JP2000178027A - Production of iron (i) polysulfate - Google Patents

Production of iron (i) polysulfate

Info

Publication number
JP2000178027A
JP2000178027A JP10357409A JP35740998A JP2000178027A JP 2000178027 A JP2000178027 A JP 2000178027A JP 10357409 A JP10357409 A JP 10357409A JP 35740998 A JP35740998 A JP 35740998A JP 2000178027 A JP2000178027 A JP 2000178027A
Authority
JP
Japan
Prior art keywords
iron
solution
carbonate
ferric
iron carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10357409A
Other languages
Japanese (ja)
Other versions
JP3641148B2 (en
Inventor
Kazunori Akiyama
一則 秋山
Michimasa Suzuki
通正 鈴木
Shiroshi Matsuki
詩路士 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP35740998A priority Critical patent/JP3641148B2/en
Publication of JP2000178027A publication Critical patent/JP2000178027A/en
Application granted granted Critical
Publication of JP3641148B2 publication Critical patent/JP3641148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production process which enables inhibition of any precipitate from being formed, by utilizing iron carbonate separated from a waste iron salt solution containing iron (II) chloride, such as used iron (III) etching solution. SOLUTION: This production process comprises: supplying a carbonate to a solution consisting essentially of iron (II) chloride to form iron carbonate; separating the formed iron carbonate from the solution by filtration, or the like; adding sulfuric acid to the separated iron carbonate in an amount at least 1.5 times or preferably 1.5-1.8 times as much as the amount of iron carbonate on the molar basis, to oxidize the iron carbonate to form iron (III) sulfate solution from which any precipitate is hardly separated; supplying a small amount of iron carbonate to the iron (III) sulfate solution; and then oxidizing the resulting solution to produce the objective iron (III) polysulfate solution capable of being utilized as a flocculant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、凝集剤として利用
することができるポリ硫酸第二鉄を、例えば塩化第一鉄
液やエッチング廃液等の鉄塩溶液から製造する方法に関
する。
The present invention relates to a method for producing ferric polysulfate which can be used as a coagulant from an iron salt solution such as a ferrous chloride solution or an etching waste solution.

【0002】[0002]

【従来の技術】浄水効果のある凝集剤として知られるポ
リ硫酸第二鉄(Fe2(OH)n(SO4)3-n/2)は、硫酸第一
鉄(FeSO4)1モルに対し硫酸0.5モル未満、
(好ましくは0.35〜0.45モル)を混在させ、当
該溶液を酸化する製法で得られることが知られている。
2. Description of the Related Art Ferric polysulfate (Fe2 (OH) n (SO4) 3-n / 2), which is known as a flocculant having a water purification effect, contains 0.1 mol of sulfuric acid per mol of ferrous sulfate (FeSO4). Less than 5 moles,
(Preferably 0.35 to 0.45 mol) is known to be obtained by a method of oxidizing the solution.

【0003】ところで例えば塩化第二鉄エッチング液
(FeCl3)を用いて金属板をエッチングした後のエ
ッチング廃液の如き鉄塩廃液は、多量の金属塩を含むこ
と及び溶液中の酸が強いこと等の理由により、そのまま
放流するわけにはいかない。そこでこの種の鉄塩を含ん
だ廃液は中和等の処理を行った後に放流するようにして
いるが、この場合中和等の廃棄処理は費用がかさむた
め、有効な利用法の一つに凝集剤としての利用価値が認
められているポリ硫酸第二鉄溶液として再利用すること
も検討されている。例えば塩化第二鉄エッチング廃液を
用いてポリ硫酸第二鉄溶液を製造する方法としては特開
平8−48527号公報が開示されている。この方法で
はまず最初に廃液中の第二鉄(Fe3+)を殆ど第一鉄(F
e2+)に還元し、次に当該処理液から鉄分を取り除くた
めに水に難溶な炭酸鉄(FeCO3)を生成させ、これ
を吸引濾過して廃液から分離する。この炭酸鉄に硫酸を
混ぜ合わせ、これを酸化することでポリ硫酸第二鉄を得
る、というものでこれらの反応は以下の(1)(2)の
順で進行する。
[0003] By the way, for example, an iron salt waste liquid such as an etching waste liquid after etching a metal plate using a ferric chloride etching solution (FeCl3) contains a large amount of metal salt and a strong acid in the solution. For reasons, it cannot be released as it is. Therefore, waste liquid containing this type of iron salt is discharged after neutralization, etc., but in this case, waste treatment such as neutralization is expensive, so it is one of the effective uses. Reuse as a ferric polysulfate solution, which has been recognized as being useful as a flocculant, is also being studied. For example, JP-A-8-48527 discloses a method for producing a ferric polysulfate solution using a ferric chloride etching waste liquid. In this method, first, ferric (Fe3 +) in the waste liquid is almost completely replaced with ferrous (F3).
e2 +), and in order to remove iron from the processing solution, water-insoluble iron carbonate (FeCO3) is formed, which is filtered off with suction to separate from the waste solution. This iron carbonate is mixed with sulfuric acid and oxidized to obtain ferric polysulfate. These reactions proceed in the following order (1) and (2).

【0004】 FeCO3+H2SO4→FeSO4+H2O+CO2↑ …(1) 2FeSO4+(1−n/2)H2SO4+1/2O2+(n−1)H2O →(Fe2(OH)n(SO4)3-n/2)…(2) ここで炭酸鉄と硫酸の混合は炭酸鉄1モルに対して硫酸
1モル以上1.5モル未満で行われる。その理由は、硫
酸1モル未満では難溶性の(Fe2(OH)n(SO4)3-n/
2)(n≧1)が生成してしまい、また1.5モル以上で
は硫酸第二鉄(Fe2(SO4)3)となってしまいポリ硫
酸第二鉄(Fe2(OH)n(SO4)3-n/2)が生成されない
からである。従ってこの製法は(1)式の工程で炭酸鉄
1モルと硫酸1モルが反応するため、(2)式の工程で
は硫酸第一鉄1モルに対して0〜0.5モルの硫酸が反
応しつつ酸化が行われることとなり、この点前述の硫酸
第一鉄と硫酸とを混在させて酸化を行うポリ硫酸第二鉄
の製造法と同様である。
FeCO3 + H2SO4 → FeSO4 + H2O + CO2 ↑ (1) 2FeSO4 + (1-n / 2) H2SO4 + 1 / 2O2 + (n-1) H2O → (Fe2 (OH) n (SO4) 3-n / 2) (2) Mixing of iron carbonate and sulfuric acid is carried out at 1 mol or more and less than 1.5 mol of sulfuric acid per 1 mol of iron carbonate. The reason is that less than 1 mole of sulfuric acid is hardly soluble (Fe2 (OH) n (SO4) 3-n /
2) (n ≧ 1) is produced, and at 1.5 mol or more, ferric sulfate (Fe2 (SO4) 3) is formed and ferric polysulfate (Fe2 (OH) n (SO4) 3) -n / 2) is not generated. Accordingly, in this production method, 1 mol of iron carbonate reacts with 1 mol of sulfuric acid in the step of formula (1), and in the step of formula (2), 0 to 0.5 mol of sulfuric acid reacts with 1 mol of ferrous sulfate. This is the same as the above-described method for producing ferric polysulfate in which ferrous sulfate and sulfuric acid are mixed to perform oxidation.

【0005】[0005]

【発明が解決しようとする課題】しかし、FeSO4:
H2SO4=1:(0〜0.5)である溶液の酸化におい
ては僅かな条件の変化で難溶性の物質、例えば(Fe2
(OH)n(SO4)3-n/2)(n≧1)の沈殿が生成し、溶液は
スラリー化してしまう。スラリー化した溶液では、液中
に酸化性ガスを均一に供給することが困難になるので酸
化のコントロールが難しくなり、また沈殿が生成した分
だけポリ硫酸第二鉄の歩留りが低下してしまう。更に、
このような溶液は難溶性物質を濾過する後工程が必要と
なる点も問題であった。
However, FeSO4:
In the oxidation of a solution in which H2SO4 = 1: (0-0.5), a slight change in conditions may cause a slightly soluble substance such as (Fe2
A precipitate of (OH) n (SO4) 3-n / 2) (n ≧ 1) is formed, and the solution becomes a slurry. In the slurry solution, it is difficult to uniformly supply an oxidizing gas into the solution, so that it is difficult to control the oxidation, and the yield of ferric polysulfate is reduced by the amount of the precipitate. Furthermore,
Such a solution also has a problem in that a post-process of filtering a hardly soluble substance is required.

【0006】従って本発明は、このような事情の下にな
されたものであり、その目的は簡易な方法で沈殿等を形
成し得る難溶性物質の発生を抑えた歩留りの高いポリ硫
酸第二鉄溶液の製造方法を提供するものである。
Accordingly, the present invention has been made under such circumstances, and an object of the present invention is to provide a high-yield ferric polysulfate which suppresses generation of a hardly soluble substance capable of forming a precipitate or the like by a simple method. It is intended to provide a method for producing a solution.

【0007】また、本発明の他の目的は炭酸鉄を有効利
用してポリ硫酸第二鉄溶液を製造する方法を提供すると
共に、例えば塩化第二鉄エッチング廃液の如き鉄塩廃液
の有効な再生利用の途を提供することにある。
Another object of the present invention is to provide a method for producing a ferric polysulfate solution by effectively utilizing iron carbonate, and to effectively regenerate an iron salt waste liquid such as a ferric chloride etching waste liquid. The purpose is to provide a way to use it.

【0008】[0008]

【課題を解決するための手段】本発明のポリ硫酸第二鉄
の製造方法は、硫酸第二鉄を主成分とする酸溶液と少量
の炭酸鉄を混在させる工程と、前記硫酸第二鉄を主成分
とする酸溶液と少量の炭酸鉄を混在させた溶液を酸化す
る工程と、を含むことを特徴とする。
The method for producing ferric polysulfate of the present invention comprises a step of mixing an acid solution containing ferric sulfate as a main component with a small amount of iron carbonate, And oxidizing a solution in which a small amount of iron carbonate is mixed with an acid solution as a main component.

【0009】前記硫酸第二鉄は、コスト面から自製する
ことが好ましく例えば鉄を塩化第二鉄でエッチングした
後の鉄塩溶液に対して、予め廃液中の第二鉄を殆ど第一
鉄に還元し、次に当該溶液中の塩化第一鉄に炭酸塩を反
応させて炭酸鉄を生成する工程と、この生成した炭酸鉄
を当該反応溶液から分離する工程と、分離された炭酸鉄
にモル量にして1.5倍以上1.8倍以下の硫酸を加え
る工程と、を含む製法により生成することを特徴とす
る。
The ferric sulfate is preferably produced by itself from the viewpoint of cost. For example, in the case of an iron salt solution obtained by etching iron with ferric chloride, ferric iron in a waste liquid is almost completely converted to ferrous iron in advance. Reducing, and then reacting ferrous chloride in the solution with a carbonate to form iron carbonate, separating the generated iron carbonate from the reaction solution, and adding a mole to the separated iron carbonate. And adding a 1.5-fold to 1.8-fold sulfuric acid in quantity.

【0010】[0010]

【発明の実施の形態】本実施の形態として塩化第二鉄エ
ッチング廃液から、当該液中の鉄分をポリ硫酸第二鉄と
して取り出す製法を例にとり、図1にこれを図示する。
この図1ではポリ硫酸第二鉄が製造されるまでの工程を
便宜的に四つの工程に分けており、これらは、塩化第二
鉄エッチング廃液の第二鉄を第一鉄に還元する工程
(イ)、この溶液と炭酸塩を反応させてこれにより生じる
炭酸鉄を濾液と分離する工程(ロ)、この工程(ロ)で
分離された炭酸鉄を硫酸と混合して硫酸第二鉄(Fe2
(SO4)3)を生成する工程(ハ)、及び硫酸第二鉄に少
量の炭酸鉄を加えると共に溶液を酸化してポリ硫酸第二
鉄を得る工程(ニ)の夫々の工程からなる。図1におけ
る工程(ハ)及び工程(ニ)についての詳細な説明図は
図2に示され、工程(ハ)を水槽20、工程(ニ)を水
槽30で行うように夫々分けて説明しているが、これは
便宜的な表現にすぎず、例えば同一水槽内にて、工程
(ハ)及び工程(ニ)をバッチ処理で進行するようにし
てよいことは勿論である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention in which a ferric chloride etching waste liquid is used as an example to remove iron in the liquid as ferric polysulfate.
In FIG. 1, the steps up to the production of ferric polysulfate are conveniently divided into four steps, which are steps for reducing ferric chloride etching waste liquid to ferrous iron.
(B) a step of reacting this solution with a carbonate to separate the resulting iron carbonate from the filtrate (b), and mixing the iron carbonate separated in this step (b) with sulfuric acid to obtain ferric sulfate ( Fe2
(C) for producing (SO4) 3) and (d) a step of adding a small amount of iron carbonate to ferric sulfate and oxidizing the solution to obtain ferric polysulfate. FIG. 2 is a detailed explanatory view of the step (c) and the step (d) in FIG. 1. The step (c) is performed separately in the water tank 20 and the step (d) is performed in the water tank 30. However, this is merely a convenient expression, and it goes without saying that, for example, the steps (c) and (d) may be performed in a batch process in the same water tank.

【0011】水槽1、10、20及び30には夫々攪拌
手段32が設けられており、水槽30内には酸化性ガス
供給用のバブリング装置31が設けられている。この酸
化性ガス供給手段はバブリング装置31に限定されるも
のではなく、高圧流体に気体を引き込むアスピレーター
等を用いることや、高圧反応容器での高速反応も可能で
ある。酸化性ガスは酸素に限られず、オゾン(O3)、
NO2等を用いてもよい。また、酸化剤水溶液でも酸化
は可能だが、同伴する不純物の混入から事実上使用でき
ないことが多いため、この場合はH2O2水溶液を用いて
酸化することが好ましい。
Each of the water tanks 1, 10, 20, and 30 is provided with a stirring means 32, and the water tank 30 is provided with a bubbling device 31 for supplying an oxidizing gas. The oxidizing gas supply means is not limited to the bubbling device 31, and an aspirator or the like for drawing gas into a high-pressure fluid or a high-speed reaction in a high-pressure reaction vessel is also possible. The oxidizing gas is not limited to oxygen, but ozone (O3),
NO2 or the like may be used. Oxidation is also possible with an oxidizing agent aqueous solution, but it is often impossible to use it due to contamination of accompanying impurities. In this case, it is preferable to oxidize using an H2O2 aqueous solution.

【0012】次に図1における各工程の説明を行う。ま
ず工程(イ)の水槽1内には塩化第二鉄エッチング廃液
が入れられる。この廃液の中には、エッチングにより生
じた塩化第一鉄や、未反応の塩化第二鉄が混在してい
る。そこで、この廃液中の第二鉄の殆どを第一鉄にする
ため、鉄材を投入して(3)式による反応を行う。
Next, each step in FIG. 1 will be described. First, the ferric chloride etching waste liquid is put into the water tank 1 in the step (a). In this waste liquid, ferrous chloride generated by etching and unreacted ferric chloride are mixed. Therefore, in order to make most of the ferric iron in the waste liquid ferrous, an iron material is introduced and the reaction according to the equation (3) is performed.

【0013】 Fe+2FeCl3→3FeCl2 ……(3) 次にこの反応液を水槽10に送り、ここで水槽10内に
炭酸塩を供給すると水に難溶な炭酸鉄が生成し、水槽1
0内に沈殿する。炭酸塩には各種アルカリ金属及びアル
カリ土類金属の炭酸塩が用いることが可能であり、例え
ば15重量%の炭酸ナトリウム(Na2CO3)をpHが
7〜8程度以上となるように加えると(4)式のように
反応する。
[0013] Next, this reaction solution is sent to the water tank 10 where carbonate is supplied into the water tank 10 to form iron carbonate insoluble in water.
Precipitates in 0. As the carbonate, various alkali metal and alkaline earth metal carbonates can be used. For example, when 15% by weight of sodium carbonate (Na2CO3) is added so that the pH becomes about 7 to 8 or more, (4) It reacts like a formula.

【0014】 FeCl2+Na2CO3→FeCO3↓+2NaCl……(4) なお、本発明では図示されないが炭酸塩そのものを水槽
10内に供給しなくとも、例えば、水酸化ナトリウム
(NaOH)を水槽10内に供給すると共に炭酸ガス
(CO2)を吹き込んで炭酸ナトリウムを水槽10内で
生成するようにしてもよく、この場合も炭酸塩を供給す
るという意味に含まれる。
FeCl 2 + Na 2 CO 3 → FeCO 3 ↓ + 2 NaCl (4) Although not shown in the present invention, for example, sodium hydroxide (NaOH) is supplied into the water tank 10 without supplying the carbonate itself into the water tank 10. Carbon dioxide gas (CO2) may be blown to generate sodium carbonate in the water tank 10, and this also means that carbonate is supplied.

【0015】そして生成した炭酸鉄を例えば吸引濾過に
より分離し、分離された濾液はそのまま排水処理系へ流
すことができるが、イオン交換樹脂等を通過させて塩類
の除去も行うことができる。
The produced iron carbonate is separated by, for example, suction filtration, and the separated filtrate can be directly passed to a wastewater treatment system. However, salts can be removed by passing through an ion exchange resin or the like.

【0016】濾過後の炭酸鉄は図2の工程(ハ)に示す
ように水槽20内に供給される硫酸(H2SO4)とO2
又はH2O2で以下の式(5)のように反応する。この時
供給される硫酸のモル比については従来例のように鉄分
の1以上1.5倍未満であると次の酸化工程で難溶性の
(Fe2(OH)n(SO4)3-n/2)(n≧1)の沈殿が生じて
しまう。一方で硫酸量があまりに多いと鉄分と未反応の
硫酸が次の酸化工程で供給される少量の炭酸鉄と反応し
て硫酸第一鉄へと変化してしまうため、工程(ハ)で供
給される硫酸は鉄分の1.5倍以上1.8倍未満のモル
比で、なるべく1.5に近いことが好ましい。
As shown in FIG. 2C, sulfuric acid (H2SO4) and O2 supplied to the water tank 20 are filtered.
Alternatively, it reacts with H2O2 as in the following formula (5). If the molar ratio of the sulfuric acid supplied at this time is not less than 1 and less than 1.5 times the iron content as in the conventional example, the poorly soluble in the next oxidation step.
Precipitation of (Fe2 (OH) n (SO4) 3-n / 2) (n≥1) occurs. On the other hand, if the amount of sulfuric acid is too large, the iron and unreacted sulfuric acid react with a small amount of iron carbonate supplied in the next oxidation step and change into ferrous sulfate. Preferably, the sulfuric acid has a molar ratio of 1.5 times or more and less than 1.8 times the iron content, and is preferably as close to 1.5 as possible.

【0017】[0017]

【0018】 2FeCO3+3H2SO4+1/2O2 →Fe2(SO4)3+3H2O+2CO2……(5) この後、図2の工程(ニ)に示すように酸化を行う。反
応は以下の(6)式のように、工程(ハ)で得られた硫
酸第二鉄溶液に少量の炭酸鉄及び酸化性ガスを反応させ
ることで進められ、この反応により目的物のポリ硫酸第
二鉄溶液が得られることとなる。
2FeCO 3 + 3H 2 SO 4 + 1 / 2O 2 → Fe 2 (SO 4) 3 + 3H 2 O + 2CO 2 (5) Thereafter, oxidation is performed as shown in step (d) of FIG. The reaction proceeds as shown in the following formula (6) by reacting a small amount of iron carbonate and an oxidizing gas with the ferric sulfate solution obtained in the step (c). A ferric solution will be obtained.

【0019】 4(3−n/2)Fe2(SO4)3+4nFeCO3+nO2+6nH2O →12Fe2(OH)n(SO4)3-n/2+4nCO2↑……(6) これまで述べてきた実施の形態によると、工程(ハ)の溶
液中はFe2(SO4)3と過剰の硫酸であり、ポリ硫酸第
二鉄の生成を行うには鉄分の不足状態にあるといえる。
従って前述の自製した硫酸第二鉄溶液で(6)式の反応
を行えば、不足した鉄分を補うだけの少量の炭酸鉄を加
えれば良いわけである。
4 (3-n / 2) Fe2 (SO4) 3 + 4nFeCO3 + nO2 + 6nH2O → 12Fe2 (OH) n (SO4) 3-n / 2 + 4nCO2... (6) According to the above-described embodiment, the process (c) The solution of (2) contains Fe2 (SO4) 3 and excess sulfuric acid, and it can be said that there is a shortage of iron for producing ferric polysulfate.
Therefore, if the reaction of the formula (6) is carried out using the ferric sulfate solution prepared as described above, it is sufficient to add a small amount of iron carbonate to compensate for the insufficient iron content.

【0020】例えば塩基度約17%のポリ硫酸第二鉄
(Fe2(OH)(SO4)2.5)を製造する場合だと以下の
(7)式のように原料である硫酸第二鉄に含有する鉄分
(Fe)に対し1/5量に相当する鉄分を炭酸鉄(Fe
CO3)で補給して酸化すればよいことになる。実際
は、塩基度が10%前後であることを考慮すれば、更に
この割合は下がり、約1/10の炭酸鉄補給でよいこと
になる。
For example, in the case of producing ferric polysulfate (Fe2 (OH) (SO4) 2.5) having a basicity of about 17%, it is contained in ferric sulfate as a raw material as in the following formula (7). The iron content equivalent to 1/5 of the iron content (Fe) is changed to iron carbonate (Fe).
It is only necessary to supplement with CO3) and oxidize. In fact, considering that the basicity is around 10%, this ratio further decreases, and about 1/10 of iron carbonate supplementation is sufficient.

【0021】 5Fe2(SO4)3+2FeCO3+3H2O+1/2O2 →6Fe2(OH)(SO4)2.5+2CO2 ……(7) このように上述実施の形態では先ず炭酸鉄にモル量で
1.5倍以上の硫酸を加えて溶解度の高い硫酸第二鉄を
生成し、次いでこの硫酸第二鉄に少量の炭酸鉄を混合
し、例えばO2により酸化することから、酸化で難溶性
の(Fe2(OH)n(SO4)3-n/2)(n≧1)の沈殿がほと
んど生成されない。即ち理論的には炭酸鉄にモル量で
1.5倍の硫酸を反応させればよいわけであるが、確実
に硫酸第二鉄を得るためには1.5倍よりも若干多い
1.5〜1.8倍、好ましくは1.5〜1.6倍程度の
硫酸を供給することが好ましい。このため未反応の少量
の硫酸が残り、次工程で炭酸鉄と反応してFeSO4を
生ずるが、これも酸化されてポリ硫酸第二鉄となる。そ
のため、上記(7)式より少し多くの炭酸鉄が必要とな
る。しかし、その量は溶液全体から見れば僅かであり、
高い歩留りでポリ硫酸第二鉄を得ることができ、また工
程(ニ)ではスラリー化し難い条件なので酸化のコントロ
ールにも支障がない。
5Fe2 (SO4) 3 + 2FeCO3 + 3H2O + 1 / 2O2 → 6Fe2 (OH) (SO4) 2.5 + 2CO2 (7) Thus, in the above-described embodiment, 1.5 times or more by mole of sulfuric acid is first added to iron carbonate. Since ferric sulfate having high solubility is produced, and then a small amount of iron carbonate is mixed with the ferric sulfate and oxidized by, for example, O2, (Fe2 (OH) n (SO4) 3- n / 2) (n ≧ 1) precipitate is hardly formed. That is, theoretically, it is sufficient to react iron carbonate with sulfuric acid in a molar amount of 1.5 times. However, in order to surely obtain ferric sulfate, 1.5 times of sulfuric acid slightly more than 1.5 times is required. It is preferable to supply sulfuric acid up to about 1.8 times, preferably about 1.5 to 1.6 times. For this reason, a small amount of unreacted sulfuric acid remains and reacts with iron carbonate in the next step to produce FeSO4, which is also oxidized to ferric polysulfate. Therefore, a little more iron carbonate is required than the above formula (7). However, the amount is small when viewed from the whole solution,
Ferric polysulfate can be obtained at a high yield, and there is no hindrance to the control of oxidation because the slurry is hardly formed in the step (d).

【0022】即ち、従来法では炭酸鉄にモル量で1〜
1.5倍の硫酸を加えて生じた硫酸第一鉄を酸化する、
という手法であり、硫酸第一鉄に対してポリ硫酸第二鉄
とするための不足のSO4分を硫酸で補っていたが、上
述実施の形態では炭酸鉄に加える硫酸のモル量を1.5
倍以上として容易には沈殿を生じない硫酸第二鉄を得、
この硫酸第二鉄に対してポリ硫酸第二鉄とするために不
足する少量のFeを炭酸鉄により補うことから、O2酸
化のみならず、H2O2酸化でも薬剤コストのアップが無
視できる。更にこの手法では工程(ロ)で得た炭酸鉄を
工程(ニ)においても利用できるので、この点でも有効
な手法である。
That is, in the conventional method, the iron carbonate is added in a molar amount of 1 to 1.
Oxidize ferrous sulfate produced by adding 1.5 times sulfuric acid,
In this method, sulfuric acid was used to make up for the insufficient SO4 to make ferric sulfate with respect to ferrous sulfate. However, in the above-described embodiment, the molar amount of sulfuric acid added to iron carbonate was 1.5 times.
To obtain ferric sulfate which does not easily precipitate as more than twice,
Since a small amount of Fe, which is insufficient for ferric sulfate to be ferric sulfate, is supplemented with iron carbonate, an increase in chemical cost can be ignored not only in O2 oxidation but also in H2O2 oxidation. Further, in this method, the iron carbonate obtained in the step (b) can be used also in the step (d), so that this method is also effective.

【0023】なお前にも述べたように工程(ハ)及び
(ニ)は、バッチ反応では同一水槽で反応を行うことで
効率的に進めることができる。酸化ガス供給のタイミン
グは液量、濃度及び温度に応じて予め計測したデータに
よるか、或いは図示されない制御装置等により定められ
る。一連の工程(ハ)及び(ニ)の温度は60℃〜10
0℃で行われ、圧力は常圧でも加圧しても良く、加圧時
には反応が加速する。
As described above, the steps (c) and (d) can be efficiently performed by performing the reaction in the same water tank in the batch reaction. The timing of supplying the oxidizing gas is determined based on data measured in advance according to the liquid amount, the concentration and the temperature, or determined by a control device (not shown) or the like. The temperature of the series of steps (c) and (d) is 60 ° C to 10 ° C.
The reaction is carried out at 0 ° C., and the pressure may be normal pressure or pressurization. At the time of pressurization, the reaction is accelerated.

【0024】また、工程(ニ)において原料となる硫酸
第二鉄についてはこれまで述べてきた実施の形態のよう
に自製して得る方法の他にも鉱石や市販の物を用いるこ
ともできるが、自製する方法がコスト的に有利である。
As the ferric sulfate used as a raw material in the step (d), an ore or a commercially available ore can be used in addition to the method of self-production as in the above-described embodiments. The self-made method is advantageous in cost.

【0025】ところで、工程(ハ)や(ニ)においては
(5)、(6)式の反応が進み、第一鉄の濃度が低下し、
酸化反応が停滞する場合を考慮して、工程(ハ)及び
(ニ)に過酸化水素水を用いる手法を採ることもできる。
しかし過酸化水素水は高価なため、第一鉄の濃度が減少
して反応速度が遅くなり始めた頃に供給することで、コ
スト抑制及び装置の小型化の達成が可能である。
By the way, in the steps (c) and (d), the reactions of the equations (5) and (6) proceed, and the concentration of ferrous iron decreases.
In consideration of the case where the oxidation reaction stagnates,
(D) A method using a hydrogen peroxide solution may be employed.
However, since the hydrogen peroxide solution is expensive, it is possible to achieve cost reduction and downsizing of the apparatus by supplying it when the concentration of ferrous iron decreases and the reaction rate starts to slow down.

【0026】[0026]

【実施例】(実施例)塩化第一鉄を7重量%、塩化第二鉄
を32重量%含むエッチング廃液1000gに鉄粉55
gを添加し、加熱して反応させたところ、42.2重量
%の塩化第一鉄が1055g得られた。
EXAMPLES (Example) Iron powder 55 was added to 1000 g of an etching waste liquid containing 7% by weight of ferrous chloride and 32% by weight of ferric chloride.
g was added and the mixture was reacted by heating. As a result, 1055 g of 42.2% by weight of ferrous chloride was obtained.

【0027】この溶液に予め調製した15重量%の炭酸
ナトリウム溶液2480gを混合した後、更に20gを
加えてpHを7.8とし、炭酸鉄を析出させた。これに
分離、水洗及び脱水を行って含水率27%の炭酸鉄ケー
キ556gを得た。
After mixing 2480 g of a 15% by weight sodium carbonate solution prepared in advance with this solution, 20 g was further added to adjust the pH to 7.8, and iron carbonate was precipitated. This was separated, washed and dehydrated to obtain 556 g of an iron carbonate cake having a water content of 27%.

【0028】この炭酸鉄548gを60重量%の硫酸8
73gに溶解し、水で希釈して2000gとした。この
溶液を還流装置のついたジャケット付き高速攪拌容器
で、O2ガスを流しながら24時間強力攪拌して沈殿析
出のない硫酸第二鉄の34.5重量%溶液2000gを
得た。但し、蒸発して減った水は補給して行った。
548 g of the iron carbonate was added to 60% by weight sulfuric acid 8
Dissolved in 73 g and diluted with water to 2000 g. This solution was vigorously stirred for 24 hours in a jacketed high-speed stirring vessel equipped with a reflux device while flowing O2 gas to obtain 2000 g of a 34.5% by weight solution of ferric sulfate without precipitation. However, the water reduced by evaporation was supplied.

【0029】次に、この液に上記の含水率27%の炭酸
鉄94gを加え、攪拌して溶解した後、35重量%の過
酸化水素水50gを徐々に添加し、第一鉄の殆ど全部を
酸化して沈殿のない第二鉄濃度10.5%、塩基度12
%、pH1.25のポリ硫酸第二鉄2144gを得た。
Next, 94 g of the above-mentioned iron carbonate having a water content of 27% was added to this solution, and dissolved by stirring. Then, 50 g of a 35% by weight aqueous hydrogen peroxide solution was gradually added, and almost all of ferrous iron was added. Is oxidized to precipitate without ferric concentration 10.5%, basicity 12
%, PH 1.25, and 2144 g of ferric polysulfate were obtained.

【0030】(比較例1)炭酸鉄(乾燥)350gと95重
量%の硫酸421gを混合し、更に水を加えて1600
gとした。この溶液を還流装置のついたジャケット付き
高速攪拌容器において、80℃でO2ガスを供給して酸
化をを行ったところ、計算上の塩基度が10%でFe濃
度(Fe2+と微量のFe3+)が約10%であるにも拘ら
ず、反応開始直後から沈殿析出が始まり、時間が経って
もこの傾向は同じで析出が続いた。その結果7時間後に
は液中のFeイオン濃度(Fe2+とFe3+)が6.18%
と下がってしまい、目標としたFe3+濃度が10%以上
のポリ硫酸第二鉄は得られなかった。ちなみに、沈殿を
X線にかけて調べたところ、主としてFe6S4O21・x
H2Oのピークが得られた。
(Comparative Example 1) 350 g of iron carbonate (dry) and 421 g of 95% by weight sulfuric acid were mixed, and water was further added thereto to prepare 1600 g.
g. This solution was oxidized in a jacketed high-speed stirring vessel equipped with a reflux device at 80 ° C. by supplying O 2 gas. The calculated basicity was 10%, and the Fe concentration (Fe 2+ and trace amount of Fe 3+) was increased. Despite being about 10%, precipitation started immediately after the start of the reaction, and this tendency remained the same even after a lapse of time, and precipitation continued. As a result, after 7 hours, the Fe ion concentration (Fe2 + and Fe3 +) in the solution was 6.18%.
Thus, ferric polysulfate having a target Fe3 + concentration of 10% or more could not be obtained. By the way, when the precipitate was examined by X-ray, it was found to be mainly Fe6S4O21.x.
An H2O peak was obtained.

【0031】(比較例2)試薬の硫酸第一鉄(FeSO4無
水塩)459gと95%硫酸110gとに水を加えて1
600gとした。この溶液を比較例1と同じ装置と反応
条件で酸化を行ったところ、やはり比較例1と同様、沈
殿析出があり、液中のFeイオン濃度(濾液中のFe濃
度)が3時間で5.95%に低下してしまい、目的とす
る濃度のポリ硫酸鉄は得られなかった。沈殿のX線回折
の結果は比較例1と同様の結晶であった。
Comparative Example 2 Water was added to 459 g of ferrous sulfate (anhydrous FeSO4 salt) and 110 g of 95% sulfuric acid to obtain 1
The weight was 600 g. When this solution was oxidized under the same apparatus and reaction conditions as in Comparative Example 1, precipitation also occurred as in Comparative Example 1, and the Fe ion concentration in the solution (Fe concentration in the filtrate) was 5. It was reduced to 95%, and the desired concentration of iron polysulfate could not be obtained. The result of X-ray diffraction of the precipitate was the same as that of Comparative Example 1.

【0032】[0032]

【発明の効果】本発明によれば、溶液内の沈殿析出を極
力抑えられるので、製造されたポリ硫酸第二鉄溶液から
沈殿物を分離する後工程の負荷を減らすことができ、ポ
リ硫酸第二鉄の取得率を高くすることができる。また、
他の発明によれば例えば塩化第二鉄エッチング廃液の如
き鉄塩廃液から分離した炭酸鉄を利用してポリ硫酸第二
鉄を製造するので有効な廃液処理の途を提供することが
できる。
According to the present invention, the precipitation in the solution can be suppressed as much as possible, so that the load of the post-step of separating the precipitate from the produced ferric polysulfate solution can be reduced, and the polysulfate can be reduced. The acquisition rate of ferrous iron can be increased. Also,
According to another aspect of the present invention, ferric polysulfate is produced using iron carbonate separated from an iron salt waste liquid such as a ferric chloride etching waste liquid, so that an effective waste liquid treatment method can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一の実施の形態を表した説明図であ
る。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】図1中の工程(ハ)及び工程(ニ)について詳説し
た説明図である。
FIG. 2 is an explanatory diagram illustrating a step (c) and a step (d) in FIG. 1 in detail.

【符号の説明】[Explanation of symbols]

10,20,30 水槽 31 バブリング手段 32 攪拌手段 10, 20, 30 water tank 31 bubbling means 32 stirring means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松木 詩路士 神奈川県横浜市鶴見区末広町1−7 鶴見 曹達株式会社内 Fターム(参考) 4D015 BA04 BA10 DA16 4G048 AA07 AB02 AC08 AE01  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shiji Matsuki 1-7 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture F-term in Tsurumi Soda Co., Ltd. 4D015 BA04 BA10 DA16 4G048 AA07 AB02 AC08 AE01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 硫酸第二鉄溶液と少量の炭酸鉄を混合す
るとともに、この混合液を酸化することを特徴とするポ
リ硫酸第二鉄の製造方法。
1. A method for producing ferric polysulfate, comprising mixing a ferric sulfate solution with a small amount of iron carbonate and oxidizing the mixture.
【請求項2】 硫酸第二鉄は、炭酸鉄に対してモル量で
1.5倍以上1.8倍以下の硫酸を加えて生成すること
を特徴とする請求項1記載のポリ硫酸第二鉄の製造方
法。
2. The ferric polysulfate according to claim 1, wherein the ferric sulfate is formed by adding 1.5 to 1.8 times sulfuric acid in a molar amount to iron carbonate. Iron manufacturing method.
【請求項3】 鉄塩廃液中の塩化第二鉄を塩化第一鉄に
還元する処理を行った後の鉄塩処理液を用い、この鉄塩
処理液中に含まれる塩化第一鉄を炭酸塩と反応させて炭
酸鉄を生成する工程と、前述反応により生成した炭酸鉄
を当該反応溶液から分離する工程と、を含み、炭酸鉄を
原料とすることを特徴とする請求項1及び請求項2に記
載のポリ硫酸第二鉄の製造方法。
3. An iron salt treatment liquid which has been subjected to a treatment for reducing ferric chloride in iron salt waste liquid to ferrous chloride is used, and ferrous chloride contained in the iron salt treatment liquid is converted to carbonic acid. The method according to claim 1, further comprising a step of producing iron carbonate by reacting with a salt, and a step of separating iron carbonate generated by the reaction from the reaction solution, wherein iron carbonate is used as a raw material. 3. The method for producing ferric polysulfate according to item 2.
JP35740998A 1998-12-16 1998-12-16 Method for producing polyferric sulfate Expired - Fee Related JP3641148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35740998A JP3641148B2 (en) 1998-12-16 1998-12-16 Method for producing polyferric sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35740998A JP3641148B2 (en) 1998-12-16 1998-12-16 Method for producing polyferric sulfate

Publications (2)

Publication Number Publication Date
JP2000178027A true JP2000178027A (en) 2000-06-27
JP3641148B2 JP3641148B2 (en) 2005-04-20

Family

ID=18453981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35740998A Expired - Fee Related JP3641148B2 (en) 1998-12-16 1998-12-16 Method for producing polyferric sulfate

Country Status (1)

Country Link
JP (1) JP3641148B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075697A (en) * 2005-09-13 2007-03-29 Matsuda Giken Kogyo Kk Water purifying agent and water purification method
JP2007508226A (en) * 2003-10-06 2007-04-05 トロノックス・ピグメンツ・ゲーエムベーハー Treatment method of waste sulfuric acid mixed with iron

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508226A (en) * 2003-10-06 2007-04-05 トロノックス・ピグメンツ・ゲーエムベーハー Treatment method of waste sulfuric acid mixed with iron
JP4745235B2 (en) * 2003-10-06 2011-08-10 トロノックス・ピグメンツ・ゲーエムベーハー Treatment method of waste sulfuric acid mixed with iron
JP2007075697A (en) * 2005-09-13 2007-03-29 Matsuda Giken Kogyo Kk Water purifying agent and water purification method
JP4630776B2 (en) * 2005-09-13 2011-02-09 松田技研工業株式会社 Water purification agent and water purification method

Also Published As

Publication number Publication date
JP3641148B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
JP2003512160A (en) Method for reducing the concentration of dissolved metal and metalloid in aqueous solution
MX2013010182A (en) Method for producing a poorly soluble calcium-arsenic compound.
JP7372691B2 (en) How to obtain scorodite with a high arsenic content from an acidic solution with a high sulfuric acid content
CN106868320A (en) A kind of preparation method of the solid arsenic mineral of high stability
JPH1170316A (en) Desulfurization method for exhaust gas
JP5507318B2 (en) Treatment method for wastewater containing metal ions
FI81128B (en) AVLAEGSNANDE AV KROM UR CELLVAETSKA.
CN107954537A (en) A kind of time, phosphite wastewater treatment method
JP2000178027A (en) Production of iron (i) polysulfate
CA2285731C (en) Process for preparing usable products from an impure ferric sulfate solution
JP4154052B2 (en) Method for producing ferric sulfate solution
JP4666275B2 (en) Treatment method for wastewater containing sulfite ions
JP3985125B2 (en) Ferric chloride solution manufacturing method, system thereof, and apparatus thereof
JP3816131B2 (en) Arsenic oxidation method
JP4531958B2 (en) Treatment method of waste water containing hydrazine
EP0110848B1 (en) A method for producing water-purifying chemicals
JP2000178766A (en) Method for oxidizing ferrous salt
JP3536787B2 (en) Method for recovering copper in aqueous solution containing hydrochloric acid and copper chloride
JPH09176861A (en) Treatment of deteriorated electroless nickel plating solution
JPS5817260B2 (en) Etching agent waste treatment method
CA1286476C (en) Process of preparing a preferred ferric sulfate solution, and product
CN106823235A (en) A kind of method that regulation and control growth method prepares the solid arsenic mineral of high stability
KR790001803B1 (en) Process for liquid phase oxidation of organic substance containing effluents
JP3631515B2 (en) Production of basic ferric sulfate solution from iron salt solution
CZ185696A3 (en) Process for preparing a sulfate and a hydroxide containing both ferric compounds

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees