JP2000171697A - Photographing lens - Google Patents

Photographing lens

Info

Publication number
JP2000171697A
JP2000171697A JP36854098A JP36854098A JP2000171697A JP 2000171697 A JP2000171697 A JP 2000171697A JP 36854098 A JP36854098 A JP 36854098A JP 36854098 A JP36854098 A JP 36854098A JP 2000171697 A JP2000171697 A JP 2000171697A
Authority
JP
Japan
Prior art keywords
lens
object side
photographing
present
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36854098A
Other languages
Japanese (ja)
Inventor
Teruhiro Nishio
彰宏 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP36854098A priority Critical patent/JP2000171697A/en
Publication of JP2000171697A publication Critical patent/JP2000171697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a photographing lens capable of restraining aberration fluctuation at the time of focusing to be small and obtaining excellent image quality in a wide photographing distance range from long-distance photographing to short-distance photographing by improving the optical system having triplet constitution and appropriately setting the constitution of the lens. SOLUTION: This lens is constituted of four lenses being four groups, that is, a positive meniscus lens G1 whose concave surface faces to an object side, a positive lens G2 whose convex surface faces to the object side, a negative lens G3 whose both surfaces are concave, and a positive lens G4 whose convex surface faces to an image surface side from the object side. When it is assumed that the refractive indexes of the material of the lenses G2, G3 and G4 are N2, N3 and N4, respectively, and the Abbe number thereof are V2, V3 and V4, respectively, the lens satisfies conditions 1.65<(N2+N4)/2<1.9, 1.70<N3<1.95, 35<(V2+V4)/2<60 and 20<V3<30. When it is assumed that the radius of curvature of the surface of the lens G1 on the object side is R and the focal distance of a lens entire system LE is F, the lens satisfies 0.3<|R/F|<0.7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は撮影距離が無限遠か
ら撮影倍率0.5倍程度の有限距離までの広い撮影距離
範囲において、高画質化を達成した、特にビデオカメ
ラ,デジタルスチルカメラ,フィルム用カメラ、そして
スキャナ用の光学系として好適な撮影レンズに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention achieves high image quality in a wide photographing distance range from a photographing distance of infinity to a finite distance having a photographing magnification of about 0.5, particularly for video cameras, digital still cameras, and films. The present invention relates to a camera and a photographing lens suitable as an optical system for a scanner.

【0002】[0002]

【従来の技術】従来より簡素なレンズ構成の撮影光学系
として物体側より正,負,正レンズの3つのレンズを配
置した3群3枚構成のトリプレットレンズがあり、例え
ば特開平8−82740号公報,特開平7−32525
0号公報等で提案されている、また比較的少ないレンズ
枚数の走査光学系が例えば特開平7−3230035号
公報が提案されている。
2. Description of the Related Art As a photographing optical system having a simpler lens configuration than before, there is a triplet lens having a three-group configuration in which three lenses of a positive lens, a negative lens, and a positive lens are arranged from the object side. Gazette, JP-A-7-32525
For example, Japanese Patent Application Laid-Open No. 7-3230035 discloses a scanning optical system proposed in Japanese Patent Application Publication No. 0 and the like and having a relatively small number of lenses.

【0003】近年においては撮像素子はその小型化及び
高画質化により一般撮影に限らず従来より走査光学系で
行っていた高鮮鋭画像取り込みを、小型の装置にて更に
エリア領域にて画像取り込みを行うことが可能となって
いる。
In recent years, the image pickup device is not limited to general photographing due to its miniaturization and high image quality, but instead of taking a high-sharp image, which has been conventionally performed by a scanning optical system, a small-sized device further captures an image in an area area. It is possible to do.

【0004】よってその光学系もそれに応じた物体距離
が遠距離から近距離までの広い撮影距離範囲にわたり光
学性能の変化が小さく、且つ比較的少ないレンズ枚数で
小型なものが望まれている。
Accordingly, it is desired that the optical system be small in size with a relatively small number of lenses, with a small change in optical performance over a wide range of object distances corresponding to the object distance from a long distance to a short distance.

【0005】[0005]

【発明が解決しようとする課題】一般に、無限遠物体か
ら近距離物体にかけて広い撮影距離範囲において収差変
動の少ない撮影系を構成しようとすると、レンズ枚数が
増加して光学系が大型化してくる。
Generally, when an image pickup system having a small variation in aberration is formed in a wide object distance range from an object at infinity to a close object, the number of lenses increases and the size of the optical system increases.

【0006】撮影系は特定の物体距離(多くの場合、撮
影倍率20〜50倍)を基準とし、この距離において諸
収差が良好に補正されている。
[0006] The photographing system is based on a specific object distance (often a photographing magnification of 20 to 50 times), and various aberrations are satisfactorily corrected at this distance.

【0007】従って撮影倍率が基準状態から大きく外れ
て、例えば0.5倍程度になると諸収差が多く発生し、
光学性能が低下してくる。
Accordingly, when the photographing magnification deviates greatly from the reference state, for example, when it becomes about 0.5, various aberrations occur, and
Optical performance decreases.

【0008】本発明はトリプレット構成の光学系に改良
を加え、レンズ構成を適切に設定することにより、フォ
ーカス時の収差変動を小さく抑え遠距離撮影から近距離
撮影の広い撮影距離範囲において良好な画質が得られる
撮影レンズの提供を目的とする。
The present invention improves the optical system of the triplet configuration and appropriately sets the lens configuration to suppress fluctuations in aberrations during focusing and to provide good image quality in a wide range of photographing distances from long-distance photography to short-distance photography. It is an object of the present invention to provide a photographic lens capable of obtaining an image.

【0009】[0009]

【課題を解決するための手段】請求項1の発明の撮影レ
ンズは、物体側より物体側に凹面を向けたメニスカス状
の正のレンズGl、物体側に凸面を向けた正のレンズG
2、両レンズ面が凹面の負のレンズG3、像面側に凸面
を向けた正のレンズG4の4群4枚で構成されたことを
特徴としている。
According to a first aspect of the present invention, there is provided a photographic lens comprising a positive meniscus lens Gl having a concave surface facing the object side from the object side, and a positive lens G having a convex surface facing the object side.
2. It is characterized by comprising four groups of four lenses: a negative lens G3 having both concave surfaces and a positive lens G4 having a convex surface facing the image surface side.

【0010】請求項2の発明は請求項1の発明におい
て、前記レンズG2,レンズG3,そしてレンズG4の
材質の屈折率をそれぞれN2,N3,N4、アッベ数を
それぞれV2,V3,V4とするとき、 1.65 < (N2+N4)/2 <1.9 1.70 < N3 <1.95 35 < (V2+V4)/2 < 60 20 < V3 < 30 なる条件を満足することを特徴としている。
According to a second aspect of the present invention, in the first aspect of the invention, the refractive indices of the materials of the lenses G2, G3, and G4 are N2, N3, and N4, respectively, and the Abbe numbers are V2, V3, and V4, respectively. In this case, the following condition is satisfied: 1.65 <(N2 + N4) / 2 <1.9 1.70 <N3 <1.9535 <(V2 + V4) / 2 <6020 <V3 <30

【0011】[0011]

【発明の実施の形態】図1〜図4は本発明の数値実施例
1のレンズ断面図と無限遠物体、撮影倍率0.1倍、撮
影倍率0.5倍の諸収差図である。
1 to 4 are a sectional view of a lens according to a numerical example 1 of the present invention and various aberration diagrams for an object at infinity, a photographing magnification of 0.1 times, and a photographing magnification of 0.5 times.

【0012】図5〜図8は本発明の数値実施例2のレン
ズ断面図と無限遠物体、撮影倍率0.1倍、撮影倍率
0.5倍の諸収差図である。
FIGS. 5 to 8 are a sectional view of a lens according to a second numerical embodiment of the present invention and various aberration diagrams of an object at infinity, a photographing magnification of 0.1 and a photographing magnification of 0.5.

【0013】図9〜図12は本発明の数値実施例3のレ
ンズ断面図と無限遠物体、撮影倍率0.1倍、撮影倍率
0.5倍の諸収差図である。
9 to 12 are a sectional view of a lens according to Numerical Example 3 of the present invention and various aberration diagrams of an object at infinity, a photographing magnification of 0.1 and a photographing magnification of 0.5.

【0014】図13〜図16は本発明の数値実施例4の
レンズ断面図と無限遠物体、撮影倍率0.1倍、撮影倍
率0.5倍の諸収差図である。
FIGS. 13 to 16 are a sectional view of a lens according to a numerical example 4 of the present invention and various aberration diagrams of an object at infinity, a photographing magnification of 0.1 and a photographing magnification of 0.5.

【0015】図17〜図20は本発明の数値実施例5の
レンズ断面図と無限遠物体、撮影倍率0.1倍、撮影倍
率0.5倍の諸収差図である。
FIGS. 17 to 20 are a sectional view of a lens according to a numerical example 5 of the present invention and various aberration diagrams of an object at infinity, a photographing magnification of 0.1 times, and a photographing magnification of 0.5 times.

【0016】図21〜図24は本発明の数値実施例6の
レンズ断面図と無限遠物体、撮影倍率0.1倍、撮影倍
率0.5倍の諸収差図である。
FIGS. 21 to 24 are a sectional view of a lens according to Numerical Example 6 of the present invention and various aberration diagrams of an object at infinity, a photographing magnification of 0.1 and a photographing magnification of 0.5.

【0017】本実施形態の撮影レンズLEは、物体側よ
り物体側に凹面を向けたメニスカス状の正のレンズG
l、物体側に凸面を向けた正のレンズG2、両レンズ面
が凹面の負のレンズG3、像面側に凸面を向けた正のレ
ンズG4の4群4枚のレンズ構成であり、トリプレット
タイプのレンズ構成の物体側にメニスカス状の負のレン
ズを付加した型になっている。
The taking lens LE of this embodiment is a meniscus positive lens G having a concave surface facing the object side from the object side.
l, a positive lens G2 having a convex surface facing the object side, a negative lens G3 having both lens surfaces concave, and a positive lens G4 having a convex surface facing the image surface side. Is a type in which a meniscus-shaped negative lens is added to the object side having the above lens configuration.

【0018】SPは絞り、FSPは固定絞り(フレアー
カット絞り)、GFはフェースプレートや光学フィルタ
ー等のガラスブロック、IPは像面である。
SP denotes an aperture, FSP denotes a fixed aperture (flare cut aperture), GF denotes a glass block such as a face plate or an optical filter, and IP denotes an image plane.

【0019】ここでレンズGlの物体側のレンズ面は物
体側に凹面を向けており、そのレンズ面は負の屈折力と
なっている。それにより大きなコマ収差及び負の球面収
差を発生させ、同時にレンズGlの像面側のレンズ面に
てキャンセルを行い、軸上及び軸外収差をバランス良く
補正すると同時に、レンズ系全体の高次収差の補正を行
っている。そしてレンズG2,レンズG3,レンズG4
のレンズ形状を前述の如く設定し、これにより広い物体
距離範囲でフォーカスはレンズ全系LEを光軸上移動さ
せて行っており、高い光学性能を達成している。
Here, the object-side lens surface of the lens Gl has a concave surface facing the object side, and the lens surface has a negative refractive power. As a result, a large coma aberration and a negative spherical aberration are generated, and at the same time, cancellation is performed on the lens surface on the image plane side of the lens Gl, so that on-axis and off-axis aberrations are well-balanced, and at the same time, high-order aberrations of the entire lens system Is corrected. And lens G2, lens G3, lens G4
Is set as described above, thereby focusing over a wide object distance range by moving the entire lens system LE on the optical axis, thereby achieving high optical performance.

【0020】本実施形態では以上のような構成により、
広い物体距離範囲において、画面全体にわたり高い光学
性能を有した撮影レンズを達成しているが、更に好まし
くは次の構成のうち、少なくとも1つを満足させるのが
良い。
In the present embodiment, with the above configuration,
Although a photographic lens having high optical performance over the entire screen in a wide object distance range is achieved, it is more preferable to satisfy at least one of the following configurations.

【0021】(ア−1)前記レンズG2,レンズG3,
そしてレンズG4の材質の屈折率をそれぞれN2,N
3,N4、アッベ数をそれぞれVl,V2,V3,V4
とするとき、 1.65 < (N2+N4)/2 <1.9 ‥‥‥(1) 1.70 < N3 <1.95 ‥‥‥(2) 35 < (V2+V4)/2 < 60 ‥‥‥(3) 20 < V3 < 30 ‥‥‥(4) なる条件を満足することである。
(A-1) The lens G2, lens G3,
The refractive index of the material of the lens G4 is set to N2 and N, respectively.
3, N4 and Abbe number are V1, V2, V3 and V4, respectively.
1.65 <(N2 + N4) / 2 <1.9 (1) 1.70 <N3 <1.95 (2) 35 <(V2 + V4) / 2 <60 (3) The condition 20 <V3 <30 (4) is satisfied.

【0022】ここで条件式(1),(2)はレンズ系中
の正レンズ及び負レンズの材料の屈折率を規定すること
により諸収差の補正をバランス良く行うものである。
Here, the conditional expressions (1) and (2) are to correct the various aberrations in a well-balanced manner by defining the refractive indexes of the materials of the positive lens and the negative lens in the lens system.

【0023】条件式(1)の上限もしくは条件式(2)
の下限を越えるとベッツバール和が小さくなりすぎ、像
面湾曲が大きく発生してきて良くない。
Upper limit of conditional expression (1) or conditional expression (2)
If the lower limit is exceeded, the Betzval sum becomes too small, and large field curvature occurs, which is not good.

【0024】また条件式(1)の下限を越えると正レン
ズのレンズ面の曲率がきつくなってくるため高次の球面
収羞が大きく発生し、条件式(2)の上限を越えると負
レンズのレンズ面における収差の補正作用が弱くなり結
果として諸収差の補正がバランス良く行えなくなってし
まう。
If the lower limit of conditional expression (1) is exceeded, the curvature of the lens surface of the positive lens will be too steep to cause a large degree of spherical aberration, and if the upper limit of conditional expression (2) is exceeded, a negative lens will be obtained. The effect of correcting aberration on the lens surface becomes weak, and as a result, it becomes impossible to correct various aberrations in a well-balanced manner.

【0025】条件式(3)、(4)は主に色収差を良好
に補正し得るための条件であり、この範疇を越えると高
性能な光学系を達成するのが困難になる。
The conditional expressions (3) and (4) are mainly conditions for satisfactorily correcting chromatic aberration. Exceeding this range makes it difficult to achieve a high-performance optical system.

【0026】本実施形態において更に望ましくは条件式
(1)〜(4)の数値範囲を次の如く限定するのが更な
る光学性能の向上を図るために良い。
In the present embodiment, it is more desirable to limit the numerical ranges of the conditional expressions (1) to (4) as follows in order to further improve the optical performance.

【0027】 1.75 < (N2+N4)/2 <1.85 ‥‥‥(1a) 1.75 < N3 <1.85 ‥‥‥(2a) 40 < (V2+V4)/2 < 50 ‥‥‥(3a) 23 < V3 < 28 ‥‥‥(4a) (ア−2)前記レンズG1の物体側のレンズ面の曲率半
径をR、レンズ全系の焦点距離をFとしたとき、 0.3 < |R/F| < 0.7 ‥‥‥(5) なる条件を満足することである。
1.75 <(N2 + N4) / 2 <1.85 ‥‥‥ (1a) 1.75 <N3 <1.85 ‥‥‥ (2a) 40 <(V2 + V4) / 2 <50 ‥‥‥ ( 3a) 23 <V3 <28 (4a) (A-2) When the radius of curvature of the lens surface on the object side of the lens G1 is R and the focal length of the entire lens system is F, 0.3 <| R / F | <0.7 ‥‥‥ (5)

【0028】条件式(5)はレンズGlの物体側のレン
ズ面の曲率半径Rを限定することにより、レンズ全系の
球面収差とコマ収差の補正を良好に行うためのものであ
る。
Conditional expression (5) is intended to satisfactorily correct spherical aberration and coma of the entire lens system by limiting the radius of curvature R of the lens surface of the lens G1 on the object side.

【0029】条件式(5)の上限を越えて曲率半径Rが
大きくなるとそのレンズ面における負の屈折作用が小さ
くなってくるため正の球面収差発生作用が弱くなり、結
果としてレンズ全系での負の球面収差が大きく発生し、
それを補正するのが困難となってくる。
When the radius of curvature R is increased beyond the upper limit of the conditional expression (5), the negative refracting action on the lens surface is reduced, so that the positive spherical aberration generating action is weakened. As a result, in the entire lens system, Large negative spherical aberration occurs,
It becomes difficult to correct it.

【0030】他方、下限値を越えると、軸外収差に対す
る影響が大きくなり、コマ収差が大きく発生してきて良
くない。
On the other hand, when the value exceeds the lower limit, the influence on off-axis aberrations becomes large, and large coma aberrations are not generated.

【0031】(ア−3)前記レンズG1の焦点距離をF
1、レンズ全系の焦点距離をFとしたとき、 0.05 < F/F1 < 0.35 ‥‥‥(6) なる条件を満足することである。
(A-3) The focal length of the lens G1 is F
1. When the focal length of the entire lens system is F, the condition 0.05 <F / F1 <0.35 (6) is satisfied.

【0032】条件式(6)はレンズG1の屈折力を適切
に設定し、これにより軸上、軸外の諸収差をバランスよ
く補正する為のものである。
Conditional expression (6) is for appropriately setting the refractive power of the lens G1, and thereby correcting various on-axis and off-axis aberrations in a well-balanced manner.

【0033】条件式(6)を外れると軸上及び軸外の諸
収差を良好に補正するのが難しくなってくる。
If conditional expression (6) is not satisfied, it becomes difficult to satisfactorily correct various on-axis and off-axis aberrations.

【0034】(ア−4)レンズ系中のうち少なくとも1
つのレンズ面を非球面又は回折光学素子面とするのが良
い。又少なくとも1つのレンズを、屈折力分布型のレン
ズとしても良い。
(A-4) At least one of the lens systems
Preferably, the two lens surfaces are aspherical or diffractive optical element surfaces. Further, at least one lens may be a refractive power distribution type lens.

【0035】これによれば更に高い光学性能が容易に得
られる。
According to this, higher optical performance can be easily obtained.

【0036】次に本発明の数値実施例を示す。数値実施
例においてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より第i番目のレンズ厚及び空
気間隔、Niとνiは各々物体側より順に第i番目のレ
ンズのガラスの屈折率とアッベ数である。
Next, numerical examples of the present invention will be described. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air spacing from the object side, and Ni and νi are the i-th lens surfaces in order from the object side. The refractive index and Abbe number of glass.

【0037】又、前述の各条件式と数値実施例における
諸数値との関係を表−1に示す。
Table 1 shows the relationship between the above-described conditional expressions and various numerical values in the numerical examples.

【0038】[0038]

【外1】 [Outside 1]

【0039】[0039]

【外2】 [Outside 2]

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【発明の効果】本発明によれば以上のように、レンズ構
成を適切に設定することにより、フォーカス時の収差変
動を小さく抑え遠距離撮影から近距離撮影の広い撮影距
離範囲において良好な画質が得られる撮影レンズを達成
することができる。
As described above, according to the present invention, by appropriately setting the lens configuration, fluctuations in aberrations during focusing can be suppressed, and good image quality can be obtained in a wide shooting distance range from long-distance shooting to short-distance shooting. The resulting taking lens can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の数値実施例1のレンズ断面図FIG. 1 is a sectional view of a lens according to a numerical example 1 of the present invention.

【図2】本発明の数値実施例1の無限遠物体のときの収
差図
FIG. 2 is an aberration diagram for an object at infinity according to Numerical Embodiment 1 of the present invention.

【図3】本発明の数値実施例1の撮影倍率0.1倍のと
きの収差図
FIG. 3 is an aberration diagram at a photographing magnification of 0.1 times in Numerical Example 1 of the present invention.

【図4】本発明の数値実施例1の撮影倍率0.5倍のと
きの収差図
FIG. 4 is an aberration diagram when a photographing magnification is 0.5 × in Numerical Embodiment 1 of the present invention.

【図5】本発明の数値実施例2のレンズ断面図FIG. 5 is a sectional view of a lens according to a second numerical embodiment of the present invention;

【図6】本発明の数値実施例2の無限遠物体のときの収
差図
FIG. 6 is an aberration diagram for an object at infinity according to Numerical Embodiment 2 of the present invention.

【図7】本発明の数値実施例2の撮影倍率0.1倍のと
きの収差図
FIG. 7 is an aberration diagram at a photographing magnification of 0.1 in Numerical Example 2 of the present invention;

【図8】本発明の数値実施例2の撮影倍率0.5倍のと
きの収差図
FIG. 8 is an aberration diagram when a photographing magnification of 0.5 is set in Numerical Example 2 of the present invention;

【図9】本発明の数値実施例3のレンズ断面図FIG. 9 is a sectional view of a lens according to a numerical example 3 of the present invention.

【図10】本発明の数値実施例3の無限遠物体のときの
収差図
FIG. 10 is an aberration diagram for an infinitely distant object according to Numerical Example 3 of the present invention.

【図11】本発明の数値実施例3の撮影倍率0.1倍の
ときの収差図
FIG. 11 is an aberration diagram at a photographing magnification of 0.1 in Numerical Example 3 of the present invention;

【図12】本発明の数値実施例3の撮影倍率0.5倍の
ときの収差図
FIG. 12 is an aberration diagram at a photographing magnification of 0.5 × in Numerical Example 3 of the present invention.

【図13】本発明の数値実施例4のレンズ断面図FIG. 13 is a sectional view of a lens according to a numerical example 4 of the present invention.

【図14】本発明の数値実施例4の無限遠物体のときの
収差図
FIG. 14 is an aberration diagram for an infinitely distant object according to Numerical Embodiment 4 of the present invention.

【図15】本発明の数値実施例4の撮影倍率0.1倍の
ときの収差図
FIG. 15 is an aberration diagram at the time of a photographing magnification of 0.1 times in Numerical Example 4 of the present invention.

【図16】本発明の数値実施例4の撮影倍率0.5倍の
ときの収差図
FIG. 16 is an aberration diagram at a photographing magnification of 0.5 in Numerical Example 4 of the present invention.

【図17】本発明の数値実施例5のレンズ断面図FIG. 17 is a sectional view of a lens according to a numerical example 5 of the present invention.

【図18】本発明の数値実施例5の無限遠物体のときの
収差図
FIG. 18 is an aberration diagram for an infinitely distant object according to Numerical Example 5 of the present invention.

【図19】本発明の数値実施例5の撮影倍率0.1倍の
ときの収差図
FIG. 19 is an aberration diagram at a photographing magnification of 0.1 × in Numerical Example 5 of the present invention.

【図20】本発明の数値実施例5の撮影倍率0.5倍の
ときの収差図
FIG. 20 is an aberration diagram at a photographing magnification of 0.5 in Numerical Example 5 of the present invention;

【図21】本発明の数値実施例6のレンズ断面図FIG. 21 is a sectional view of a lens according to a numerical example 6 of the present invention.

【図22】本発明の数値実施例6の無限遠物体のときの
収差図
FIG. 22 is an aberration diagram for an infinitely distant object according to Numerical Example 6 of the present invention.

【図23】本発明の数値実施例6の撮影倍率0.1倍の
ときの収差図
FIG. 23 is an aberration diagram at a photographing magnification of 0.1 × in Numerical Example 6 of the present invention.

【図24】本発明の数値実施例6の撮影倍率0.5倍の
ときの収差図
FIG. 24 is an aberration diagram at a photographing magnification of 0.5 in Numerical Example 6 of the present invention;

【符号の説明】[Explanation of symbols]

G1〜G4 レンズ SP 絞り d d線 g g線 ΔS サジタル像面 ΔM メリディオナル像面 FSP 固定絞り IP 像面 G1 to G4 Lens SP Aperture d d-line g g-line ΔS Sagittal image plane ΔM Meridional image plane FSP Fixed aperture IP image plane

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 物体側より物体側に凹面を向けたメニス
カス状の正のレンズGl、物体側に凸面を向けた正のレ
ンズG2、両レンズ面が凹面の負のレンズG3、像面側
に凸面を向けた正のレンズG4の4群4枚で構成された
ことを特徴とする撮影レンズ。
1. A positive meniscus lens G1 having a concave surface facing the object side from the object side, a positive lens G2 having a convex surface facing the object side, a negative lens G3 having both lens surfaces concave, and a A photographic lens comprising four groups of four positive lenses G4 having convex surfaces.
【請求項2】 前記レンズG2,レンズG3,そしてレ
ンズG4の材質の屈折率をそれぞれN2,N3,N4、
アッベ数をそれぞれV2,V3,V4とするとき、 1.65 < (N2+N4)/2 <1.9 1.70 < N3 <1.95 35 < (V2+V4)/2 < 60 20 < V3 < 30 なる条件を満足することを特徴とする請求項1の撮影レ
ンズ。
2. The materials of the lenses G2, G3 and G4 have refractive indices N2, N3 and N4, respectively.
When the Abbe numbers are V2, V3, and V4, respectively, 1.65 <(N2 + N4) / 2 <1.9 1.70 <N3 <1.9535 <(V2 + V4) / 2 <6020 <V3 <30 2. The photographing lens according to claim 1, wherein a condition is satisfied.
【請求項3】 前記レンズG1の物体側のレンズ面の曲
率半径をR、レンズ全系の焦点距離をFとしたとき、 0.3 < |R/F| < 0.7 なる条件を満足することを特徴とする請求項1又は2の
撮影レンズ。
3. Assuming that the radius of curvature of the lens surface on the object side of the lens G1 is R and the focal length of the entire lens system is F, the following condition is satisfied: 0.3 <| R / F | <0.7. 3. The photographing lens according to claim 1, wherein:
【請求項4】 前記レンズG1の焦点距離をF1、レン
ズ全系の焦点距離をFとしたとき、 0.05 < F/F1 < 0.35 なる条件を満足することを特徴とする請求項3の撮影レ
ンズ。
4. When the focal length of the lens G1 is F1 and the focal length of the entire lens system is F, the condition of 0.05 <F / F1 <0.35 is satisfied. Shooting lens.
JP36854098A 1998-12-09 1998-12-09 Photographing lens Pending JP2000171697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36854098A JP2000171697A (en) 1998-12-09 1998-12-09 Photographing lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36854098A JP2000171697A (en) 1998-12-09 1998-12-09 Photographing lens

Publications (1)

Publication Number Publication Date
JP2000171697A true JP2000171697A (en) 2000-06-23

Family

ID=18492093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36854098A Pending JP2000171697A (en) 1998-12-09 1998-12-09 Photographing lens

Country Status (1)

Country Link
JP (1) JP2000171697A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387199A1 (en) * 2002-07-30 2004-02-04 Milestone Co., Ltd. Image pickup lens
US6744570B1 (en) 2003-01-30 2004-06-01 Minolta Co., Ltd. Taking lens system
JP2005018041A (en) * 2003-05-30 2005-01-20 Olympus Corp Image forming optical system and electronic apparatus using the same
US6985306B2 (en) 2002-12-27 2006-01-10 Nidec Copal Corporation Photographing lens
US6992840B2 (en) 2002-12-27 2006-01-31 Nidec Copal Corporation Photographing lens
US7095570B2 (en) 2003-05-12 2006-08-22 Olympus Corporation Imaging optical system and electronic apparatus using the same
US7190532B2 (en) 2003-06-16 2007-03-13 Olympus Corporation Imaging optical system and electronic apparatus using the same
DE102007021643A1 (en) 2007-05-09 2008-11-20 Docter Optics Gmbh Camera, particularly for infra-red light or visible light, has light sensor and lens for imaging object on light sensor, where light sensor is arranged on or in image lens, and is connected with image lens
DE102007025108A1 (en) 2007-05-30 2008-12-11 Docter Optics Gmbh Lens especially for a driver assistance system
US10768394B2 (en) 2018-01-22 2020-09-08 Largan Precision Co., Ltd. Electronic device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387199A1 (en) * 2002-07-30 2004-02-04 Milestone Co., Ltd. Image pickup lens
CN100359358C (en) * 2002-07-30 2008-01-02 里程碑株式会社 Camera lens
US7009783B2 (en) 2002-07-30 2006-03-07 Milestone Co., Ltd. Pickup lens
US6985306B2 (en) 2002-12-27 2006-01-10 Nidec Copal Corporation Photographing lens
US6992840B2 (en) 2002-12-27 2006-01-31 Nidec Copal Corporation Photographing lens
US6744570B1 (en) 2003-01-30 2004-06-01 Minolta Co., Ltd. Taking lens system
US7095570B2 (en) 2003-05-12 2006-08-22 Olympus Corporation Imaging optical system and electronic apparatus using the same
JP2005018041A (en) * 2003-05-30 2005-01-20 Olympus Corp Image forming optical system and electronic apparatus using the same
US7009784B2 (en) 2003-05-30 2006-03-07 Olympus Corporation Imaging optical system and electronic apparatus using the same
JP4658517B2 (en) * 2003-05-30 2011-03-23 オリンパス株式会社 Imaging optical system and electronic apparatus using the same
US7190532B2 (en) 2003-06-16 2007-03-13 Olympus Corporation Imaging optical system and electronic apparatus using the same
DE102007021643A1 (en) 2007-05-09 2008-11-20 Docter Optics Gmbh Camera, particularly for infra-red light or visible light, has light sensor and lens for imaging object on light sensor, where light sensor is arranged on or in image lens, and is connected with image lens
DE102007025108A1 (en) 2007-05-30 2008-12-11 Docter Optics Gmbh Lens especially for a driver assistance system
US8212689B2 (en) 2007-05-30 2012-07-03 Docter Optics Gmbh Objective, in particular for a driver assistance system
US10768394B2 (en) 2018-01-22 2020-09-08 Largan Precision Co., Ltd. Electronic device

Similar Documents

Publication Publication Date Title
JP3541983B2 (en) Wide-angle lens
US11966099B2 (en) Converter lens, interchangeable lens, and image pickup apparatus
JP2007072263A (en) Variable power optical system
JPH06347694A (en) Retro-focus type large aperture lens
JPH11287953A (en) Zoom lens
JP3599689B2 (en) Zoom lens
JP4593971B2 (en) Zoom lens and imaging apparatus having the same
JP2004325713A (en) Objective lens
JP2004212616A (en) Variable focal distance lens system
JP3527130B2 (en) Zoom lens and video camera using the same
JP2000171697A (en) Photographing lens
JP3821330B2 (en) Zoom lens
JPH0727975A (en) Rear conversion lens provided with vibration proof function
JPH06130290A (en) Compact fixed focus lens
JPH06175026A (en) Zoom lens including wide angle range
JPH05127082A (en) Small-sized zoom lens
JPH11295595A (en) Zoom lens
JPH09218350A (en) Retrofocus type lens
JP7146708B2 (en) Imaging lens and imaging device
JP2007171785A (en) Wide-angle optical system for solid imaging element
JP4789349B2 (en) Zoom lens and optical apparatus having the same
JPH07318798A (en) Photographic lens
JPH08179213A (en) Zoom lens
JP2004258516A (en) Zoom lens
JPH07333494A (en) Photographing lens