JP2000175387A - Multistage, long and multipole polarizing cylindrical magnet rotor and permanent magnet motor - Google Patents

Multistage, long and multipole polarizing cylindrical magnet rotor and permanent magnet motor

Info

Publication number
JP2000175387A
JP2000175387A JP11278845A JP27884599A JP2000175387A JP 2000175387 A JP2000175387 A JP 2000175387A JP 11278845 A JP11278845 A JP 11278845A JP 27884599 A JP27884599 A JP 27884599A JP 2000175387 A JP2000175387 A JP 2000175387A
Authority
JP
Japan
Prior art keywords
magnet
cylindrical
cylindrical magnet
poles
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11278845A
Other languages
Japanese (ja)
Other versions
JP3683442B2 (en
Inventor
Koji Sato
孝治 佐藤
Takehisa Minowa
武久 美濃輪
Koji Miyata
浩二 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP27884599A priority Critical patent/JP3683442B2/en
Publication of JP2000175387A publication Critical patent/JP2000175387A/en
Application granted granted Critical
Publication of JP3683442B2 publication Critical patent/JP3683442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of torque irregularity by stacking cylindrical magnets manufactured by a vertical magnetic field forming method and oriented in one direction perpendicular to a cylindrical shaft in a multi-stage in an axial direction for formation of a long cylindrical magnet in multipole-polarizing its outer peripheral surface so as to serve as a rotor of a permanent magnet motor. SOLUTION: A cylindrical magnet whose orientation is turned 90 deg. so as to have one-way anisotropy is 6-pole polarized to obtain large magnetic flux density at oriented A and D poles, and the magnetic flux density becomes small at a part in the perpendicular direction to the orientation of B, C, E, and F poles. On the other hand, when the one-way anisotropy cylindrical magnet is sliced, divided into two in a cylindrical- axial direction, turned, stacked in two stages, and polarized, the total amount of magnetic flux increase at the A, D poles and decreases at the B, C, E, and F poles. The cylindrical magnet manufactured by a vertical magnetic field forming method and oriented in one direction perpendicular to the axial direction is axially stacked in two stages and multipole-polarized. It is thus possible to reduce variations in the amount of magnetic field for suppression of torque irregularity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、サーボモータ、ス
ピンドルモータ等の同期式永久磁石モータ用円筒磁石ロ
ータおよびこれを用いた永久磁石式モータの改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical magnet rotor for a synchronous permanent magnet motor such as a servo motor and a spindle motor, and to an improvement of a permanent magnet motor using the same.

【0002】[0002]

【従来の技術】フェライトや希土類合金のような結晶磁
気異方性材料を粉砕し、特定の磁場中でプレス成形して
作製される異方性磁石は、スピーカ、モータ、計測器、
その他の電気機器等に広く使用されている。このうち、
特にラジアル方向に異方性を有する希土類焼結磁石は、
磁気特性に優れ、軸方向への自由な着磁が可能であり、
またセグメント磁石のような磁石固定用の補強の必要も
ないため、ACサーボモータ、DCブラシレスモータ等
に使用されている。特に近年、自動車用のパワーステア
リング用など広範な用途で使用されている。
2. Description of the Related Art Anisotropic magnets made by pulverizing crystalline magnetic anisotropic materials such as ferrites and rare earth alloys and press-molding them in a specific magnetic field are used for speakers, motors, measuring instruments,
Widely used for other electrical equipment. this house,
In particular, rare earth sintered magnets having anisotropy in the radial direction
It has excellent magnetic properties and can be freely magnetized in the axial direction.
Further, since there is no need to reinforce magnet fixing such as segment magnets, they are used for AC servomotors, DC brushless motors, and the like. Particularly in recent years, it has been used in a wide range of applications such as power steering for automobiles.

【0003】ラジアル配向を有する磁石は、磁場中での
成形(磁場中成形法)により、または後方押し出し(後
方押し出し法)により製造される。磁場中成形法は、コ
アを介して磁場を対向方向から印加し、ラジアル配向を
得るが、コアの形状により配向可能な磁石高さが決まる
ため、1台のプレス装置から1個の成形体を得る、いわ
ゆる1個取り成形しか行えない。このため、円筒状ラジ
アル異方性磁石の生産性は非常に低く、極めて高価なも
のとなる。また、コアを介して磁場を発生するため、十
分な磁場が得られず、高配向が得られにくい。一方、後
方押し出し法は設備が大掛かりで、歩留まりが悪く、安
価な磁石を製造することが困難であった。このようにラ
ジアル異方性磁石は、いかなる方法を用いても製造が難
かしく、安く大量に製造することは困難であった。
[0003] Magnets having a radial orientation are produced by molding in a magnetic field (molding in a magnetic field) or by backward extrusion (backward extrusion). In the forming method in a magnetic field, a magnetic field is applied from the opposite direction through a core to obtain radial orientation. However, since the height of a magnet that can be oriented is determined by the shape of the core, one compact can be formed from one press. In other words, only one-piece molding can be performed. For this reason, the productivity of the cylindrical radial anisotropic magnet is extremely low and extremely expensive. Further, since a magnetic field is generated through the core, a sufficient magnetic field cannot be obtained, and it is difficult to obtain a high orientation. On the other hand, the rear-extrusion method requires a large facility, has a low yield, and it is difficult to manufacture an inexpensive magnet. As described above, it is difficult to manufacture the radial anisotropic magnet by any method, and it is difficult to manufacture the radial anisotropic magnet inexpensively in large quantities.

【0004】[0004]

【発明が解決しようとする課題】ラジアル異方性磁石を
用いずとも円筒磁石に多極着磁が行え、磁束密度が高
く、かつ極間の磁束密度のばらつきが小さければ、高性
能の永久磁石式モータ用の磁石となりうる。このため磁
石を垂直磁場プレスにより製造し、円筒軸に垂直な一定
の方向に配向した円筒磁石(以下、径方向配向円筒磁石
という)をその周方向に多極着磁することにより、ラジ
アル異方性磁石を用いずに、多極磁石を作製する方法が
提案された(電気学会マグネティクス研究会資料MAG
−85−120,1985)。
SUMMARY OF THE INVENTION A multi-pole magnet can be applied to a cylindrical magnet without using a radially anisotropic magnet, a high magnetic flux density, and a small variation in magnetic flux density between poles can provide a high performance permanent magnet. It can be a magnet for a type motor. For this purpose, a magnet is manufactured by a vertical magnetic field press, and a cylindrical magnet oriented in a certain direction perpendicular to the cylinder axis (hereinafter referred to as a radially oriented cylindrical magnet) is multipolarly magnetized in the circumferential direction to obtain a radially anisotropic magnet. A method of fabricating a multi-pole magnet without using a conductive magnet has been proposed.
-85-120, 1985).

【0005】垂直磁場プレスにより製造された径方向配
向円筒磁石は、プレス機のキャビティが許すかぎりの長
尺化(50mm以上)が行え、加えて多連プレスが行え
るので、1度のプレスで多数個の成形体が得られ、モー
タ用円筒磁石として高価なラジアル異方性磁石に換え
て、廉価に供給することができる。しかし、実際に垂直
磁場プレスにより作製された径方向に1方向配向した磁
石に多極着磁を行った円筒磁石は、配向方向近傍の極で
は磁束密度が高く、配向方向に垂直な方向の極では磁束
密度が小さいため、モータに組み込み回転させると、極
間の磁束密度のばらつきを反映したトルクむらが生じ、
実用に耐えうるモータ用磁石が得られなかった。
[0005] The radially oriented cylindrical magnet manufactured by the vertical magnetic field press can be made as long as possible (50 mm or more) as long as the cavity of the press machine can be used. In addition, multiple presses can be performed. Thus, a compact can be obtained and can be supplied at a low cost in place of a radially anisotropic magnet which is expensive as a cylindrical magnet for a motor. However, a cylindrical magnet that has been subjected to multipolar magnetization on a magnet oriented in one direction in the radial direction, which was actually produced by a vertical magnetic field press, has a high magnetic flux density in the pole near the orientation direction and a pole in the direction perpendicular to the orientation direction. Since the magnetic flux density is small, when incorporated in a motor and rotated, torque unevenness that reflects variations in magnetic flux density between the poles occurs.
A motor magnet that could be used practically could not be obtained.

【0006】本発明の目的は、ラジアル異方性磁石を用
いずとも多極着磁が行え、磁束密度が高く、かつ極間の
磁束密度のばらつきが小さく、モータに組み込み回転さ
せたとき、トルクむらを生じることのない、廉価に大量
生産可能な多段長尺多極着磁円筒磁石ロータおよびこれ
を用いた永久磁石式モータを提供することにある。
An object of the present invention is to perform multipolar magnetization without using a radially anisotropic magnet, to have a high magnetic flux density and a small variation in magnetic flux density between poles. An object of the present invention is to provide a multi-stage long multi-pole magnetized cylindrical magnet rotor that can be mass-produced at low cost without causing unevenness, and a permanent magnet motor using the same.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために鋭意努力を重ね、極間の磁束のばらつ
きを軽減するために、下記の改良を加え、極間の磁束密
度のばらつきを大きく軽減し、トルクむらのないスムー
ズな回転を実現できるモータ用磁石すなわち多段長尺多
極着磁円筒磁石ロータおよびこれを用いた永久磁石式モ
ータの製造を可能とした。 (1)垂直磁場成形法によって製造された円筒軸に垂直
な一方向に配向した円筒磁石を、その外周面に多極着磁
を行い永久磁石式モータのロータとするとき、軸方向に
多段(2段以上)に積み重ねて長尺の円筒磁石とし、こ
の多段長尺円筒磁石を永久磁石式モータ用ロータとす
る。 (2)多段円筒磁石の積み重ね数をi(iは2以上10
以下の正の整数)とするとき、各円筒磁石の配向方向を
180/iの角度だけずらしてi個積み重ねて多極着磁
を行い、永久磁石式モータ用の配向分散型多段多極着磁
円筒磁石ロータとする。 (3)多極着磁の極数をn(nは1以上50以下の正の
整数)とするとき、積み重ね数iと着磁極数nとの間
に、i=n/2の関係を有する配向分散型多段多極着磁
円筒磁石ロータとする。 (4)多段円筒磁石の外周面にn個の多極着磁を行なう
に際し、一極の角度を360/nとし、この角度の1/
10から2/3の角度にスキュー着磁を行った長尺の多
極スキュー着磁円筒磁石ロータとする。 (5)上記多段長尺円筒磁石を永久磁石式モータ用ロー
タとして用いて永久磁石式モータとする。 このような構成とすることにより、トルクむらがなく、
廉価で優れた多極磁石およびこれを用いた永久磁石式モ
ータの大量供給を実現した。
Means for Solving the Problems The present inventors have made intensive efforts to solve the above-mentioned problems, and have made the following improvements in order to reduce the variation in magnetic flux between the poles. The magnet for motors, which can realize smooth rotation without uneven torque, that is, a multi-stage long multi-pole magnetized cylindrical magnet rotor and a permanent magnet type motor using the same can be manufactured. (1) When a cylindrical magnet manufactured by a perpendicular magnetic field molding method and oriented in one direction perpendicular to the cylindrical axis is multipole magnetized on its outer peripheral surface to form a rotor of a permanent magnet type motor, a multistage (in the axial direction) (Two or more stages) to form a long cylindrical magnet, and this multi-stage long cylindrical magnet is used as a rotor for a permanent magnet type motor. (2) The number of stacked multi-stage cylindrical magnets is i (i is 2 or more and 10
(Positive integers below), the orientation direction of each cylindrical magnet is shifted by an angle of 180 / i, i-pieces are stacked and multi-pole magnetized, and the orientation-dispersed multi-stage multi-pole magnet for a permanent magnet motor. It is a cylindrical magnet rotor. (3) When the number of poles of multipolar magnetization is n (n is a positive integer of 1 or more and 50 or less), there is a relationship of i = n / 2 between the number of stacked poles i and the number of magnetized poles n. An orientation dispersion type multi-stage multi-pole magnetized cylindrical magnet rotor is used. (4) When performing n multipolar magnetizations on the outer peripheral surface of the multistage cylindrical magnet, the angle of one pole is set to 360 / n, and 1 / of this angle is set.
A long multi-pole skew-magnetized cylindrical magnet rotor with skew magnetization at an angle of 10 to 2/3. (5) A permanent magnet motor is obtained by using the multi-stage long cylindrical magnet as a rotor for a permanent magnet motor. With such a configuration, there is no uneven torque,
We have realized mass supply of inexpensive and excellent multi-pole magnets and permanent magnet motors using them.

【0008】[0008]

【発明の実施の形態】以下、本発明の径方向配向円筒磁
石をNd−Fe−B系の円筒磁石について説明するが、
本発明はこの系の磁石に限るものではない。図1(a)
は、着磁機10を用いて円筒磁石1の着磁を行う様子を
示し、図1(b)は、円筒磁石の配向方向を(a)に対
して90°回転させて着磁を行う様子を示す着磁模式図
である。なお、符号11は着磁機磁極歯であり、符号1
2は着磁機コイルである。図2は、垂直磁場プレスによ
り作製したNd−Fe−B系円筒磁石に、図1(a)に
示す配向方向で6極着磁を行い、表面磁束密度を測定し
たものである。この結果、図2から、配向方向にある
B,C,E,F極では非常に大きな表面磁束密度が得ら
れるが、配向方向に垂直な方向にあるA,D極では表面
磁束密度が小さいことが認められる。図1に示すような
同じ角度幅を持つ着磁器具を用いて着磁を行ったにもか
かわらず、配向方向とこれに垂直な方向とでは着磁幅が
異なり、配向方向に広く、これに垂直な方向には非常に
狭くなる。このため、垂直磁場プレスにより作製された
一方向異方性円筒磁石では、極によって生じる総磁束量
が大きい極と非常に小さな磁束量しか持たない極が存在
することになり、モータとして使用すると、各極間でト
ルク差を生じ、このトルクむらのためにスムーズな回転
が行えないことになる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a radially oriented cylindrical magnet of the present invention will be described with respect to an Nd-Fe-B-based cylindrical magnet.
The invention is not limited to this type of magnet. FIG. 1 (a)
FIG. 1B shows a state in which the cylindrical magnet 1 is magnetized using the magnetizer 10, and FIG. 1B shows a state in which the orientation direction of the cylindrical magnet is rotated by 90 ° with respect to (a). FIG. Reference numeral 11 denotes a magnetic pole tooth of the magnetizer, and reference numeral 1 denotes
2 is a magnetizer coil. FIG. 2 shows the Nd—Fe—B-based cylindrical magnet produced by the perpendicular magnetic field press, which was subjected to six-pole magnetization in the orientation direction shown in FIG. 1A, and the surface magnetic flux density was measured. As a result, it can be seen from FIG. 2 that a very large surface magnetic flux density is obtained in the B, C, E, and F poles in the orientation direction, but a small surface magnetic flux density is obtained in the A and D poles in the direction perpendicular to the orientation direction. Is recognized. Despite magnetizing using a magnetizing device having the same angular width as shown in FIG. 1, the magnetizing width is different between the orientation direction and the direction perpendicular thereto, and is wider in the orientation direction. It becomes very narrow in the vertical direction. For this reason, in a unidirectional anisotropic cylindrical magnet produced by a vertical magnetic field press, there are a pole having a large total magnetic flux generated by the pole and a pole having only a very small magnetic flux, and when used as a motor, A torque difference occurs between the poles, and smooth rotation cannot be performed due to the uneven torque.

【0009】図1(a)に対して配向方向を90°回転
させて一方向異方性を有する円筒磁石に6極着磁を行っ
た図1(b)に示すものは、配向方向にあるA,D極で
は大きな磁束密度が得られ、B,C,E,F極の配向方
向に垂直な方向の部分では磁束密度は小さくなる。一方
向異方性円筒磁石を輪切りして円筒軸方向に2等分割
し、一方に対しもう片方を徐々に回転させて2段積みを
行い、これを90°まで回転させて段積みを行い、その
後、図1(a)の配置で着磁を行うと、A,D極では回
転角が増えるにつれ徐々に総磁束量が増加し、B,C,
E,F極では総磁束量は減少する。このように垂直磁場
成形により製造された、軸方向と垂直な方向に1方向配
向した円筒磁石を、軸方向に2段以上積み重ねて多極着
磁を行うことにより、各極間の磁束量のばらつきを低減
することができ、モータとして用いた際のトルクむらを
抑えることができる。
FIG. 1B shows a cylindrical magnet having unidirectional anisotropy rotated by 90 ° with respect to FIG. 1A to perform six-pole magnetization. A large magnetic flux density is obtained in the A and D poles, and the magnetic flux density is small in a portion perpendicular to the orientation direction of the B, C, E and F poles. The one-way anisotropic cylindrical magnet is sliced and divided into two equal parts in the cylinder axis direction, one of which is gradually rotated to perform two-stage stacking, and the other is rotated to 90 ° to perform stacking. Thereafter, when the magnetization is performed in the arrangement shown in FIG. 1A, the total magnetic flux gradually increases as the rotation angle increases in the A and D poles, and B, C,
At the E and F poles, the total magnetic flux decreases. By stacking two or more stages in the axial direction of the cylindrical magnets manufactured by the perpendicular magnetic field molding and oriented in one direction perpendicular to the axial direction and performing multipolar magnetization, the amount of magnetic flux between the poles is reduced. Variation can be reduced, and torque unevenness when used as a motor can be suppressed.

【0010】分割した磁石の配向方向を相対的に所定の
角度回転させて多段(2段以上)積みして多極着磁する
ことにより、配向方向とこれに垂直な方向との磁束量の
ばらつきを均一化し、極間の磁束量のばらつきを低減さ
せることができる。このとき、積み重ねる各磁石の配向
方向を180/i度(iは積み重ね数)だけ角度をずら
して積み重ね、多極着磁を行うことが好ましい。また、
分割数は配向方向を各極に均一に分布させるために、i
=n/2段(nは極数)とすることで、配向方向の磁束
量の多い部分と、これに垂直な方向で磁束の少ない部分
とをそれぞれ各極に均一に分布でき、これを180/i
度だけ角度をずらして積み重ね、多極着磁することで各
極の総磁束量を等しくすることができる。nが多くなる
と着磁極間が狭くなり、十分な着磁が困難となるのでn
は50以下が好ましい。また、iが大きく積み重ね数が
多くなると、コストが高くなるのでiは10以下が好ま
しい。
By rotating the orientation direction of the divided magnets by a predetermined angle relatively and stacking them in multiple stages (two or more stages) and performing multi-pole magnetization, the variation in the amount of magnetic flux between the orientation direction and the direction perpendicular thereto is obtained. And the variation of the magnetic flux amount between the poles can be reduced. At this time, it is preferable that the magnets to be stacked are stacked with their orientation directions shifted by 180 / i degrees (i is the number of stacked magnets) to perform multipolar magnetization. Also,
The number of divisions is i in order to uniformly distribute the orientation direction to each pole.
= N / 2 steps (n is the number of poles), a portion having a large amount of magnetic flux in the orientation direction and a portion having a small amount of magnetic flux in a direction perpendicular thereto can be uniformly distributed to each pole. / I
By stacking the magnetic poles at different degrees and performing multi-pole magnetization, the total magnetic flux of each pole can be equalized. When n increases, the gap between the magnetized poles becomes narrow, and it becomes difficult to sufficiently magnetize.
Is preferably 50 or less. Also, if i is large and the number of stacks is large, the cost increases, so i is preferably 10 or less.

【0011】垂直磁場プレスにより一方向異方性を有す
る円筒磁石に多極着磁を行ったものは、ラジアル異方性
リング磁石に多極着磁を行った場合に比べ、極間付近の
着磁性及び磁気特性が低いので磁束密度の極間部の変化
が滑らかであり、モータのコギングトルクは小さい。な
お、磁石をスキュー着磁するか、ステータ歯にスキュー
を施すことでさらにコギングトルクを低減することがで
きる。スキュー角度は、磁石ステータともに磁石1極分
(360/n度)の角度の1/10以下であると、スキ
ュー着磁によるコギングトルク低下の効果が小さく、2
/3より大きいとモータのトルクの低下が大きくなるた
め、スキュー角は、磁石1極分の角度の1/10から2
/3の角度が好ましい。
In the case where a cylindrical magnet having unidirectional anisotropy is multipolar magnetized by a vertical magnetic field press, the magnetized magnets near the gap between the poles are compared with the case where a radially anisotropic ring magnet is multipolar magnetized. Since the magnetism and magnetic properties are low, the change in the magnetic flux density between the poles is smooth, and the cogging torque of the motor is small. The cogging torque can be further reduced by skew-magnetizing the magnet or skewing the stator teeth. When the skew angle is 1/10 or less of the angle of one pole of the magnet (360 / n degrees), the effect of lowering the cogging torque due to the skew magnetization is small.
If it is larger than / 3, the decrease in the torque of the motor is large, so the skew angle is 1/10 to 2 of the angle of one pole of the magnet.
An angle of / 3 is preferred.

【0012】[0012]

【実施例】(実施例1、2、比較例1)それぞれ純度9
9.7重量%のNd,Dy,Fe,Co,M(MはA
l,Si,Cu)と純度99.5重量%のBを用い、真
空溶解炉で溶解鋳造し、インゴットを作製した。このイ
ンゴットをジョウクラッシャーで粗粉砕し、さらに、窒
素気流中でのジェットミル粉砕により平均粒径3.5μ
mの微粉末を得た。この粉末を垂直磁場プレスにて、1
2kOeの磁場中で1.0t/cm2 の成形圧にて成形
した。得られた成型体は、Arガス中1090℃で1時
間焼結を行ない、引き続き580℃で1時間の熱処理を
行なった。その後、加工して外径30mm、内径25m
m、厚さ15mmの円筒磁石を得た。上記磁石粉末を用
い、該円筒磁石と同一条件でブロック磁石を作製した。
このブロック磁石の特性は、Br:13.0kG,iH
c:15kOe,(BH)max:40MGOeであっ
た。
Examples (Examples 1, 2 and Comparative Example 1) each having a purity of 9
9.7% by weight of Nd, Dy, Fe, Co, M (M is A
(1, Si, Cu) and B having a purity of 99.5% by weight were melt-cast in a vacuum melting furnace to produce an ingot. This ingot was coarsely pulverized with a jaw crusher, and further jet milled in a nitrogen stream to obtain an average particle size of 3.5 μm.
m was obtained. This powder was subjected to 1
Molding was performed at a molding pressure of 1.0 t / cm 2 in a magnetic field of 2 kOe. The obtained molded body was sintered in Ar gas at 1090 ° C. for 1 hour, and subsequently heat-treated at 580 ° C. for 1 hour. After that, it is processed to 30mm outside diameter, 25m inside diameter
m, a cylindrical magnet having a thickness of 15 mm was obtained. Using the above magnet powder, a block magnet was produced under the same conditions as the cylindrical magnet.
The characteristics of this block magnet are as follows: Br: 13.0 kG, iH
c: 15 kOe, (BH) max: 40 MGOe.

【0013】実施例1は、作製した円筒磁石を、配向方
向を60°ずらして積み重ね、1段目の磁石配向方向が
図1(a)の関係になるように配置し、6極着磁を行っ
た。実施例2は、ずらし角を90°とし同様に6極着磁
を行った。さらに、比較例1として、実施例1と同じ磁
石粉末を用い同一条件で外径30mm、内径25mm、
厚さ30mmの円筒磁石を作製し、6極着磁を行った。
In the first embodiment, the produced cylindrical magnets are stacked with the orientation directions shifted by 60 ° and arranged so that the orientation direction of the first-stage magnet has the relationship shown in FIG. went. In Example 2, the shift angle was 90 ° and six-pole magnetization was performed in the same manner. Further, as Comparative Example 1, an outer diameter of 30 mm, an inner diameter of 25 mm, and the same magnet powder as in Example 1 were used under the same conditions.
A cylindrical magnet having a thickness of 30 mm was prepared and subjected to six-pole magnetization.

【0014】(実施例3)実施例1と同じ磁石粉末を用
い同一条件で外径30mm、内径25mm、厚さ10m
mの円筒磁石を作製し、配向方向を60°ずらして3段
積み重ね、各段の円筒磁石の配向方向がそれぞれ図1
(b)の配置になるようにし、6極着磁を行った。この
様子を図3に示す。図中の大矢印は、円筒磁石の各段の
配向方向を示している。なお、符号23はモータコアで
ある。
(Embodiment 3) Using the same magnet powder as in Embodiment 1, under the same conditions, an outer diameter of 30 mm, an inner diameter of 25 mm, and a thickness of 10 m
m are produced, and the orientation direction is shifted by 60 ° and stacked in three stages.
Six-pole magnetization was performed with the arrangement shown in FIG. This is shown in FIG. The large arrow in the figure indicates the orientation direction of each stage of the cylindrical magnet. Reference numeral 23 denotes a motor core.

【0015】これらの磁石を評価するために、横10.
5mm、縦30mmの四角形に銅細線を50ターン巻き
コイルを作製した。このコイルを円筒磁石に接した状態
から磁石の磁力の影響を受けない遠方まで遠ざけ、この
間のコイルを横切る磁束量をフラックスメータを用いて
測定し、このときの円筒磁石の外周方向に磁束量を測定
し、ピーク値を表1に示す。
In order to evaluate these magnets, a horizontal 10.
A coil was prepared by winding a copper thin wire in a square having a length of 5 mm and a length of 30 mm with 50 turns. Move this coil away from the state in which it is in contact with the cylindrical magnet to a distance that is not affected by the magnetic force of the magnet, measure the amount of magnetic flux crossing the coil using a flux meter, and measure the amount of magnetic flux in the outer peripheral direction of the cylindrical magnet at this time. Table 1 shows the measured values.

【0016】[0016]

【表1】 [Table 1]

【0017】(実施例4、5)図4は、9個のモータス
テータ歯21を有する3相の永久磁石モータ20の平面
図を示したものである。着磁した円筒磁石をこの磁石と
同一高さのステータ内に組み込んでモータを作製した。
円筒磁石の内径部にはモータ軸となる強磁性コアが挿入
接着されている。各ティースに銅細線をそれぞれ150
ターン巻きした。このモータを1000rpmで回転さ
せ、このときの誘起電圧の絶対値の最大で、かつ1〜5
rpmで回転させ、荷重計を用いてトルクリップルの大
きさを測定した。符号22はモータコイルである。実施
例4は、実施例2と同様にずらし角90°で磁石を2段
に重ね合わせ、スキュー角を磁石1極分の角度の1/3
の20°でスキュー着磁を行い、この磁石を図4のモー
タに組み込んだものである。
(Embodiments 4 and 5) FIG. 4 is a plan view showing a three-phase permanent magnet motor 20 having nine motor stator teeth 21. FIG. A motor was manufactured by incorporating a magnetized cylindrical magnet into a stator having the same height as the magnet.
A ferromagnetic core serving as a motor shaft is inserted and bonded to the inner diameter of the cylindrical magnet. 150 fine copper wires on each tooth
Turn wound. This motor is rotated at 1000 rpm, and the absolute value of the induced voltage at this time is the maximum, and 1 to 5
After rotating at rpm, the size of the torque ripple was measured using a load cell. Reference numeral 22 denotes a motor coil. In the fourth embodiment, as in the second embodiment, the magnets are overlapped in two stages at a shift angle of 90 °, and the skew angle is set to 1 / of the angle of one pole of the magnet.
The skew magnetization is performed at 20 °, and this magnet is incorporated in the motor of FIG.

【0018】実施例5は、実施例3と同じ寸法の円筒磁
石を用い、図3にずらし角60°で磁石を3段に重ねて
スキューなしに着磁し、スキュー角が磁石1極分の角度
の1/3の20°であるスキューステータ歯を有する図
4のモータに組み込んだものである。また、段積みをし
ない円筒磁石を比較例2とし、これらの誘起電圧、トル
クリップルを測定し、誘起電圧とともにトルクリップル
の最大最小の差を表2に示した。
In the fifth embodiment, a cylindrical magnet having the same dimensions as in the third embodiment is used. Magnets are stacked in three stages at a shift angle of 60 ° in FIG. 3 and magnetized without skew. FIG. 5 is incorporated into the motor of FIG. 4 having skew stator teeth that are 20 degrees, one third of the angle. In addition, a cylindrical magnet without stacking was used as Comparative Example 2, the induced voltage and the torque ripple were measured, and the maximum and minimum differences of the torque ripple are shown in Table 2 together with the induced voltage.

【0019】[0019]

【表2】 [Table 2]

【0020】表2から、各実施例は実用に十分耐える誘
起電圧を有し、トルクリップルも十分小さいが、比較例
2はトルクリップルが大きく実用に適さないことが認め
られる。また、図5に、実施例5の電気角に対する誘起
電圧の変化を示す。誘起電圧はスムーズな正弦波を描い
ており、発生した誘起電圧にむらがないことが認められ
る。なお、曲線aは図4のU−V相、曲線bはV−W
相、曲線cはW−U相における誘起電圧曲線をそれぞれ
示している。
From Table 2, it can be seen that each of the examples has an induced voltage that can withstand practical use and the torque ripple is sufficiently small, whereas Comparative Example 2 has a large torque ripple and is not suitable for practical use. FIG. 5 shows a change in the induced voltage with respect to the electrical angle in the fifth embodiment. The induced voltage draws a smooth sine wave, and it is recognized that the generated induced voltage is not uneven. The curve a is the U-V phase in FIG.
The phase and the curve c show the induced voltage curve in the WU phase, respectively.

【0021】(比較例3)実施例4の径方向配向円筒磁
石を着磁する際、スキュー角磁石1極分の角度5/6の
50°でスキュー着磁を行い、この磁石を図4のモータ
に組み込み、実施例4と同様にして誘起電圧およびトル
クリップルを測定し、表2に示した。表2から、トルク
リップルの量は小さいが、誘起電圧の低下が大きく実用
に適さないことが認められる。
(Comparative Example 3) When the radially oriented cylindrical magnet of Example 4 was magnetized, skew magnetization was performed at 50 ° which is 5/6 of the angle of one pole of the skew angle magnet. It was assembled in a motor, and the induced voltage and the torque ripple were measured in the same manner as in Example 4, and the results are shown in Table 2. From Table 2, it can be seen that although the amount of torque ripple is small, the drop in induced voltage is large and is not suitable for practical use.

【0022】(実施例6、比較例4)実施例1のNd磁
石合金を用いて、垂直成形法により一軸配向のリング磁
石を作製した。磁石寸法は外径25mm、内径20m
m、厚さ15mmである。これを図6に示すように配向
方向を60°ずつ変化させながら6段積み重ねて磁石ロ
ーターを作製した。さらにこのローターを、7度のスキ
ュー角で6極着磁した。さらに比較例4として、同じ磁
石を用いて配向方向を一方向にそろえたローターを作製
し、同じく7度のスキュー角度で6極着磁した。これら
をステータに組み込んで、トルクリップルを測定した。
その結果は、表2に示したとおりであり、実施例6では
比較例に比べてトルクリップルが大きく低下しており、
本発明による磁石の配向方向分散の効果が顕著であるこ
とがわかる。
Example 6, Comparative Example 4 Using the Nd magnet alloy of Example 1, a uniaxially oriented ring magnet was produced by a vertical forming method. Magnet size is outer diameter 25mm, inner diameter 20m
m, thickness 15 mm. As shown in FIG. 6, this was stacked in six stages while changing the orientation direction by 60 ° to produce a magnet rotor. Further, this rotor was magnetized with 6 poles at a skew angle of 7 degrees. Further, as Comparative Example 4, a rotor was prepared using the same magnet and the orientation direction was aligned in one direction, and six poles were similarly magnetized at a skew angle of 7 degrees. These were assembled in a stator and torque ripple was measured.
The results are as shown in Table 2. In Example 6, the torque ripple was significantly reduced as compared with the comparative example.
It can be seen that the effect of the dispersion of the orientation of the magnet according to the present invention is remarkable.

【0023】[0023]

【発明の効果】本発明によれば、生産性が低く高価なラ
ジアル異方性磁石を用いずに、多連、長尺品が容易に生
産でき、廉価で大量に安定して供給できる垂直磁場プレ
スを用いた径方向配向円筒磁石を軸方向に積層し、多極
着磁してモータ用ロータを作製し、これを組み込んで永
久磁石式モータとすることで、ACサーボモータ、DC
ブラシレスモータ等の高性能化、モータの低価格化に多
大な貢献をするものである。
According to the present invention, a vertical magnetic field which can be easily produced in multiple units and long products without using an expensive radial anisotropic magnet having low productivity and which can be stably supplied at a low cost and in large quantities. A motor-oriented rotor is manufactured by laminating radially oriented cylindrical magnets using a press in the axial direction, magnetizing the poles in a multi-pole manner, and incorporating this into a permanent magnet type motor to produce an AC servo motor, DC
It greatly contributes to higher performance of brushless motors and the like and lower prices of motors.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (a)、(b)は、着磁機を用いて円筒磁石
の着磁を行う様子を示す着磁模式図であり、(b)は、
円筒磁石の配向方向を(a)に対して90°回転させて
着磁を行う様子を示す。
FIGS. 1 (a) and 1 (b) are schematic diagrams showing a state in which a cylindrical magnet is magnetized by using a magnetizer; FIG.
The state where the orientation direction of the cylindrical magnet is rotated by 90 ° with respect to (a) to perform magnetization is shown.

【図2】 垂直磁場プレスにより作製したNd−Fe−
B系円筒磁石に図1(a)に示す着磁機により6極着磁
を行ったときの表面磁束密度を示す図である。
Fig. 2 Nd-Fe- fabricated by vertical magnetic field press
FIG. 2 is a diagram showing a surface magnetic flux density when six-pole magnetization is performed on a B-system cylindrical magnet by the magnetizer shown in FIG.

【図3】 径方向配向円筒磁石を各60°ずらして3段
に積層した本発明の永久磁石式モータ用ロータを示す斜
視図である。
FIG. 3 is a perspective view showing a rotor for a permanent magnet type motor of the present invention in which radially oriented cylindrical magnets are stacked in three stages shifted by 60 ° each.

【図4】 6極に多極着磁した円筒磁石を9個のステー
タ歯に組み合わせた本発明の3相モータを示す平面図で
ある。
FIG. 4 is a plan view showing a three-phase motor of the present invention in which cylindrical magnets magnetized into six poles are combined with nine stator teeth.

【図5】 径方向配向円筒磁石を組み込んだ3相モータ
を1000rpmで回転させたときの誘起電圧と電気角
との関係を示す図である。
FIG. 5 is a diagram showing a relationship between an induced voltage and an electrical angle when a three-phase motor incorporating a radially oriented cylindrical magnet is rotated at 1000 rpm.

【図6】 径方向配向円筒磁石を各60°ずらして6段
に積層した本発明の永久磁石式モータ用ロータを示す斜
視図である。
FIG. 6 is a perspective view showing a rotor for a permanent magnet type motor of the present invention in which radially oriented cylindrical magnets are stacked in six stages shifted by 60 °.

【符号の説明】[Explanation of symbols]

1.円筒磁石 10.着磁機 11.着磁機磁極歯 12.着磁機コイル 20.永久磁石式モータ 21.モータステータ歯 22.モータコイル 23.モータコア 1. Cylindrical magnet 10. Magnetizer 11. Magnetizer magnetic pole teeth 12. Magnetizer coil 20. Permanent magnet type motor 21. Motor stator teeth 22. Motor coil 23. Motor core

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 垂直磁場成形法によって製造された円筒
軸に垂直な一方向に配向した円筒磁石を、その外周面を
多極着磁して永久磁石式モータのロータに利用する場合
において、該一軸異方性の円筒磁石を軸方向に2段以上
多段に積み重ねて長尺の円筒磁石とし、これを永久磁石
式モータ用ロータとすることを特徴とする多段長尺多極
着磁円筒磁石ロータ。
When a cylindrical magnet manufactured by a vertical magnetic field forming method and oriented in one direction perpendicular to a cylindrical axis is used for a rotor of a permanent magnet type motor by magnetizing the outer peripheral surface of the cylindrical magnet in a multipolar manner. A multi-stage long multi-pole magnetized cylindrical magnet rotor characterized in that a uniaxially anisotropic cylindrical magnet is stacked in two or more stages in the axial direction to form a long cylindrical magnet, which is used as a rotor for a permanent magnet motor. .
【請求項2】 円筒磁石の積み重ね数をi(iは2以上
10以下の正の整数)とするとき、各円筒磁石の配向方
向を180/iの角度だけずらしてi個積み重ねてなる
請求項1に記載の多段長尺多極着磁円筒磁石ロータ。
2. When the number of stacked cylindrical magnets is i (i is a positive integer of 2 or more and 10 or less), i cylindrical magnets are stacked with the orientation direction shifted by 180 / i. 2. The multi-stage long multi-pole magnetized cylindrical magnet rotor according to 1.
【請求項3】 多極着磁の極数をn(nは1以上50以
下の正の整数)とするとき、積み重ね数iと極数nとが
i=n/2の関係にある請求項2に記載の多段長尺多極
着磁円筒磁石ロータ。
3. When the number of poles of the multipolar magnetization is n (n is a positive integer of 1 to 50), the number i of stacks and the number n of poles have a relationship of i = n / 2. 3. The multi-stage long multi-pole magnetized cylindrical magnet rotor according to 2.
【請求項4】 円筒磁石の外周面にn極の多極着磁を行
なうに際し、一極の角度を360/nとし、この角度の
1/10から2/3の角度でスキュー着磁されてなる請
求項1乃至3のいずれかに記載の多段長尺多極着磁円筒
磁石ロータ。
4. When performing multi-pole magnetization of n poles on the outer peripheral surface of a cylindrical magnet, the angle of one pole is set to 360 / n, and skew magnetization is performed at an angle of 1/10 to 2/3 of this angle. The multi-stage long multi-pole magnetized cylindrical magnet rotor according to any one of claims 1 to 3.
【請求項5】 請求項1乃至4のいずれかに記載の多段
長尺多極着磁円筒磁石ロータを用いることを特徴とする
永久磁石式モータ。
5. A permanent magnet motor using the multi-stage long multi-pole magnetized cylindrical magnet rotor according to any one of claims 1 to 4.
JP27884599A 1998-09-30 1999-09-30 Multistage long multipole magnetized cylindrical magnet rotor and permanent magnet motor Expired - Lifetime JP3683442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27884599A JP3683442B2 (en) 1998-09-30 1999-09-30 Multistage long multipole magnetized cylindrical magnet rotor and permanent magnet motor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-278421 1998-09-30
JP27842198 1998-09-30
JP27884599A JP3683442B2 (en) 1998-09-30 1999-09-30 Multistage long multipole magnetized cylindrical magnet rotor and permanent magnet motor

Publications (2)

Publication Number Publication Date
JP2000175387A true JP2000175387A (en) 2000-06-23
JP3683442B2 JP3683442B2 (en) 2005-08-17

Family

ID=26552870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27884599A Expired - Lifetime JP3683442B2 (en) 1998-09-30 1999-09-30 Multistage long multipole magnetized cylindrical magnet rotor and permanent magnet motor

Country Status (1)

Country Link
JP (1) JP3683442B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1308970A2 (en) * 2001-10-31 2003-05-07 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
JP2012016275A (en) * 2001-10-31 2012-01-19 Shin Etsu Chem Co Ltd Radial anisotropic sinter magnet and magnet rotor
JP2015062338A (en) * 2014-12-03 2015-04-02 三菱電機株式会社 Compressor
WO2023027127A1 (en) * 2021-08-26 2023-03-02 Tdk株式会社 Rotor and motor
JP7471580B1 (en) 2024-01-05 2024-04-22 マグネデザイン株式会社 A rotor, a stator, an embedded magnet type synchronous machine including the rotor and the stator, and a manufacturing method of the rotor core and the stator core

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1308970A2 (en) * 2001-10-31 2003-05-07 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
KR20030035852A (en) * 2001-10-31 2003-05-09 신에쓰 가가꾸 고교 가부시끼가이샤 Radial Anisotropic Sintered Magnet and Its Preparation Process, and Magnet Rotor and Motor
EP1308970A3 (en) * 2001-10-31 2004-12-29 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
US6984270B2 (en) 2001-10-31 2006-01-10 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
EP2063439A1 (en) 2001-10-31 2009-05-27 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet, its production method, and magnet rotor or motor using said sintered magnet
EP2063438A1 (en) 2001-10-31 2009-05-27 Shin-Etsu Chemical Co., Ltd. Production method of a radial anisotropic sintered magnet, and magnet rotor or motor using said sintered magnet
US7618496B2 (en) 2001-10-31 2009-11-17 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
US7948135B2 (en) 2001-10-31 2011-05-24 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
JP2012016275A (en) * 2001-10-31 2012-01-19 Shin Etsu Chem Co Ltd Radial anisotropic sinter magnet and magnet rotor
JP2015062338A (en) * 2014-12-03 2015-04-02 三菱電機株式会社 Compressor
WO2023027127A1 (en) * 2021-08-26 2023-03-02 Tdk株式会社 Rotor and motor
JP7471580B1 (en) 2024-01-05 2024-04-22 マグネデザイン株式会社 A rotor, a stator, an embedded magnet type synchronous machine including the rotor and the stator, and a manufacturing method of the rotor core and the stator core

Also Published As

Publication number Publication date
JP3683442B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
KR100891855B1 (en) Radial Anisotropic Cylindrical Magnet, Magnet Rotor and Motor
JP5440079B2 (en) Rotor for axial gap type permanent magnet type rotating machine and axial gap type permanent magnet type rotating machine
US6262507B1 (en) Permanent magnet motor and rotor thereof
JP5089979B2 (en) Radial anisotropic cylindrical sintered magnet, manufacturing method thereof, and permanent magnet motor
JP2008205498A (en) Method of manufacturing radial anisotropic ring magnet
WO2005008862A1 (en) Thin hybrid magnetization type ring magnet, yoke-equipped thin hybrid magnetization type ring magnet, and brush-less motor
CN103001440A (en) Brushless DC electric motor
JP4238971B2 (en) Manufacturing method of radial anisotropic sintered magnet
JP4133686B2 (en) Radial anisotropic ring magnet and manufacturing method thereof
JP3683442B2 (en) Multistage long multipole magnetized cylindrical magnet rotor and permanent magnet motor
JP4890620B2 (en) Mold, magnetic field molding machine, and method for manufacturing permanent magnet
JP5353976B2 (en) Radial anisotropic sintered magnet and magnet rotor
JP2000116090A (en) Permanent magnet motor
JP2000116089A (en) Permanent magnet motor
JP2005287181A (en) Permanent magnet rotary machine, metal mold, magnetic field molding machine and permanent magnet and manufacturing method for the same
JP5448314B2 (en) Permanent magnet and permanent magnet rotating machine
JP2000175384A (en) Permanent magnet motor
KR20070023644A (en) Methods of producing radial anisotropic cylinder sintered magnet and permanet magnet motor-use cylinder multi-pole magnet
KR101123169B1 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
JP2001145280A (en) Permanent magnet synchronous motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050525

R150 Certificate of patent or registration of utility model

Ref document number: 3683442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 9

EXPY Cancellation because of completion of term