JP2000177845A - Carrying method for thermoplastic resin powder and granule, and manufacture of thermoplastic resin pellet - Google Patents

Carrying method for thermoplastic resin powder and granule, and manufacture of thermoplastic resin pellet

Info

Publication number
JP2000177845A
JP2000177845A JP10358896A JP35889698A JP2000177845A JP 2000177845 A JP2000177845 A JP 2000177845A JP 10358896 A JP10358896 A JP 10358896A JP 35889698 A JP35889698 A JP 35889698A JP 2000177845 A JP2000177845 A JP 2000177845A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin powder
powder
bis
granule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10358896A
Other languages
Japanese (ja)
Inventor
Hideharu Sugazaki
秀春 菅崎
Akiyoshi Manabe
昭良 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP10358896A priority Critical patent/JP2000177845A/en
Publication of JP2000177845A publication Critical patent/JP2000177845A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Transport Of Granular Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carrying method to obtain thermoplastic resin powder and granule without the increase of a foreign material amount, and an effective and stable manufacturing method for thermoplastic resin pellet excellent in hue with reduced foreign material by melting and extruding the thermoplastic resin powder and granule carried by the carrying method. SOLUTION: A carrying method for thermoplastic resin powder and granule uses inert carrier gas having moisture from 50% in relative humidity to 1.5 times of saturated steam. A manufacturing method for thermoplastic resin pellet melts and extrudes the thermoplastic resin powder and granule. The manufacturing method for thermoplastic resin pellet uses the thermoplastic resin powder and granule carried by airflow of the inert carrier gas having moisture from 50% in relative humidity to 1.5 times of saturated steam.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱可塑性樹脂粉粒
状体の輸送方法および熱可塑性樹脂ペレットの製造方法
に関する。さらに詳しくは、水分量を調整した気体で気
流輸送して、異物量の増大の無い熱可塑性樹脂粉粒状体
を得る輸送方法および該輸送方法により輸送した熱可塑
性樹脂粉状体を溶融押出して得られる色相に優れ、且つ
異物の少ない熱可塑性樹脂ペレットの製造方法に関す
る。なお、本発明においては、粉粒状体とはパウダーお
よびペレットの両方を含み、粉状体とはパウダーのこと
を意味する。
The present invention relates to a method for transporting thermoplastic resin powder and granular material and a method for producing thermoplastic resin pellets. More specifically, a method of transporting airflow with a gas whose moisture content has been adjusted to obtain a thermoplastic resin powder having no increase in the amount of foreign matter, and a method of melt-extruding the thermoplastic resin powder transported by the transport method. The present invention relates to a method for producing a thermoplastic resin pellet having an excellent hue and containing few foreign substances. In the present invention, the powdery material includes both powder and pellets, and the powdery material means powder.

【0002】[0002]

【従来の技術】熱可塑性樹脂粉状体を溶融押出して、熱
可塑性樹脂ペレットを製造する方法において、従来か
ら、(1)熱可塑性樹脂粉状体を押出機ホッパーに空気
を用いて気流輸送し、この粉状体を溶融押出しする方法
や(2)押出機ホッパーに不活性ガスを通気しながら、
気流輸送した熱可塑性樹脂粉状体を供給して、この粉状
体を溶融押出しする方法が一般に採用されている。しか
しながら、(1)の方法は溶融押出の際、粉状体ととも
に気流輸送に用いた空気を溶融押出機内に巻き込み、空
気中の酸素によって熱可塑性樹脂が酸化分解し、色相の
悪化や物性低下を引き起こし好ましくない。(2)の方
法は熱可塑性樹脂の酸化分解を抑え、色相の悪化や物性
低下を防ぐ方法であるが、押出機ホッパーにおける不活
性ガスの滞留時間が短いと不活性ガスへの置換が完全に
出来ず、不活性ガスの使用量に対しその効果は低く、十
分でない。また、いずれの方法も得られるペレットの異
物量が多いという問題がある。
2. Description of the Related Art In a method for producing thermoplastic resin pellets by melt-extruding a thermoplastic resin powder, conventionally, (1) pneumatic transportation of the thermoplastic resin powder to an extruder hopper using air. The method of melt-extruding this powdery material or (2) while passing an inert gas through an extruder hopper,
In general, a method of supplying a pulverized thermoplastic resin powder and melt-extruding the powder is generally adopted. However, in the method (1), at the time of melt extrusion, the air used for the pneumatic transport together with the powder is taken into the melt extruder, and the oxygen in the air causes the thermoplastic resin to be oxidized and decomposed, thereby deteriorating the hue and physical properties. Cause unfavorable. The method (2) is a method of suppressing the oxidative decomposition of the thermoplastic resin and preventing deterioration of the hue and physical properties. However, if the residence time of the inert gas in the extruder hopper is short, the replacement with the inert gas is completely completed. It is not possible and its effect on the amount of inert gas used is low and not sufficient. In addition, both methods have a problem that the amount of foreign matters in the pellets obtained is large.

【0003】また、熱可塑性樹脂ペレットの色相を向上
させるために、溶融押出の際、溶融状態のポリカーボネ
ート樹脂に水を注入添加する方法が提案されている(特
開昭62−294528号公報)。しかしながら、かか
る方法は、溶融状態のポリカーボネート樹脂に水を注入
添加するための押出機が必要であり、また、得られるペ
レットの異物量の低減については十分でない。
Further, in order to improve the hue of thermoplastic resin pellets, a method has been proposed in which water is injected and added to a molten polycarbonate resin at the time of melt extrusion (Japanese Patent Application Laid-Open No. 62-294528). However, such a method requires an extruder for injecting and adding water to the polycarbonate resin in a molten state, and is not sufficient for reducing the amount of foreign matters in the obtained pellets.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、異物
量の増大の無い熱可塑性樹脂粉粒状体を得る輸送方法お
よびこの方法により輸送された熱可塑性樹脂粉状体を溶
融押出して、色相に優れ、異物の少ない熱可塑性樹脂ペ
レットを効率的に且つ安定的に製造する方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for transporting thermoplastic resin particles without increasing the amount of foreign matter, and a method of melting and extruding the thermoplastic resin powder transported by this method to obtain a hue. It is an object of the present invention to provide a method for efficiently and stably producing thermoplastic resin pellets excellent in heat resistance and containing few foreign substances.

【0005】本発明者は、この目的を達成するために鋭
意研究を重ねた結果、熱可塑性樹脂粉粒状体を気流輸送
する際に、水分量を調整した不活性気体を輸送気体とし
て用いることによって、異物量の増大が無く、また、か
かる方法により輸送された熱可塑性樹脂粉状体を溶融押
出すると色相に優れ、異物の少ない熱可塑性樹脂ペレッ
トが得られることを見出し本発明に到達した。
The inventor of the present invention has conducted intensive studies in order to achieve this object. As a result, the present inventors have found that an inert gas whose moisture content has been adjusted is used as a transport gas when transporting thermoplastic resin powder particles by air flow. The present inventors have found that there is no increase in the amount of foreign substances, and that a thermoplastic resin pellet excellent in hue and containing few foreign substances can be obtained by melt-extruding a thermoplastic resin powder transported by such a method.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明によれ
ば、水分量が相対湿度50%〜飽和水蒸気の1.5倍で
ある不活性輸送気体を用いることを特徴とする熱可塑性
樹脂粉粒状体の輸送方法が提供される。
That is, according to the present invention, there is provided a thermoplastic resin granule characterized by using an inert transport gas having a water content of 50% relative humidity to 1.5 times saturated steam. A method of transporting a body is provided.

【0007】不活性気体は、通常ほぼ絶乾状態のものが
供給されている。その為、この絶乾状態の不活性気体を
使用して熱可塑性樹脂粉粒状体を輸送すると、粉粒状体
同士や粉粒状体と輸送管壁との衝突時、微粉の発生や輸
送管壁の欠落が起こり、これが起因となって異物の増大
が起こるものと推定される。
The inert gas is usually supplied in a substantially dry state. Therefore, when the thermoplastic resin particles are transported using the inert gas in a completely dry state, fine powder is generated or the transportation tube wall is crushed at the time of collision between the particles or between the particles and the transportation tube wall. It is presumed that dropouts occur, which causes foreign matter to increase.

【0008】そこで、輸送気体中の水分量をある範囲に
調整すると上記の衝突時の衝撃が緩和され、異物の発生
を抑制できる上に、輸送配管のサビによる老化も防止で
きる。
[0008] Therefore, when the amount of water in the transport gas is adjusted to a certain range, the impact at the time of the collision described above is reduced, the generation of foreign substances can be suppressed, and the aging of the transport pipe due to rust can be prevented.

【0009】本発明における熱可塑性樹脂とはポリカー
ボネート樹脂、ポリエステル樹脂、ポリメチルメタクリ
レート樹脂、ポリアリレート樹脂、ポリアミド樹脂、ポ
リオレフィン樹脂などが挙げられ、特にポリカーボネー
ト樹脂が好ましく用いられる。
The thermoplastic resin in the present invention includes polycarbonate resin, polyester resin, polymethyl methacrylate resin, polyarylate resin, polyamide resin, polyolefin resin and the like, and polycarbonate resin is particularly preferably used.

【0010】かかるポリカーボネート樹脂は、通常二価
フェノールとカーボネート前駆体とを溶液法または溶融
法で反応させて得られるものである。ここで使用される
二価フェノールの代表的な例としては、ハイドロキノ
ン、レゾルシノール、4,4′−ジヒドロキシジフェニ
ル、ビス(4−ヒドロキシフェニル)メタン、ビス
{(4−ヒドロキシ−3,5−ジメチル)フェニル}メ
タン、1,1−ビス(4−ヒドロキシフェニル)エタ
ン、1,1−ビス(4−ヒドロキシフェニル)−1−フ
ェニルエタン、2,2−ビス(4−ヒドロキシフェニ
ル)プロパン(通称ビスフェノールA)、2,2−ビス
{(4−ヒドロキシ−3−メチル)フェニル}プロパ
ン、2,2−ビス{(4−ヒドロキシ−3,5−ジメチ
ル)フェニル}プロパン、2,2−ビス{(3,5−ジ
ブロモ−4−ヒドロキシ)フェニル}プロパン、2,2
−ビス{(3−イソプロピル−4−ヒドロキシ)フェニ
ル}プロパン、2,2−ビス{(4−ヒドロキシ−3−
フェニル)フェニル}プロパン、2,2−ビス(4−ヒ
ドロキシフェニル)ブタン、2,2−ビス(4−ヒドロ
キシフェニル)−3−メチルブタン、2,2−ビス(4
−ヒドロキシフェニル)−3,3−ジメチルブタン、
2,4−ビス(4−ヒドロキシフェニル)−2−メチル
ブタン、2,2−ビス(4−ヒドロキシフェニル)ペン
タン、2,2−ビス(4−ヒドロキシフェニル)−4−
メチルペンタン、1,1−ビス(4−ヒドロキシフェニ
ル)シクロヘキサン、1,1−ビス(4−ヒドロキシフ
ェニル)−4−イソプロピルシクロヘキサン、1,1−
ビス(4−ヒドロキシフェニル)−3,3,5−トリメ
チルシクロヘキサン、9,9−ビス(4−ヒドロキシフ
ェニル)フルオレン、9,9−ビス{(4−ヒドロキシ
−3−メチル)フェニル}フルオレン、α,α′−ビス
(4−ヒドロキシフェニル)−o−ジイソプロピルベン
ゼン、α,α′−ビス(4−ヒドロキシフェニル)−m
−ジイソプロピルベンゼン、α,α′−ビス(4−ヒド
ロキシフェニル)−p−ジイソプロピルベンゼン、1,
3−ビス(4−ヒドロキシフェニル)−5,7−ジメチ
ルアダマンタン、4,4′−ジヒドロキシジフェニルス
ルホン、4,4′−ジヒドロキシジフェニルスルホキシ
ド、4,4′−ジヒドロキシジフェニルスルフィド、
4,4′−ジヒドロキシジフェニルケトン、4,4′−
ジヒドロキシジフェニルエーテルおよび4,4′−ジヒ
ドロキシジフェニルエステル等があげられ、これらは単
独または2種以上を混合して使用できる。
Such a polycarbonate resin is usually obtained by reacting a dihydric phenol with a carbonate precursor by a solution method or a melting method. Representative examples of the dihydric phenol used here include hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, bis (4-hydroxyphenyl) methane, bis {(4-hydroxy-3,5-dimethyl) Phenyl @ methane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane (commonly known as bisphenol A ), 2,2-bis {(4-hydroxy-3-methyl) phenyl} propane, 2,2-bis {(4-hydroxy-3,5-dimethyl) phenyl} propane, 2,2-bis} (3 , 5-Dibromo-4-hydroxy) phenyl} propane, 2,2
-Bis {(3-isopropyl-4-hydroxy) phenyl} propane, 2,2-bis} (4-hydroxy-3-
Phenyl) phenyl} propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) -3-methylbutane, 2,2-bis (4
-Hydroxyphenyl) -3,3-dimethylbutane,
2,4-bis (4-hydroxyphenyl) -2-methylbutane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxyphenyl) -4-
Methylpentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane, 1,1-
Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis {(4-hydroxy-3-methyl) phenyl} fluorene, α , Α'-bis (4-hydroxyphenyl) -o-diisopropylbenzene, α, α'-bis (4-hydroxyphenyl) -m
-Diisopropylbenzene, α, α'-bis (4-hydroxyphenyl) -p-diisopropylbenzene, 1,
3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxydiphenylsulfoxide, 4,4'-dihydroxydiphenylsulfide,
4,4'-dihydroxydiphenyl ketone, 4,4'-
Examples thereof include dihydroxydiphenyl ether and 4,4'-dihydroxydiphenyl ester, which can be used alone or as a mixture of two or more.

【0011】なかでもビスフェノールA、2,2−ビス
{(4−ヒドロキシ−3−メチル)フェニル}プロパ
ン、2,2−ビス(4−ヒドロキシフェニル)ブタン、
2,2−ビス(4−ヒドロキシフェニル)−3−メチル
ブタン、2,2−ビス(4−ヒドロキシフェニル)−
3,3−ジメチルブタン、2,2−ビス(4−ヒドロキ
シフェニル)−4−メチルペンタン、1,1−ビス(4
−ヒドロキシフェニル)−3,3,5−トリメチルシク
ロヘキサンおよびα,α′−ビス(4−ヒドロキシフェ
ニル)−m−ジイソプロピルベンゼンからなる群より選
ばれた少なくとも1種のビスフェノールより得られる単
独重合体または共重合体が好ましく、特に、ビスフェノ
ールAの単独重合体および1,1−ビス(4−ヒドロキ
シフェニル)−3,3,5−トリメチルシクロヘキサン
とビスフェノールA、2,2−ビス{(4−ヒドロキシ
−3−メチル)フェニル}プロパンまたはα,α′−ビ
ス(4−ヒドロキシフェニル)−m−ジイソプロピルベ
ンゼンとの共重合体が好ましく使用される。
Among them, bisphenol A, 2,2-bis {(4-hydroxy-3-methyl) phenyl} propane, 2,2-bis (4-hydroxyphenyl) butane,
2,2-bis (4-hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl)-
3,3-dimethylbutane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 1,1-bis (4
A homopolymer obtained from at least one bisphenol selected from the group consisting of -hydroxyphenyl) -3,3,5-trimethylcyclohexane and α, α'-bis (4-hydroxyphenyl) -m-diisopropylbenzene, or Copolymers are preferred. In particular, bisphenol A homopolymer and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane and bisphenol A, 2,2-bis {(4-hydroxy- Copolymers with 3-methyl) phenyl} propane or α, α′-bis (4-hydroxyphenyl) -m-diisopropylbenzene are preferably used.

【0012】カーボネート前駆体としてはカルボニルハ
ライド、カーボネートエステルまたはハロホルメート等
が使用され、具体的にはホスゲン、ジフェニルカーボネ
ートまたは二価フェノールのジハロホルメート等が挙げ
られる。
As the carbonate precursor, carbonyl halide, carbonate ester or haloformate is used, and specific examples include phosgene, diphenyl carbonate, dihaloformate of dihydric phenol and the like.

【0013】上記二価フェノールとカーボネート前駆体
を溶液法または溶融法によって反応させてポリカーボネ
ート樹脂を製造するに当っては、必要に応じて触媒、末
端停止剤、二価フェノールの酸化防止剤等を使用しても
よい。また、ポリカーボネート樹脂は三官能以上の多官
能性芳香族化合物を共重合した分岐ポリカーボネート樹
脂であっても、芳香族または脂肪族の二官能性カルボン
酸を共重合したポリエステルカーボネート樹脂であって
もよく、また、得られたポリカーボネート樹脂の2種以
上の混合物であってもよい。
In producing the polycarbonate resin by reacting the above-mentioned dihydric phenol with the carbonate precursor by a solution method or a melting method, a catalyst, a terminal stopper, an antioxidant for the dihydric phenol and the like may be used, if necessary. May be used. Further, the polycarbonate resin may be a branched polycarbonate resin obtained by copolymerizing a trifunctional or higher polyfunctional aromatic compound, or a polyester carbonate resin obtained by copolymerizing an aromatic or aliphatic bifunctional carboxylic acid. Alternatively, a mixture of two or more of the obtained polycarbonate resins may be used.

【0014】溶液法による反応は、通常二価フェノール
とホスゲンとの反応であり、酸結合剤および有機溶媒の
存在下に反応させる。酸結合剤としては、例えば水酸化
ナトリウム、水酸化カリウム等のアルカリ金属水酸化物
またはピリジン等のアミン化合物が用いられる。有機溶
媒としては、例えば塩化メチレン、クロロベンゼン等の
ハロゲン化炭化水素が用いられる。また、反応促進のた
めに例えばトリエチルアミン、テトラ−n−ブチルアン
モニウムブロマイド、テトラ−n−ブチルホスホニウム
ブロマイド等の第三級アミン、第四級アンモニウム化合
物、第四級ホスホニウム化合物等の触媒を用いることも
できる。その際、反応温度は通常0〜40℃、反応時間
は10分〜5時間程度、反応中のpHは9以上に保つの
が好ましい。
The reaction by the solution method is usually a reaction between dihydric phenol and phosgene, and is carried out in the presence of an acid binder and an organic solvent. As the acid binder, for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is used. As the organic solvent, for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used. Further, for promoting the reaction, for example, a catalyst such as a tertiary amine such as triethylamine, tetra-n-butylammonium bromide, or tetra-n-butylphosphonium bromide, a quaternary ammonium compound, or a quaternary phosphonium compound may be used. it can. At that time, the reaction temperature is usually 0 to 40 ° C., the reaction time is preferably about 10 minutes to 5 hours, and the pH during the reaction is preferably maintained at 9 or more.

【0015】また、かかる重合反応において、通常末端
停止剤が使用される。かかる末端停止剤として単官能フ
ェノール類を使用することができる。単官能フェノール
類は末端停止剤として分子量調節のために一般的に使用
され、また得られたポリカーボネート樹脂は、末端が単
官能フェノール類に基づく基によって封鎖されているの
で、そうでないものと比べて熱安定性に優れている。か
かる単官能フェノール類としては、一般にはフェノール
又は低級アルキル置換フェノールであって、下記一般式
(1)で表される単官能フェノール類を示すことができ
る。
In such a polymerization reaction, a terminal terminator is usually used. Monofunctional phenols can be used as such a terminal stopper. Monofunctional phenols are commonly used as molecular terminators for molecular weight control, and the resulting polycarbonate resins are capped by groups based on monofunctional phenols, so that Excellent heat stability. Such a monofunctional phenol is generally a phenol or a lower alkyl-substituted phenol, and may be a monofunctional phenol represented by the following general formula (1).

【0016】[0016]

【化1】 Embedded image

【0017】[式中、Aは水素原子または炭素数1〜9
の炭化水素基であり、rは1〜5、好ましくは1〜3の
整数である。]
[Wherein A is a hydrogen atom or a carbon number of 1 to 9]
And r is an integer of 1 to 5, preferably 1 to 3. ]

【0018】上記単官能フェノール類の具体例として
は、例えばフェノール、p−tert−ブチルフェノー
ル、p−クミルフェノールおよびイソオクチルフェノー
ル等が挙げられる。
Specific examples of the above monofunctional phenols include phenol, p-tert-butylphenol, p-cumylphenol and isooctylphenol.

【0019】溶液法により得られるポリカーボネート樹
脂の有機溶媒から、例えばこの溶液を温水中に添加する
方法、水蒸気と接触させる方法、濃縮または冷却する方
法、非溶媒または貧溶媒を添加する方法など公知の方法
により、ポリカーボネート樹脂パウダーを得ることがで
きる。かかるポリカーボネート樹脂パウダーは、後述す
る本発明の輸送方法およびペレットの製造方法に好適に
使用される。
From the organic solvent of the polycarbonate resin obtained by the solution method, known methods such as a method of adding this solution to warm water, a method of contacting with steam, a method of concentrating or cooling, and a method of adding a non-solvent or a poor solvent are used. According to the method, a polycarbonate resin powder can be obtained. Such a polycarbonate resin powder is suitably used in the transportation method and the pellet production method of the present invention described below.

【0020】溶融法による反応は、通常二価フェノール
とカーボネートエステルとのエステル交換反応であり、
不活性ガスの存在下に二価フェノールとカーボネートエ
ステルとを加熱しながら混合して、生成するアルコール
またはフェノールを留出させる方法により行われる。反
応温度は生成するアルコールまたはフェノールの沸点等
により異なるが、通常120〜350℃の範囲である。
反応後期には系を10〜0.1Torr程度に減圧して
生成するアルコールまたはフェノールの留出を容易にさ
せる。反応時間は通常1〜4時間程度である。
The reaction by the melting method is usually a transesterification reaction between a dihydric phenol and a carbonate ester,
The method is carried out by a method in which a dihydric phenol and a carbonate ester are mixed while heating in the presence of an inert gas to distill off the produced alcohol or phenol. The reaction temperature varies depending on the boiling point of the produced alcohol or phenol, but is usually in the range of 120 to 350 ° C.
In the latter stage of the reaction, the pressure of the system is reduced to about 10 to 0.1 Torr to facilitate the distillation of the alcohol or phenol produced. The reaction time is usually about 1 to 4 hours.

【0021】溶融法により得られるポリカーボネート樹
脂溶融物は、例えばこの溶融物をストランド状に押出
し、冷却し切断して、ポリカーボネート樹脂ペレットと
することができる。かかるポリカーボネート樹脂ペレッ
トは、後述する本発明の輸送方法に好適に使用される。
The polycarbonate resin melt obtained by the melting method can be extruded into, for example, a strand, cooled, and cut into polycarbonate resin pellets. Such polycarbonate resin pellets are suitably used in the transportation method of the present invention described below.

【0022】ポリカーボネート樹脂の分子量は、粘度平
均分子量(M)で10,000〜50,000が好まし
く、12,000〜40,000がより好ましく、1
3,000〜30,000が特に好ましい。かかる粘度
平均分子量を有するポリカーボネート樹脂は、十分な強
度が得られ、また、成形時の溶融流動性も良好であり好
ましい。本発明でいう粘度平均分子量は塩化メチレン1
00mlにポリカーボネート樹脂0.7gを20℃で溶
解した溶液から求めた比粘度(ηsp)を次式に挿入して
求めたものである。 ηsp/c=[η]+0.45×[η]2c(但し[η]
は極限粘度) [η]=1.23×10-40.83 c=0.7
The molecular weight of the polycarbonate resin is preferably 10,000 to 50,000, more preferably 12,000 to 40,000, and more preferably 1 to 40,000 in terms of viscosity average molecular weight (M).
3,000 to 30,000 are particularly preferred. A polycarbonate resin having such a viscosity average molecular weight is preferable because sufficient strength is obtained and the melt fluidity during molding is good. The viscosity average molecular weight referred to in the present invention is methylene chloride 1
The specific viscosity (η sp ) obtained from a solution obtained by dissolving 0.7 g of a polycarbonate resin in 00 ml at 20 ° C. was inserted into the following equation. η sp /c=[η]+0.45×[η] 2 c (where [η]
Is the intrinsic viscosity) [η] = 1.23 × 10 −4 M 0.83 c = 0.7

【0023】本発明において使用される不活性輸送気体
は、窒素ガス、炭酸ガスおよびこれらの混合ガスが好ま
しく使用され、特に窒素ガスが好ましく使用される。使
用した不活性輸送気体は、再利用することもできる。
As the inert transport gas used in the present invention, nitrogen gas, carbon dioxide gas and a mixed gas thereof are preferably used, and nitrogen gas is particularly preferably used. The used inert transport gas can be reused.

【0024】本発明の輸送方法において、不活性輸送気
体の水分量は、相対湿度が50%以上、好ましくは60
%以上、より好ましくは80%以上で、飽和水蒸気の
1.5倍以下、好ましくは1.4倍以下である。相対湿
度が50%未満の不活性輸送気体を使用した場合は、熱
可塑性樹脂粉粒状体と配管内壁との接触により、配管か
ら発生する金属異物が増加し好ましくない。また、飽和
水蒸気の1.5倍より多い水分を含む不活性輸送気体を
使用した場合は、長期間定常的にかかる熱可塑性樹脂粉
粒状体を輸送すると、水分に起因する配管内壁への腐食
が発生し易く、殊にポリカーボネート樹脂の場合、ポリ
カーボネート樹脂中に残存する塩素化合物と水分との反
応で発生する塩酸によって、より配管内壁への腐食が発
生し易く、この腐食により異物量が増加し好ましくな
い。不活性輸送気体中の水分量の調整は、水蒸気や水が
用いられるが、特に水蒸気が好ましく用いられる。
In the transport method of the present invention, the inert transport gas has a relative humidity of 50% or more, preferably 60% or more.
% Or more, more preferably 80% or more, and 1.5 times or less, preferably 1.4 times or less of the saturated steam. When an inert transport gas having a relative humidity of less than 50% is used, metal particles generated from the pipe increase due to contact between the thermoplastic resin powder and the inner wall of the pipe, which is not preferable. In addition, when an inert transport gas containing more than 1.5 times the water content of the saturated steam is used, when the thermoplastic resin powder or the like is constantly transported for a long period of time, corrosion on the inner wall of the pipe due to the water content may occur. It is easy to generate, especially in the case of polycarbonate resin, the hydrochloric acid generated by the reaction between the chlorine compound remaining in the polycarbonate resin and the water causes the corrosion to the inner wall of the pipe more easily, and the amount of foreign substances increases due to this corrosion, which is preferable. Absent. Water vapor or water is used to adjust the amount of water in the inert transport gas, and water vapor is particularly preferably used.

【0025】また、不活性輸送気体中の酸素濃度は5容
量%以下であることが好ましく、この範囲内であると、
後述する溶融押出成形して得られる熱可塑性樹脂ペレッ
トの色相がより良好となり好ましい。
The oxygen concentration in the inert transport gas is preferably 5% by volume or less.
The thermoplastic resin pellets obtained by melt extrusion molding described later have better hue, which is preferable.

【0026】本発明の輸送方法において、輸送配管内の
温度は10〜100℃が好ましく、15〜80℃が特に
好ましい。また、輸送配管の形状としては、円筒、楕
円、角柱等があり、特に円筒型が好ましく用いられる。
かかる円筒型の配管の管径は、30〜250mmのもの
が好ましく採用される。また、配管の長さについては、
長くなるにつれて輸送配管内で熱可塑性樹脂粉粒状体の
異物量が増加しないという本発明の効果が発現され易い
ことから、10m以上であることが望ましく、10m〜
500mの配管の長さが好ましい。さらに配管の材質に
ついては、オーステナイト系ステンレス鋼、フェライト
系ステンレス鋼、クロム−モリブデン鋼、ニッケル−ク
ロム鉄、アルミニウム、チタンなどの合金鋼管等が使用
でき、特に強度、硬度などの機械的性質とコスト面との
バランスに優れるという観点からオーステナイト系ステ
ンレス鋼およびそのサニタリー仕様のものが好適に用い
られる。また、熱可塑性樹脂粉粒状体の移送速度につい
ては、粉粒体の破砕を防止する観点から、15〜40m
/sの範囲が望ましい。
In the transportation method of the present invention, the temperature in the transportation pipe is preferably from 10 to 100 ° C., particularly preferably from 15 to 80 ° C. The shape of the transport pipe includes a cylinder, an ellipse, a prism, and the like, and a cylindrical shape is particularly preferably used.
The diameter of the cylindrical pipe is preferably 30 to 250 mm. For the length of the pipe,
The length is preferably 10 m or more, because the effect of the present invention that the amount of foreign matters of the thermoplastic resin particles does not increase in the transport pipe as the length becomes longer is easily exhibited.
A pipe length of 500 m is preferred. Further, as for the material of the pipe, austenitic stainless steel, ferritic stainless steel, chromium-molybdenum steel, nickel-chromium iron, aluminum, titanium, and other alloy steel pipes can be used, and in particular, mechanical properties such as strength and hardness and cost. Austenitic stainless steel and its sanitary specification are preferably used from the viewpoint of excellent balance with the surface. In addition, the transfer speed of the thermoplastic resin particles is from 15 to 40 m from the viewpoint of preventing crushing of the particles.
/ S range is desirable.

【0027】さらに、本発明によれば、熱可塑性樹脂粉
状体を溶融押出して熱可塑性樹脂ペレットを製造する方
法において、水分量が相対湿度50%〜飽和水蒸気の
1.5倍である不活性輸送気体により気流輸送した熱可
塑性樹脂粉状体を使用することを特徴とする熱可塑性樹
脂ペレットの製造方法が提供される。
According to the present invention, there is further provided a method for producing thermoplastic resin pellets by melt-extruding a thermoplastic resin powder, wherein the water content is from 50% relative humidity to 1.5 times the saturated steam. A method for producing thermoplastic resin pellets, comprising using a thermoplastic resin powder that has been transported in a gas stream by a transport gas.

【0028】本発明の熱可塑性樹脂ペレットの製造方法
で使用される熱可塑性樹脂粉状体は、水分量が相対湿度
50%〜飽和水蒸気の1.5倍である不活性輸送気体に
よる輸送方法によって、輸送された熱可塑性樹脂粉状体
である。
The thermoplastic resin powder used in the method for producing thermoplastic resin pellets of the present invention is prepared by a method of transporting with an inert transport gas having a water content of 50% relative humidity to 1.5 times saturated steam. And transported thermoplastic resin powder.

【0029】本発明の熱可塑性樹脂ペレットの製造方法
において、不活性輸送気体の水分量は、相対湿度が50
%以上、好ましくは60%以上、より好ましくは80%
以上で、飽和水蒸気の1.5倍以下、好ましくは1.4
倍以下である。相対湿度が50%未満の不活性輸送気体
を使用した場合は、熱可塑性樹脂粉状体と配管内壁との
接触により、配管から発生する金属異物が増加し、これ
を溶融押出成形して得られる熱可塑性樹脂ペレットの色
相が悪化し、異物量も多くなり好ましくない。また、飽
和水蒸気の1.5倍より多い水分を含む不活性輸送気体
を使用した場合は、輸送した粉状体をそのまま溶融押出
成形すると、溶融押出機のベント部への溶融樹脂渡り
(ベントアップ)が激しく起こり、押出機が正常に運転
できず好ましくない。
In the method for producing thermoplastic resin pellets of the present invention, the water content of the inert transport gas is 50
% Or more, preferably 60% or more, more preferably 80%
Above, 1.5 times or less of saturated steam, preferably 1.4 times
Less than twice. When an inert transport gas having a relative humidity of less than 50% is used, metal foreign matter generated from the pipe increases due to contact between the thermoplastic resin powder and the inner wall of the pipe, which is obtained by melt extrusion. The hue of the thermoplastic resin pellets deteriorates and the amount of foreign substances increases, which is not preferable. In addition, when an inert transport gas containing more than 1.5 times the saturated steam is used, the transported powder is melt-extruded as it is, and the molten resin is transferred to the vent of the melt extruder (vent up). ) Occurs violently and the extruder cannot operate normally, which is not preferable.

【0030】かかる熱可塑性樹脂粉状体は、溶融押出機
を用いて加熱溶融され、熱可塑性樹脂ペレットが製造さ
れる。かかる溶融押出機としては、ベント付押出機が好
ましく用いられ、形式としては二軸押出機が好ましい。
押出条件は、格別な条件を採用する必要はなく、通常の
溶融押出条件が採用され、例えば樹脂温度は、ビスフェ
ノールAとカーボネート前駆物質から得られるポリカー
ボネート樹脂の場合280〜340℃の範囲が好まし
い。
The thermoplastic resin powder is heated and melted by using a melt extruder to produce thermoplastic resin pellets. As such a melt extruder, a vented extruder is preferably used, and as a type, a twin-screw extruder is preferable.
Extrusion conditions do not need to be special conditions, and ordinary melt extrusion conditions are used. For example, the resin temperature is preferably in the range of 280 to 340 ° C. in the case of a polycarbonate resin obtained from bisphenol A and a carbonate precursor.

【0031】本発明で得られる熱可塑性樹脂ペレット
は、例えば射出成形法、圧縮成形法、押出成形法、溶液
キャスティング法等任意の方法で成形される。殊に、本
発明の製造方法によって得られるポリカーボネート樹脂
ペレットから成形される成形品は、異物量が極めて少な
く、光ディスク基板、光ファイバー、レンズ、位相差フ
ィルム等の光学用途、特に光ディスク基板において、異
物量が少ないことは、光ディスクとした時のエラー率の
減少等の利点があり、好適に使用される。
The thermoplastic resin pellets obtained by the present invention can be formed by any method such as injection molding, compression molding, extrusion molding, and solution casting. In particular, the molded article molded from the polycarbonate resin pellets obtained by the production method of the present invention has an extremely small amount of foreign matter, and has a small amount of foreign matter in optical applications such as optical disk substrates, optical fibers, lenses, and retardation films, and particularly in optical disk substrates. Is small, which has the advantage of reducing the error rate when used as an optical disc, and is preferably used.

【0032】また、得られる熱可塑性樹脂ペレットに
は、必要に応じて熱安定剤、離型剤、酸化防止剤、紫外
線吸収剤(耐候剤)、着色剤、増白剤、帯電防止剤、滑
剤、抗菌剤等の添加剤を加えることができる。
The obtained thermoplastic resin pellets may contain, if necessary, a heat stabilizer, a releasing agent, an antioxidant, an ultraviolet absorber (weathering agent), a coloring agent, a whitening agent, an antistatic agent, a lubricant. And additives such as antibacterial agents.

【0033】[0033]

【実施例】以下に実施例をあげて更に説明する。なお、
評価は下記の方法で行った。 (1)色相 ペレットを射出成形機(日本製鋼所(株)製:日鋼アン
カーV17−65型)を用い、シリンダー温度340℃
の条件で、50mm角、厚さ2mmの見本板を成形し
た。これらの見本板について色差計(日本電色(株)製
Z−1001DP型)を用いてb値を測定した。b値の
値が小さいほど黄色みがなく色相の良いことを示す。
EXAMPLES Examples will be further described below with reference to examples. In addition,
The evaluation was performed by the following method. (1) Hue Pellets were injected at a cylinder temperature of 340 ° C. using an injection molding machine (Nihon Steel Works Co., Ltd .: Nikko Anchor V17-65).
A sample plate having a size of 50 mm square and a thickness of 2 mm was formed. The b value of these sample plates was measured using a color difference meter (Z-1001DP type manufactured by Nippon Denshoku Co., Ltd.). The smaller the b value, the better the hue without yellow.

【0034】(2)異物量 異物量は粉状体およびペレット100gをそれぞれ塩化
メチレン1000mlに溶解し、ハイアックロイコ社製
の異物測定器により0.5μm以上の異物量を測定し
た。
(2) Foreign matter amount The foreign matter amount was determined by dissolving 100 g of powder and 100 g of pellets in 1000 ml of methylene chloride, respectively, and measuring the amount of foreign matter having a particle size of 0.5 μm or more using a foreign matter measuring device manufactured by Hiac Leuco.

【0035】(3)粘度平均分子量 塩化メチレン100mlにポリカーボネート樹脂0.7
gを20℃で溶解した溶液から求めた比粘度より算出し
た。
(3) Viscosity average molecular weight Polycarbonate resin 0.7 in 100 ml of methylene chloride
g was calculated from the specific viscosity obtained from a solution obtained by dissolving g at 20 ° C.

【0036】(4)嵩密度 1000cm3の金属製円筒容器にポリカーボネート樹
脂粉状体を、ロートを用いて投入し、余剰分をすり落と
して秤量し、内容物の重量W(g)を求め、次式により
算出した。 嵩密度(g/cm3)=W/1000
(4) A polycarbonate resin powder is put into a metal cylindrical container having a bulk density of 1000 cm 3 using a funnel, and the excess is ground off and weighed to determine the weight W (g) of the content. It was calculated by the following equation. Bulk density (g / cm 3 ) = W / 1000

【0037】[実施例1]溶液供給口、水蒸気導入口、
蒸気排出口及び溢流口を備えた内容量500lのニーダ
ーに、嵩密度0.5g/cm3、粘度平均分子量235
00のポリカーボネート樹脂粉状体100kgと温水2
00kgを入れて、ニーダーの攪拌下に圧力2.7kg
/cm2の水蒸気を導入して、水温が65℃になったと
ころで、攪拌を継続しながら、粘度平均分子量2350
0のポリカーボネート樹脂濃度15重量%の塩化メチレ
ン溶液を10kg/分の速度で、65℃の温水を2.3
7kg/分の速度で連続的に供給を開始し、同時にニー
ダー内の水温が65℃に維持できる速度で、圧力2.7
kg/cm2の水蒸気を連続的に導入開始した。水温が
65℃のポリカーボネート樹脂濃度33重量%の水スラ
リーが連続的に溢流口から排出された。排出された該ポ
リカーボネート水スラリーは遠心分離機によってポリカ
ーボネート粉状体を連続的に分離し、溢流口を有したジ
ャケット付き横型乾燥機に連続的に供給し、該乾燥機の
内温140℃で6時間乾燥し、連続的に溢流口から排出
された。排出された該ポリカーボネート粉状体は嵩密度
0.5g/cm3、異物量2800個/gであった。
Example 1 Solution supply port, steam inlet,
In a kneader having a content of 500 l having a steam outlet and an overflow port, a bulk density of 0.5 g / cm 3 and a viscosity average molecular weight of 235 were added.
100 kg of polycarbonate resin powder and hot water 2
And put the pressure of 2.7kg under stirring of the kneader.
/ Cm 2 , and when the water temperature reached 65 ° C., the viscosity average molecular weight was 2350 while stirring was continued.
Methylene chloride solution having a polycarbonate resin concentration of 15% by weight at a rate of 10 kg / min.
The feed was started continuously at a rate of 7 kg / min, and at the same time, the water temperature in the kneader was maintained at 65 ° C. at a pressure of 2.7.
kg / cm 2 of water vapor was continuously introduced. A water slurry having a water temperature of 65 ° C. and a polycarbonate resin concentration of 33% by weight was continuously discharged from the overflow port. The discharged polycarbonate water slurry continuously separated the polycarbonate powder by a centrifugal separator, and was continuously supplied to a jacketed horizontal dryer having an overflow port, and the internal temperature of the dryer was 140 ° C. It was dried for 6 hours and continuously discharged from the overflow. The discharged polycarbonate powder had a bulk density of 0.5 g / cm 3 and an amount of foreign substances of 2800 / g.

【0038】乾燥機の溢流口から排出されたポリカーボ
ネート樹脂粉状体は、表1に示す窒素量、酸素量、蒸気
量で相対湿度95%、酸素濃度0.01容量%未満に調
整された窒素ガス輸送気体により、ステンレス鋼(SU
S304)製の円筒型32A(外径42.7mm、内径
35.5mm)の150mの長さの配管を通じて、30
℃で溶融押出し機ホッパーにポリカーボネート樹脂粉状
体を90kg/hrの速さで定常的に気流輸送を行っ
た。気体流量は日本フローセル(株)製FHGN型流量
計、酸素濃度はリケンケイキ(株)製OX−571型酸
素濃度計、水分量はニッポー(株)製MX−9−H型湿
度調節計にて測定した。輸送を開始して1ヶ月後に気流
輸送したポリカーボネート樹脂粉状体の異物量は450
0個/gであった。次いで、このポリカーボネート樹脂
粉状体を溶融押出機(東芝機械(株)製TEM−70
型)を用い300℃でストランド状に溶融押出し、冷却
し切断して、ポリカーボネート樹脂ペレットを得た。こ
のポリカーボネート樹脂ペレットの異物量は4800個
/g、成形品のb値は0.1であった。これらの結果を
表2に示した。
The polycarbonate resin powder discharged from the overflow port of the dryer was adjusted to a relative humidity of 95% and an oxygen concentration of less than 0.01% by volume in terms of nitrogen, oxygen and steam shown in Table 1. Stainless steel (SU)
S304) through a 150 m long pipe of a cylindrical mold 32A (outer diameter 42.7 mm, inner diameter 35.5 mm).
The polycarbonate resin powder was steadily pneumatically transported at a rate of 90 kg / hr to a melt extruder hopper at 90 ° C. The gas flow rate was measured by an FHGN type flow meter manufactured by Nippon Flow Cell Co., Ltd., the oxygen concentration was measured by an OX-571 type oxygen concentration meter manufactured by Riken Keiki Co., Ltd., and the moisture content was measured by an MX-9-H type humidity controller manufactured by Nippo Co., Ltd. did. One month after the start of transport, the amount of foreign substances in the polycarbonate resin powder transported by airflow was 450
It was 0 / g. Next, the polycarbonate resin powder was melt extruded (TEM-70 manufactured by Toshiba Machine Co., Ltd.).
The mixture was melt-extruded into strands at 300 ° C. using a mold, cooled and cut to obtain polycarbonate resin pellets. The foreign material amount of the polycarbonate resin pellets was 4,800 / g, and the b value of the molded product was 0.1. Table 2 shows the results.

【0039】[実施例2]実施例1において、相対湿度
60%、酸素濃度0.01容量%未満に調整した窒素ガ
ス輸送気体を使用すること以外は実施例1と同様の方法
でポリカーボネート樹脂ペレットを得た。その評価結果
を表2に示した。
Example 2 Polycarbonate resin pellets were prepared in the same manner as in Example 1 except that a nitrogen gas transport gas adjusted to a relative humidity of 60% and an oxygen concentration of less than 0.01% by volume was used. I got Table 2 shows the evaluation results.

【0040】[実施例3]実施例1において、相対湿度
95%、酸素濃度5容量%に調整した窒素ガス輸送気体
を使用すること以外は実施例1と同様の方法でポリカー
ボネート樹脂ペレットを得た。その評価結果を表2に示
した。
Example 3 Polycarbonate resin pellets were obtained in the same manner as in Example 1, except that a nitrogen gas transport gas adjusted to a relative humidity of 95% and an oxygen concentration of 5% by volume was used. . Table 2 shows the evaluation results.

【0041】[実施例4]実施例1において、水分量が
飽和水蒸気の1.4倍、酸素濃度0.01容量%未満に
調整した窒素ガス輸送気体を使用すること以外は実施例
1と同様の方法でポリカーボネート樹脂ペレットを得
た。その評価結果を表2に示した。
Example 4 Example 1 was the same as Example 1 except that a nitrogen gas transport gas having a water content adjusted to 1.4 times that of saturated steam and an oxygen concentration of less than 0.01% by volume was used. Thus, polycarbonate resin pellets were obtained. Table 2 shows the evaluation results.

【0042】[比較例1]実施例1において、相対湿度
0%、酸素濃度0.01容量%未満の窒素ガス輸送気体
を使用すること以外は実施例1と同様の方法でポリカー
ボネート樹脂ペレットを得た。その評価結果を表2に示
した。
Comparative Example 1 A polycarbonate resin pellet was obtained in the same manner as in Example 1, except that a nitrogen gas transport gas having a relative humidity of 0% and an oxygen concentration of less than 0.01% by volume was used. Was. Table 2 shows the evaluation results.

【0043】[比較例2]実施例1において、水分量が
飽和水蒸気の1.8倍、酸素濃度0.01容量%未満に
調整した窒素ガス輸送気体を使用すること以外は実施例
1と同様の方法でポリカーボネート樹脂粉状体を溶融押
出し機ホッパーに気流輸送した。輸送を開始して1ヶ月
後に気流輸送したポリカーボネート樹脂粉状体の異物量
は8000個/gであった。また、このポリカーボネー
ト樹脂粉状体を実施例1と同様に溶融押出機(東芝機械
(株)製TEM−70型)で溶融押出したところ、溶融
押出機のベント部への溶融樹脂渡りが激しく、正常運転
が不能になった。
[Comparative Example 2] Same as Example 1 except that a nitrogen gas transport gas whose water content was adjusted to 1.8 times that of saturated steam and oxygen concentration was less than 0.01% by volume was used. According to the method described above, the polycarbonate resin powder was pneumatically transported to a melt extruder hopper. One month after the start of transport, the amount of foreign substances in the polycarbonate resin powder transported by air was 8,000 particles / g. Further, when the polycarbonate resin powder was melt-extruded with a melt extruder (TEM-70 manufactured by Toshiba Machine Co., Ltd.) in the same manner as in Example 1, the molten resin was sharply transferred to the vent of the melt extruder. Normal operation has been disabled.

【0044】[比較例3]実施例1において、輸送気体
として相対湿度60%の空気を使用すること以外は実施
例1と同様の方法でポリカーボネート樹脂ペレットを得
た。その評価結果を表2に示した。
Comparative Example 3 Polycarbonate resin pellets were obtained in the same manner as in Example 1, except that air having a relative humidity of 60% was used as the transport gas. Table 2 shows the evaluation results.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【発明の効果】本発明によれば、色相に優れ、異物の少
ない熱可塑性樹脂粉粒体を効率的に製造することがで
き、その工業的効果は格別なものである。
According to the present invention, it is possible to efficiently produce a thermoplastic resin powder having an excellent hue and a small amount of foreign matter, and its industrial effect is remarkable.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3F047 AA04 4F201 AA28 AC04 BA02 BC01 BC02 BC12 BC15 BC19 BL08 BL12 BM06 BQ07 BQ11 BQ21 4G068 AA03 AB22 AC11 AD39  ──────────────────────────────────────────────────の Continued on the front page F term (reference) 3F047 AA04 4F201 AA28 AC04 BA02 BC01 BC02 BC12 BC15 BC19 BL08 BL12 BM06 BQ07 BQ11 BQ21 4G068 AA03 AB22 AC11 AD39

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水分量が相対湿度50%〜飽和水蒸気の
1.5倍である不活性輸送気体を用いることを特徴とす
る熱可塑性樹脂粉粒状体の輸送方法。
1. A method for transporting thermoplastic resin particles, wherein an inert transport gas having a water content of 50% relative humidity to 1.5 times saturated steam is used.
【請求項2】 熱可塑性樹脂が、ポリカーボネート樹脂
である請求項1記載の熱可塑性樹脂粉粒状体の輸送方
法。
2. The method according to claim 1, wherein the thermoplastic resin is a polycarbonate resin.
【請求項3】 熱可塑性樹脂粉状体を溶融押出して熱可
塑性樹脂ペレットを製造する方法において、水分量が相
対湿度50%〜飽和水蒸気の1.5倍である不活性輸送
気体により気流輸送した熱可塑性樹脂粉状体を使用する
ことを特徴とする熱可塑性樹脂ペレットの製造方法。
3. A method for producing a thermoplastic resin pellet by melt-extruding a thermoplastic resin powder, wherein the powder is transported by an inert transport gas having a water content of 50% relative humidity to 1.5 times saturated steam. A method for producing thermoplastic resin pellets, comprising using a thermoplastic resin powder.
JP10358896A 1998-12-17 1998-12-17 Carrying method for thermoplastic resin powder and granule, and manufacture of thermoplastic resin pellet Pending JP2000177845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10358896A JP2000177845A (en) 1998-12-17 1998-12-17 Carrying method for thermoplastic resin powder and granule, and manufacture of thermoplastic resin pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10358896A JP2000177845A (en) 1998-12-17 1998-12-17 Carrying method for thermoplastic resin powder and granule, and manufacture of thermoplastic resin pellet

Publications (1)

Publication Number Publication Date
JP2000177845A true JP2000177845A (en) 2000-06-27

Family

ID=18461669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10358896A Pending JP2000177845A (en) 1998-12-17 1998-12-17 Carrying method for thermoplastic resin powder and granule, and manufacture of thermoplastic resin pellet

Country Status (1)

Country Link
JP (1) JP2000177845A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341449A (en) * 2005-06-08 2006-12-21 Mitsubishi Engineering Plastics Corp Method and apparatus for supplying powdered raw material
WO2008105553A1 (en) * 2007-02-27 2008-09-04 Teijin Chemicals Ltd. Method for producing molded article
WO2008123149A1 (en) * 2007-03-20 2008-10-16 Mitsubishi Chemical Corporation Method of transporting and method of storing polymer pellet
JPWO2016080381A1 (en) * 2014-11-17 2017-08-24 出光興産株式会社 Polycarbonate resin powder and method for transporting the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341449A (en) * 2005-06-08 2006-12-21 Mitsubishi Engineering Plastics Corp Method and apparatus for supplying powdered raw material
JP4544043B2 (en) * 2005-06-08 2010-09-15 三菱エンジニアリングプラスチックス株式会社 Powder raw material supply apparatus and method
WO2008105553A1 (en) * 2007-02-27 2008-09-04 Teijin Chemicals Ltd. Method for producing molded article
US8158747B2 (en) 2007-02-27 2012-04-17 Teijin Chemicals, Ltd. Method of manufacturing a molded article
WO2008123149A1 (en) * 2007-03-20 2008-10-16 Mitsubishi Chemical Corporation Method of transporting and method of storing polymer pellet
JP2013252975A (en) * 2007-03-20 2013-12-19 Mitsubishi Chemicals Corp Aromatic polycarbonate pellet transport method and pneumatic transport method
JPWO2016080381A1 (en) * 2014-11-17 2017-08-24 出光興産株式会社 Polycarbonate resin powder and method for transporting the same
US10640306B2 (en) 2014-11-17 2020-05-05 Idemitsu Kosan Co., Ltd. Polycarbonate resin powder and method for transporting same

Similar Documents

Publication Publication Date Title
JP5324354B2 (en) Method for producing polycarbonate resin molding material
US4186154A (en) Polycarbonate mixtures which can be processed as thermoplastics
JP2003530478A (en) Polycarbonate redistribution method
JP3671093B2 (en) Method for producing a granular thermoplastic polymer material from a polymer solution
US7501481B2 (en) Process for production of copolycarbonates with reduced color
JP2000177845A (en) Carrying method for thermoplastic resin powder and granule, and manufacture of thermoplastic resin pellet
JPH11342510A (en) Optical molding material
JP3357785B2 (en) Method for producing polycarbonate powder
JP3588558B2 (en) Optical polycarbonate resin molding material and optical disk substrate
JP2003200421A (en) Polycarbonate resin pellet in which amount of miss-cut is reduced and method for manufacturing it
JP3797696B2 (en) Manufacturing method of polycarbonate resin molded product
JP2000052402A (en) Production of aromatic polycarbonate molded product
JPH11302370A (en) Polycarbonate resin and blow molded container
JP4229547B2 (en) Method for producing thermoplastic resin pellets
JPH0527647B2 (en)
JPH10292050A (en) Preparation of polycarbonate pellet
JPH0929738A (en) Manufacture of polycarbonate resin molding material
JP3797705B2 (en) Manufacturing method of polycarbonate resin molded product
JP3519631B2 (en) Polycarbonate resin and method for producing the same
JP2000168725A (en) Transporting method for resin grain
JPH072364B2 (en) Method for melt extrusion of polycarbonate
JP4204123B2 (en) Method for improving wet heat resistance of optical disc
JPS62169605A (en) Granulation of polycarbonate
JP3920136B2 (en) Method for producing aromatic polycarbonate
JP3155796B2 (en) Process for producing granules of polycarbonate and its composition