JP2000175462A - Three-phase inverter - Google Patents

Three-phase inverter

Info

Publication number
JP2000175462A
JP2000175462A JP10344548A JP34454898A JP2000175462A JP 2000175462 A JP2000175462 A JP 2000175462A JP 10344548 A JP10344548 A JP 10344548A JP 34454898 A JP34454898 A JP 34454898A JP 2000175462 A JP2000175462 A JP 2000175462A
Authority
JP
Japan
Prior art keywords
phase
circuit
voltage
power supply
load device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10344548A
Other languages
Japanese (ja)
Inventor
Junji Morimoto
純司 森本
Shigeo Takada
茂生 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10344548A priority Critical patent/JP2000175462A/en
Publication of JP2000175462A publication Critical patent/JP2000175462A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress leakage current and power source noise, and realize miniaturization and reduction in the number of constituent part items and cost. SOLUTION: One phase of a three-phase AC power source 21, of which the phase in not connected with a single-phase forward converting circuit 31, is connected with an intermediate connection part of capacitors C1 and C2 of a smoothing circuit 33, and with one phase of a three-phase load 26 which phase is not connected with a single-phase backward converting circuit 32. Thereby DC voltages applied to the capacitors C1 and C2 are fixed to about double the potentials of a line voltage of the three-phase AC power source 21, at a maximum, when a ground potential is set as a reference. The DC voltages are applied to a load 26 via the backward converting circuit 32. The potential of one phase of the load 26 is set at a ground potential, and the instantaneous value of a voltage of the other phase is restrained at about double the potential of the line voltage of the power source 21 at a maximum.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、3相交流電源の電
圧および周波数を変換して出力する3相インバータ装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-phase inverter for converting the voltage and frequency of a three-phase AC power supply and outputting the converted voltage.

【0002】[0002]

【従来の技術】図11は、一般的な3相インバータ装置
の構成を示すブロック図である。このインバータ装置
は、一対のダイオードを直列接続したダイオード列が三
つ並列に接続された構成の3相順変換回路11と、一対
のダイオードを直列接続したダイオード列が三つ並列に
接続され、かつ各ダイオードに一つずつスイッチ素子が
逆並列接続された構成の3相逆変換回路12と、平滑コ
ンデンサ13とが並列に接続された構成となっている。
なお、逆並列接続とは、二つの素子が極性を反対にして
並列に接続されていることを意味する。
2. Description of the Related Art FIG. 11 is a block diagram showing a configuration of a general three-phase inverter device. In this inverter device, a three-phase forward conversion circuit 11 having a configuration in which three diode rows in which a pair of diodes are connected in series is connected in parallel, three diode rows in which a pair of diodes are connected in series are connected in parallel, and The three-phase inversion circuit 12 has a configuration in which a switch element is connected in anti-parallel to each diode, and a smoothing capacitor 13 is connected in parallel.
The anti-parallel connection means that two elements are connected in parallel with opposite polarities.

【0003】3相順変換回路11の三つのダイオード列
において、それぞれの列の一対のダイオードの中間接続
部には、3相交流電源21の3相が1相ずつ供給されて
いる。
In the three diode rows of the three-phase forward conversion circuit 11, three phases of a three-phase AC power supply 21 are supplied one by one to an intermediate connection between a pair of diodes in each row.

【0004】3相逆変換回路12の3相の出力は、3相
逆変換回路12の三つのダイオード列において、それぞ
れの列の一対のダイオードの中間接続部から、3相負荷
装置26の各相に1相ずつ供給されている。
The outputs of the three phases of the three-phase inversion circuit 12 are supplied to the three diode rows of the three-phase inversion circuit 12 from the intermediate connection of a pair of diodes in each row. Are supplied one by one.

【0005】図11に示す構成の3相インバータ装置で
は、3相交流電源21の1相が接地されている場合、接
地電位に対して不特定の電位が3相負荷装置26に印加
されることが知られている。その印加される不特定電位
は、3相逆変換回路12内のスイッチ素子により高速に
変化し、また3相負荷装置26と接地電位との間の浮遊
容量により漏れ電流が大きくなるため、電源ノイズや漏
洩電流の増加原因となっている。そのため、その不特定
電位の影響をできるだけ抑制するのが好ましい。またイ
ンバータ装置の小型化、構成部品点数の削減、低コスト
化も要求される。
In the three-phase inverter device shown in FIG. 11, when one phase of the three-phase AC power supply 21 is grounded, an unspecified potential with respect to the ground potential is applied to the three-phase load device 26. It has been known. The applied unspecified potential is changed at high speed by the switch element in the three-phase inversion circuit 12, and the leakage current is increased by the stray capacitance between the three-phase load device 26 and the ground potential. And an increase in leakage current. Therefore, it is preferable to suppress the influence of the unspecified potential as much as possible. In addition, it is required to reduce the size of the inverter device, reduce the number of components, and reduce the cost.

【0006】ところで単相インバータ回路では、漏洩電
流および電源ノイズを低減するための対策を施した回路
が提案されている(富士時報、Vol.71、No.
7、p.407−410、1998)。この単相インバ
ータ回路は、図12に示すように、一対のダイオードを
直列接続し、かつ各ダイオードに一つずつスイッチ素子
を逆並列接続した構成の単相高力率コンバータ回路14
と、一対のダイオードを直列接続し、かつ各ダイオード
に一つずつスイッチ素子を逆並列接続した構成の単相逆
変換回路15と、一対のコンデンサを直列接続した平滑
回路16とが並列に接続された構成となっている。
As a single-phase inverter circuit, a circuit has been proposed in which measures have been taken to reduce leakage current and power supply noise (Fuji Times, Vol. 71, No. 1).
7, p. 407-410, 1998). As shown in FIG. 12, this single-phase inverter circuit has a single-phase high power factor converter circuit 14 having a configuration in which a pair of diodes are connected in series, and one switching element is connected in anti-parallel to each diode.
And a single-phase inversion circuit 15 having a configuration in which a pair of diodes are connected in series and a switching element is connected in each diode in an anti-parallel manner, and a smoothing circuit 16 in which a pair of capacitors are connected in series is connected in parallel. Configuration.

【0007】そして単相交流電源22の2相のうちの一
方の出力相は、交流リアクトル17を介して単相高力率
コンバータ回路14の一対のダイオードの中間接続部に
供給されているとともに、単相交流電源22の他方の出
力相は、平滑回路16の一対のコンデンサの中間接続部
および単相逆変換回路出力部27の一方の出力相に供給
されている。また単相逆変換回路出力部27のもう一方
の出力相には、単相逆変換回路15の一対のダイオード
の中間接続部からの出力が供給される。
One output phase of the two phases of the single-phase AC power supply 22 is supplied to an intermediate connection between a pair of diodes of the single-phase high power factor converter circuit 14 via the AC reactor 17. The other output phase of the single-phase AC power supply 22 is supplied to an intermediate connection portion of a pair of capacitors of the smoothing circuit 16 and one output phase of a single-phase reverse conversion circuit output portion 27. The other output phase of the single-phase inversion circuit output section 27 is supplied with an output from an intermediate connection of a pair of diodes of the single-phase inversion circuit 15.

【0008】この図12に示す単相インバータ回路によ
れば、漏洩電流および電源ノイズの両方を抑制し、さら
には小型化、構成部品点数の削減および低コスト化を実
現することができるという効果が得られるとしている。
According to the single-phase inverter circuit shown in FIG. 12, it is possible to suppress both the leakage current and the power supply noise, and to further reduce the size, the number of components and the cost. It is said that it can be obtained.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、3相イ
ンバータ装置では、上述した単相インバータ回路のよう
に漏洩電流の抑制および電源ノイズの抑制を実現するこ
とは未だ困難であり、またインバータ装置の小型化、構
成部品点数の削減および低コスト化等の要求を満たすこ
とも困難である。
However, in the three-phase inverter device, it is still difficult to realize the suppression of the leakage current and the power supply noise as in the above-described single-phase inverter circuit. It is also difficult to satisfy the demands for reduction in the number of components, reduction in the number of components, and cost reduction.

【0010】本発明は、上記事情に鑑みなされたもの
で、3相インバータ装置において、漏洩電流および電源
ノイズを抑制し、さらには小型化、構成部品点数の削減
および低コスト化を実現することができる3相インバー
タ装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and in a three-phase inverter device, it is possible to suppress leakage current and power supply noise, and to further reduce the size, the number of components, and the cost. It is an object of the present invention to obtain a three-phase inverter device that can be used.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、3相交流電源の電圧および周波数の一方
または両方を変換して3相負荷装置に出力するインバー
タ装置であって、3相交流電源の3相出力のうちの2相
に接続される単相順変換回路と、前記単相順変換回路の
直流側に接続され、かつ少なくとも一対のコンデンサが
直列接続されており、それらコンデンサどうしの中間接
続部の一つが、前記3相交流電源の残りの1相出力に接
続されると共に、3相負荷装置の3相入力のうちの1相
に接続される平滑回路と、前記平滑回路に接続され、か
つ前記3相負荷装置の残りの2相入力に接続される単相
逆変換回路と、前記3相負荷装置に3相交流電圧を供給
するように前記単相逆変換回路を制御する3相制御手段
と、を具備する。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to an inverter device for converting one or both of a voltage and a frequency of a three-phase AC power supply and outputting the converted voltage to a three-phase load device. A single-phase forward conversion circuit connected to two of the three-phase outputs of the three-phase AC power supply, and a DC connected to the single-phase forward conversion circuit, and at least a pair of capacitors connected in series; A smoothing circuit connected to one of the three-phase input terminals of the three-phase AC power supply, and one of the intermediate connection parts connected to the other one-phase output of the three-phase AC power supply; And a single-phase inversion circuit connected to the remaining two-phase inputs of the three-phase load device, and controlling the single-phase inversion circuit to supply a three-phase AC voltage to the three-phase load device And three-phase control means.

【0012】この発明によれば、単相順変換回路が3相
交流電源の3相出力のうちの2相に接続され、平滑回路
のコンデンサどうしの中間接続部の一つが、3相交流電
源の残りの1相出力に接続されると共に、3相負荷装置
の3相入力のうちの1相に接続され、単相逆変換回路が
3相負荷装置の残りの2相入力に接続され、3相制御手
段により、3相負荷装置に3相交流電圧が供給されるよ
うに単相逆変換回路が制御される。
According to the present invention, the single-phase forward conversion circuit is connected to two phases of the three-phase output of the three-phase AC power supply, and one of the intermediate connections between the capacitors of the smoothing circuit is connected to the three-phase AC power supply. Connected to the remaining one-phase output, connected to one phase of the three-phase input of the three-phase load device, a single-phase inversion circuit is connected to the remaining two-phase input of the three-phase load device, and connected to the three-phase load device. The control means controls the single-phase reverse conversion circuit so that the three-phase AC voltage is supplied to the three-phase load device.

【0013】また本発明は、3相交流電源の電圧および
周波数の一方または両方を変換して3相負荷装置に出力
するインバータ装置であって、単相フルブリッジ整流器
および前記単相フルブリッジ整流器に逆並列接続された
スイッチ素子からなる単相高力率順変換回路と、前記単
相高力率順変換回路の直流側に接続され、かつ少なくと
も一対のコンデンサが直列接続されており、それらコン
デンサどうしの中間接続部の一つが、前記3相交流電源
の残りの1相出力に接続されると共に、3相負荷装置の
3相入力のうちの1相に接続される平滑回路と、前記平
滑回路に接続され、かつ前記3相負荷装置の残りの2相
入力に接続される単相逆変換回路と、前記3相負荷装置
に3相交流電圧を供給するように前記単相逆変換回路を
制御する3相制御手段と、前記3相交流電源から流入す
る電流を概略正弦波化して力率を改善するように前記単
相高力率順変換回路を制御する高力率順変換制御手段
と、を具備する。
The present invention is also an inverter device for converting one or both of a voltage and a frequency of a three-phase AC power supply and outputting the converted voltage to a three-phase load device, wherein the single-phase full-bridge rectifier and the single-phase full-bridge rectifier are provided. A single-phase high power factor forward conversion circuit composed of switch elements connected in anti-parallel, connected to the DC side of the single-phase high power factor forward conversion circuit, and at least a pair of capacitors are connected in series. One of the intermediate connection portions is connected to the remaining one-phase output of the three-phase AC power supply, and is connected to one of the three-phase inputs of the three-phase load device. A single-phase inversion circuit connected to and connected to the remaining two-phase inputs of the three-phase load device, and controlling the single-phase inversion circuit to supply a three-phase AC voltage to the three-phase load device. Three-phase control Comprising the stage, and a high power factor forward transform control means for controlling the single-phase high power factor sequence conversion circuit to improve power factor and schematic sinusoidal current flowing from the 3-phase AC power source.

【0014】この発明によれば、単相高力率順変換回路
が、単相フルブリッジ整流器および前記単相フルブリッ
ジ整流器に逆並列接続されたスイッチ素子からなり、平
滑回路のコンデンサどうしの中間接続部の一つが、3相
交流電源の残りの1相出力に接続されると共に、3相負
荷装置の3相入力のうちの1相に接続され、単相逆変換
回路が3相負荷装置の残りの2相入力に接続され、3相
制御手段により、3相負荷装置に3相交流電圧が供給さ
れるように単相逆変換回路が制御され、さらに高力率順
変換制御手段により、3相交流電源から流入する電流が
概略正弦波化されて力率が改善されるように単相高力率
順変換回路が制御される。
According to the present invention, the single-phase high power factor forward conversion circuit includes a single-phase full-bridge rectifier and a switch element connected in anti-parallel to the single-phase full-bridge rectifier, and includes an intermediate connection between capacitors of the smoothing circuit. One of the parts is connected to the remaining one-phase output of the three-phase AC power supply and to one of the three-phase inputs of the three-phase load device, and the single-phase inverting circuit is connected to the other of the three-phase load device. , And the three-phase control means controls the single-phase reverse conversion circuit so that the three-phase AC voltage is supplied to the three-phase load device. The single-phase high power factor forward conversion circuit is controlled so that the current flowing from the AC power supply is substantially sinusoidal and the power factor is improved.

【0015】また本発明は、3相交流電源の電圧および
周波数の一方または両方を変換して3相負荷装置に出力
するインバータ装置であって、3相交流電源の3相出力
のうちの2相に接続される単相順変換回路と、前記単相
順変換回路の直流側に接続され、かつ少なくとも一対の
コンデンサが直列接続されており、それらコンデンサど
うしの中間接続部の一つが、前記3相交流電源の残りの
1相出力に接続されると共に、3相負荷装置の3相入力
のうちの1相に、回路の開閉を切り替えるための開閉手
段を介して接続され得る平滑回路と、前記平滑回路に接
続され、かつ前記3相負荷装置の3相入力に接続される
3相逆変換回路と、前記3相逆変換回路の出力を電源電
圧とほぼ同電圧までの3相電圧とする場合に閉路状態と
し、また前記3相逆変換回路の出力を電源電圧のほぼ2
倍までの3相電圧とする場合に開路状態とするように前
記開閉手段を制御する開閉回路制御手段と、前記開閉手
段の開閉状態に対応して前記3相負荷装置に3相交流電
圧を供給するように前記3相逆変換回路を制御する3相
制御手段と、を具備する。
The present invention is also an inverter device for converting one or both of the voltage and frequency of a three-phase AC power supply and outputting the converted voltage to a three-phase load device. And a single-phase forward conversion circuit connected to the DC-side of the single-phase forward conversion circuit, and at least a pair of capacitors are connected in series. One of the intermediate connection portions of the capacitors is connected to the three-phase A smoothing circuit that is connected to the remaining one-phase output of the AC power supply and that can be connected to one phase of the three-phase input of the three-phase load device via an opening / closing means for switching the opening and closing of the circuit; A three-phase inverting circuit connected to a circuit and connected to a three-phase input of the three-phase load device, and an output of the three-phase inverting circuit being a three-phase voltage substantially equal to a power supply voltage. Closed, and the three phases Almost 2 power supply voltage output of the converter circuit
Switching circuit control means for controlling the switching means so as to open the circuit when the three-phase voltage is up to twice, and supplying a three-phase AC voltage to the three-phase load device in accordance with the open / closed state of the switching means And three-phase control means for controlling the three-phase inversion circuit.

【0016】この発明によれば、単相順変換回路が3相
交流電源の3相出力のうちの2相に接続され、平滑回路
のコンデンサどうしの中間接続部の一つが、3相交流電
源の残りの1相出力に接続されると共に、3相負荷装置
の3相入力のうちの1相に開閉手段を介して接続され、
3相逆変換回路が3相負荷装置の3相入力に接続され、
開閉回路制御手段により開閉手段が、3相逆変換回路の
出力を電源電圧とほぼ同電圧までの3相電圧とする場合
に閉路状態となり、また3相逆変換回路の出力を電源電
圧のほぼ2倍までの3相電圧とする場合に開路状態とな
るように制御され、さらに3相制御手段により、開閉手
段の開閉状態に対応して3相負荷装置に3相交流電圧が
供給されるように3相逆変換回路が制御される。
According to the present invention, the single-phase forward conversion circuit is connected to two phases of the three-phase output of the three-phase AC power supply, and one of the intermediate connections between the capacitors of the smoothing circuit is connected to the three-phase AC power supply. Connected to the remaining one-phase output, and connected to one of the three-phase inputs of the three-phase load device via a switching means,
A three-phase inversion circuit is connected to the three-phase input of the three-phase load device;
The switching circuit control means causes the switching means to be in a closed state when the output of the three-phase inversion circuit is a three-phase voltage up to substantially the same voltage as the power supply voltage, and the output of the three-phase inversion circuit is approximately two times the power supply voltage. The three-phase voltage is controlled so as to be in the open state when the three-phase voltage is up to twice, and the three-phase control means supplies the three-phase AC voltage to the three-phase load device in accordance with the open / close state of the open / close means. The three-phase inversion circuit is controlled.

【0017】また本発明は、3相交流電源の電圧および
周波数の一方または両方を変換して3相負荷装置に出力
するインバータ装置であって、3相交流電源の3相出力
に接続される3相順変換回路と、前記3相順変換回路の
直流側に接続され、かつ少なくとも一対のコンデンサが
直列接続されており、それらコンデンサどうしの中間接
続部の一つが、前記3相交流電源の1相出力に、回路の
開閉を切り替えるための開閉手段を介して接続され得る
と共に、3相負荷装置の3相入力のうちの1相に接続さ
れる平滑回路と、前記平滑回路に接続され、かつ前記3
相負荷装置の残りの2相入力に接続される単相逆変換回
路と、前記単相逆変換回路の出力を電源電圧とほぼ同電
圧までの3相電圧とする場合に閉路状態とし、また前記
単相逆変換回路の出力を電源電圧のほぼ2分の1倍まで
の3相電圧とする場合に開路状態とするように前記開閉
手段を制御する開閉回路制御手段と、前記開閉手段の開
閉状態に対応して前記3相負荷装置に3相交流電圧を供
給するように前記単相逆変換回路を制御する3相制御手
段と、を具備する。
The present invention is also an inverter device for converting one or both of the voltage and frequency of a three-phase AC power supply and outputting the converted voltage to a three-phase load device. A phase-sequencing circuit, connected to the DC side of the three-phase forward-conversion circuit, and at least a pair of capacitors are connected in series, and one of the intermediate connections between the capacitors is connected to one phase of the three-phase AC power supply. An output circuit connected to one of three-phase inputs of a three-phase load device, and a smoothing circuit connected to one of three-phase inputs of the three-phase load device; 3
A single-phase inversion circuit connected to the remaining two-phase input of the phase load device, and a closed state when the output of the single-phase inversion circuit is a three-phase voltage up to substantially the same voltage as the power supply voltage; Open / close circuit control means for controlling the open / close means so as to be in an open circuit state when the output of the single-phase inversion circuit is a three-phase voltage up to approximately half the power supply voltage; And three-phase control means for controlling the single-phase inverting circuit so as to supply a three-phase AC voltage to the three-phase load device.

【0018】この発明によれば、3相順変換回路が3相
交流電源の3相出力に接続され、平滑回路のコンデンサ
どうしの中間接続部の一つが、3相交流電源の1相出力
に開閉手段を介して接続されると共に、3相負荷装置の
3相入力のうちの1相に接続され、単相逆変換回路が3
相負荷装置の残りの2相入力に接続され、開閉回路制御
手段により開閉手段が、単相逆変換回路の出力を電源電
圧とほぼ同電圧までの3相電圧とする場合に閉路状態と
なり、また単相逆変換回路の出力を電源電圧のほぼ2分
の1倍までの3相電圧とする場合に開路状態となるよう
に制御され、さらに3相制御手段により、開閉手段の開
閉状態に対応して3相負荷装置に3相交流電圧が供給さ
れるように単相逆変換回路が制御される。
According to the present invention, the three-phase forward conversion circuit is connected to the three-phase output of the three-phase AC power supply, and one of the intermediate connections between the capacitors of the smoothing circuit is opened and closed to the one-phase output of the three-phase AC power supply. Means connected to one phase of the three-phase input of the three-phase load device,
A closed state when the switching means is connected to the remaining two-phase input of the phase load device and the switching means controls the output of the single-phase inversion circuit to a three-phase voltage substantially equal to the power supply voltage, and When the output of the single-phase inverting circuit is a three-phase voltage up to approximately one half of the power supply voltage, the circuit is controlled to be in an open circuit state. The single-phase reverse conversion circuit is controlled so that the three-phase AC voltage is supplied to the three-phase load device.

【0019】また本発明は、3相交流電源の電圧および
周波数の一方または両方を変換して3相負荷装置に出力
するインバータ装置であって、3相交流電源の3相出力
に接続される3相順変換回路と、前記3相順変換回路の
直流側に接続され、かつ少なくとも一対のコンデンサが
直列接続されており、それらコンデンサどうしの中間接
続部の一つが、3相負荷装置の3相入力のうちの1相
に、回路の開閉を切り替えるための第1の開閉手段を介
して接続され得ると共に、前記3相交流電源の1相出力
に、回路の開閉を切り替えるための第2の開閉手段を介
して接続され得る平滑回路と、前記平滑回路に接続さ
れ、かつ前記3相負荷装置の3相入力に接続される3相
逆変換回路と、前記3相逆変換回路の出力電圧範囲に対
応して前記第1の開閉手段および前記第2の開閉手段の
それぞれの開閉状態を制御する開閉回路制御手段と、前
記第1の開閉手段および前記第2の開閉手段の開閉状態
に対応して前記3相負荷装置に3相交流電圧を供給する
ように前記3相逆変換回路を制御する3相制御手段と、
を具備する。
The present invention also relates to an inverter device for converting one or both of the voltage and frequency of a three-phase AC power supply and outputting the converted voltage to a three-phase load device, wherein the inverter device is connected to a three-phase output of the three-phase AC power supply. A phase-sequential conversion circuit, connected to the DC side of the three-phase sequential conversion circuit, and at least a pair of capacitors are connected in series, and one of the intermediate connections between the capacitors is connected to a three-phase input of a three-phase load device. And a second opening / closing means for switching the opening / closing of the circuit to the one-phase output of the three-phase AC power supply. A three-phase inverting circuit connected to the smoothing circuit and connected to a three-phase input of the three-phase load device, and corresponding to an output voltage range of the three-phase inverting circuit. And the first opening and closing Open / close circuit control means for controlling the open / close state of each stage and the second open / close means; and three-phase load devices corresponding to the open / close states of the first open / close means and the second open / close means. Three-phase control means for controlling the three-phase inversion circuit so as to supply an AC voltage;
Is provided.

【0020】この発明によれば、3相順変換回路が3相
交流電源の3相出力に接続され、平滑回路のコンデンサ
どうしの中間接続部の一つが、3相負荷装置の3相入力
のうちの1相に第1の開閉手段を介して接続されると共
に、3相交流電源の1相出力に第2の開閉手段を介して
接続され、3相逆変換回路が3相負荷装置の3相入力に
接続され、開閉回路制御手段により、3相逆変換回路の
出力電圧範囲に対応して第1の開閉手段および第2の開
閉手段のそれぞれの開閉状態が制御され、さらに3相制
御手段により、第1の開閉手段および第2の開閉手段の
開閉状態に対応して3相負荷装置に3相交流電圧が供給
されるように3相逆変換回路が制御される。
According to the present invention, the three-phase forward conversion circuit is connected to the three-phase output of the three-phase AC power supply, and one of the intermediate connections between the capacitors of the smoothing circuit is connected to the three-phase input of the three-phase load device. And a three-phase inverter is connected to the one-phase output of the three-phase AC power supply via the second switching means. The first switching means and the second switching means are respectively connected to the input and controlled by the switching circuit control means to control the open / close state of the first switching means and the second switching means in accordance with the output voltage range of the three-phase inversion circuit. The three-phase reverse conversion circuit is controlled so that the three-phase AC voltage is supplied to the three-phase load device according to the open / close state of the first switch and the second switch.

【0021】また本発明は、3相交流電源の電圧および
周波数の一方または両方を変換して3相負荷装置に出力
するインバータ装置であって、3相交流電源の3相出力
に接続される3相順変換回路と、前記3相順変換回路の
直流側に接続され、かつ少なくとも一対のコンデンサが
直列接続されており、それらコンデンサどうしの中間接
続部の一つが前記3相交流電源の中性点に接続される平
滑回路と、前記平滑回路に接続され、かつ前記3相負荷
装置の3相入力に接続される3相逆変換回路と、を具備
する。
The present invention is also an inverter device for converting one or both of a voltage and a frequency of a three-phase AC power supply and outputting the converted voltage to a three-phase load device. The inverter device is connected to a three-phase output of the three-phase AC power supply. A phase-sequencing circuit, connected to the DC side of the three-phase forward-conversion circuit, and at least a pair of capacitors connected in series, one of the intermediate connections between the capacitors being connected to the neutral point of the three-phase AC power supply And a three-phase inversion circuit connected to the smoothing circuit and connected to a three-phase input of the three-phase load device.

【0022】この発明によれば、3相順変換回路が3相
交流電源の3相出力に接続され、平滑回路のコンデンサ
どうしの中間接続部の一つが3相交流電源の中性点に接
続され、3相逆変換回路が3相負荷装置の3相入力に接
続される。
According to the present invention, the three-phase forward conversion circuit is connected to the three-phase output of the three-phase AC power supply, and one of the intermediate connections between the capacitors of the smoothing circuit is connected to the neutral point of the three-phase AC power supply. , A three-phase inversion circuit is connected to the three-phase input of the three-phase load device.

【0023】この発明において、前記平滑回路のコンデ
ンサどうしの前記中間接続部が、前記3相負荷装置の中
性点にも接続されていてもよい。
In the present invention, the intermediate connection between the capacitors of the smoothing circuit may be connected to a neutral point of the three-phase load device.

【0024】この発明によれば、平滑回路のコンデンサ
どうしの中間接続部は3相負荷装置の中性点にも接続さ
れる。
According to the present invention, the intermediate connection between the capacitors of the smoothing circuit is also connected to the neutral point of the three-phase load device.

【0025】[0025]

【発明の実施の形態】以下、添付図面を参照して、本発
明にかかる3相インバータ装置の実施の形態を詳細に説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a three-phase inverter device according to the present invention will be described in detail with reference to the accompanying drawings.

【0026】実施の形態1.図1は、本発明の実施の形
態1にかかる3相インバータ装置の構成を示すブロック
図である。このインバータ装置は、一対のダイオードD
11,D12を直列接続したダイオード列と一対のダイ
オードD21,D22を直列接続したダイオード列とが
並列に接続された構成の単相順変換回路31と、一対の
ダイオードD61,D62を直列接続したダイオード列
と一対のダイオードD71,D72を直列接続したダイ
オード列とが並列に接続され、かつ各ダイオードD6
1,D62,D71,D72に一つずつスイッチ素子S
61,S62,S71,S72が逆並列接続された構成
の単相逆変換回路32と、一対のコンデンサC1,C2
を直列接続した平滑回路33とが並列に接続された構成
となっている。
Embodiment 1 FIG. 1 is a block diagram illustrating a configuration of the three-phase inverter device according to the first embodiment of the present invention. This inverter device includes a pair of diodes D
A single-phase forward conversion circuit 31 having a configuration in which a diode array in which the diodes D11 and D12 are connected in series and a diode array in which a pair of diodes D21 and D22 are connected in parallel, and a diode in which a pair of diodes D61 and D62 are connected in series A column and a diode column in which a pair of diodes D71 and D72 are connected in series are connected in parallel, and each diode D6
1, D62, D71, D72, one by one switch element S
61, S62, S71, and S72 are connected in anti-parallel to a single-phase inversion circuit 32, and a pair of capacitors C1 and C2.
Are connected in parallel with a smoothing circuit 33 that is connected in series.

【0027】単相順変換回路31の二つのダイオード列
において、ダイオードD11とダイオードD12との中
間接続部、およびダイオードD21とダイオードD22
との中間接続部には、3相交流電源21の3相のうちの
2相が1相ずつ供給されている。3相交流電源21の残
りの1相は、接地され、かつ平滑回路33のコンデンサ
C1とコンデンサC2との中間接続部、および3相負荷
装置26の3相の入力のうちの1相に供給されている。
3相負荷装置26の入力の残りの2相には、単相逆変換
回路32のダイオードD61とダイオードD62との中
間接続部からの出力、およびダイオードD71とダイオ
ードD72との中間接続部からの出力がそれぞれ供給さ
れる。
In the two diode rows of the single-phase forward conversion circuit 31, the intermediate connection between the diodes D11 and D12, and the diodes D21 and D22
And two of the three phases of the three-phase AC power supply 21 are supplied one by one to the intermediate connection part. The remaining one phase of the three-phase AC power supply 21 is grounded, and is supplied to an intermediate connection between the capacitors C1 and C2 of the smoothing circuit 33 and one of the three-phase inputs of the three-phase load device 26. ing.
The remaining two phases of the input of the three-phase load device 26 include an output from an intermediate connection between the diodes D61 and D62 of the single-phase inversion circuit 32 and an output from an intermediate connection between the diodes D71 and D72. Are supplied respectively.

【0028】単相逆変換回路32は3相制御手段34に
より制御されている。3相制御手段34は、3相負荷装
置26に3相交流電圧を供給するように制御するための
手段である。
The single-phase reverse conversion circuit 32 is controlled by three-phase control means 34. The three-phase control means 34 is means for controlling the three-phase load device 26 to supply a three-phase AC voltage.

【0029】つぎに実施の形態1の作用について説明す
る。3相交流電源21の、単相順変換回路31に未接続
の1相が、平滑回路33のコンデンサC1とコンデンサ
C2との中間接続部に接続されていることよって、3相
交流電源21の線間電圧の約√2倍程度の電位が、平滑
回路33の両コンデンサC1,C2のそれぞれの両極間
に印加される。また3相制御手段34により平滑回路3
3の中間接続部からの出力に対して単相逆変換回路32
の1相の出力を制御し、それによって3相負荷装置26
の一線間に、所望の電圧値および周波数を有する電圧V
RSを印加する。
Next, the operation of the first embodiment will be described. Since one phase of the three-phase AC power supply 21 that is not connected to the single-phase forward conversion circuit 31 is connected to an intermediate connection between the capacitors C1 and C2 of the smoothing circuit 33, the line of the three-phase AC power supply 21 is connected. A potential of about √2 times the inter-voltage is applied between the two poles of both capacitors C1 and C2 of the smoothing circuit 33. The smoothing circuit 3 is controlled by the three-phase control means 34.
3 for the output from the intermediate connection unit 3
Of the three-phase load device 26
Voltage V having a desired voltage value and frequency
Apply RS.

【0030】また3相制御手段34により平滑回路33
の中間接続部からの出力に対して単相逆変換回路32の
残りの1相の出力を制御し、それによって3相負荷装置
26の他の線間に、電圧VRSに対して位相が120°異
なる電圧VSTを印加する。電圧VRSおよび電圧VSTによ
り、残りの電圧VTRが自然に定まるので、単相逆変換回
路32の構成でもって3相交流出力を得ることができ
る。
The smoothing circuit 33 is controlled by the three-phase control means 34.
Controls the output of the remaining one phase of the single-phase inverting circuit 32 with respect to the output from the intermediate connection of the three-phase load device 26 so that the phase between the other lines of the three-phase load device 26 is 120 ° relative to the voltage VRS. Apply different voltage VST. Since the remaining voltage VTR is naturally determined by the voltage VRS and the voltage VST, a three-phase AC output can be obtained with the configuration of the single-phase inversion circuit 32.

【0031】実施の形態1によれば、3相交流電源21
の、単相順変換回路31に未接続の1相が、平滑回路3
3のコンデンサC1とコンデンサC2との中間接続部に
接続され、かつ3相負荷装置26の、単相逆変換回路3
2に未接続の1相に接続されているため、コンデンサC
1,C2にそれぞれ印加される直流電圧は、接地電位を
基準として最大で3相交流電源21の線間電圧の約√2
倍程度の電位に固定され、その直流電圧が3相逆変換回
路32を経て3相負荷装置26に印加されるので、3相
負荷装置26の1相の電位を接地電位とし、他の相の電
圧の瞬時値を、最大で3相交流電源21の線間電圧の約
√2倍程度の電位に抑制することができる。その結果、
漏洩電流および電源ノイズを抑制することができる。
According to the first embodiment, three-phase AC power supply 21
One phase not connected to the single-phase forward conversion circuit 31
3 is connected to the intermediate connection between the capacitors C1 and C2, and is connected to the single-phase inversion circuit 3 of the three-phase load device 26.
2 is connected to one phase that is not connected to
DC voltage applied to each of the three-phase AC power supply 21 at the maximum with respect to the ground potential.
The DC voltage is fixed to about twice as much and the DC voltage is applied to the three-phase load device 26 via the three-phase inversion circuit 32. Therefore, the potential of one phase of the three-phase load device 26 is set to the ground potential, The instantaneous value of the voltage can be suppressed to a potential of about √2 times the line voltage of the three-phase AC power supply 21 at the maximum. as a result,
Leakage current and power supply noise can be suppressed.

【0032】また実施の形態1によれば、順変換回路3
1の構成が一般的な単相順変換回路と同様であり、また
逆変換回路32の構成も一般的な単相逆変換回路と同様
であるため、インバータ装置の小型化、構成部品点数の
削減および低コスト化が可能となる。さらに構成部品点
数の削減に伴い、損失も低減できる。
According to the first embodiment, the forward conversion circuit 3
1 is similar to a general single-phase forward conversion circuit, and the configuration of the inverse conversion circuit 32 is also similar to a general single-phase reverse conversion circuit, so that the inverter device can be downsized and the number of components can be reduced. And cost reduction becomes possible. Furthermore, the loss can be reduced with the reduction in the number of components.

【0033】なお、上記構成のインバータ装置に交流リ
アクトルおよび直流リアクトルを任意に組み合わせても
よく、そうすれば電源の力率を改善することができると
共に、電流の高調波成分を抑制することができる。
The inverter having the above configuration may be arbitrarily combined with an AC reactor and a DC reactor, so that the power factor of the power supply can be improved and harmonic components of the current can be suppressed. .

【0034】実施の形態2.図2は、本発明の実施の形
態2にかかる3相インバータ装置の構成を示すブロック
図である。このインバータ装置が上記実施の形態1と異
なるのは、単相順変換回路31の代わりに単相高力率順
変換回路41を設けたことと、単相高力率順変換回路4
1の3相交流電源21側にそれぞれ交流リアクトル4
2,43を接続したことと、単相高力率順変換回路41
を制御する高力率順変換制御手段44を設けたことであ
る。その他の構成は上記実施の形態1(図1参照)と同
様であるので、同様の構成については同一の符号を付し
て説明を省略する。
Embodiment 2 FIG. 2 is a block diagram illustrating a configuration of the three-phase inverter device according to the second embodiment of the present invention. This inverter device is different from the first embodiment in that a single-phase high power factor forward conversion circuit 41 is provided instead of the single-phase forward conversion circuit 31, and that the single-phase high power factor forward conversion circuit 4
The AC reactor 4 is connected to the three-phase AC power supply 21
2 and 43 and the single-phase high power factor forward conversion circuit 41
Is provided with a high power factor forward conversion control means 44 for controlling the power factor. Other configurations are the same as those in the first embodiment (see FIG. 1), and thus the same configurations will be denoted by the same reference numerals and description thereof will be omitted.

【0035】単相高力率順変換回路41は、一対の単相
フルブリッジ整流器D111,D112を直列接続した
整流器列と一対の単相フルブリッジ整流器D121,D
122を直列接続した整流器列とが並列に接続され、か
つ各単相フルブリッジ整流器D111,D112,D1
21,D122に一つずつスイッチ素子S111,S1
12,S121,S122が逆並列接続された構成とな
っている。
The single-phase high power factor forward conversion circuit 41 includes a rectifier train in which a pair of single-phase full-bridge rectifiers D111 and D112 are connected in series and a pair of single-phase full-bridge rectifiers D121 and D121.
122 are connected in parallel with a rectifier train in which the single-phase full-bridge rectifiers D111, D112, D1 are connected.
21 and D122, one for each of the switching elements S111 and S1.
12, S121 and S122 are connected in anti-parallel.

【0036】高力率順変換制御手段44は、3相交流電
源21から流入する電流を概略正弦波化し、力率改善を
可能とするよう単相高力率順変換回路41の制御を行
う。
The high power factor forward conversion control means 44 controls the single-phase high power factor forward conversion circuit 41 so as to make the current flowing from the three-phase AC power supply 21 into a substantially sinusoidal wave and to improve the power factor.

【0037】つぎに実施の形態2の作用について説明す
る。単相高力率順変換回路41の内部の1相出力と、3
相交流電源21の、平滑回路33のコンデンサC1とコ
ンデンサC2との中間接続点に接続された相との間で、
所望の電圧値および周波数を有する電圧VRS_convが発
生する。この電圧VRS_convは電源相電圧VRSに対し
て、交流リアクトル間に印加され、それによって流れる
電源電流が決まる。従って高力率順変換制御手段44に
より単相高力率順変換回路41を制御し、電源電流を概
略正弦波化し、力率を改善し得るような電圧VRS_conv
を発生させる。
Next, the operation of the second embodiment will be described. One-phase output inside the single-phase high power factor forward conversion circuit 41, 3
Between the phase of the phase AC power supply 21 and the phase connected to the intermediate connection point between the capacitors C1 and C2 of the smoothing circuit 33,
A voltage VRS_conv having a desired voltage value and frequency is generated. This voltage VRS_conv is applied between the AC reactors with respect to the power supply phase voltage VRS, and the power supply current flowing thereby is determined. Accordingly, the single-phase high-power-factor forward-conversion circuit 41 is controlled by the high-power-factor forward-conversion control means 44, and the power supply current is converted into a substantially sinusoidal wave, so that the voltage VRS_conv can improve the power factor.
Generate.

【0038】単相高力率順変換回路41の内部の他の1
相出力と、3相交流電源21の、コンデンサC1とコン
デンサC2との中間接続点に接続された相との間につい
ても、高力率順変換制御手段44により同様の制御を行
い、電源電流を概略正弦波化し、力率を改善し得るよう
な電圧VST_convを発生させる。
Another one inside the single-phase high power factor forward conversion circuit 41
The same control is performed by the high power factor forward conversion control unit 44 between the phase output and the phase of the three-phase AC power supply 21 connected to the intermediate connection point between the capacitors C1 and C2, and the power supply current is reduced. A voltage VST_conv that can be converted into a substantially sine wave and that can improve the power factor is generated.

【0039】逆変換回路32の制御については実施の形
態1と同様であるので、説明を省略する。
Since the control of the inverse conversion circuit 32 is the same as that of the first embodiment, the description is omitted.

【0040】実施の形態2によれば、実施の形態1と同
様の効果、すなわち漏洩電流の抑制、電源ノイズの抑
制、インバータ装置の小型化、構成部品点数の削減、低
コスト化、および損失の低減が可能であるという効果が
得られるのに加えて、3相交流電源21の順変換回路と
して単相高力率順変換回路41を用いたため、3相交流
電源21から流入する電流を概略正弦波化し、力率を改
善することができるという効果が得られる。
According to the second embodiment, the same effects as those of the first embodiment, that is, suppression of leakage current, suppression of power supply noise, downsizing of the inverter device, reduction in the number of components, reduction in cost, and reduction in loss are achieved. In addition to the effect that reduction can be achieved, the single-phase high power factor forward conversion circuit 41 is used as the forward conversion circuit of the three-phase AC power supply 21. The effect is obtained that the wave is waved and the power factor can be improved.

【0041】実施の形態3.図3は、本発明の実施の形
態3にかかる3相インバータ装置の構成を示すブロック
図である。このインバータ装置が上記実施の形態1と異
なるのは、単相逆変換回路32の代わりに3相逆変換回
路52を設け、3相逆変換回路52の3相の出力を3相
負荷装置26の各相に1相ずつ供給するようにしたこと
と、平滑回路33のコンデンサC1とコンデンサC2と
の中間接続部を、3相逆変換回路52の1相部分の出力
点にスイッチ等の開閉手段54を介して接続したこと
と、その開閉手段54の開閉を制御する開閉回路制御手
段55を設けたことと、3相逆変換回路52を制御する
ための3相制御手段56を設けたことである。その他の
構成は上記実施の形態1(図1参照)と同様であるの
で、同様の構成については同一の符号を付して説明を省
略する。
Embodiment 3 FIG. 3 is a block diagram illustrating a configuration of the three-phase inverter device according to the third embodiment of the present invention. This inverter device is different from the first embodiment in that a three-phase inversion circuit 52 is provided instead of the single-phase inversion circuit 32 and the three-phase outputs of the three-phase inversion circuit 52 are supplied to the three-phase load device 26. Each phase is supplied one by one, and an intermediate connection between the capacitors C1 and C2 of the smoothing circuit 33 is connected to an output point of one phase of the three-phase inversion circuit 52 by an opening / closing means 54 such as a switch. , An opening / closing circuit control means 55 for controlling the opening / closing of the opening / closing means 54, and a three-phase control means 56 for controlling the three-phase inversion circuit 52. . Other configurations are the same as those in the first embodiment (see FIG. 1), and thus the same configurations will be denoted by the same reference numerals and description thereof will be omitted.

【0042】3相逆変換回路52は、一対のダイオード
D261,D262を直列接続したダイオード列と一対
のダイオードD271,D272を直列接続したダイオ
ード列と一対のダイオードD281,D282を直列接
続したダイオード列とが並列に接続され、かつ各ダイオ
ードD261,D262,D271,D272,D28
1,D282に一つずつスイッチ素子S261,S26
2,S271,S272,S281,S282が逆並列
接続された構成となっている。3相逆変換回路52の3
相の出力は、各ダイオード列の一対のダイオードの中間
接続部から、3相負荷装置26の各相に1相ずつ供給さ
れている。
The three-phase inversion circuit 52 includes a diode array in which a pair of diodes D261 and D262 are connected in series, a diode array in which a pair of diodes D271 and D272 are connected in series, and a diode array in which a pair of diodes D281 and D282 are connected in series. Are connected in parallel, and the respective diodes D261, D262, D271, D272, D28
1, D282, one by one switch element S261, S26
2, S271, S272, S281, and S282 are connected in anti-parallel. The three-phase inversion circuit 52-3
The output of each phase is supplied to each phase of the three-phase load device 26 one by one from an intermediate connection between a pair of diodes in each diode row.

【0043】開閉回路制御手段55は、開閉手段54に
対して、3相逆変換回路52から電源電圧とほぼ同電圧
までの3相電圧を出力させる場合には閉路状態とし、前
記3相逆変換回路10の出力可能電圧を電源電圧のほぼ
2倍までとする場合には開路状態とするように制御す
る。
When the three-phase inversion circuit 52 causes the three-phase inversion circuit 52 to output a three-phase voltage up to substantially the same voltage as the power supply voltage, the switching circuit control means 55 closes the circuit. When the possible output voltage of the circuit 10 is up to approximately twice the power supply voltage, the circuit 10 is controlled to be in an open circuit state.

【0044】3相制御手段56は、3相逆変換回路52
に対して、開閉手段54の開閉状態に応じて3相負荷装
置26に3相交流電圧を供給するように制御する。
The three-phase control means 56 includes a three-phase inverse conversion circuit 52
In response to this, control is performed so that a three-phase AC voltage is supplied to the three-phase load device 26 in accordance with the open / close state of the open / close means 54.

【0045】図4は、実施の形態3のインバータ装置の
動作を説明するためのフローチャートである。まず3相
逆変換回路52の出力電圧Vout の範囲が3相交流電源
21の線間電圧Vinより大きいか否かの判定を行う(ス
テップS1)。そしてVoutがVin以上の時、すなわち
3相交流電源21の線間電圧Vin以上の出力電圧を必要
とする場合には、開閉手段54を開状態とし、3相逆変
換回路52内の1相アームと平滑回路33のコンデンサ
C1,C2の中間接続部との接続を遮断する(ステップ
S2)。
FIG. 4 is a flowchart for explaining the operation of the inverter device according to the third embodiment. First, it is determined whether or not the range of the output voltage Vout of the three-phase inversion circuit 52 is larger than the line voltage Vin of the three-phase AC power supply 21 (step S1). When Vout is equal to or higher than Vin, that is, when an output voltage equal to or higher than the line voltage Vin of the three-phase AC power supply 21 is required, the opening / closing means 54 is opened and the one-phase arm in the three-phase inversion circuit 52 is And the connection between the smoothing circuit 33 and the intermediate connection between the capacitors C1 and C2 is interrupted (step S2).

【0046】その状態で3相制御手段56により3相逆
変換回路52の3相アームをそれぞれ制御し、3相逆変
換回路52の各出力相の相電圧を平滑回路33の低電圧
側に対する高電圧側の電位である3相線間電圧の約2√
2倍の電圧でスイッチング制御する(ステップS3)。
それによって3相負荷装置26に3相交流電圧を印加
し、一連の制御を終了する。
In this state, the three-phase arms of the three-phase inversion circuit 52 are controlled by the three-phase control means 56, and the phase voltage of each output phase of the three-phase inversion circuit 52 is set to a high level with respect to the low voltage side of the smoothing circuit 33. About 2√ of the three-phase line voltage, which is the voltage side potential
Switching control is performed at twice the voltage (step S3).
As a result, a three-phase AC voltage is applied to the three-phase load device 26, and a series of controls ends.

【0047】一方ステップS1でVout がVinよりも小
さい時、すなわち3相交流電源21の線間電圧Vinより
小さい出力電圧を必要とする場合には、開閉手段54を
閉状態とし、3相逆変換回路52内の1相アームと平滑
回路33のコンデンサC1,C2の中間接続部とを接続
する(ステップS4)。そして3相逆変換回路52内
の、平滑回路33のコンデンサC1,C2の中間接続部
に接続されていない2相に関して、上記実施の形態1と
同様の制御を実現し得るように3相制御手段56を制御
し(ステップS5)、一連の制御を終了する。
On the other hand, when Vout is smaller than Vin in step S1, that is, when an output voltage smaller than the line voltage Vin of the three-phase AC power supply 21 is required, the opening / closing means 54 is closed and the three-phase inverse conversion is performed. The one-phase arm in the circuit 52 is connected to the intermediate connection between the capacitors C1 and C2 of the smoothing circuit 33 (Step S4). Then, three-phase control means for controlling two phases in the three-phase inverse conversion circuit 52 which are not connected to the intermediate connection part of the capacitors C1 and C2 of the smoothing circuit 33 so as to realize the same control as in the first embodiment. 56 is controlled (step S5), and a series of controls ends.

【0048】実施の形態3によれば、3相逆変換回路5
2からの出力電圧を切り替えるための開閉手段54を設
け、その開閉手段54の開閉状態を切り替え制御するよ
うにしたため、3相逆変換回路52からの出力を、電源
電圧とほぼ同電圧までの3相電圧と、電源電圧のほぼ2
倍までの3相電圧とに切り替えることができる。そして
3相逆変換回路52から電源電圧とほぼ同電圧までの3
相電圧を出力させる場合には、上記実施の形態1と同様
の効果、すなわち漏洩電流の抑制、電源ノイズの抑制、
インバータ装置の小型化、構成部品点数の削減、低コス
ト化、および損失の低減が可能であるという効果が得ら
れる。
According to the third embodiment, three-phase inversion circuit 5
The switching means 54 for switching the output voltage from the switching circuit 2 is provided, and the switching state of the switching means 54 is controlled to be switched. Phase voltage and power supply voltage
It can be switched to a three-phase voltage up to twice. Then, from the three-phase inversion circuit 52, the voltage from the three-phase inversion
When a phase voltage is output, the same effects as in the first embodiment, namely, suppression of leakage current, suppression of power supply noise,
The effects are obtained that the inverter device can be reduced in size, the number of components can be reduced, the cost can be reduced, and the loss can be reduced.

【0049】実施の形態4.図5は、本発明の実施の形
態4にかかる3相インバータ装置の構成を示すブロック
図である。このインバータ装置が上記実施の形態1と異
なるのは、単相順変換回路31の代わりに3相順変換回
路61を設け、3相順変換回路61の3相に3相交流電
源21の3相出力を1相ずつ供給するようにしたこと
と、3相交流電源21の3相のうちの接地された1相
を、平滑回路33のコンデンサC1とコンデンサC2と
の中間接続部にスイッチ等の開閉手段64を介して接続
したことと、その開閉手段64の開閉を制御する開閉回
路制御手段65を設けたことである。その他の構成は上
記実施の形態1(図1参照)と同様であるので、同様の
構成については同一の符号を付して説明を省略する。
Embodiment 4 FIG. 5 is a block diagram showing a configuration of the three-phase inverter device according to Embodiment 4 of the present invention. This inverter device is different from the first embodiment in that a three-phase forward conversion circuit 61 is provided instead of the single-phase forward conversion circuit 31, and three phases of the three-phase AC power supply 21 are added to three phases of the three-phase forward conversion circuit 61. The output is supplied one phase at a time, and one of the three phases of the three-phase AC power supply 21 is connected to the ground connection between the capacitors C1 and C2 of the smoothing circuit 33 by opening and closing a switch. That is, they are connected via the means 64 and the switching circuit control means 65 for controlling the opening and closing of the switching means 64 is provided. Other configurations are the same as those in the first embodiment (see FIG. 1), and thus the same configurations will be denoted by the same reference numerals and description thereof will be omitted.

【0050】3相順変換回路61は、一対のダイオード
D311,D312を直列接続したダイオード列と一対
のダイオードD321,D322を直列接続したダイオ
ード列と一対のダイオードD331,D332を直列接
続したダイオード列とが並列に接続された構成となって
いる。3相交流電源21の出力は、各ダイオード列の一
対のダイオードの中間接続部に1相ずつ供給される。
The three-phase forward conversion circuit 61 includes a diode row in which a pair of diodes D311 and D312 are connected in series, a diode row in which a pair of diodes D321 and D322 are connected in series, and a diode row in which a pair of diodes D331 and D332 are connected in series. Are connected in parallel. The output of the three-phase AC power supply 21 is supplied one phase at a time to an intermediate connection between a pair of diodes in each diode row.

【0051】開閉回路制御手段65は、開閉手段64に
対して、3相負荷装置26に電源電圧のほぼ2分の1
(1/2)までの3相電圧を出力する場合には開路状態
とし、3相負荷装置26への出力可能電圧を電源電圧と
ほぼ同電圧までとする場合には閉路状態とするように制
御する。
The switching circuit control means 65 supplies the three-phase load device 26 with the switching means 64 approximately one half of the power supply voltage.
When the three-phase voltage up to (1/2) is output, control is performed such that the circuit is open, and when the voltage that can be output to the three-phase load device 26 is substantially equal to the power supply voltage, the circuit is closed. I do.

【0052】図6は、実施の形態4のインバータ装置の
動作を説明するためのフローチャートである。まず単相
逆変換回路32の出力電圧Vout の範囲が3相交流電源
21の線間電圧Vinより大きいか否かの判定を行う(ス
テップS11)。そしてVout がほぼVinとほぼ同じ電
圧までの時、すなわち3相交流電源21の線間電圧Vin
とほぼ同電圧までの出力電圧を必要とする場合には、開
閉手段64を閉状態とし、3相順変換回路61内の1相
アームと平滑回路33のコンデンサC1,C2の中間接
続部とを接続する(ステップS12)。その状態で3相
制御手段34により単相逆変換回路32に対して上記実
施の形態1と同様の制御を行い(ステップS14)、3
相負荷装置26に3相交流電圧を印加し、一連の制御を
終了する。
FIG. 6 is a flowchart for explaining the operation of the inverter device according to the fourth embodiment. First, it is determined whether or not the range of the output voltage Vout of the single-phase inversion circuit 32 is larger than the line voltage Vin of the three-phase AC power supply 21 (step S11). Then, when Vout is almost equal to the voltage of Vin, that is, the line voltage Vin of the three-phase AC power supply 21
When an output voltage up to substantially the same voltage is required, the opening / closing means 64 is closed and the one-phase arm in the three-phase forward conversion circuit 61 and the intermediate connection between the capacitors C1 and C2 of the smoothing circuit 33 are connected. Connection is made (step S12). In this state, the same control as in the first embodiment is performed on the single-phase inversion circuit 32 by the three-phase control means 34 (step S14).
A three-phase AC voltage is applied to the phase load device 26, and a series of controls ends.

【0053】一方ステップS11でVout がVinのほぼ
2分の1(1/2)倍の電圧までの時、すなわち3相交
流電源21の線間電圧Vinのほぼ2分の1(1/2)倍
までの出力電圧を必要とする場合には、開閉手段64を
開状態とし、3相順変換回路61内の1相アームと平滑
回路33のコンデンサC1,C2の中間接続部との接続
を遮断し(ステップS13)、ステップS14へ進み、
3相負荷装置26に3相交流電圧を印加して一連の制御
を終了する。
On the other hand, when Vout is up to approximately half (1/2) times the voltage of Vin in step S11, that is, approximately 1/2 (1/2) of the line voltage Vin of the three-phase AC power supply 21. When an output voltage up to twice is required, the opening / closing means 64 is opened and the connection between the one-phase arm in the three-phase forward conversion circuit 61 and the intermediate connection between the capacitors C1 and C2 of the smoothing circuit 33 is cut off. (Step S13), and proceed to Step S14.
A three-phase AC voltage is applied to the three-phase load device 26 to end a series of controls.

【0054】実施の形態4によれば、単相逆変換回路3
2からの出力電圧を切り替えるための開閉手段64を設
け、その開閉手段64の開閉状態を切り替え制御するよ
うにしたため、単相逆変換回路32からの出力を、電源
電圧とほぼ同電圧までの3相電圧と、電源電圧のほぼ2
分の1(1/2)倍までの3相電圧とに切り替えること
ができる。そして単相逆変換回路32から電源電圧とほ
ぼ同電圧までの3相電圧を出力させる場合には、上記実
施の形態1と同様の効果、すなわち漏洩電流の抑制、電
源ノイズの抑制、インバータ装置の小型化、構成部品点
数の削減、低コスト化、および損失の低減が可能である
という効果が得られる。
According to the fourth embodiment, single-phase inversion circuit 3
An open / close means 64 for switching the output voltage from the power supply 2 is provided, and the open / close state of the open / close means 64 is controlled to be switched. Phase voltage and power supply voltage
It is possible to switch to a three-phase voltage up to one-half (1/2) times. When the three-phase voltage is output from the single-phase inverting conversion circuit 32 up to substantially the same voltage as the power supply voltage, the same effects as those of the first embodiment, that is, suppression of leakage current, suppression of power supply noise, The following effects can be obtained: downsizing, reduction in the number of components, reduction in cost, and reduction in loss.

【0055】また単相逆変換回路32から電源電圧のほ
ぼ2分の1(1/2)倍までの3相電圧を出力させる場
合には、スイッチングによる電圧変化がほぼ2分の1
(1/2)倍となるので、漏洩電流および電源ノイズ抑
制に対しより大きな効果が得られるのに加えて、出力電
圧に対するキャリア周波数成分の割合が抑制され、電流
のリプル成分や、負荷の不安定状態を抑制することがで
きる。
When the three-phase voltage up to approximately one half (1/2) times the power supply voltage is output from the single-phase inversion circuit 32, the voltage change due to switching is approximately one half.
(1/2) times, a greater effect is obtained in suppressing leakage current and power supply noise, and in addition, the ratio of the carrier frequency component to the output voltage is suppressed, and the ripple component of the current and the load A stable state can be suppressed.

【0056】実施の形態5.図7は、本発明の実施の形
態5にかかる3相インバータ装置の構成を示すブロック
図である。このインバータ装置が上記実施の形態1と異
なるのは、単相順変換回路31の代わりに3相順変換回
路61を設け、3相順変換回路61の3相に3相交流電
源21の3相出力を1相ずつ供給するようにしたこと
と、単相逆変換回路32の代わりに3相逆変換回路52
を設け、3相逆変換回路52の3相の出力を3相負荷装
置26の各相に1相ずつ供給するようにしたことと、平
滑回路33のコンデンサC1とコンデンサC2との中間
接続部を、3相逆変換回路52の1相部分の出力点にス
イッチ等の第1の開閉手段54を介して接続したこと
と、3相交流電源21の3相のうちの接地された1相
を、平滑回路33のコンデンサC1とコンデンサC2と
の中間接続部にスイッチ等の第2の開閉手段64を介し
て接続したことと、第1の開閉手段54および第2の開
閉手段64の開閉をそれぞれ制御する第1の開閉回路制
御手段55および第2の開閉回路制御手段65を設けた
ことと、3相逆変換回路52を制御するための3相制御
手段56を設けたことである。その他の構成は上記実施
の形態1(図1参照)と同様であるので、同様の構成に
ついては同一の符号を付して説明を省略する。
Embodiment 5 FIG. 7 is a block diagram showing a configuration of the three-phase inverter device according to the fifth embodiment of the present invention. This inverter device is different from the first embodiment in that a three-phase forward conversion circuit 61 is provided instead of the single-phase forward conversion circuit 31, and three phases of the three-phase AC power supply 21 are added to three phases of the three-phase forward conversion circuit 61. The output is supplied one by one, and the three-phase inversion circuit 52 is used instead of the single-phase inversion circuit 32.
And the three-phase output of the three-phase inversion circuit 52 is supplied to each phase of the three-phase load device 26 one by one, and the intermediate connection between the capacitor C1 and the capacitor C2 of the smoothing circuit 33 is connected. The fact that it is connected to the output point of the one-phase part of the three-phase inversion circuit 52 via the first opening / closing means 54 such as a switch, and that one of the three phases of the three-phase AC power supply 21 is grounded; The connection between the intermediate connection between the capacitors C1 and C2 of the smoothing circuit 33 via the second opening / closing means 64 such as a switch, and the opening / closing of the first opening / closing means 54 and the second opening / closing means 64 are respectively controlled. That is, the first switching circuit control means 55 and the second switching circuit control means 65 are provided, and the three-phase control means 56 for controlling the three-phase inverse conversion circuit 52 is provided. Other configurations are the same as those in the first embodiment (see FIG. 1), and thus the same configurations will be denoted by the same reference numerals and description thereof will be omitted.

【0057】3相逆変換回路52、第1の開閉手段5
4、第1の開閉回路制御手段55および3相制御手段5
6は、それぞれ図3に示す実施の形態3の3相逆変換回
路52、開閉手段54、開閉回路制御手段55および3
相制御手段56と同様の構成のものである。従ってそれ
ら回路および各手段の説明は、重複するため省略する。
Three-phase inversion circuit 52, first opening / closing means 5
4. First switching circuit control means 55 and three-phase control means 5
Reference numeral 6 denotes a three-phase inversion circuit 52, an opening / closing means 54, and opening / closing circuit control means 55 and 3 of the third embodiment shown in FIG.
It has the same configuration as the phase control means 56. Therefore, the description of those circuits and each means will be omitted because they are duplicated.

【0058】3相順変換回路61、第2の開閉手段64
および第2の開閉回路制御手段65は、それぞれ図5に
示す実施の形態4の3相順変換回路61、開閉手段64
および開閉回路制御手段65と同様の構成のものであ
る。従ってそれら回路および各手段の説明は、重複する
ため省略する。
Three-phase forward conversion circuit 61, second opening / closing means 64
The second switching circuit control means 65 includes a three-phase forward conversion circuit 61 and a switching means 64 of the fourth embodiment shown in FIG.
And a configuration similar to that of the switching circuit control means 65. Therefore, the description of those circuits and each means will be omitted because they are duplicated.

【0059】図8は、実施の形態5のインバータ装置の
動作を説明するためのフローチャートである。まず3相
逆変換回路52の出力電圧Vout の範囲が3相交流電源
21の線間電圧Vinより大きいか否かの判定を行う(ス
テップS21)。そしてVout がVin以上の時、すなわ
ち3相交流電源21の線間電圧Vinのほぼ2倍までの出
力電圧を必要とする場合には、第2の開閉回路制御手段
65により第2の開閉手段64を閉路状態とし、平滑回
路33のコンデンサC1,C2の中間接続部を3相交流
電源21に接続する(ステップS22)。
FIG. 8 is a flowchart for explaining the operation of the inverter device according to the fifth embodiment. First, it is determined whether or not the range of the output voltage Vout of the three-phase inversion circuit 52 is larger than the line voltage Vin of the three-phase AC power supply 21 (step S21). When Vout is higher than Vin, that is, when an output voltage up to approximately twice the line voltage Vin of the three-phase AC power supply 21 is required, the second switching circuit control means 65 controls the second switching circuit 64. Is closed, and the intermediate connection between the capacitors C1 and C2 of the smoothing circuit 33 is connected to the three-phase AC power supply 21 (step S22).

【0060】そして第1の開閉回路制御手段55により
第1の開閉手段54を開路状態とし、3相逆変換回路5
2内の1相アームと平滑回路33のコンデンサC1,C
2の中間接続部との接続を遮断する(ステップS2
3)。その状態で3相制御手段56により3相逆変換回
路52の3相アームをそれぞれ制御し、3相逆変換回路
52の各出力相の相電圧を平滑回路33の低電圧側に対
する高電圧側の電位である3相線間電圧の約2√2倍の
電圧でスイッチング制御し(ステップS24)、3相負
荷装置26に3相交流電圧を印加し、一連の制御を終了
する。
The first opening / closing means 54 is opened by the first opening / closing circuit control means 55, and the three-phase inversion circuit 5
2 and the capacitors C1 and C of the smoothing circuit 33
2 is disconnected from the intermediate connection unit (step S2).
3). In this state, the three-phase control means 56 controls the three-phase arms of the three-phase inversion circuit 52 to change the phase voltage of each output phase of the three-phase inversion circuit 52 on the high voltage side with respect to the low voltage side of the smoothing circuit 33. Switching control is performed at a voltage of about 2√2 times the voltage between the three-phase lines (potential) (step S24), a three-phase AC voltage is applied to the three-phase load device 26, and a series of controls is completed.

【0061】一方ステップS21でVout がVinよりも
小さい時、すなわち3相交流電源21の線間電圧Vinよ
り小さい出力電圧を必要とする場合には、Vout がVin
のほぼ2分の1(1/2)倍であるか否かの判定を行う
(ステップS25)。VoutがVinのほぼ2分の1(1
/2)倍である場合には、さらに3相交流電源21の電
流の3相平衡を重視するか否かの判断を行う(ステップ
S26)。
On the other hand, when Vout is smaller than Vin in step S21, that is, when an output voltage smaller than the line voltage Vin of the three-phase AC power supply 21 is required, Vout is set to Vin.
It is determined whether or not it is almost half (1 /) times (step S25). Vout is almost half (1) of Vin
In the case of (/ 2) times, it is further determined whether or not the three-phase equilibrium of the current of the three-phase AC power supply 21 is emphasized (step S26).

【0062】ステップS26で3相平衡を重視する場合
には、第2の開閉回路制御手段65により第2の開閉手
段64を開路状態とし、平滑回路33のコンデンサC
1,C2の中間接続部と3相交流電源21との接続を遮
断する(ステップS27)。そして第1の開閉回路制御
手段55により第1の開閉手段54を開路状態とし、3
相逆変換回路52内の1相アームと平滑回路33のコン
デンサC1,C2の中間接続部との接続を遮断する(ス
テップS28)。
When importance is placed on three-phase balance in step S26, the second switching circuit 64 is opened by the second switching circuit control means 65, and the capacitor C of the smoothing circuit 33 is opened.
The connection between the intermediate connection section of the power supply C1 and the three-phase AC power supply 21 is cut off (step S27). Then, the first opening / closing means 54 is opened by the first opening / closing circuit control means 55, and
The connection between the one-phase arm in the phase inversion circuit 52 and the intermediate connection between the capacitors C1 and C2 of the smoothing circuit 33 is cut off (step S28).

【0063】その状態で3相制御手段56により3相逆
変換回路52の3相アームをそれぞれ制御し、3相逆変
換回路52の各出力相の相電圧を平滑回路33の低電圧
側に対する高電圧側の電位である3相線間電圧の約√2
倍の電圧でスイッチング制御し(ステップS29)、3
相負荷装置26に3相交流電圧を印加し、一連の制御を
終了する。
In this state, the three-phase control means 56 controls the three-phase arms of the three-phase inversion circuit 52, respectively, and changes the phase voltage of each output phase of the three-phase inversion circuit 52 to a high voltage with respect to the low voltage side of the smoothing circuit 33. Approximately $ 2 of the three-phase line voltage that is the voltage side potential
Switching control is performed at twice the voltage (step S29).
A three-phase AC voltage is applied to the phase load device 26, and a series of controls ends.

【0064】ステップS26で3相平衡を重視せずに、
漏洩電流および電源ノイズの抑制を重視する場合には、
第2の開閉回路制御手段65により第2の開閉手段64
を閉路状態とし、平滑回路33のコンデンサC1,C2
の中間接続部を3相交流電源21に接続する(ステップ
S30)。そして第1の開閉回路制御手段55により第
1の開閉手段54を閉路状態とし、3相逆変換回路52
内の1相アームを平滑回路33のコンデンサC1,C2
の中間接続部に接続する(ステップS31)。その状態
で3相制御手段56により、3相逆変換回路52内の、
平滑回路33のコンデンサC1,C2の中間接続部に接
続されていない2相に関して、上記実施の形態1と同様
の制御を行い(ステップS32)、3相負荷装置26に
3相交流電圧を印加して一連の制御を終了する。
In step S26, without emphasizing the three-phase balance,
When emphasis is placed on suppressing leakage current and power supply noise,
The second switching circuit control means 65 controls the second switching means 64
Are closed, and the capacitors C1 and C2 of the smoothing circuit 33 are closed.
Is connected to the three-phase AC power supply 21 (step S30). Then, the first opening / closing means 54 is closed by the first opening / closing circuit control means 55, and the three-phase inversion circuit 52
Are connected to the capacitors C1 and C2 of the smoothing circuit 33.
(Step S31). In this state, the three-phase control means 56
The same control as in the first embodiment is performed for the two phases not connected to the intermediate connection part of the capacitors C1 and C2 of the smoothing circuit 33 (step S32), and the three-phase AC voltage is applied to the three-phase load device 26. To end a series of controls.

【0065】ステップS25でVout がVinのほぼ2分
の1(1/2)倍ではない場合には、第2の開閉回路制
御手段65により第2の開閉手段64を開路状態とし、
平滑回路33のコンデンサC1,C2の中間接続部と3
相交流電源21との接続を遮断する(ステップS3
3)。そして第1の開閉回路制御手段55により第1の
開閉手段54を閉路状態とし、3相逆変換回路52内の
1相アームを平滑回路33のコンデンサC1,C2の中
間接続部に接続する(ステップS34)。その状態で3
相制御手段56により、3相逆変換回路52内の、平滑
回路33のコンデンサC1,C2の中間接続部に接続さ
れていない2相に関して、上記実施の形態1と同様の制
御を行い(ステップS35)、3相負荷装置26に3相
交流電圧を印加して一連の制御を終了する。
If Vout is not approximately one-half (1/2) times Vin in step S25, the second opening / closing means 64 is opened by the second opening / closing circuit control means 65, and
The intermediate connection between the capacitors C1 and C2 of the smoothing circuit 33 and 3
The connection with the phase AC power supply 21 is interrupted (step S3).
3). Then, the first switching means 54 is closed by the first switching circuit control means 55, and the one-phase arm in the three-phase inversion circuit 52 is connected to the intermediate connection between the capacitors C1 and C2 of the smoothing circuit 33 (step). S34). 3 in that state
The same control as that of the first embodiment is performed by the phase control means 56 for the two phases in the three-phase inversion circuit 52 that are not connected to the intermediate connection between the capacitors C1 and C2 of the smoothing circuit 33 (step S35). ) A three-phase AC voltage is applied to the three-phase load device 26 to end a series of controls.

【0066】実施の形態5によれば、3相逆変換回路5
2からの出力電圧を切り替えるための第1の開閉手段5
4および第2の開閉手段64を設け、それら第1および
第2の開閉手段54,64の開閉状態を切り替え制御す
るようにしたため、3相逆変換回路52からの出力を、
電源電圧のほぼ2分の1(1/2)倍までの3相電圧
と、電源電圧とほぼ同電圧までの3相電圧と、電源電圧
のほぼ2倍までの3相電圧とに切り替えることができ
る。そして3相逆変換回路52から電源電圧とほぼ同電
圧までの3相電圧を出力させる場合には、上記実施の形
態1と同様の効果、すなわち漏洩電流の抑制、電源ノイ
ズの抑制、インバータ装置の小型化、構成部品点数の削
減、低コスト化、および損失の低減が可能であるという
効果が得られる。
According to the fifth embodiment, three-phase inversion circuit 5
First switching means 5 for switching the output voltage from 2
Fourth and second opening / closing means 64 are provided, and the open / close states of the first and second opening / closing means 54 and 64 are switched and controlled.
Switching to a three-phase voltage up to approximately one half (1/2) times the power supply voltage, a three-phase voltage up to approximately the same voltage as the power supply voltage, and a three-phase voltage up to approximately twice the power supply voltage it can. When the three-phase inversion circuit 52 outputs a three-phase voltage up to substantially the same voltage as the power supply voltage, the same effects as in the first embodiment, namely, suppression of leakage current, suppression of power supply noise, The following effects can be obtained: downsizing, reduction in the number of components, reduction in cost, and reduction in loss.

【0067】また3相逆変換回路52から電源電圧のほ
ぼ2分の1(1/2)倍までの3相電圧を出力させる場
合には、スイッチングによる電圧変化がほぼ2分の1
(1/2)倍となるので、漏洩電流および電源ノイズ抑
制に対しより大きな効果が得られるのに加えて、出力電
圧に対するキャリア周波数成分の割合が抑制され、電流
のリプル成分や、負荷の不安定状態を抑制することがで
きる。
When the three-phase inversion circuit 52 outputs a three-phase voltage up to approximately one half (1/2) times the power supply voltage, the voltage change due to switching is almost one half.
(1/2) times, a greater effect is obtained in suppressing leakage current and power supply noise, and in addition, the ratio of the carrier frequency component to the output voltage is suppressed, and the ripple component of the current and the load A stable state can be suppressed.

【0068】実施の形態6.図9は、本発明の実施の形
態6にかかる3相インバータ装置の構成を示すブロック
図である。このインバータ装置が上記実施の形態1と異
なるのは、3相交流電源21に代えて3相Y接続電源2
3を用いたことと、単相順変換回路31の代わりに3相
順変換回路61を設け、3相順変換回路61の3相に3
相Y接続電源の3相出力を1相ずつ供給するようにした
ことと、単相逆変換回路32の代わりに3相逆変換回路
52を設け、3相逆変換回路52の3相の出力を3相負
荷装置26の各相に1相ずつ供給するようにしたこと
と、3相Y接続電源の中性点に平滑回路33のコンデン
サC1とコンデンサC2との中間接続部を接続したこと
である。その他の構成は上記実施の形態1(図1参照)
と同様であるので、同様の構成については同一の符号を
付して説明を省略する。
Embodiment 6 FIG. FIG. 9 is a block diagram showing a configuration of a three-phase inverter device according to Embodiment 6 of the present invention. This inverter device is different from the first embodiment in that a three-phase Y connection power supply 2
3 and that a three-phase forward conversion circuit 61 is provided instead of the single-phase forward conversion circuit 31,
The three-phase output of the phase Y connection power supply is supplied one phase at a time, and the three-phase reverse conversion circuit 52 is provided instead of the single-phase reverse conversion circuit 32, and the three-phase output of the three-phase reverse conversion circuit 52 is output. One phase is supplied to each phase of the three-phase load device 26, and the intermediate connection between the capacitors C1 and C2 of the smoothing circuit 33 is connected to the neutral point of the three-phase Y connection power supply. . For other configurations, the first embodiment (see FIG. 1)
Therefore, the same components are denoted by the same reference numerals and description thereof will be omitted.

【0069】3相逆変換回路52および3相順変換回路
61は、それぞれ図3に示す実施の形態3の3相逆変換
回路52、および図5に示す実施の形態4の3相順変換
回路61と同様の構成のものである。従ってそれらの回
路の説明は、重複するため省略する。
The three-phase inverse conversion circuit 52 and the three-phase forward conversion circuit 61 are respectively a three-phase inverse conversion circuit 52 of the third embodiment shown in FIG. 3 and a three-phase forward conversion circuit of the fourth embodiment shown in FIG. It has the same configuration as 61. Therefore, the description of those circuits is omitted because they are duplicated.

【0070】つぎに実施の形態6の作用について説明す
る。平滑回路33の、3相Y接続電源23との接続点
と、平滑回路33の上位電位側との間の電圧は、3相Y
接続電源23の相電圧実効値の約√2倍となる。同様に
平滑回路33の、3相Y接続電源23との接続点と、平
滑回路33の下位電位側との間の電圧も3相Y接続電源
23の相電圧実効値の約√2倍となる。従って3相逆変
換回路52に印加される直流電圧は、3相Y接続電源2
3の相電圧実効値の約2√2倍となり、3相逆変換回路
52の正弦波出力線間出力電圧実効値は、3相Y接続電
源23の相電圧実効値の約√3倍となる。
Next, the operation of the sixth embodiment will be described. The voltage between the connection point of the smoothing circuit 33 and the three-phase Y connection power supply 23 and the higher potential side of the smoothing circuit 33 is three-phase Y
It is about √2 times the effective value of the phase voltage of the connection power supply 23. Similarly, the voltage between the connection point of the smoothing circuit 33 and the three-phase Y connection power supply 23 and the lower potential side of the smoothing circuit 33 is also about √2 times the effective phase voltage of the three-phase Y connection power supply 23. . Therefore, the DC voltage applied to the three-phase inversion circuit 52 is
Thus, the effective value of the output voltage between the sine-wave output lines of the three-phase inversion circuit 52 is approximately √3 times the effective value of the phase voltage of the three-phase Y connection power supply 23. .

【0071】それに対して3相Y接続電源23の中性点
を平滑回路33のコンデンサC1,C2の中間接続部に
接続しない場合には、3相逆変換回路52に印加される
直流電圧は、3相Y接続電源23の相電圧実効値の約√
6倍となり、3相逆変換回路52の正弦波出力線間出力
電圧実効値は、相電圧実効値の約2分の3(3/2)倍
までである。従って3相Y接続電源23の中性点を平滑
回路33のコンデンサC1,C2の中間接続部に接続し
たことにより、出力電圧が約15%増大する。
On the other hand, when the neutral point of the three-phase Y connection power supply 23 is not connected to the intermediate connection between the capacitors C1 and C2 of the smoothing circuit 33, the DC voltage applied to the three-phase inversion circuit 52 is About の of the effective value of the phase voltage of the three-phase Y connection power supply 23
That is, the effective value of the output voltage between the sine wave output lines of the three-phase inversion circuit 52 is up to about three-half (3/2) times the effective value of the phase voltage. Accordingly, by connecting the neutral point of the three-phase Y connection power supply 23 to the intermediate connection between the capacitors C1 and C2 of the smoothing circuit 33, the output voltage increases by about 15%.

【0072】実施の形態6によれば、3相Y接続電源2
3の中性点を平滑回路33のコンデンサC1,C2の中
間接続部に接続したため、3相逆変換回路52の出力を
増大することができ、さらには3相負荷装置26に印加
される接地電位に対する瞬時電圧も抑制できるので、漏
洩電流および電源ノイズを抑制することができる。
According to the sixth embodiment, three-phase Y connection power supply 2
3 is connected to the intermediate connection between the capacitors C1 and C2 of the smoothing circuit 33, so that the output of the three-phase inversion circuit 52 can be increased, and furthermore, the ground potential applied to the three-phase load device 26 , The leakage current and the power supply noise can be suppressed.

【0073】なお、図10に示す変形例のように、3相
負荷装置26に代えて3相Y接続負荷装置28を用い、
平滑回路33のコンデンサC1,C2の中間接続部に3
相Y接続負荷装置28の中性点と3相Y接続電源23の
中性点の両方を接続してもよい。このようにすれば、3
相逆変換回路52の出力増大効果、および3相Y接続負
荷装置28に印加される接地電位に対する瞬時電圧の抑
制効果に加えて、3相Y接続負荷装置28の中性点電位
が安定するため、漏洩電流および電源ノイズをより一層
抑制することができる。
As in the modification shown in FIG. 10, a three-phase Y connection load device 28 is used instead of the three-phase load device 26.
3 is connected to the intermediate connection between the capacitors C1 and C2 of the smoothing circuit 33.
Both the neutral point of the phase Y connection load device 28 and the neutral point of the three-phase Y connection power supply 23 may be connected. In this way, 3
In addition to the effect of increasing the output of the phase inversion conversion circuit 52 and the effect of suppressing the instantaneous voltage with respect to the ground potential applied to the three-phase Y-connection load device 28, the neutral point potential of the three-phase Y-connection load device 28 is stabilized. , Leakage current and power supply noise can be further suppressed.

【0074】[0074]

【発明の効果】以上、説明したとおり、本発明によれ
ば、単相順変換回路が3相交流電源の3相出力のうちの
2相に接続され、平滑回路のコンデンサどうしの中間接
続部の一つが、3相交流電源の残りの1相出力に接続さ
れると共に、3相負荷装置の3相入力のうちの1相に接
続され、単相逆変換回路が3相負荷装置の残りの2相入
力に接続され、3相制御手段により、3相負荷装置に3
相交流電圧が供給されるように単相逆変換回路が制御さ
れるため、3相負荷装置の1相の電位を接地電位とし、
他の相の電圧の瞬時値を、最大で3相交流電源の線間電
圧の約√2倍程度の電位に抑制することができる。その
結果、漏洩電流および電源ノイズを抑制することができ
る。また一般的な単相順変換回路および一般的な単相逆
変換回路を用いることができるため、インバータ装置の
小型化、構成部品点数の削減および低コスト化が可能と
なる。さらに構成部品点数の削減に伴い、損失も低減で
きる。
As described above, according to the present invention, according to the present invention, the single-phase forward conversion circuit is connected to two phases of the three-phase output of the three-phase AC power supply, and the intermediate connection between the capacitors of the smoothing circuit is provided. One is connected to the remaining one-phase output of the three-phase AC power supply and to one of the three-phase inputs of the three-phase load device, and the single-phase inverting circuit is connected to the remaining two of the three-phase load device. Connected to the three-phase load device by the three-phase control means.
Since the single-phase inversion circuit is controlled so that the phase AC voltage is supplied, the potential of one phase of the three-phase load device is set to the ground potential,
The instantaneous value of the voltage of the other phase can be suppressed to a potential that is at most about √2 times the line voltage of the three-phase AC power supply. As a result, leakage current and power supply noise can be suppressed. Further, since a general single-phase forward conversion circuit and a general single-phase reverse conversion circuit can be used, the inverter device can be reduced in size, the number of components can be reduced, and the cost can be reduced. Furthermore, the loss can be reduced with the reduction in the number of components.

【0075】つぎの発明によれば、単相高力率順変換回
路が、単相フルブリッジ整流器および前記単相フルブリ
ッジ整流器に逆並列接続されたスイッチ素子からなり、
平滑回路のコンデンサどうしの中間接続部の一つが、3
相交流電源の残りの1相出力に接続されると共に、3相
負荷装置の3相入力のうちの1相に接続され、単相逆変
換回路が3相負荷装置の残りの2相入力に接続され、3
相制御手段により、3相負荷装置に3相交流電圧が供給
されるように単相逆変換回路が制御され、さらに高力率
順変換制御手段により、3相交流電源から流入する電流
が概略正弦波化されて力率が改善されるように単相高力
率順変換回路が制御されるため、3相交流電源から流入
する電流を概略正弦波化し、力率を改善することができ
る。
According to the next invention, the single-phase high power factor forward conversion circuit comprises a single-phase full-bridge rectifier and a switch element connected in anti-parallel to the single-phase full-bridge rectifier,
One of the intermediate connections between the capacitors of the smoothing circuit is 3
Is connected to the remaining one-phase output of the three-phase AC power supply, is connected to one of the three-phase inputs of the three-phase load device, and is connected to the remaining two-phase input of the three-phase load device by the single-phase inversion circuit. And 3
The single-phase inversion circuit is controlled by the phase control means so that the three-phase AC voltage is supplied to the three-phase load device, and the current flowing from the three-phase AC power supply is substantially sinusoidal by the high power factor forward conversion control means. Since the single-phase high power factor forward conversion circuit is controlled so that the power factor is improved by being converted into a wave, the current flowing from the three-phase AC power supply is converted into a substantially sine wave, and the power factor can be improved.

【0076】つぎの発明によれば、単相順変換回路が3
相交流電源の3相出力のうちの2相に接続され、平滑回
路のコンデンサどうしの中間接続部の一つが、3相交流
電源の残りの1相出力に接続されると共に、3相負荷装
置の3相入力のうちの1相に開閉手段を介して接続さ
れ、3相逆変換回路が3相負荷装置の3相入力に接続さ
れ、開閉回路制御手段により開閉手段が、3相逆変換回
路の出力を電源電圧とほぼ同電圧までの3相電圧とする
場合に閉路状態となり、また3相逆変換回路の出力を電
源電圧のほぼ2倍までの3相電圧とする場合に開路状態
となるように制御され、さらに3相制御手段により、開
閉手段の開閉状態に対応して3相負荷装置に3相交流電
圧が供給されるように3相逆変換回路が制御されるた
め、3相逆変換回路からの出力を、電源電圧とほぼ同電
圧までの3相電圧と、電源電圧のほぼ2倍までの3相電
圧とに切り替えることができる。
According to the next invention, the single-phase forward conversion circuit has three
One of the intermediate connections between the capacitors of the smoothing circuit is connected to the remaining one-phase output of the three-phase AC power supply and connected to two of the three-phase outputs of the three-phase AC power supply. One of the three-phase inputs is connected to one of the three-phase inputs via a switching means, the three-phase inversion circuit is connected to the three-phase input of the three-phase load device, and the switching means is controlled by the switching circuit control means. The circuit is closed when the output is a three-phase voltage up to substantially the same voltage as the power supply voltage, and is open when the output of the three-phase inversion circuit is a three-phase voltage up to almost twice the power supply voltage. And the three-phase control means controls the three-phase inverse conversion circuit so that the three-phase AC voltage is supplied to the three-phase load device in accordance with the open / close state of the open / close means. The output from the circuit is a three-phase voltage up to the same voltage as the power supply voltage, It can be switched between three-phase voltage to approximately twice the source voltage.

【0077】つぎの発明によれば、3相順変換回路が3
相交流電源の3相出力に接続され、平滑回路のコンデン
サどうしの中間接続部の一つが、3相交流電源の1相出
力に開閉手段を介して接続されると共に、3相負荷装置
の3相入力のうちの1相に接続され、単相逆変換回路が
3相負荷装置の残りの2相入力に接続され、開閉回路制
御手段により開閉手段が、単相逆変換回路の出力を電源
電圧とほぼ同電圧までの3相電圧とする場合に閉路状態
となり、また単相逆変換回路の出力を電源電圧のほぼ2
分の1倍までの3相電圧とする場合に開路状態となるよ
うに制御され、さらに3相制御手段により、開閉手段の
開閉状態に対応して3相負荷装置に3相交流電圧が供給
されるように単相逆変換回路が制御されるため、単相逆
変換回路からの出力を、電源電圧とほぼ同電圧までの3
相電圧と、電源電圧のほぼ2分の1倍までの3相電圧と
に切り替えることができる。そして、単相逆変換回路の
出力が電源電圧のほぼ2分の1倍までの場合には、スイ
ッチングによる電圧変化がほぼ2分の1倍となるので、
漏洩電流および電源ノイズ抑制に対しより大きな効果が
得られるのに加えて、出力電圧に対するキャリア周波数
成分の割合が抑制され、電流のリプル成分や、負荷の不
安定状態を抑制することができる。
According to the next invention, the three-phase forward conversion circuit has three
One of the intermediate connections between the capacitors of the smoothing circuit is connected to the one-phase output of the three-phase AC power supply via switching means, and the three-phase load of the three-phase load device is connected to the three-phase output of the three-phase AC power supply. One of the inputs is connected to one phase, a single-phase inversion circuit is connected to the remaining two-phase input of the three-phase load device, and the switching means is controlled by the switching circuit control means. When the three-phase voltage is set to substantially the same voltage, the circuit is closed, and the output of the single-phase inversion circuit is set to approximately two times the power supply voltage.
In the case where the three-phase voltage is reduced to 1 / times, the circuit is controlled to be in an open circuit state, and the three-phase control means supplies a three-phase AC voltage to the three-phase load device in accordance with the open / close state of the open / close means. The single-phase inversion circuit is controlled in such a manner that the output from the single-phase inversion circuit is reduced to a voltage approximately equal to the power supply voltage.
It is possible to switch between a phase voltage and a three-phase voltage up to approximately half the power supply voltage. When the output of the single-phase inversion circuit is up to approximately one half of the power supply voltage, the voltage change due to switching becomes approximately one half, so that
In addition to obtaining a greater effect on suppressing the leakage current and the power supply noise, the ratio of the carrier frequency component to the output voltage is suppressed, and the ripple component of the current and the unstable state of the load can be suppressed.

【0078】つぎの発明によれば、3相順変換回路が3
相交流電源の3相出力に接続され、平滑回路のコンデン
サどうしの中間接続部の一つが、3相負荷装置の3相入
力のうちの1相に第1の開閉手段を介して接続されると
共に、3相交流電源の1相出力に第2の開閉手段を介し
て接続され、3相逆変換回路が3相負荷装置の3相入力
に接続され、開閉回路制御手段により、3相逆変換回路
の出力電圧範囲に対応して第1の開閉手段および第2の
開閉手段のそれぞれの開閉状態が制御され、さらに3相
制御手段により、第1の開閉手段および第2の開閉手段
の開閉状態に対応して3相負荷装置に3相交流電圧が供
給されるように3相逆変換回路が制御されるため、3相
逆変換回路からの出力を、電源電圧のほぼ2分の1倍ま
での3相電圧と、電源電圧とほぼ同電圧までの3相電圧
と、電源電圧のほぼ2倍までの3相電圧とに切り替える
ことができる。
According to the next invention, the three-phase forward conversion circuit includes three
One of the intermediate connections between the capacitors of the smoothing circuit is connected to one of the three-phase inputs of the three-phase load device via the first opening / closing means. A three-phase inverter is connected to the one-phase output of the three-phase AC power supply via the second switching means, a three-phase inversion circuit is connected to the three-phase input of the three-phase load device, and the three-phase inversion circuit is controlled by the switching circuit control means. The open / close states of the first open / close means and the second open / close means are controlled in accordance with the output voltage ranges of the first and second open / close means, and the three-phase control means sets the open / close states of the first open / close means and the second open / close means. Correspondingly, the three-phase inversion circuit is controlled so that the three-phase AC voltage is supplied to the three-phase load device, so that the output from the three-phase inversion circuit is reduced to approximately one half of the power supply voltage. The three-phase voltage, the three-phase voltage up to substantially the same voltage as the power supply voltage, and the power supply voltage It can be switched between three-phase voltage of up to twice.

【0079】つぎの発明によれば、3相順変換回路が3
相交流電源の3相出力に接続され、平滑回路のコンデン
サどうしの中間接続部の一つが3相交流電源の中性点に
接続され、3相逆変換回路が3相負荷装置の3相入力に
接続されるため、3相逆変換回路の出力を増大すること
ができ、さらには3相負荷装置に印加される接地電位に
対する瞬時電圧も抑制できるので、漏洩電流および電源
ノイズを抑制することができる。
According to the next invention, the three-phase forward conversion circuit is
Connected to the three-phase output of the three-phase AC power supply, one of the intermediate connections between the capacitors of the smoothing circuit is connected to the neutral point of the three-phase AC power supply, and the three-phase inverting circuit is connected to the three-phase input of the three-phase load device. Since the connection is made, the output of the three-phase inversion circuit can be increased, and the instantaneous voltage with respect to the ground potential applied to the three-phase load device can be suppressed, so that the leakage current and the power supply noise can be suppressed. .

【0080】つぎの発明によれば、平滑回路のコンデン
サどうしの中間接続部は3相負荷装置の中性点にも接続
されるため、3相負荷装置の中性点電位が安定し、漏洩
電流および電源ノイズをより一層抑制することができ
る。
According to the next invention, the intermediate connection between the capacitors of the smoothing circuit is also connected to the neutral point of the three-phase load device, so that the neutral point potential of the three-phase load device is stabilized and the leakage current is reduced. In addition, power supply noise can be further suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1にかかる3相インバー
タ装置の構成を示すブロック図である。
FIG. 1 is a block diagram illustrating a configuration of a three-phase inverter device according to a first embodiment of the present invention.

【図2】 本発明の実施の形態2にかかる3相インバー
タ装置の構成を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of a three-phase inverter device according to a second embodiment of the present invention.

【図3】 本発明の実施の形態3にかかる3相インバー
タ装置の構成を示すブロック図である。
FIG. 3 is a block diagram showing a configuration of a three-phase inverter device according to a third embodiment of the present invention.

【図4】 実施の形態3のインバータ装置の動作を説明
するためのフローチャートである。
FIG. 4 is a flowchart illustrating an operation of the inverter device according to the third embodiment;

【図5】 本発明の実施の形態4にかかる3相インバー
タ装置の構成を示すブロック図である。
FIG. 5 is a block diagram showing a configuration of a three-phase inverter device according to a fourth embodiment of the present invention.

【図6】 実施の形態4のインバータ装置の動作を説明
するためのフローチャートである。
FIG. 6 is a flowchart illustrating an operation of the inverter device according to the fourth embodiment.

【図7】 本発明の実施の形態5にかかる3相インバー
タ装置の構成を示すブロック図である。
FIG. 7 is a block diagram showing a configuration of a three-phase inverter device according to a fifth embodiment of the present invention.

【図8】 実施の形態5のインバータ装置の動作を説明
するためのフローチャートである。
FIG. 8 is a flowchart illustrating an operation of the inverter device according to the fifth embodiment.

【図9】 本発明の実施の形態6にかかる3相インバー
タ装置の構成を示すブロック図である。
FIG. 9 is a block diagram showing a configuration of a three-phase inverter device according to a sixth embodiment of the present invention.

【図10】 本発明の実施の形態7にかかる3相インバ
ータ装置の構成を示すブロック図である。
FIG. 10 is a block diagram showing a configuration of a three-phase inverter device according to a seventh embodiment of the present invention.

【図11】 一般的な3相インバータ装置の構成を示す
ブロック図である。
FIG. 11 is a block diagram illustrating a configuration of a general three-phase inverter device.

【図12】 漏洩電流および電源ノイズを低減するため
の対策を施した従来の単相インバータ回路の構成を示す
ブロッ図である。
FIG. 12 is a block diagram showing a configuration of a conventional single-phase inverter circuit in which measures are taken to reduce leakage current and power supply noise.

【符号の説明】[Explanation of symbols]

C1,C2 コンデンサ、D111,D112,D12
1,D122 単相フルブリッジ整流器、S111,S
112,S121,S122 スイッチ素子、21,2
3 3相交流電源、26,28 3相負荷装置、31
単相順変換回路、32 単相逆変換回路、33 平滑回
路、34,56 3相制御手段、41単相高力率順変換
回路、42,43 リアクトル、44 高力率順変換制
御手段、52 3相逆変換回路、54,64 開閉手
段、55,65 開閉回路制御手段、61 3相順変換
回路。
C1, C2 capacitors, D111, D112, D12
1, D122 Single phase full bridge rectifier, S111, S
112, S121, S122 Switch elements, 21, 22
3 three-phase AC power supply, 26, 28 three-phase load device, 31
Single-phase forward conversion circuit, 32 single-phase reverse conversion circuit, 33 smoothing circuit, 34, 56 three-phase control means, 41 single-phase high power factor forward conversion circuit, 42, 43 reactor, 44 high power factor forward conversion control means, 52 Three-phase reverse conversion circuit, 54, 64 switching means, 55, 65 switching circuit control means, 61 three-phase forward conversion circuit.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 3相交流電源の電圧および周波数の一方
または両方を変換して3相負荷装置に出力するインバー
タ装置であって、 3相交流電源の3相出力のうちの2相に接続される単相
順変換回路と、 前記単相順変換回路の直流側に接続され、かつ少なくと
も一対のコンデンサが直列接続されており、それらコン
デンサどうしの中間接続部の一つが、前記3相交流電源
の残りの1相出力に接続されると共に、3相負荷装置の
3相入力のうちの1相に接続される平滑回路と、 前記平滑回路に接続され、かつ前記3相負荷装置の残り
の2相入力に接続される単相逆変換回路と、 前記3相負荷装置に3相交流電圧を供給するように前記
単相逆変換回路を制御する3相制御手段と、 を具備することを特徴とする3相インバータ装置。
1. An inverter device for converting one or both of a voltage and a frequency of a three-phase AC power supply and outputting the converted voltage to a three-phase load device, the inverter device being connected to two phases of the three-phase output of the three-phase AC power supply. A single-phase forward conversion circuit, which is connected to the DC side of the single-phase forward conversion circuit, and at least a pair of capacitors are connected in series, and one of intermediate connections between the capacitors is connected to the three-phase AC power supply. A smoothing circuit connected to the remaining one-phase output and connected to one of the three-phase inputs of the three-phase load device; and a remaining two-phase connected to the smoothing circuit and the three-phase load device. A single-phase reverse conversion circuit connected to an input; and three-phase control means for controlling the single-phase reverse conversion circuit so as to supply a three-phase AC voltage to the three-phase load device. Three-phase inverter device.
【請求項2】 3相交流電源の電圧および周波数の一方
または両方を変換して3相負荷装置に出力するインバー
タ装置であって、 単相フルブリッジ整流器および前記単相フルブリッジ整
流器に逆並列接続されたスイッチ素子からなる単相高力
率順変換回路と、 前記単相高力率順変換回路の直流側に接続され、かつ少
なくとも一対のコンデンサが直列接続されており、それ
らコンデンサどうしの中間接続部の一つが、前記3相交
流電源の残りの1相出力に接続されると共に、3相負荷
装置の3相入力のうちの1相に接続される平滑回路と、 前記平滑回路に接続され、かつ前記3相負荷装置の残り
の2相入力に接続される単相逆変換回路と、 前記3相負荷装置に3相交流電圧を供給するように前記
単相逆変換回路を制御する3相制御手段と、 前記3相交流電源から流入する電流を概略正弦波化して
力率を改善するように前記単相高力率順変換回路を制御
する高力率順変換制御手段と、 を具備することを特徴とする3相インバータ装置。
2. An inverter device for converting one or both of a voltage and a frequency of a three-phase AC power supply and outputting the converted voltage to a three-phase load device, comprising: a single-phase full-bridge rectifier; and an anti-parallel connection to the single-phase full-bridge rectifier. A single-phase high power factor forward conversion circuit comprising a switched element, connected to the DC side of the single-phase high power factor forward conversion circuit, and at least a pair of capacitors are connected in series, and an intermediate connection between the capacitors One of the sections is connected to the remaining one-phase output of the three-phase AC power source, and is connected to one of the three-phase inputs of the three-phase load device; And a single-phase inversion circuit connected to the remaining two-phase input of the three-phase load device, and three-phase control for controlling the single-phase inversion circuit to supply a three-phase AC voltage to the three-phase load device Means and before High power factor forward conversion control means for controlling the single phase high power factor forward conversion circuit so as to improve the power factor by converting the current flowing from the three-phase AC power supply into a substantially sinusoidal wave. Three-phase inverter device.
【請求項3】 3相交流電源の電圧および周波数の一方
または両方を変換して3相負荷装置に出力するインバー
タ装置であって、 3相交流電源の3相出力のうちの2相に接続される単相
順変換回路と、 前記単相順変換回路の直流側に接続され、かつ少なくと
も一対のコンデンサが直列接続されており、それらコン
デンサどうしの中間接続部の一つが、前記3相交流電源
の残りの1相出力に接続されると共に、3相負荷装置の
3相入力のうちの1相に、回路の開閉を切り替えるため
の開閉手段を介して接続され得る平滑回路と、 前記平滑回路に接続され、かつ前記3相負荷装置の3相
入力に接続される3相逆変換回路と、 前記3相逆変換回路の出力を電源電圧とほぼ同電圧まで
の3相電圧とする場合に閉路状態とし、また前記3相逆
変換回路の出力を電源電圧のほぼ2倍までの3相電圧と
する場合に開路状態とするように前記開閉手段を制御す
る開閉回路制御手段と、 前記開閉手段の開閉状態に対応して前記3相負荷装置に
3相交流電圧を供給するように前記3相逆変換回路を制
御する3相制御手段と、 を具備することを特徴とする3相インバータ装置。
3. An inverter device for converting one or both of a voltage and a frequency of a three-phase AC power supply and outputting the converted voltage to a three-phase load device, wherein the inverter device is connected to two of the three-phase outputs of the three-phase AC power supply. A single-phase forward conversion circuit, which is connected to the DC side of the single-phase forward conversion circuit, and at least a pair of capacitors are connected in series, and one of intermediate connections between the capacitors is connected to the three-phase AC power supply. A smoothing circuit that is connected to the remaining one-phase output and that can be connected to one phase of the three-phase input of the three-phase load device via an opening / closing means for switching the opening and closing of the circuit; and a connection to the smoothing circuit. And a three-phase inverting circuit connected to a three-phase input of the three-phase load device, and a closed state when the output of the three-phase inverting circuit is a three-phase voltage substantially equal to a power supply voltage. And the three-phase inversion circuit Switching circuit control means for controlling the switching means so as to open the circuit when the output is a three-phase voltage up to approximately twice the power supply voltage; and the three-phase load device corresponding to the switching state of the switching means And a three-phase control means for controlling the three-phase inversion circuit so as to supply a three-phase AC voltage to the three-phase inverter.
【請求項4】 3相交流電源の電圧および周波数の一方
または両方を変換して3相負荷装置に出力するインバー
タ装置であって、 3相交流電源の3相出力に接続される3相順変換回路
と、 前記3相順変換回路の直流側に接続され、かつ少なくと
も一対のコンデンサが直列接続されており、それらコン
デンサどうしの中間接続部の一つが、前記3相交流電源
の1相出力に、回路の開閉を切り替えるための開閉手段
を介して接続され得ると共に、3相負荷装置の3相入力
のうちの1相に接続される平滑回路と、 前記平滑回路に接続され、かつ前記3相負荷装置の残り
の2相入力に接続される単相逆変換回路と、 前記単相逆変換回路の出力を電源電圧とほぼ同電圧まで
の3相電圧とする場合に閉路状態とし、また前記単相逆
変換回路の出力を電源電圧のほぼ2分の1倍までの3相
電圧とする場合に開路状態とするように前記開閉手段を
制御する開閉回路制御手段と、 前記開閉手段の開閉状態に対応して前記3相負荷装置に
3相交流電圧を供給するように前記単相逆変換回路を制
御する3相制御手段と、 を具備することを特徴とする3相インバータ装置。
4. An inverter device for converting one or both of a voltage and a frequency of a three-phase AC power supply to output to a three-phase load device, wherein the three-phase forward conversion connected to the three-phase output of the three-phase AC power supply A circuit, connected to the DC side of the three-phase forward conversion circuit, and at least a pair of capacitors are connected in series, and one of the intermediate connection portions of the capacitors is connected to a one-phase output of the three-phase AC power supply, A smoothing circuit that can be connected via switching means for switching the opening and closing of the circuit and is connected to one of three-phase inputs of a three-phase load device; and the three-phase load connected to the smoothing circuit. A single-phase inversion circuit connected to the remaining two-phase input of the device; a closed state when the output of the single-phase inversion circuit is a three-phase voltage up to substantially the same voltage as a power supply voltage; Power supply for the output of the inverse conversion circuit Switching circuit control means for controlling the opening / closing means so as to open the circuit when the three-phase voltage is approximately half the pressure, and the three-phase load device corresponding to the open / closed state of the switching means And a three-phase control unit for controlling the single-phase inversion circuit so as to supply a three-phase AC voltage to the three-phase inverter.
【請求項5】 3相交流電源の電圧および周波数の一方
または両方を変換して3相負荷装置に出力するインバー
タ装置であって、 3相交流電源の3相出力に接続される3相順変換回路
と、 前記3相順変換回路の直流側に接続され、かつ少なくと
も一対のコンデンサが直列接続されており、それらコン
デンサどうしの中間接続部の一つが、3相負荷装置の3
相入力のうちの1相に、回路の開閉を切り替えるための
第1の開閉手段を介して接続され得ると共に、前記3相
交流電源の1相出力に、回路の開閉を切り替えるための
第2の開閉手段を介して接続され得る平滑回路と、 前記平滑回路に接続され、かつ前記3相負荷装置の3相
入力に接続される3相逆変換回路と、 前記3相逆変換回路の出力電圧範囲に対応して前記第1
の開閉手段および前記第2の開閉手段のそれぞれの開閉
状態を制御する開閉回路制御手段と、 前記第1の開閉手段および前記第2の開閉手段の開閉状
態に対応して前記3相負荷装置に3相交流電圧を供給す
るように前記3相逆変換回路を制御する3相制御手段
と、 を具備することを特徴とする3相インバータ装置。
5. An inverter device for converting one or both of a voltage and a frequency of a three-phase AC power supply to output to a three-phase load device, wherein the three-phase forward conversion connected to the three-phase output of the three-phase AC power supply And a circuit connected to the DC side of the three-phase forward conversion circuit, and at least a pair of capacitors are connected in series, and one of the intermediate connection portions between the capacitors is connected to a three-phase load device.
One of the phase inputs may be connected via a first opening / closing means for switching the opening and closing of the circuit, and a second for switching the opening and closing of the circuit to the one-phase output of the three-phase AC power supply. A smoothing circuit that can be connected via switching means; a three-phase inversion circuit connected to the smoothing circuit and connected to a three-phase input of the three-phase load device; and an output voltage range of the three-phase inversion circuit Corresponding to the first
Switching circuit control means for controlling the respective open / close states of the open / close means and the second open / close means; and the three-phase load device corresponding to the open / close states of the first open / close means and the second open / close means. And a three-phase control means for controlling the three-phase inversion circuit so as to supply a three-phase AC voltage.
【請求項6】 3相交流電源の電圧および周波数の一方
または両方を変換して3相負荷装置に出力するインバー
タ装置であって、 3相交流電源の3相出力に接続される3相順変換回路
と、 前記3相順変換回路の直流側に接続され、かつ少なくと
も一対のコンデンサが直列接続されており、それらコン
デンサどうしの中間接続部の一つが前記3相交流電源の
中性点に接続される平滑回路と、 前記平滑回路に接続され、かつ前記3相負荷装置の3相
入力に接続される3相逆変換回路と、 を具備することを特徴とする3相インバータ装置。
6. An inverter device for converting one or both of a voltage and a frequency of a three-phase AC power supply and outputting the converted voltage and frequency to a three-phase load device, wherein the three-phase forward conversion is connected to the three-phase output of the three-phase AC power supply. And a circuit connected to the DC side of the three-phase forward conversion circuit, and at least a pair of capacitors are connected in series, and one of intermediate connections between the capacitors is connected to a neutral point of the three-phase AC power supply. A three-phase inverter connected to the smoothing circuit and connected to a three-phase input of the three-phase load device.
【請求項7】 前記平滑回路のコンデンサどうしの前記
中間接続部が、前記3相負荷装置の中性点にも接続され
ることを特徴とする請求項6に記載の3相インバータ装
置。
7. The three-phase inverter device according to claim 6, wherein the intermediate connection between the capacitors of the smoothing circuit is also connected to a neutral point of the three-phase load device.
JP10344548A 1998-12-03 1998-12-03 Three-phase inverter Pending JP2000175462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10344548A JP2000175462A (en) 1998-12-03 1998-12-03 Three-phase inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10344548A JP2000175462A (en) 1998-12-03 1998-12-03 Three-phase inverter

Publications (1)

Publication Number Publication Date
JP2000175462A true JP2000175462A (en) 2000-06-23

Family

ID=18370135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10344548A Pending JP2000175462A (en) 1998-12-03 1998-12-03 Three-phase inverter

Country Status (1)

Country Link
JP (1) JP2000175462A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7535737B2 (en) 2002-07-30 2009-05-19 Daikin Industries, Ltd. AC/AC multiple-phase power converter configured to be mounted on a substrate
JP2015165744A (en) * 2014-03-03 2015-09-17 オムロン株式会社 Power converter and controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7535737B2 (en) 2002-07-30 2009-05-19 Daikin Industries, Ltd. AC/AC multiple-phase power converter configured to be mounted on a substrate
US7924586B2 (en) 2002-07-30 2011-04-12 Daikin Industries, Ltd. Substrate for AC/AC multiple-phase power converter
JP2015165744A (en) * 2014-03-03 2015-09-17 オムロン株式会社 Power converter and controller

Similar Documents

Publication Publication Date Title
JP4957303B2 (en) Space vector modulation method for AC-AC direct conversion device
US5852558A (en) Method and apparatus for reducing common mode voltage in multi-phase power converters
AU2010202505A1 (en) Power converter apparatus
CN113783456B (en) Low common mode vector modulation method and system for three-level SNPC inverter
CA2696215C (en) Medium voltage inverter system
JP2004120979A (en) Power converter
US10320306B1 (en) Matrix converter system with current control mode operation
Dixon et al. Dynamically stabilized indirect current controlled SPWM boost type 3-phase rectifier
Gruson et al. Comparison of losses between matrix and indirect matrix converters with an improved modulation
Alammari et al. Matrix converters for electric power conversion: Review of topologies and basic control techniques
JP4862476B2 (en) Switching pattern generation method for AC-AC direct conversion device
JP5012309B2 (en) Switching pattern switching method for AC-AC direct conversion device
JP2000175462A (en) Three-phase inverter
JP2672919B2 (en) Power converter
Mao et al. Multi-level 2-quadrant boost choppers for superconducting magnetic energy storage
KR20120002398A (en) A controller apparatus for controlling a dc/ac converter and a method thereof
JPH11113257A (en) Series power system compensation device using ac bidirectional switching circuit
JP5012310B2 (en) Switching pattern switching method for AC-AC direct conversion device
JP4132316B2 (en) Control method of three-phase voltage source inverter
CN115315893A (en) Inverter capable of switching between single-phase operation and three-phase operation
Farhadi et al. Predictive control of neutral-point clamped indirect matrix converter
Voronin et al. DC side soft switching three-phase voltage inverters
Venkatasubramanian et al. An efficient control method for PMSM drive using an optimized indirect matrix converter
WO2022149288A1 (en) Power conversion system and method for controlling power conversion
Guo et al. Current predictive control of Quasi-Z source three-phase four-leg direct matrix converter