior to the heat treatment. As the inert gas used,
The same thing as the case of the above-mentioned discharge treatment can be used.

【0038】また、電子線の照射は、常温〜100℃の
範囲内で行われ、線量1〜20Mrad、50〜300
kVで行われるのが好ましい。電子線の照射装置として
は、特開平10−288700号公報等に記載されてい
るものを使用することができる。
The irradiation with the electron beam is carried out in the range of room temperature to 100 ° C., and the dose is 1 to 20 Mrad and 50 to 300 Mrad.
It is preferably performed at kV. As an electron beam irradiation apparatus, those described in JP-A-10-288700 and the like can be used.

【0039】本発明においては、前記の加熱処理に先立
って、表面の粗化処理を行うことが好ましく、これによ
り更に接着力を向上させることができる。表面の粗化処
理の方法としては、サンドペーパー、グラインダー、サ
ンドブラスト等を用いた各種の機械的処理が挙げられ
る。
In the present invention, it is preferable to carry out a surface roughening treatment prior to the above-mentioned heat treatment, whereby the adhesive strength can be further improved. Examples of the method of the surface roughening treatment include various mechanical treatments using a sandpaper, a grinder, a sandblast, or the like.

【0040】本発明によって表面改質されたフッ素樹脂
フィルム等を接着等するための接着剤の種類は、相手材
であるゴム、粘着剤の種類に応じて適宜選択すれば良
い。相手材がNR、NBRのゴムではハロゲンポリマー
ベースの接着剤をシリコン系、フッ素系ゴムではシラン
カップリング剤をまたウレタン系ゴムではフェノールベ
ースの接着剤を用いることができる。
The type of adhesive for bonding the surface-modified fluororesin film or the like according to the present invention may be appropriately selected according to the type of the rubber or pressure-sensitive adhesive as the mating material. For rubbers with NR or NBR as the mating material, a halogen polymer-based adhesive can be used as a silicone-based adhesive. For a fluorine-based rubber, a silane coupling agent can be used. For a urethane-based rubber, a phenol-based adhesive can be used.

【0041】[0041]

【実施例】以下、本発明の具体的な構成と効果を示す実
施例等について説明する。なお、各実施例等における評
価データは、下記の評価方法によるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and the like showing specific configurations and effects of the present invention will be described below. In addition, the evaluation data in each Example etc. is based on the following evaluation method.

【0042】(エポキシ接着力)エポキシ接着剤(コニ
シ社製,ボンドE)の主剤と硬化剤を1:1で混合した
ものを用いて、鋼板とフィルムとをローラーで貼り合わ
せた後、100℃1時間加熱して両者を接着した。その
後、フィルムを180°の角度でピールし、その際の剥
離強度を測定した。
(Epoxy Adhesive Strength) A steel plate and a film were adhered by a roller using a mixture of an epoxy adhesive (manufactured by Konishi, Bond E) in a ratio of 1: 1 and a curing agent, and then heated to 100 ° C. Heating was performed for 1 hour to bond them. Thereafter, the film was peeled at an angle of 180 °, and the peel strength at that time was measured.

【0043】実施例1 200μm厚さのPTFEフィルム(No900,日東
電工製)を乾燥機(加熱方式は非接触・バッチ式)にて
表1に示す温度で1分間加熱した後、曲面状の金属ドラ
ムで長手方向にテンションをかけながら25℃まで冷却
した。次に、図1に示すような装置を用いて、不活性ガ
スとして窒素を100L/minで処理室に導入し、酸
素濃度を50ppmにした雰囲気を作り、誘電体で被覆
した棒状アルミの陽極とシリコンゴムで被覆した陰極の
間隔を3mmに設定し、周波数50kHz、電圧13k
vの交流電圧を印加し放電させた。この放電空間にアセ
チレンガスを流量1L/minで導入し、金属ドラムに
沿わした面を陽極側に向け、裏面を陰極に接触させ、速
度1m/minで搬送した。
Example 1 A PTFE film (No. 900, manufactured by Nitto Denko) having a thickness of 200 μm was heated at a temperature shown in Table 1 for 1 minute by a drier (heating method is a non-contact / batch method), and then a curved metal was heated. It was cooled to 25 ° C. while applying tension in the longitudinal direction with a drum. Next, using a device as shown in FIG. 1, nitrogen as an inert gas was introduced into the processing chamber at 100 L / min to create an atmosphere with an oxygen concentration of 50 ppm, and a rod-shaped aluminum anode coated with a dielectric was formed. The interval between the cathodes coated with silicon rubber was set to 3 mm, the frequency was 50 kHz, and the voltage was 13 k.
v AC voltage was applied to discharge. Acetylene gas was introduced into the discharge space at a flow rate of 1 L / min, the surface along the metal drum was directed to the anode side, the back surface was brought into contact with the cathode, and transported at a speed of 1 m / min.

【0044】得られたフィルムの放電処理面と鋼板をエ
ポキシ接着剤で貼り合せた後の180°ピールの接着力
を表1及び図2に示した。また加熱処理後の基材の比
重、及び加熱処理後の水に対する接触角を表1に示し
た。なお、加熱処理を行わない場合の放電処理面の接触
角は、117°であった。
Table 1 and FIG. 2 show the adhesive strength at 180 ° peel after the electric discharge treated surface of the obtained film and the steel plate were bonded with an epoxy adhesive. Table 1 shows the specific gravity of the base material after the heat treatment and the contact angle with water after the heat treatment. In addition, the contact angle of the discharge-treated surface when the heat treatment was not performed was 117 °.

【0045】[0045]

【表1】 表1及び図2の結果が示すように、融点+15℃に相当
する342℃を境に、接着力が臨界的に上昇し、接着力
の改善効果が特に顕著になる。また、それに合わせて、
比重の変化が見られ、加熱処理により固体構造に変化が
生じていることが推測される。また、加熱処理により水
に対する接触角が上昇していることから、加熱処理によ
って表面に凹凸(突起)が生じていることがわかる。
[Table 1] As shown in the results of Table 1 and FIG. 2, the adhesive force is critically increased at 342 ° C. corresponding to the melting point + 15 ° C., and the effect of improving the adhesive force is particularly remarkable. In addition,
A change in specific gravity was observed, and it is presumed that the heat treatment changed the solid structure. In addition, since the contact angle with water is increased by the heat treatment, it can be seen that unevenness (projections) is generated on the surface by the heat treatment.

【0046】実施例2 100μm厚さのPTFEフィルム(No900日東電
工製)を炉長3mの縦型炉加熱機(加熱方式は上から下
に搬送する連続式)に温度380℃の状態で、搬送速度
を入り口側3m/min、出口側3.5m/minに設
定し、連続で加熱処理を行なった。この連続基材を15
cm角に切断し、放電処理及び接着評価を実施例1と同
様の条件にて行なった。
Example 2 A PTFE film having a thickness of 100 μm (No. 900, manufactured by Nitto Denko) was transferred to a vertical furnace heater having a furnace length of 3 m (the heating method was a continuous type in which the material was transferred from top to bottom) at a temperature of 380 ° C. The speed was set to 3 m / min on the entrance side and 3.5 m / min on the exit side, and heat treatment was performed continuously. This continuous base material is
It was cut into a cm square, and the discharge treatment and adhesion evaluation were performed under the same conditions as in Example 1.

【0047】180°ピールの接着力は0.4kg/c
mとなった。また放電処理後に処理面に対しべンコット
(旭化成製,コットンセルロース70%+ポリエステル
30%)を用いて18g/cm2 の荷重で10回擦った
後のエポキシ接着力も0.4kg/cmを維持してい
た。
The 180 ° peel adhesive strength is 0.4 kg / c.
m. Further, after the discharge treatment, the treated surface was rubbed 10 times with a load of 18 g / cm 2 using a bencot (manufactured by Asahi Kasei Corporation, 70% cotton cellulose + 30% polyester), and the epoxy adhesive strength was also maintained at 0.4 kg / cm. I was

【0048】次に処理面にポリオレフィン系のプライマ
ーを塗布、乾燥後、未加硫のNBRを加熱、加圧し処理
フィルムと鋼板を貼り合せた。処理フィルムを鋼板から
180°ピールにて剥離した。この時の剥離はゴムの凝
集破壊であり、界面での剥離は見られなかった。
Next, a polyolefin-based primer was applied to the treated surface and dried, and then the uncured NBR was heated and pressed to bond the treated film and the steel sheet. The treated film was peeled from the steel plate at 180 ° peel. The peeling at this time was a cohesive failure of the rubber, and no peeling at the interface was observed.

【0049】上記における加熱前の基材(No900)
と加熱後の基材(加熱処理物)との表面特性及び物性に
ついて測定を行い、その結果を表2及び表3に示した。
Base material before heating (No 900)
The surface properties and physical properties of the substrate and the heated substrate (heat-treated product) were measured, and the results are shown in Tables 2 and 3.

【0050】[0050]

【表2】 (測定条件) #ESCA:Kratos、AXIS−His(島津社
製)を用い、取り出し角度は試料に対し90°で測定し
た。
[Table 2] (Measurement conditions) #ESCA: Using Kratos, AXIS-His (manufactured by Shimadzu), the take-out angle was measured at 90 ° with respect to the sample.

【0051】[0051]

【表3】 #引張破断強度:ギャップ50mm、サンプル幅10m
mに設定し、テンシロン(島津社製)で測定。測定温度
25℃、測定方向:長手方向 #弾性率:周波数1Hz、サンプル20×10mmに設
定し、DMS200(セイコー電子工業社)で測定。測
定温度0〜200℃、昇温2℃/min 表2及び表3の結果が示すように、加熱処理により表面
形状及び表面の化学的性質が変化しており、更に強度及
び弾性率等の物性が変化していることがわかる。
[Table 3] #Tensile breaking strength: gap 50mm, sample width 10m
Set to m and measured with Tensilon (manufactured by Shimadzu). Measurement temperature: 25 ° C., measurement direction: longitudinal direction #Elastic modulus: set to a frequency of 1 Hz, sample 20 × 10 mm, and measured with DMS200 (Seiko Denshi Kogyo). Measurement temperature 0 to 200 ° C, temperature rise 2 ° C / min As shown in the results of Tables 2 and 3, the surface shape and surface chemical properties are changed by the heat treatment, and furthermore, physical properties such as strength and elastic modulus are shown. Is changed.

【0052】実施例3 PTFE粉末を水に分散させた溶液(XAD953,旭
アイシーアイ フロロポリマーズ社製)をアルミ箔に塗
工し、380℃で加熱融着する操作を5回繰り返し、厚
さ50μmのPTFEフィルムを作成した。
Example 3 A procedure in which a solution of PTFE powder dispersed in water (XAD953, manufactured by Asahi ICI Fluoropolymers Co., Ltd.) was applied to an aluminum foil, and heated and fused at 380 ° C. five times to obtain a thickness of 50 μm. Was prepared.

【0053】これを用いて実施例1と同一の条件にて放
電処理を行なった。180°ピールの接着力は0.55
kg/cmとなった。また放電処理後に処理面に対しベ
ンコット(旭化成製、コットンセルロース70%+ポリ
エステル30%)を用いて18g/cm2 の荷重で10
回擦った後のエポキシ接着力も0.5kg/cmと殆ど
接着力の低下は見られなかった。
Using this, a discharge treatment was performed under the same conditions as in Example 1. 180 ° peel adhesion is 0.55
kg / cm. After the electric discharge treatment, the treated surface was treated with Bencot (manufactured by Asahi Kasei Corporation, cotton cellulose 70% + polyester 30%) at a load of 18 g / cm 2 for 10 minutes.
The epoxy adhesive strength after rubbing was 0.5 kg / cm, and almost no decrease in adhesive strength was observed.

【0054】比較例1 実施例1、2で加熱処理を行なわないこと以外は、同様
の放電処理と接着評価を行った。エポキシ接着力はNo
900の100μmで、いずれも0.05kg/cm、
No900の200μmでいずれも0.1kg/cmで
あった。
Comparative Example 1 The same discharge treatment and adhesion evaluation were performed in Examples 1 and 2 except that no heat treatment was performed. No epoxy adhesive strength
900 at 100 μm, both 0.05 kg / cm,
No. 900 was 200 μm, and was 0.1 kg / cm in both cases.

【0055】実施例4 No900(100μm)を370℃で1min加熱
し、実施例1と同様に冷却し、放電処理を行った。得ら
れたフィルムのエポキシ接着力は0.55kg/cmと
なった。
Example 4 No. 900 (100 μm) was heated at 370 ° C. for 1 minute, cooled and discharged in the same manner as in Example 1. The epoxy adhesive strength of the obtained film was 0.55 kg / cm.

【0056】次に、加熱処理と放電処理の順番を替え、
No900(100μm)を放電処理した後、加熱冷却
処理した基材のエポキシ接着力は0.3kg/cmとな
った。
Next, the order of the heat treatment and the discharge treatment is changed,
After the discharge treatment of No. 900 (100 μm), the epoxy adhesive strength of the substrate subjected to the heating and cooling treatment was 0.3 kg / cm.

【0057】実施例5 変性PTFEシート(ダイキン社のM112を360℃
150kg/cm2 2日間焼成し、75μm厚に切削し
たもの)を実施例4と同様に加熱冷却した後、放電処理
したフィルムのエポキシ接着力は0.9kg/cmとな
った。
Example 5 Modified PTFE sheet (M12 manufactured by Daikin Co., Ltd. at 360 ° C.)
After sintering 150 kg / cm 2 for 2 days and cutting to a thickness of 75 μm) in the same manner as in Example 4, the film subjected to the discharge treatment had an epoxy adhesive strength of 0.9 kg / cm.

【0058】実施例4と同様に、変性PTFEシートを
放電処理した後、加熱冷却処理したフィルムのエポキシ
接着力は0.2kg/cmとなった。この結果では、加
熱処理の後に放電処理を行う方が、接着力の改善効果が
顕著になるが、融点以上での加熱処理は放電処理の前後
のいずれでもよい。
In the same manner as in Example 4, after the modified PTFE sheet was subjected to a discharge treatment, the epoxy adhesive force of the film subjected to the heating and cooling treatment was 0.2 kg / cm. According to this result, the effect of improving the adhesive strength is more remarkable when the discharge treatment is performed after the heat treatment, but the heat treatment at or above the melting point may be performed before or after the discharge treatment.

【0059】比較例2 実施例5において変性PTFEシートを加熱処理しない
こと以外は、実施例5と同様にして放電処理を行った。
得られたフィルムのエポキシ接着力は0.1kg/cm
となった。
Comparative Example 2 A discharge treatment was performed in the same manner as in Example 5 except that the modified PTFE sheet was not subjected to heat treatment.
The epoxy adhesive strength of the obtained film is 0.1 kg / cm
It became.

【0060】実施例5 No900(200μm)の表面をサンドペーパーで測
定時の引き剥がし方向と直角となるように擦った。その
際、サンドペーパーとして品番:A280を用い、荷重
18g/cm2 で速度5m/minにて往復10回行っ
た。
Example 5 The surface of No. 900 (200 μm) was rubbed with sandpaper so as to be perpendicular to the peeling direction at the time of measurement. At that time, the product was reciprocated 10 times at a speed of 5 m / min with a load of 18 g / cm 2 using a product number: A280 as sandpaper.

【0061】その後、370℃で1minで加熱し、実
施例1と同様に冷却し、放電処理した基材のエポキシ接
着力は2.45kg/cmとなった。
Thereafter, the substrate was heated at 370 ° C. for 1 minute, cooled in the same manner as in Example 1, and the epoxy adhesive strength of the substrate subjected to the discharge treatment was 2.45 kg / cm.

【0062】実施例6 No900(200μm)を5Mrad、100kvの
電子線を窒素雰囲気で照射した。その後、370℃で1
minで加熱し、実施例1と同様に冷却し、放電処理を
行った。得られたフィルムのエポキシ接着力は1.35
kg/cmとなった。
Example 6 No. 900 (200 μm) was irradiated with an electron beam of 5 Mrad and 100 kv in a nitrogen atmosphere. Then, at 370 ° C, 1
min, cooled in the same manner as in Example 1, and subjected to discharge treatment. The epoxy adhesion of the obtained film is 1.35.
kg / cm.

【0063】実施例7 FEPシート(ダイキン(株)製ネオフロン,250μ
m)をべンコットで擦り、エポキシ接着力で0.05k
g/cmにした基材を加熱処理した後、実施例1と同じ
条件で放電処理を行った。得られたフィルムのエポキシ
接着力は、加熱条件240℃1minの場合で1.2〜
1.9kg/cm、260℃(融点)1minで2.2
〜2.45kg/cm、280℃1minで2.65〜
2.75kg/cmとなった。
Example 7 FEP sheet (Neoflon, manufactured by Daikin Co., Ltd., 250 μm)
m) is rubbed with a Bencot and 0.05k with epoxy adhesive strength
After subjecting the base material to g / cm to a heat treatment, a discharge treatment was performed under the same conditions as in Example 1. The epoxy adhesive strength of the obtained film was 1.2 to 1.2 when the heating condition was 240 ° C. for 1 min.
2.2 at 1.9 kg / cm, 260 ° C (melting point) 1 min
2.45 kg / cm, 2.65 to 280 ° C for 1 min
It became 2.75 kg / cm.

【図面の簡単な説明】[Brief description of the drawings]

【図1】大気圧プラズマ処理に用いられる装置の一例の
概略構成図
FIG. 1 is a schematic configuration diagram of an example of an apparatus used for atmospheric pressure plasma processing.

【図2】実施例1における加熱温度と接着力との関係を
示す図
FIG. 2 is a diagram showing a relationship between a heating temperature and an adhesive force in Example 1.

【符号の説明】[Explanation of symbols]

1 フッ素樹脂フィルム 2a 接地側電極 3 高電圧印加側電極 4c アセチレン等のガスボンベ DESCRIPTION OF SYMBOLS 1 Fluororesin film 2a Grounding electrode 3 High voltage application side electrode 4c Gas cylinder of acetylene etc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フッ素樹脂成形物に対し不飽和炭化水素
を含有する雰囲気下で放電処理を行う表面改質方法にお
いて、 その放電処理の少なくとも前か後に、フッ素樹脂成形物
の融点以上での加熱処理を行う工程を含むことを特徴と
するフッ素樹脂成形物の表面改質方法。
1. A surface modification method for subjecting a fluororesin molded article to a discharge treatment in an atmosphere containing an unsaturated hydrocarbon, wherein the heating is performed at least before or after the discharge treatment at a temperature not lower than the melting point of the fluororesin molded article. A method for modifying the surface of a fluororesin molding, comprising a step of performing a treatment.
【請求項2】 前記フッ素樹脂成形物が、ポリテトラフ
ルオロエチレン(PTFE)のフィルム又はシート状物
である請求項1記載の表面改質方法。
2. The surface modification method according to claim 1, wherein the fluororesin molded product is a polytetrafluoroethylene (PTFE) film or sheet.
【請求項3】 前記加熱処理が、342〜427℃の範
囲内の温度で行われるものである請求項2記載の表面改
質方法。
3. The surface modification method according to claim 2, wherein said heat treatment is performed at a temperature within a range of 342 to 427 ° C.
JP35451198A 1998-12-14 1998-12-14 Surface modification method for molded fluororesin item Pending JP2000178369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35451198A JP2000178369A (en) 1998-12-14 1998-12-14 Surface modification method for molded fluororesin item

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35451198A JP2000178369A (en) 1998-12-14 1998-12-14 Surface modification method for molded fluororesin item

Publications (1)

Publication Number Publication Date
JP2000178369A true JP2000178369A (en) 2000-06-27

Family

ID=18438059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35451198A Pending JP2000178369A (en) 1998-12-14 1998-12-14 Surface modification method for molded fluororesin item

Country Status (1)

Country Link
JP (1) JP2000178369A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006059697A1 (en) * 2004-12-03 2008-06-05 旭硝子株式会社 Ethylene-tetrafluoroethylene copolymer molded product and method for producing the same
CN108291045A (en) * 2016-01-18 2018-07-17 积水化学工业株式会社 The surface processing device and method of fluorine resin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006059697A1 (en) * 2004-12-03 2008-06-05 旭硝子株式会社 Ethylene-tetrafluoroethylene copolymer molded product and method for producing the same
CN108291045A (en) * 2016-01-18 2018-07-17 积水化学工业株式会社 The surface processing device and method of fluorine resin film
CN108291045B (en) * 2016-01-18 2020-07-28 积水化学工业株式会社 Surface treatment device and method for fluorine resin film

Similar Documents

Publication Publication Date Title
US4933060A (en) Surface modification of fluoropolymers by reactive gas plasmas
EP2590802B1 (en) Method and device for atmospheric pressure plasma treatment
US4064030A (en) Process for surface treating molded articles of fluorine resins
US6528947B1 (en) Hollow cathode array for plasma generation
US3296011A (en) Surface treatment of perfluorocarbon polymer structures
US20030138573A1 (en) Method and Apparatus for Applying Material to Glass
JP2001295051A (en) Method of treating or covering surface of material
JP2001316855A (en) Method for activating surface of material
JP2002532828A (en) Array of hollow cathodes for plasma generation
JP2001329083A (en) Material subjected to plasma treatment
CN102218832B (en) Surface treatment method
US4155826A (en) Process for surface treating molded articles of fluorine resins
WO2003017737A2 (en) Cascade arc plasma and abrasion resistant coatings made therefrom
JP2000178369A (en) Surface modification method for molded fluororesin item
JP2000129015A (en) Surface modification method of fluorine resin molded article
JP2009024205A (en) Plasma cvd system
JPS6225511B2 (en)
JPH11302387A (en) Surface modification
US8778080B2 (en) Apparatus for double-plasma graft polymerization at atmospheric pressure
US6106904A (en) Method for promoting adhesion between a backing and an adhesive composition
JP4023775B2 (en) Diamond-like carbon film deposition equipment
WO2017104357A1 (en) Electrode for plasma cvd film formation apparatus, method for producing electrode, plasma cvd film formation apparatus, and method for producing functional film
JPH11238595A (en) Static eliminator and static eliminating method
JP2008075099A (en) Thin film deposition device, thin film deposition method, thin film, and thin film stacked body
JPH01138242A (en) Surface modification of polymer resin