JP2000171589A - Recovery method for radioactive rare gas - Google Patents

Recovery method for radioactive rare gas

Info

Publication number
JP2000171589A
JP2000171589A JP10342591A JP34259198A JP2000171589A JP 2000171589 A JP2000171589 A JP 2000171589A JP 10342591 A JP10342591 A JP 10342591A JP 34259198 A JP34259198 A JP 34259198A JP 2000171589 A JP2000171589 A JP 2000171589A
Authority
JP
Japan
Prior art keywords
rare gas
natural zeolite
radioactive rare
adsorbent
zeolite rock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10342591A
Other languages
Japanese (ja)
Inventor
Kenzo Munakata
健三 宗像
Terushiro Fukumatsu
輝城 福松
Satoshi Sangetsu
聡 山月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10342591A priority Critical patent/JP2000171589A/en
Publication of JP2000171589A publication Critical patent/JP2000171589A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain a method superior in safety and efficiently, surely and quickly recovering radioactive rare gas generated from a reactor or in reprocessing process of spent nuclear fuel. SOLUTION: Radioactive rare gas generated from a reactor and a reprocessing process or spent nuclear fuel is recovered by contacting rock adsorbing in adsorbents consisting or natural zeolite rock especially an adsorbent which natural zeolite rock is controlled in hydrogen type by ion exchanging method. For the natural zeolite rock, that including mordenite and clinoptilolite is desirable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉で発生する
放射性希ガス又は使用済核燃料の再処理工程で発生する
放射性希ガスの回収方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering a radioactive rare gas generated in a nuclear reactor or a radioactive rare gas generated in a reprocessing step of spent nuclear fuel.

【0002】[0002]

【従来の技術】原子力発電のための軽水炉等の原子炉に
おいては、燃料の核分裂反応に伴い、燃料中に放射性を
帯びたアルゴン、クリプトン、キセノン、ラドン等の放
射性希ガスが生成する。これらの放射性希ガスの一部は
原子炉の冷却水中に漏洩し、復水器等から外部に放出さ
れる。また、燃料中の放射性希ガスは、使用済燃料を再
処理する際に、使用済燃料から外部に放出される。
2. Description of the Related Art In a nuclear reactor such as a light water reactor for nuclear power generation, radioactive rare gases such as argon, krypton, xenon, and radon are generated in the fuel due to the nuclear fission reaction of the fuel. Some of these radioactive rare gases leak into the cooling water of the nuclear reactor and are discharged outside from condensers and the like. The radioactive rare gas in the fuel is released from the spent fuel to the outside when the spent fuel is reprocessed.

【0003】このように原子炉及びその関連施設で発生
する放射性希ガスは、施設内で回収することが望まし
い。そのための放射性希ガス回収方法として、次の2つ
の方法が知られている。このうち、第1の方法は、活性
炭、分子ふるいカーボン、モレキュラシーブ5Aやモレ
キュラシーブ13Xを吸着剤とし、放射性希ガスを接触
吸着させて回収する方法である。また、第2の方法は、
低温蒸留により放射性希ガスを液化して、回収するとい
うものである。
[0003] As described above, it is desirable that the radioactive rare gas generated in the nuclear reactor and related facilities be recovered in the facility. The following two methods are known as radioactive rare gas recovery methods for that purpose. Among them, the first method is a method in which activated carbon, molecular sieve carbon, molecular sieve 5A or molecular sieve 13X is used as an adsorbent, and a radioactive rare gas is contact-adsorbed and recovered. The second method is
It liquefies the radioactive rare gas by low-temperature distillation and collects it.

【0004】[0004]

【発明が解決しようとする課題】上記した従来の放射性
希ガスの回収方法のうち、吸着剤を用いる第1の方法に
おいて、吸着剤が無機系吸着剤のモレキュラシーブの場
合は、希ガスに対して十分な吸着容量が得られないとい
う致命的な欠点があった。一方、活性炭、分子ふるいカ
ーボン等の有機系吸着剤では、吸着容量は大きい反面、
再処理工程で使用する硝酸から発生する窒素酸化物や酸
素に放射線が作用してオゾン等が生成するため、このオ
ゾン等により爆発する危険性があった。
Among the above-mentioned conventional methods for recovering a radioactive rare gas, in the first method using an adsorbent, when the adsorbent is a molecular sieve of an inorganic adsorbent, the method uses only a rare gas. There is a fatal drawback that a sufficient adsorption capacity cannot be obtained. On the other hand, with organic adsorbents such as activated carbon and molecular sieve carbon, the adsorption capacity is large,
Radiation acts on nitrogen oxides and oxygen generated from nitric acid used in the reprocessing step to generate ozone and the like, and there is a risk of explosion due to the ozone and the like.

【0005】また、低温蒸留により放射性希ガスを液化
して回収する第2の方法では、低温蒸留が大きなエネル
ギー消費を伴うために運転コストが大幅に上昇するう
え、蓄積したオゾンによる爆発の危険性があるという欠
点があった。
[0005] In the second method of liquefying and recovering a radioactive rare gas by cryogenic distillation, the cryogenic distillation involves a large amount of energy consumption, so that the operating cost is greatly increased and the risk of explosion due to accumulated ozone is high. There was a disadvantage that there is.

【0006】本発明は、このような従来の事情に鑑み、
安全性に優れると共に、原子炉や使用済核燃料の再処理
工程で発生する放射性希ガスを効率良く、しかも確実且
つ迅速に回収する方法を提供することを目的とする。
The present invention has been made in view of such a conventional situation,
An object of the present invention is to provide a method that is excellent in safety and efficiently, reliably and quickly recovers a radioactive rare gas generated in a nuclear reactor or a reprocessing step of spent nuclear fuel.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する放射性希ガスの回収方法は、原子
炉で発生する放射性希ガス又は使用済核燃料の再処理工
程で発生する放射性希ガスを、天然ゼオライト岩からな
る吸着剤に接触吸着させて回収することを特徴とする。
特に、天然ゼオライト岩をイオン交換法により水素型に
調整した吸着剤を使用することが好ましい。
To achieve the above object, the present invention provides a method for recovering a radioactive rare gas provided by a radioactive rare gas generated in a nuclear reactor or a radioactive rare gas generated in a reprocessing step of spent nuclear fuel. It is characterized in that the gas is contact-adsorbed with an adsorbent made of natural zeolite rock and is recovered.
In particular, it is preferable to use an adsorbent obtained by adjusting natural zeolite rock to a hydrogen type by an ion exchange method.

【0008】上記本発明の放射性希ガスの回収方法にに
おいて、吸着剤として用いる天然ゼオライト岩として
は、モルデナイト、クリノプチロライト、シャバサイ
ト、エリオナイト、ローモンタイト、フィリプサイト、
フェリエライト、ワイラカイト、フォージャサイト、ヒ
ュウランダイトのうちの一種以上を含むものが好まし
く、特にモルデナイト及び/又はクリノプチロライトを
含むものが更に好ましい。
In the method for recovering a radioactive rare gas according to the present invention, the natural zeolite rock used as an adsorbent includes mordenite, clinoptilolite, shabasite, erionite, lomontite, filipsite,
Those containing at least one of ferrierite, wairakite, faujasite, and hyurandite are preferable, and those containing mordenite and / or clinoptilolite are more preferable.

【0009】[0009]

【発明の実施の形態】本発明者らは、吸着法による放射
性希ガスの回収に着目し、非爆発性で放射性希ガスに対
して大きな吸着容量を持つ吸着剤の開発に鋭意研究を重
ねた結果、天然ゼオライト岩が無機系吸着剤であるにも
かかわらず、希ガスに対して大きな吸着容量を有するこ
とを見いだし、本発明を完成するに至ったものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have focused on the recovery of radioactive rare gases by the adsorption method and have conducted intensive research on the development of non-explosive adsorbents having a large adsorption capacity for radioactive rare gases. As a result, they have found that natural zeolite rock has a large adsorption capacity for rare gases, despite being an inorganic adsorbent, and have completed the present invention.

【0010】天然ゼオライト岩とは、工業的に合成され
たものではなく、天然に産出するゼオライト(沸石)含
有鉱物であって、その代表的なものは沸石を含有した凝
灰岩である。このような天然のゼオライト岩は、国内に
おいても広く産出し、代表的な産出地としては、例えば
秋田県雄勝郡皆瀬村板戸、秋田県山本郡二ツ井町、山形
県米沢町板谷などがある。
The natural zeolite rock is a zeolite (zeolites) -containing mineral which is not industrially synthesized but is produced naturally, and a typical one is a tuff containing zeolite. Such natural zeolite rocks are widely produced in Japan, and typical localities include, for example, Itado, Minase-mura, Ogatsu-gun, Akita Prefecture, Futatsui-machi, Yamamoto-gun, Akita Prefecture, and Itaya, Yonezawa-machi, Yamagata Prefecture.

【0011】天然ゼオライト岩の希ガスに対する吸着容
量が、工業的に合成されたゼオライト、即ちモレキュラ
シーブに比較して格段に高い理由は明らかではないが、
天然ゼオライト岩の表面の電子状態が希ガスの吸着能力
に影響している可能性があると考えられる。
It is not clear why the adsorption capacity of natural zeolite rock for rare gases is much higher than that of industrially synthesized zeolites, ie, molecular sieves.
It is considered that the electronic state of the surface of natural zeolite rock may affect the noble gas adsorption capacity.

【0012】また、天然ゼオライト岩を吸着剤とする本
発明の方法では、吸着剤そのものが炭素で構成されてい
るのではなく、ケイ素やアルミニウム等の金属酸化物か
ら構成されているため爆発の危険がなく、安全な放射性
希ガスの回収を実現することができる。
Further, in the method of the present invention using natural zeolite rock as an adsorbent, the adsorbent itself is not composed of carbon, but is composed of a metal oxide such as silicon or aluminum. And safe recovery of radioactive rare gas can be realized.

【0013】吸着剤としての天然ゼオライト岩は、産出
した天然のゼオライト岩を粉粒状に粉砕して使用する。
特に、天然ゼオライト岩をイオン交換法により水素型に
調整したものが、吸着剤として好ましい。
The natural zeolite rock as an adsorbent is used by pulverizing the natural zeolite rock produced into powder.
In particular, those obtained by adjusting natural zeolite rock to a hydrogen type by an ion exchange method are preferable as the adsorbent.

【0014】また、天然ゼオライト岩中のゼオライト含
有率は高いほど好ましく、また含まれるゼオライト成分
によって吸着能力も異なるが、一般的にゼオライトの含
有率が50〜80重量%以上であれば良質の鉱石であ
り、希ガスを効率良く、確実且つ迅速に吸着することが
可能である。
The higher the content of zeolite in natural zeolite rock is, the more preferable it is. The adsorption capacity varies depending on the zeolite component contained. Generally, if the content of zeolite is 50 to 80% by weight or more, good quality ore is obtained. Therefore, the rare gas can be efficiently, reliably and quickly adsorbed.

【0015】天然ゼオライト岩の吸着剤層へ導入するガ
スの空塔速度は、反応温度の条件や要求される放射性希
ガスの回収速度に依存する。しかし、一般的には0.1
〜100m/minの範囲が好ましく、1〜30m/m
inの範囲が更に好ましい。また、吸着時の使用温度は
−100℃〜40℃が好ましく、−70℃〜20℃の範
囲が更に好ましい。
The superficial velocity of the gas introduced into the adsorbent layer of the natural zeolite rock depends on the reaction temperature conditions and the required recovery rate of the radioactive rare gas. However, in general, 0.1
The range is preferably from 100 to 100 m / min, and from 1 to 30 m / m.
The range of in is more preferable. Further, the use temperature at the time of adsorption is preferably from -100 ° C to 40 ° C, more preferably from -70 ° C to 20 ° C.

【0016】[0016]

【実施例】実施例1 モルデナイトを主成分とする天然ゼオライト岩(秋田県
板戸産)を粉砕し、その33gを吸着剤として常圧流通
反応装置に充填した。この装置に、使用温度0℃にて、
0.27〜2%のクリプトン(Kr)を含むヘリムガス
を空塔速度0.85〜1.1m/minで流し、クリプト
ンの吸着容量を調べた。その結果を、図1に黒塗りの三
角形の記号(▲)で示した。
EXAMPLE 1 A natural zeolite rock mainly composed of mordenite (produced in Itado, Akita Prefecture) was pulverized, and 33 g of the zeolitic rock was packed as an adsorbent in an atmospheric pressure flow reactor. At the operating temperature of 0 ° C,
Helium gas containing 0.27 to 2% krypton (Kr) was flown at a superficial velocity of 0.85 to 1.1 m / min, and the adsorption capacity of krypton was examined. The results are shown in FIG. 1 by black triangle symbols (▲).

【0017】実施例2 実施例1と同じ天然ゼオライト岩を粉砕し、塩酸溶液で
イオン交換を施して水素型に調整した。即ち、粉砕した
天然ゼオライト岩を常温で1Nの塩酸溶液に浸し、3日
間静置した後、洗浄液が中性になるまで蒸留水で洗浄を
繰り返した。これを空気中で一晩乾燥した後、不活性ガ
ス中400℃で焼成して、吸着剤として用いた。
Example 2 The same natural zeolite rock as in Example 1 was crushed and subjected to ion exchange with a hydrochloric acid solution to adjust to a hydrogen form. That is, the ground natural zeolite rock was immersed in a 1N hydrochloric acid solution at room temperature, allowed to stand for 3 days, and then repeatedly washed with distilled water until the washing liquid became neutral. After drying in air overnight, it was fired at 400 ° C. in an inert gas and used as an adsorbent.

【0018】この吸着剤22gを常圧流通反応装置に充
填し、使用温度0℃にて、0.02〜1.4%のクリプト
ンを含むヘリウムガスを空塔速度1.2〜1.9m/mi
n流し、クリプトンの吸着容量を調べた。その結果を、
図1に白抜きの正方形の記号(□)で示した。
22 g of the adsorbent is charged into a normal-pressure flow reactor, and at an operating temperature of 0 ° C., a helium gas containing 0.02 to 1.4% of krypton is superposed at a superficial velocity of 1.2 to 1.9 m / h. mi
Then, the krypton adsorption capacity was examined. The result is
In FIG. 1, it is shown by a white square symbol (□).

【0019】実施例3 実施例1と同じ天然ゼオライト岩を粉砕し、硝酸溶液で
イオン交換を施して水素型に調整した。即ち、粉砕した
天然ゼオライト岩を常温で1Nの硝酸溶液に浸し、3日
間静置した後、洗浄液が中性になるまで蒸留水で洗浄を
繰り返した。これを空気中で一晩乾燥した後、不活性ガ
ス中400℃で焼成して、吸着剤として用いた。
Example 3 The same natural zeolite rock as in Example 1 was pulverized and subjected to ion exchange with a nitric acid solution to adjust to a hydrogen type. That is, the ground natural zeolite rock was immersed in a 1N nitric acid solution at room temperature, allowed to stand for 3 days, and then repeatedly washed with distilled water until the washing liquid became neutral. After drying in air overnight, it was fired at 400 ° C. in an inert gas and used as an adsorbent.

【0020】この吸着剤24gを常圧流通反応装置に充
填し、使用温度0℃にて、0.15〜1.4%のクリプト
ンを含むヘリウムガスを空塔速度1.2〜2.2m/mi
n流し、クリプトンの吸着容量を調べた。その結果を、
図1に白抜きの円形の記号(○)で示した。
24 g of this adsorbent is charged into a normal-pressure flow reactor, and at an operating temperature of 0 ° C., a helium gas containing 0.15 to 1.4% krypton is superposed at a superficial velocity of 1.2 to 2.2 m / h. mi
Then, the krypton adsorption capacity was examined. The result is
FIG. 1 shows a white circle symbol (記号).

【0021】実施例4 実施例1と同じ天然ゼオライト岩を粉砕し、硝酸アンモ
ニウム溶液でイオン交換を施して水素型に調整した。即
ち、粉砕した天然ゼオライト岩を常温で1mol/lの
濃度の硝酸アンモニウム溶液に浸し、3日間静置した
後、洗浄液が中性になるまで蒸留水で洗浄を繰り返し
た。これを空気中で一晩乾燥した後、不活性ガス中40
0℃で焼成して、吸着剤として用いた。
Example 4 The same natural zeolite rock as in Example 1 was crushed and subjected to ion exchange with an ammonium nitrate solution to adjust to a hydrogen form. That is, the ground natural zeolite rock was immersed in an ammonium nitrate solution having a concentration of 1 mol / l at room temperature, allowed to stand for 3 days, and then repeatedly washed with distilled water until the washing solution became neutral. After drying this in the air overnight, 40
It was calcined at 0 ° C. and used as an adsorbent.

【0022】この吸着剤22gを常圧流通反応装置に充
填し、使用温度0℃にて、0.13〜1.4%のクリプト
ンを含むヘリウムガスを空塔速度0.93〜2.0m/m
in流し、クリプトンの吸着容量を調べた。その結果
を、図1に白抜きの三角形の記号(△)で示した。
22 g of this adsorbent is charged into a normal pressure flow reactor, and at a working temperature of 0 ° C., a helium gas containing 0.13 to 1.4% krypton is blasted at a superficial velocity of 0.93 to 2.0 m / h. m
In flow, the krypton adsorption capacity was examined. The results are shown in FIG. 1 by white triangle symbols (△).

【0023】比較例1 吸着剤として市販のモレキュラシーブ5Aを使用し、5
1〜280gを常圧流通反応装置に充填して、使用温度
0℃にて、0.03〜2.2%のクリプトンを含むヘリウ
ムガスを空塔速度0.21〜2.2m/min流し、クリ
プトンの吸着容量を調べた。その結果を、図1に黒塗り
の円形の記号(●)で示した。
[0023]Comparative Example 1  Using commercially available molecular sieve 5A as the adsorbent,
1 to 280 g is charged into a normal pressure flow reactor,
Helium containing 0.03-2.2% krypton at 0 ° C
Flow of superficial gas at a superficial velocity of 0.2 to 2.2 m / min.
The adsorption capacity of Puton was investigated. The result is shown in black in Fig. 1.
Are shown by circular symbols (●).

【0024】比較例2 吸着剤として市販の活性炭を使用し、17〜38gを常
圧流通反応装置に充填して、使用温度0℃にて、0.0
02〜11%のクリプトンを含むヘリウムガスを空塔速
度0.88〜1.6m/min流し、クリプトンの吸着容
量を調べた。その結果を、図1に黒塗りの正方形の記号
(■)で示した。
COMPARATIVE EXAMPLE 2 A commercial activated carbon was used as an adsorbent.
Helium gas containing krypton of 02 to 11% was flowed at a superficial velocity of 0.88 to 1.6 m / min, and the adsorption capacity of krypton was examined. The results are shown in FIG. 1 by black square symbols (■).

【0025】以上の実施例及び比較例をまとめた図1か
ら分かるように、比較例1のモレキュラシーブ5A
(●)では、クリプトンの吸着容量が小さく、希ガスの
吸着剤として適切でない。一方、比較例2の活性炭
(■)は、希ガスの吸着容量は大きいが、炭素からなる
有機系吸着剤であるため窒素酸化物との反応による爆発
の危険があり、事実過去に爆発事故が起こっている。
As can be seen from FIG. 1 which summarizes the above Examples and Comparative Examples, the molecular sieve 5A of Comparative Example 1
In the case of (●), the adsorption capacity of krypton is small and is not suitable as an adsorbent for rare gases. On the other hand, the activated carbon (■) of Comparative Example 2 has a large noble gas adsorption capacity, but is an organic adsorbent made of carbon, so there is a danger of explosion due to reaction with nitrogen oxides. is happening.

【0026】これに対して、本発明の実施例1における
未処理の天然ゼオライト岩(▲)を吸着剤とする場合
は、活性炭に比べると吸着容量が劣るものの、モレキュ
ラシーブ5Aに比べると吸着容量が大きく、また無機系
吸着剤であるため爆発の危険性もない。
On the other hand, when the untreated natural zeolite rock (▲) in Example 1 of the present invention is used as the adsorbent, the adsorption capacity is lower than that of activated carbon, but the adsorption capacity is lower than that of molecular sieve 5A. There is no danger of explosion because it is large and is an inorganic adsorbent.

【0027】更に、実施例2の塩酸によりイオン交換処
理した天然ゼオライト岩(□)、実施例3の硝酸により
イオン交換処理した天然ゼオライト岩(○)、実施例4
の硝酸アンモニウム水溶液によりイオン交換処理した天
然ゼオライト岩(△)は、いずれも比較例2の活性炭に
匹敵する希薄ガスの吸着容量をもち、比較例1のモレキ
ュラシーブ5Aとの吸着容量の差は歴然としている。
Further, natural zeolite rock ion-exchanged with hydrochloric acid of Example 2 (□), natural zeolite rock ion-exchanged with nitric acid of Example 3 (3), Example 4
Each of the natural zeolite rocks (△) subjected to the ion exchange treatment with the ammonium nitrate aqueous solution has a rare gas adsorption capacity comparable to that of the activated carbon of Comparative Example 2, and the difference in adsorption capacity with the molecular sieve 5A of Comparative Example 1 is obvious. .

【0028】[0028]

【発明の効果】本発明によれば、天然ゼオライト岩を吸
着剤とすることによって、爆発性を有する活性炭等の有
機系吸着剤に比べて安全性に優れると共に、希ガスの吸
着容量が大きいので、放射性希ガスを安全に且つ効率良
く吸着して回収することができる。特に、イオン交換処
理により水素型にした天然ゼオライト岩は、希ガスの吸
着性能がより一層高くなり、原子炉や使用済核燃料の再
処理工程で発生する放射性希ガスの効率的で、確実且つ
迅速な回収に極めて有効である。
According to the present invention, since natural zeolite rock is used as an adsorbent, the safety is superior to organic adsorbents such as activated carbon having explosive properties, and the adsorption capacity of rare gas is large. In addition, the radioactive rare gas can be safely and efficiently adsorbed and recovered. In particular, natural zeolite rock that has been converted to hydrogen form by ion exchange treatment has a higher noble gas adsorption performance, and is efficient, reliable, and quick for radioactive noble gas generated in the reactor and reprocessing of spent nuclear fuel. It is extremely effective for efficient recovery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例及び比較例で用いた各吸着剤について、
ガス中のクリプトン濃度とクリプトンの吸着容量との関
係を示すグラフである。
FIG. 1 shows each adsorbent used in Examples and Comparative Examples.
4 is a graph showing the relationship between krypton concentration in gas and krypton adsorption capacity.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原子炉で発生する放射性希ガス又は使用
済核燃料の再処理工程で発生する放射性希ガスを、天然
ゼオライト岩からなる吸着剤に接触吸着させて回収する
ことを特徴とする放射性希ガスの回収方法。
1. A radioactive rare gas characterized in that a radioactive rare gas generated in a nuclear reactor or a radioactive rare gas generated in a reprocessing step of spent nuclear fuel is contact-adsorbed with an adsorbent made of natural zeolite rock and recovered. Gas recovery method.
【請求項2】 前記天然ゼオライト岩からなる吸着剤
が、天然ゼオライト岩をイオン交換法により水素型に調
整したものであることを特徴とする、請求項1に記載の
放射性希ガスの回収方法。
2. The method for recovering a radioactive rare gas according to claim 1, wherein the adsorbent comprising the natural zeolite rock is obtained by adjusting the natural zeolite rock to a hydrogen type by an ion exchange method.
【請求項3】 前記天然ゼオライト岩が、モルデナイ
ト、クリノプチロライト、シャバサイト、エリオナイ
ト、ローモンタイト、フィリプサイト、フェリエライ
ト、ワイラカイト、フォージャサイト、ヒュウランダイ
トのうちの一種以上を含むものであることを特徴とす
る、請求項1又は2に記載の放射性希ガスの回収方法。
3. The natural zeolite rock contains at least one of mordenite, clinoptilolite, shabasite, erionite, rhomontite, filipsite, ferrierite, wairakite, faujasite, and hyurandite. The method for recovering a radioactive rare gas according to claim 1 or 2, characterized in that:
JP10342591A 1998-12-02 1998-12-02 Recovery method for radioactive rare gas Pending JP2000171589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10342591A JP2000171589A (en) 1998-12-02 1998-12-02 Recovery method for radioactive rare gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10342591A JP2000171589A (en) 1998-12-02 1998-12-02 Recovery method for radioactive rare gas

Publications (1)

Publication Number Publication Date
JP2000171589A true JP2000171589A (en) 2000-06-23

Family

ID=18354961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10342591A Pending JP2000171589A (en) 1998-12-02 1998-12-02 Recovery method for radioactive rare gas

Country Status (1)

Country Link
JP (1) JP2000171589A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204446A (en) * 2006-02-03 2007-08-16 Showa Denko Kk Metal complex and method for recovering rare gas by using the same
CN113155679A (en) * 2021-05-07 2021-07-23 吉林大学 Experimental device and experimental method for simulating adsorption and migration of radioactive nuclide in rock mass fracture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204446A (en) * 2006-02-03 2007-08-16 Showa Denko Kk Metal complex and method for recovering rare gas by using the same
CN113155679A (en) * 2021-05-07 2021-07-23 吉林大学 Experimental device and experimental method for simulating adsorption and migration of radioactive nuclide in rock mass fracture
CN113155679B (en) * 2021-05-07 2022-01-21 吉林大学 Experimental device and experimental method for simulating adsorption and migration of radioactive nuclide in rock mass fracture

Similar Documents

Publication Publication Date Title
US4088737A (en) Dry method for recycling iodine-loaded silver zeolite
Soelberg et al. Radioactive iodine and krypton control for nuclear fuel reprocessing facilities
Haefner Methods of gas phase capture of iodine from fuel reprocessing off-gas: a literature survey
US6306198B1 (en) Method of separating and selectively removing hydrogen contaminant from hydrogen-containing process streams and compositions useful therefor
JP3824838B2 (en) Noble gas recovery method
CA1314236C (en) Method and device for purifying a gas containing hydrogen isotopes
JP2000171589A (en) Recovery method for radioactive rare gas
JP3628439B2 (en) Concentration method of krypton in oxygen-nitrogen mixed gas
WO1981000413A1 (en) Method for treating a nuclear process off-gas stream
US4125477A (en) Process for treating radioactive waste gases
US11227699B2 (en) Method for producing a fraction of Xenon radioisotopes, in particular Xe-133, fraction of Xenon radioisotopes, in particular Xe-133
US4172114A (en) Method for purifying plutonium hexafluoride
Slansky Separation processes for noble gas fission products from the off-gas of fuel-reprocessing plants
JP2000266891A (en) Recycle method for nitrogen oxide in offgas of uranium denitration process
KR20230089972A (en) Regeneration agents of radionuclide adsorbents, method of regenerating spent radionuclide adsorbents using the same and method of treating spent regeneration agents
Takeshita et al. Development of thermal swing adsorption (TSA) process for complete recovery of iodine in dissolver off-gas
Pence Critical review of noble gas treatment systems
JPH06106031A (en) Lithium isotope separating agent and separation of lithium isotope using the same
Matsuoka et al. Development of adsorption process for NOx recycling in a reprocessing plant
JPH0411481B2 (en)
Umadevi et al. Techniques for treatment and removal of radioactive contaminants from gaseous discharge of large capacity radiochemical plants
Matsuoka et al. Development of NOx recycle process for practical use at reprocessing plant
Gresky Recovery of Nitrogen Oxides and Rare Gas Fission Products from the Nitric Acid Dissolution of Irradiated Uranium
Karhu Methods to prevent the source term of methyl lodide during a core melt accident
Little et al. Noble gas removal and concentration by combining fluorocarbon absorption and adsorption technologies