JP2000167942A - Production of thermoforming composite resin - Google Patents

Production of thermoforming composite resin

Info

Publication number
JP2000167942A
JP2000167942A JP10350484A JP35048498A JP2000167942A JP 2000167942 A JP2000167942 A JP 2000167942A JP 10350484 A JP10350484 A JP 10350484A JP 35048498 A JP35048498 A JP 35048498A JP 2000167942 A JP2000167942 A JP 2000167942A
Authority
JP
Japan
Prior art keywords
resin
liquid crystal
stretching
strand
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10350484A
Other languages
Japanese (ja)
Inventor
Shunji Hyozu
俊司 俵頭
Kenji Miyazaki
健次 宮崎
Yoshinori Nakano
良憲 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP10350484A priority Critical patent/JP2000167942A/en
Publication of JP2000167942A publication Critical patent/JP2000167942A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a thermoforming resin excellent in dimensional stability and mechanical strength. SOLUTION: A liquid crystal fiber reinforced composite material is produced by a method wherein a mixture of a polyolefin resin and a liquid crystal resin having a liquid crystal transition temp. (Tc) higher than the m.p. of the polyolefin resin is extruded while stretched at temp. equal to or higher (Tc) of the liquid crystal resin and the extruded composite resin is cooled to (Tc) or lower. In this case, a process for extruding the mixture into a strand shape by using a strand die 21, a process for stretching the strand-shaped composite resin extruded from the outlet of the strand die in such a state that the temp. of the resin is equal to or higher than (Tc) so that a stretching speed becomes 0.5-20 times/sec and a stretch ratio becomes 2-50 times to take over the stretched resin, a process for guiding the strand-shaped composite resin to a water tank 4 within [(stretch ratio/stretching speed)-2] sec [(stretch ratio/stretching speed +5] sec from the start of stretching to quench the same to (Tc) and a process for cooling the temp. of the composite resin to below (Tc) are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱成形用複合樹脂
の製造方法に関し、より詳しくは寸法安定性、機械的強
度に優れた熱可塑性成形用複合樹脂の製造方法に関す
る。
The present invention relates to a method for producing a composite resin for thermoforming, and more particularly to a method for producing a composite resin for thermoplastic molding having excellent dimensional stability and mechanical strength.

【0002】[0002]

【従来の技術】従来、高強度で、高剛性、寸法安定性を
有する合成樹脂製成形品としては、プラスチックにより
構成された成形体やガラス繊維、炭素繊維等の強化材を
混合した繊維強化樹脂成形体が提案されている。また、
ガラス繊維や炭素繊維が混合されない高強度で、高剛
性、寸法安定性が優れた合成樹脂成形品として、近年、
熱可塑性液晶樹脂を強化繊維とした複合材料が開発され
ている。
2. Description of the Related Art Conventionally, molded articles made of synthetic resin having high strength, high rigidity and dimensional stability include molded articles made of plastic and fiber reinforced resin mixed with reinforcing materials such as glass fiber and carbon fiber. Moldings have been proposed. Also,
In recent years, as a synthetic resin molded product with high strength, high rigidity, and excellent dimensional stability in which glass fibers and carbon fibers are not mixed,
A composite material using a thermoplastic liquid crystal resin as a reinforcing fiber has been developed.

【0003】一般に液晶樹脂は液晶転移温度以上の温度
域において液晶状態にあり、剪断力などの外部応力によ
り容易に配向および繊維化すること事は良く知られてお
り、この性質を利用して例えば特開平1−320128
号公報に熱可塑性樹脂と液晶樹脂とを液晶転移温度以上
で延伸しながら押し出した後、冷却して成形する方法が
開示されている。
In general, it is well known that liquid crystal resins are in a liquid crystal state in a temperature range higher than a liquid crystal transition temperature, and are easily oriented and fiberized by an external stress such as a shearing force. JP-A-1-320128
Japanese Patent Application Laid-Open Publication No. H11-157, discloses a method in which a thermoplastic resin and a liquid crystal resin are extruded while being stretched at a liquid crystal transition temperature or higher, and then cooled and molded.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、本発明
者の検討によれば、上記公報記載の如く、熱可塑性樹脂
と液晶樹脂とを液晶転移温度以上で延伸しながら押し出
した後に冷却する方法において、延伸した後の冷却速度
が遅いと、折角繊維化した液晶樹脂が成形体の熱により
繊維状態を保つことが出来ずに緩和・凝集し、成形され
た複合体の物性が低下する等、延伸条件や冷却条件等の
上記公報に記載されていない条件を予め把握しておかな
ければ、実際上、良好な物性を有する成形体が得られな
いという問題点が判明した。本発明の目的は、上記従来
技術の欠点を解消し、寸法安定性及び機械的強度に優れ
た熱成形用複合樹脂の製造方法を提供することにある。
However, according to the study of the present inventor, as described in the above-mentioned publication, in a method of cooling after extruding a thermoplastic resin and a liquid crystal resin while stretching them at a liquid crystal transition temperature or higher, If the cooling rate after stretching is low, the stretching conditions are such that the liquid crystal resin that has been bent into fibers is unable to maintain the fibrous state due to the heat of the molded body and is relaxed and aggregated, and the physical properties of the molded composite are reduced. Unless the conditions, such as cooling conditions and cooling conditions, which are not described in the above-mentioned publication are grasped in advance, it has been found that a molded product having good physical properties cannot be obtained. An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a method for producing a thermoforming composite resin having excellent dimensional stability and mechanical strength.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、ポリオレフィン樹脂と該樹脂の融点より
高い液晶転移温度を有する液晶樹脂との混合物を、該液
晶樹脂の液晶転移温度以上の温度で延伸させながら押し
出し、押し出された複合樹脂を上記液晶樹脂の液晶転移
温度以下まで冷却する液晶繊維強化複合材料の製造方法
であって、前記混合物をストランドダイを用いてストラ
ンド状に押し出す工程と、ストランドダイ出口より押し
出された前記ストランド状複合樹脂を、該複合樹脂の温
度が前記液晶樹脂の液晶転移温度以上の温度範囲にある
状態で、延伸速度が0.5倍/秒〜20倍/秒で、延伸
比が2倍〜50倍になるよう延伸しながら引き取る工程
と、前記ストランド状複合樹脂の温度を、延伸を開始し
てから((延伸比/延伸速度)−2)秒〜((延伸比/
延伸速度)+5)秒で前記液晶樹脂の液晶転移温度まで
急冷する工程と、前記ストランド状複合樹脂の温度を前
記液晶樹脂の液晶転移温度未満まで冷却する工程と、を
包含することを特徴とする液晶繊維強化複合材料の製造
方法、を提供する。
In order to achieve the above object, the present invention provides a mixture of a polyolefin resin and a liquid crystal resin having a liquid crystal transition temperature higher than the melting point of the resin. A liquid crystal fiber reinforced composite material in which the extruded composite resin is cooled to a liquid crystal transition temperature of the liquid crystal resin or lower, wherein the mixture is extruded into strands using a strand die. And stretching the strand-like composite resin extruded from the strand die outlet in a state where the temperature of the composite resin is in the temperature range equal to or higher than the liquid crystal transition temperature of the liquid crystal resin, and the stretching speed is 0.5 times / sec to 20 times. / Stretching at a rate of 2 to 50 times the stretching ratio and a temperature of the strand-like composite resin after starting the stretching ((stretching ratio Stretching speed) -2) s - ((draw ratio /
A step of rapidly cooling to a liquid crystal transition temperature of the liquid crystal resin in (stretching speed) +5) seconds, and a step of cooling the temperature of the strand-like composite resin to less than the liquid crystal transition temperature of the liquid crystal resin. A method for producing a liquid crystal fiber reinforced composite material.

【0006】以下、本発明を更に詳細に説明する。本発
明において、上記「延伸速度」とは1秒当たりの延伸比
を言うものとし、「延伸比」とはストランドの、「押出
直後の断面積/延伸後の断面積」を言うものとする。本
発明において用いられるポリオレフィン樹脂としては、
押出可能なものであれば、特に限定されず、代表的なも
のにポリエチレン、ポリプロピレンが挙げられる。これ
らは単一樹脂を用いてもよく、複数種類のポリオレフィ
ン樹脂を用いてもよい。
Hereinafter, the present invention will be described in more detail. In the present invention, the “stretching speed” refers to a stretching ratio per second, and the “stretching ratio” refers to “cross-sectional area immediately after extrusion / cross-sectional area after stretching” of a strand. As the polyolefin resin used in the present invention,
There is no particular limitation as long as it is extrudable, and typical examples include polyethylene and polypropylene. These may use a single resin or a plurality of types of polyolefin resins.

【0007】ポリオレフィン樹脂の少なくとも一部に架
橋性樹脂を含む場合は、架橋性樹脂が架橋されることに
より、耐熱性や機械的強度が向上する点で好適である。
架橋の方法は特に限定されるものではなく、例えば、電
子線などの電離性放射線を照射する電子線架橋法、有機
化酸化物を用いた化学架橋法、またはシラン変性樹脂を
用いたシラン架橋法などを挙げることが出来る。
[0007] When a crosslinkable resin is contained in at least a part of the polyolefin resin, the crosslinkable resin is preferably crosslinked to improve heat resistance and mechanical strength.
The method of crosslinking is not particularly limited, for example, an electron beam crosslinking method of irradiating ionizing radiation such as an electron beam, a chemical crosslinking method using an organic oxide, or a silane crosslinking method using a silane-modified resin. And the like.

【0008】一方、液晶樹脂としては、ポリオレフィン
樹脂の融点もしくは溶融温度より、液晶転移温度が高い
ものであれば特に限定されるものではないが、ポリオレ
フィン樹脂中で、液晶樹脂がフィブリル状に形成されや
すいため、熱可塑性液晶ポリエステル、熱可塑性ポリエ
ステルアミドが好ましく、具体的には商品名ベクトラ
(ポリプラスチックス社製)、スミカスーパー(住友化
学工業社製)、ザイダー(Amoco社製)、ロッドラ
ン(ユニチカ社製)等の市販品が好ましい例として挙げ
られる。
On the other hand, the liquid crystal resin is not particularly limited as long as it has a liquid crystal transition temperature higher than the melting point or melting temperature of the polyolefin resin, but the liquid crystal resin is formed into a fibril shape in the polyolefin resin. For ease of use, thermoplastic liquid crystal polyester and thermoplastic polyester amide are preferred. Specifically, Vectra (manufactured by Polyplastics), Sumika Super (manufactured by Sumitomo Chemical Co., Ltd.), Zyder (manufactured by Amoco), rod run (unitika) Commercially available products such as those manufactured by the company are preferred examples.

【0009】また、液晶樹脂とポリオレフィン樹脂の混
合物には必要により液晶樹脂とポリオレフィン樹脂の組
成に応じて、互いの相溶性を改善するために、成形前も
しくは成形時に相溶化剤が添加されてもよい。相溶化剤
には、例えばオレフィン成分とスチレン成分や芳香族ポ
リエステル成分を共重合したもの、マレイン酸成分やア
クリル酸成分を有するオレフィン樹脂、グリシジルメタ
クリレート成分を有するオレフィン樹脂共重合体などが
ある。また、相溶化剤の添加部数は混合系の組成、割合
により適宜選択される。
Further, if necessary, a mixture of a liquid crystal resin and a polyolefin resin may be added with a compatibilizer before or during molding in order to improve the mutual compatibility according to the composition of the liquid crystal resin and the polyolefin resin. Good. Examples of the compatibilizer include those obtained by copolymerizing an olefin component and a styrene component or an aromatic polyester component, an olefin resin having a maleic acid component or an acrylic acid component, and an olefin resin copolymer having a glycidyl methacrylate component. The number of parts to be added of the compatibilizer is appropriately selected depending on the composition and ratio of the mixed system.

【0010】ポリオレフィン樹脂に対する液晶樹脂の混
合割合は、組成物全体として押出成形可能な濃度領域に
あれば、その割合はポリオレフィン樹脂の組成や製品に
必要な性能によって適宜選択される。但し、余りに微量
では本発明の効果を発現することが困難となり、多過ぎ
ては液晶樹脂がフィブリル状に分散しにくいためやはり
十分な補強効果が現れにくい。従って、ポリオレフィン
樹脂と液晶樹脂の合計量中、液晶樹脂は、通常0.5〜
50重量%、好ましくは、1〜25重量%、より好まし
くは、3〜20重量%の範囲とされる。
The mixing ratio of the liquid crystal resin to the polyolefin resin is appropriately selected depending on the composition of the polyolefin resin and the performance required for the product, as long as it is within a concentration range in which the composition as a whole can be extruded. However, if the amount is too small, it is difficult to exhibit the effects of the present invention. If the amount is too large, the liquid crystal resin is difficult to disperse in a fibril shape, so that a sufficient reinforcing effect is also hardly exhibited. Therefore, in the total amount of the polyolefin resin and the liquid crystal resin, the liquid crystal resin is usually 0.5 to
The range is 50% by weight, preferably 1 to 25% by weight, more preferably 3 to 20% by weight.

【0011】なお、上記混合物には、この発明の効果が
損なわれない範囲で必要に応じて難燃剤、充填剤、抗酸
化剤、造核剤、顔料等の添加剤を配合しても良い。この
ような添加剤は広く知られている。例えば難燃剤として
は、ヘキサブロモビフェノールエーテル、デカブロモジ
フェニルエーテル等の含燐系難燃剤、メラミン誘導体、
無機系難燃剤等がある。
Incidentally, additives such as a flame retardant, a filler, an antioxidant, a nucleating agent, a pigment and the like may be added to the above mixture as long as the effects of the present invention are not impaired. Such additives are widely known. For example, as the flame retardant, hexabromobiphenol ether, phosphorus-containing flame retardants such as decabromodiphenyl ether, melamine derivatives,
There are inorganic flame retardants and the like.

【0012】[0012]

【発明の実施の形態】つぎに、本発明の実施の形態を、
以下に詳しく説明する。本発明の熱成形用複合樹脂の製
造方法では、まず、ポリオレフィン樹脂と該樹脂の融点
より高い液晶転移温度を有する液晶樹脂からなる混合物
を液晶樹脂の液晶転移温度以上の温度で溶融混錬し、ス
トランドダイから押し出すことにより液晶樹脂をフィブ
リル状に分散させたストランド状複合樹脂を得る。この
とき、ストランドダイを、液晶樹脂がポリオレフィン樹
脂中で繊維状となる程度の剪断速度にて通過させる。
Next, an embodiment of the present invention will be described.
This will be described in detail below. In the method for producing a composite resin for thermoforming of the present invention, first, a mixture of a polyolefin resin and a liquid crystal resin having a liquid crystal transition temperature higher than the melting point of the resin is melt-kneaded at a temperature equal to or higher than the liquid crystal transition temperature of the liquid crystal resin, A strand-like composite resin in which a liquid crystal resin is dispersed in a fibril shape is obtained by extruding from a strand die. At this time, the strand die is passed at a shear rate at which the liquid crystal resin becomes fibrous in the polyolefin resin.

【0013】その剪断速度は、通常、1×102 〜10
5 /秒好ましくは3×102 〜10 4 /秒とされる。こ
の範囲の剪断速度で押し出された混合物中の液晶樹脂
は、流動部の剪断作用によりフィブリル化しやすいから
である。押出方法は従来公知の任意の方法が採用されて
よく、例えば単軸押出機、2軸押出機が使用される。ス
トランドダイの形状としては、特に限定されるものでは
ないが、例えば図1に示すような1個の細孔11が設け
られた断面円形のストランドダイ21、図2に示すよう
な多数の細孔12が放射状に設けられた円板状ストラン
ドダイ22、図3に示すような多数の細孔13が並列し
て設けられた矩形のストランドダイ23が例示され、各
ストランドダイの細孔11,12,13からは直径2〜
10mm程度の棒状ストランドダイを押し出すのが好ま
しい。
The shear rate is usually 1 × 10Two-10
Five/ Sec, preferably 3 × 10Two-10 Four/ Sec. This
Liquid crystal resin in a mixture extruded at a shear rate in the range of
Is likely to fibrillate due to the shearing action of the fluidized part
It is. As the extrusion method, any conventionally known method is adopted.
Frequently, for example, single screw extruders and twin screw extruders are used. S
The shape of the strand die is not particularly limited.
However, for example, one pore 11 as shown in FIG.
Strand die 21 having a circular cross section as shown in FIG.
Disk-like strand in which a large number of fine pores 12 are radially provided.
Doddy 22, a large number of pores 13 as shown in FIG.
A rectangular strand die 23 provided by way of example is illustrated.
From the pores 11, 12, and 13 of the strand die,
It is preferable to extrude a rod-shaped strand die of about 10mm.
New

【0014】ストランドダイから押し出された上記スト
ランド状複合樹脂は、該複合樹脂の温度が液晶樹脂の液
晶転移温度以上の温度範囲にある状態下で延伸する。延
伸は、押し出されたストランド状複合樹脂を引取機3に
より高速で引取ることによって行なうのが好ましい。延
伸開始のタイミングは、ストランド状複合樹脂の温度が
液晶樹脂の液晶転移温度以上の温度範囲にあれば特に限
定されないが、ストランド状複合樹脂がダイから押し出
された直後から延伸を開始したほうが、ダイの剪断によ
る液晶樹脂のフィブリル化の影響が緩和されずに成形出
来るのでフィブリル化の効率が良いため好ましい。
The strand-like composite resin extruded from the strand die is stretched in a state where the temperature of the composite resin is in a temperature range not lower than the liquid crystal transition temperature of the liquid crystal resin. Stretching is preferably performed by taking up the extruded strand-like composite resin at a high speed by the take-up machine 3. The timing for starting the stretching is not particularly limited as long as the temperature of the strand-like composite resin is in a temperature range equal to or higher than the liquid crystal transition temperature of the liquid crystal resin.However, it is better to start stretching immediately after the strand-like composite resin is extruded from the die. Is preferable because the effect of fibrillation of the liquid crystal resin due to the shearing of the liquid crystal resin is not reduced, and the efficiency of fibrillation is good.

【0015】この時、延伸速度が0.5倍/秒〜20倍
/秒で延伸しながら延伸比2倍〜50倍まで引き取るの
である。延伸速度が0.5倍/秒未満であると、所望の
延伸比まで延伸させる時間が長くなり折角フィブリル化
した液晶樹脂が、押し出されたストランド状複合樹脂が
持っている熱によって緩和・凝集してしまい、またその
緩和・凝集を防止するために冷却速度をあげて急冷を行
うと、延伸途中で液晶樹脂が延伸しきらずに固化してし
まうために、フィブリル径が太くなり、そのためアスペ
クト比が大きくなるため成形された複合体の物性が低下
してしまうからである。
At this time, the film is drawn at a stretching ratio of 2 to 50 times while stretching at a stretching speed of 0.5 to 20 times / second. If the stretching speed is less than 0.5 times / second, the time required for stretching to a desired stretching ratio becomes longer, and the liquid crystal resin which has been bent into fibrils is relaxed and aggregated by the heat of the extruded strand-like composite resin. Also, if rapid cooling is performed at a high cooling rate to prevent its relaxation and aggregation, the liquid crystal resin will solidify without being stretched during stretching, and the fibril diameter will be large, and the aspect ratio will be reduced. The reason for this is that the physical properties of the formed composite are reduced due to the increase in size.

【0016】延伸速度が20倍/秒を越えると、樹脂が
ダイから出た直後に、樹脂に対して瞬間的引張応力が掛
かるため押し出されたストランド状複合樹脂が途中で切
れてしまったり、また、押し出されたストランド状複合
樹脂の温度が液晶転移温度になる前に所望の延伸比まで
延伸してしまうため、折角フィブリル化した液晶樹脂
が、押し出されたストランド状複合樹脂自身が保有して
いる熱によって緩和・凝集してフィブリル径が太くな
り、そのためアスペクト比が大きくなるため成形された
複合体の物性が低下してしまったり、その緩和・凝集を
防止するために液晶転移温度になるまで引き取りを続け
ると、押し出されたストランド状複合樹脂が途中で切れ
てしまうといった不具合が生じる。
When the stretching speed exceeds 20 times / second, the extruded strand-like composite resin is cut off midway immediately after the resin comes out of the die because instantaneous tensile stress is applied to the resin. Since the extruded strand-like composite resin is stretched to a desired stretching ratio before the temperature of the extruded strand-like composite resin reaches the liquid crystal transition temperature, the extruded strand-like composite resin itself is possessed by the bent fibrillated liquid crystal resin. The fibril diameter becomes thicker due to relaxation and aggregation due to heat, resulting in a large aspect ratio. If the process is continued, a problem occurs that the extruded strand-like composite resin is cut off in the middle.

【0017】また、延伸比が2倍未満であるとポリオレ
フィン中に分散している液晶樹脂が延伸によって十分に
フィブリル化せず、50倍を越えると押し出されたスト
ランド状複合樹脂が成形中に切れてしまったりして、成
形が困難になる恐れがある。押し出された、もしくは延
伸されている、あるいは延伸されたストランド状複合樹
脂は任意の方法で液晶樹脂の液晶転移温度まで急冷され
る。そのときの急冷時間は延伸開始から〔(延伸比/延
伸速度)−2〕秒〜〔(延伸比/延伸速度)+5〕秒で
冷却される。
If the stretching ratio is less than 2 times, the liquid crystal resin dispersed in the polyolefin does not fibrillate sufficiently by stretching, and if it exceeds 50 times, the extruded strand-like composite resin breaks during molding. Or molding may be difficult. The extruded, stretched, or stretched strand composite resin is quenched to the liquid crystal transition temperature of the liquid crystal resin by an arbitrary method. The quenching time at that time is from [(stretching ratio / stretching speed) -2] seconds to [(stretching ratio / stretching speed) +5] seconds from the start of stretching.

【0018】該ストランド状複合樹脂の温度を液晶転移
温度となるまで急冷する時間が、延伸開始から〔(延伸
比/延伸速度)+5〕秒以上であると、折角フィブリル
化した液晶樹脂が、押し出されたストランド状複合樹脂
自身が保有している熱によって緩和・凝集してしまった
り、逆に延伸開始から〔(延伸比/延伸速度)−2〕秒
未満であると、延伸途中で液晶樹脂が延伸しきらずに固
化してしまうために、フィブリル径が太くなり、そのた
めアスペクト比が大きくなるため成形された複合体の物
性が低下してしまう。
If the time for rapidly cooling the temperature of the strand-like composite resin to the liquid crystal transition temperature is [(stretch ratio / stretch rate) +5] seconds or more from the start of stretching, the fibrillated liquid crystal resin is extruded. If the stretched strand-shaped composite resin itself is relaxed and agglomerated by the heat held therein, or if it is less than [(stretch ratio / stretch speed) -2] seconds from the start of stretching, the liquid crystal resin is stretched during stretching. Since the fibers are solidified without being stretched, the diameter of the fibrils is increased, and the aspect ratio is increased, so that the physical properties of the formed composite are reduced.

【0019】急冷開始のタイミングは特に限定はされな
いが、ダイから押し出された直後に開始させて、延伸と
急冷を同時に行なうのが、生産効率が良く好ましい。液
晶転移温度まで急冷されたストランド状複合樹脂は、そ
の後更に液晶転移温度未満まで、即ち、成形品の形状・
寸法が塑性的に変化しない温度まで冷却する必要があ
り、通常、雰囲気温度まで冷却される。
The timing of the start of the quenching is not particularly limited, but it is preferable to start the quenching immediately after being extruded from the die and simultaneously perform the stretching and the quenching, because of good production efficiency. The strand-like composite resin quenched to the liquid crystal transition temperature is then further cooled to below the liquid crystal transition temperature, that is, the shape and shape of the molded product.
It is necessary to cool to a temperature at which the dimensions do not change plastically, and usually to ambient temperature.

【0020】冷却しようとする成形体を冷却する手段と
しては、成形体を水槽4等の冷媒の中を通過せしめる方
法、ブロア等で成形体に冷気を当てる方法、成形体を冷
媒の流れる冷却槽内を通過せしめる方法などがあり、冷
却手段は、得られる成形品の寸法、成形ラインに応じて
適宜選択されるものである。また、成形体を引き取る従
来公知のものを用いることができ、ベルト式引取機、キ
ャタピラ式引取機、引き取りロール等を適宜用いる。
As means for cooling the compact to be cooled, there are a method of passing the compact through a coolant such as a water tank 4, a method of applying cool air to the compact with a blower or the like, and a cooling tank through which the coolant flows. The cooling means is appropriately selected according to the size of the obtained molded product and the molding line. In addition, a conventionally known one for picking up a molded body can be used, and a belt type take-up machine, a caterpillar type take-up machine, a take-up roll and the like are appropriately used.

【0021】(作用)本発明の方法によれば、ポリオレ
フィン樹脂と該樹脂の融点より高い液晶転移温度を有す
る液晶樹脂との混合物を、該液晶樹脂の液晶転移温度以
上の温度で延伸させながら押し出し、押し出された複合
樹脂を上記液晶樹脂の液晶転移温度以下まで冷却する液
晶繊維強化複合材料の製造方法であって、前記混合物を
ストランドダイを用いてストランド状に押し出す工程
と、ストランドダイ出口より押し出された前記ストラン
ド状複合樹脂を、該複合樹脂の温度が前記液晶樹脂の液
晶転移温度以上の温度範囲にある状態で、延伸速度が
0.5倍/秒〜20倍/秒で、延伸比が2倍〜50倍に
なるよう延伸しながら引き取る工程と、前記ストランド
状複合樹脂の温度を、延伸を開始してから〔(延伸比/
延伸速度)−2〕秒〜〔(延伸比/延伸速度)+5〕秒
で前記液晶樹脂の液晶転移温度まで急冷する工程と、前
記ストランド状複合樹脂の温度を前記液晶樹脂の液晶転
移温度未満まで冷却する工程と、を包含することによ
り、成形品を得るものであるから、得られた成形品は、
液晶樹脂が内部に均一にフィブリル化した状態で押出方
向に良く配向し、押出方向の強度・剛性が改善され、寸
法安定性に優れたものを得ることができる。
(Action) According to the method of the present invention, a mixture of a polyolefin resin and a liquid crystal resin having a liquid crystal transition temperature higher than the melting point of the resin is extruded while being stretched at a temperature higher than the liquid crystal transition temperature of the liquid crystal resin. A method for manufacturing a liquid crystal fiber reinforced composite material, wherein the extruded composite resin is cooled to a liquid crystal transition temperature of the liquid crystal resin or lower, wherein the mixture is extruded in a strand shape using a strand die, and extruded from an exit of the strand die. In the state where the temperature of the composite resin is in a temperature range equal to or higher than the liquid crystal transition temperature of the liquid crystal resin, the stretching speed is 0.5 to 20 times / second, and the stretching ratio is The step of drawing while stretching to 2 to 50 times, and the temperature of the strand-like composite resin is set to [(stretch ratio /
A step of rapidly cooling to a liquid crystal transition temperature of the liquid crystal resin in (stretching speed) -2] seconds to [(stretching ratio / stretching speed) +5] seconds, and keeping the temperature of the strand-like composite resin below the liquid crystal transition temperature of the liquid crystal resin. And a step of cooling, so as to obtain a molded article, the obtained molded article,
The liquid crystal resin is well oriented in the extruding direction in a state where the liquid crystal resin is uniformly fibrillated inside, and the strength and rigidity in the extruding direction are improved, and a product having excellent dimensional stability can be obtained.

【0022】[0022]

【実施例】以下、本発明について実施例を挙げて説明す
る。
The present invention will be described below with reference to examples.

【0023】<実施例1>実施例に用いた成形装置全体
を図4に示す液晶樹脂として、ポリプラスチック社製、
商品名:ベクトラA950〔液晶転移温度=280℃、
DSC(示差走査型熱分析計)にて測定した値〕14重
量%と、ポリオレフィンとしてホモポリプロピレン(融
点165度、MI=0.5g/10分)86重量%とを
含む混合物をシリンダ温度290℃に設定された30m
m二軸押出機1に供給して溶融混錬し、直径φ5mmの1
穴ストランドダイ21(図1)にてストランド状に押し
出した後、延伸速度3.5倍/秒、延伸比10倍で延伸
しながら引き取りをし、かつ同時に水槽4を通過させて
冷却を行った。
<Embodiment 1> The entire molding apparatus used in the embodiment was used as a liquid crystal resin shown in FIG.
Trade name: Vectra A950 [liquid crystal transition temperature = 280 ° C,
A mixture containing 14% by weight and 86% by weight of a homoolefin as a polyolefin (melting point: 165 ° C., MI = 0.5 g / 10 min) was used to prepare a mixture containing 14% by weight as measured by DSC (differential scanning calorimeter). 30m set to
m Twin melt extruder 1 to melt and knead
After being extruded in a strand shape by the hole strand die 21 (FIG. 1), drawing was performed while stretching at a stretching speed of 3.5 times / second and a stretching ratio of 10 times, and at the same time, cooling was performed by passing through the water tank 4. .

【0024】また冷却工程において、ストランドダイか
ら押し出された複合樹脂の全体の温度が、液晶転移温度
の280℃に冷却されるまでの時間が、複合樹脂がダイ
から押し出され延伸を始めてから3秒(延伸比/延伸速
度=2.86秒)となるように冷却を行ない、その後更
に水槽4内で冷却を続けた後、雰囲気下で冷却し、表面
性状の良好な成形品を得た。この成形品を下記〔成形品
の評価〕に従って評価し、その結果を他の実施例及び比
較例と共に、表1に示した。
In the cooling step, the time required until the entire temperature of the composite resin extruded from the strand die is cooled to the liquid crystal transition temperature of 280 ° C. is 3 seconds after the composite resin is extruded from the die and starts stretching. (Stretching ratio / stretching speed = 2.86 seconds), cooling was continued in the water tank 4, and then cooled in an atmosphere to obtain a molded product having good surface properties. The molded article was evaluated according to the following [Evaluation of molded article], and the results are shown in Table 1 together with other examples and comparative examples.

【0025】<実施例2>実施例1において、液晶樹脂
とポリオレフィンの配合割合を、28重量%:72重量
%とし、その他の条件は実施例1と同様として、表面性
状の良好な成形品を得た。
<Example 2> In Example 1, the compounding ratio of the liquid crystal resin and the polyolefin was set to 28% by weight: 72% by weight, and the other conditions were the same as in Example 1 to obtain a molded article having good surface properties. Obtained.

【0026】<比較例1>実施例1において、延伸速度
を0.4倍/秒で、4倍になるよう引き取り、ストラン
ドダイから押し出された複合樹脂の全体の温度が、液晶
転移温度の280℃に冷却されるまでの時間が、複合樹
脂がダイから押し出され延伸を始めてから10秒(延伸
比/延伸速度=10秒)となるように冷却を行なったこ
と以外は実施例1と同様とした。
<Comparative Example 1> In Example 1, the stretching speed was 0.4 times / second, and the stretching temperature was quadrupled, and the overall temperature of the composite resin extruded from the strand die was 280 of the liquid crystal transition temperature. The same as in Example 1 except that cooling was performed so that the time until cooling to 10 ° C. was 10 seconds (stretching ratio / stretching speed = 10 seconds) from when the composite resin was extruded from the die and stretching was started. did.

【0027】<比較例2>実施例1において、押し出さ
れた複合樹脂の温度が280℃に冷却されるまでの時間
が、複合樹脂がダイから押し出され引き取りを始めてか
ら10秒(延伸比/延伸速度=2.86)となるよう冷
却を行ない、その他の条件は実施例1と同様とした。
<Comparative Example 2> In Example 1, the time required for the temperature of the extruded composite resin to be cooled to 280 ° C. was 10 seconds from when the composite resin was extruded from the die and started to be taken out (stretch ratio / stretch ratio). The cooling was performed so that the speed was 2.86), and the other conditions were the same as in Example 1.

【0028】〔成形品の評価〕 (引張強度)得られたストランド状複合材を同一方向に
複数本数並べて熱プレスによりシートを作成し、そのシ
ートから引張方向がシートを作成する際に並べた方向と
同一になるようにダンベル試験片を作成し、引張試験を
行った。尚、試験片の作成及び引張試験はJIS K
7113に準拠して行なった。
[Evaluation of molded article] (Tensile strength) A plurality of the obtained strand-like composite materials are arranged in the same direction to form a sheet by hot pressing, and the tensile direction is the direction in which the sheets are arranged when the sheet is formed. A dumbbell test piece was prepared in the same manner as described above, and a tensile test was performed. The preparation of the test piece and the tensile test were conducted according to JIS K
Performed in accordance with 7113.

【0029】(熱膨張係数)得られたストランド状複合
材を同一方向に複数本数並べて熱プレスによりシートを
作成し、そのシートを恒温槽に入れ、雰囲気温度を30
℃(T1)から60℃(T2)に昇温し、30℃の状態
の長さL1と60℃の状態の長さL2の長さ方向の寸法
変化を測定し、その長さの変化率を温度差で割り、熱膨
張係数を求めた。 熱膨張係数(α)=((L2−L1)/L1)/(T2
−T1)
(Coefficient of thermal expansion) A plurality of the obtained strand-like composite materials are arranged in the same direction to prepare a sheet by hot pressing, and the sheet is placed in a constant temperature bath.
The temperature was raised from 60 ° C. (T1) to 60 ° C. (T2), and the dimensional changes in the length direction of the length L1 at the temperature of 30 ° C. and the length L2 at the temperature of 60 ° C. were measured. The thermal expansion coefficient was determined by dividing by the temperature difference. Thermal expansion coefficient (α) = ((L2−L1) / L1) / (T2
-T1)

【0030】(繊維径観察)得られたストランド状複合
材を液体窒素中で冷凍破断させ、その断面をSEM(走
査型電子顕微鏡)で拡大観察し、その中の30本の液晶
樹脂のフィブリル径を測定し平均値を求めた。
(Fiber Diameter Observation) The obtained strand-like composite material was frozen and broken in liquid nitrogen, and its cross section was observed under magnification by SEM (scanning electron microscope). The fibril diameter of 30 liquid crystal resins in the cross-section was observed. Was measured and the average value was determined.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】本発明の熱成形用複合樹脂の製造方法
は、上述の通りの構成とされ、本発明によれば,液晶樹
脂が内部に均一にフィブリル化した状態で押出方向に良
く配向し、押出方向の強度・剛性が改善され、寸法安定
性に優れた成形品を得ることができる。
The method for producing a composite resin for thermoforming according to the present invention is configured as described above. According to the present invention, the liquid crystal resin is well oriented in the extrusion direction in a state where the liquid crystal resin is uniformly fibrillated inside. In addition, a molded product having improved strength and rigidity in the extrusion direction and excellent dimensional stability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱成形用複合樹脂の製造方法に用い得
るストランドダイの一形態を示す模式的平面図。
FIG. 1 is a schematic plan view showing one embodiment of a strand die that can be used in a method for producing a composite resin for thermoforming of the present invention.

【図2】本発明の熱成形用複合樹脂の製造方法に用い得
るストランドダイの他の一形態を示す模式的平面図。
FIG. 2 is a schematic plan view showing another embodiment of a strand die that can be used in the method for producing a composite resin for thermoforming of the present invention.

【図3】本発明の熱成形用複合樹脂の製造方法に用い得
るストランドダイの更に他の一形態を示す模式的平面
図。
FIG. 3 is a schematic plan view showing still another embodiment of a strand die which can be used in the method for producing a composite resin for thermoforming of the present invention.

【図4】本発明の熱成形用複合樹脂の製造方法に用い得
る製造装置全体の模式的側面図。
FIG. 4 is a schematic side view of an entire production apparatus that can be used in the method for producing a composite resin for thermoforming of the present invention.

【符号の説明】[Explanation of symbols]

21,22,23・・・ストランドダイ 4 ・・・水槽 21, 22, 23 ... Strand die 4 ... Water tank

フロントページの続き Fターム(参考) 4F205 AA03 AA11 AC07 AR06 HA13 HA27 HA34 HA43 HB02 HC02 HC12 HE06 HF01 HG04 HK04 HK07 4F207 AA03 AA11 AC07 AR06 KA01 KB21 KE06 KF01 KJ09 KK54 KM16 Continued on front page F term (reference) 4F205 AA03 AA11 AC07 AR06 HA13 HA27 HA34 HA43 HB02 HC02 HC12 HE06 HF01 HG04 HK04 HK07 4F207 AA03 AA11 AC07 AR06 KA01 KB21 KE06 KF01 KJ09 KK54 KM16

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィン樹脂と該樹脂の融点より
高い液晶転移温度を有する液晶樹脂との混合物を、該液
晶樹脂の液晶転移温度以上の温度で延伸させながら押し
出し、押し出された複合樹脂を上記液晶樹脂の液晶転移
温度以下まで冷却する液晶繊維強化複合材料の製造方法
であって、 前記混合物をストランドダイを用いてストランド状に押
し出す工程と、 ストランドダイ出口より押し出された前記ストランド状
複合樹脂を、該複合樹脂の温度が前記液晶樹脂の液晶転
移温度以上の温度範囲にある状態で、延伸速度が0.5
倍/秒〜20倍/秒で、延伸比が2倍〜50倍になるよ
う延伸しながら引き取る工程と、 前記ストランド状複合樹脂のの温度を、延伸を開始して
から〔(延伸比/延伸速度)−2〕秒〜〔(延伸比/延
伸速度)+5〕秒で前記液晶樹脂の液晶転移温度まで急
冷する工程と、 前記ストランド状複合樹脂の温度を前記液晶樹脂の液晶
転移温度未満まで冷却する工程と、を包含することを特
徴とする液晶繊維強化複合材料の製造方法。
1. A mixture of a polyolefin resin and a liquid crystal resin having a liquid crystal transition temperature higher than the melting point of the resin is extruded while being stretched at a temperature equal to or higher than the liquid crystal transition temperature of the liquid crystal resin. A method for producing a liquid crystal fiber reinforced composite material that is cooled to a temperature equal to or lower than a liquid crystal transition temperature of a resin, comprising: extruding the mixture into a strand using a strand die; and extruding the strand composite resin extruded from a strand die outlet. When the temperature of the composite resin is in a temperature range equal to or higher than the liquid crystal transition temperature of the liquid crystal resin, the stretching speed is 0.5
A step of drawing while stretching at a rate of 2 times / second to 20 times / second so that the stretching ratio becomes 2 times to 50 times, and setting the temperature of the strand-like composite resin to [(stretching ratio / stretching) after starting stretching. A step of rapidly cooling to a liquid crystal transition temperature of the liquid crystal resin in (speed) -2) seconds to [(stretching ratio / stretching speed) +5] seconds; and cooling the temperature of the strand-like composite resin to below the liquid crystal transition temperature of the liquid crystal resin. A method for producing a liquid crystal fiber reinforced composite material.
JP10350484A 1998-12-09 1998-12-09 Production of thermoforming composite resin Pending JP2000167942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10350484A JP2000167942A (en) 1998-12-09 1998-12-09 Production of thermoforming composite resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10350484A JP2000167942A (en) 1998-12-09 1998-12-09 Production of thermoforming composite resin

Publications (1)

Publication Number Publication Date
JP2000167942A true JP2000167942A (en) 2000-06-20

Family

ID=18410808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10350484A Pending JP2000167942A (en) 1998-12-09 1998-12-09 Production of thermoforming composite resin

Country Status (1)

Country Link
JP (1) JP2000167942A (en)

Similar Documents

Publication Publication Date Title
DE602004004650T2 (en) HIGH-TEMPERATURE-RESISTANT POLYPROPYLENE FOAMING LOW DENSITY
US6824863B1 (en) Fiber reinforced polypropylene-based composite material
CN107683200B (en) Heat shrinkable tube and method for producing same
JP3571352B2 (en) Foamable synthetic resin composition, synthetic resin foam, and method for producing synthetic resin foam
Zhang et al. EFFECTS OF WOOD FIBER CONTENT ON THE RHEOLOGICAL PROPERTIES, CRYSTALLIZATION BEHAVIOR, AND CELL MORPHOLOGY OF EXTRUDED WOOD FIBER/HDPE COMPOSITES FOAMS.
EP3800284A1 (en) Filament composition
KR100435942B1 (en) Unstretched polypropylene molding
JPH02104715A (en) Method for manufacturing a stereoregular polystyrene fiber
KR930011759B1 (en) Porous resin film and process for producing the smme
JP2000167942A (en) Production of thermoforming composite resin
JP4742213B2 (en) Polyolefin resin degreasing film
JPS60240432A (en) Manufacture of elongated polyethylene of superhigh molecular weight
JP3604746B2 (en) Method for producing stretched fluororesin
JP6384133B2 (en) Polyolefin fiber and method for producing the same
JPH11279307A (en) Thermoplastic foamed article
KR0173788B1 (en) Stretched article having pearly gloss and process for preparing same
US4966950A (en) Oriented polymeric tape
KR100269876B1 (en) Polypropylene film and preparing method thereof
JP3746981B2 (en) Method for producing molded thermoplastic resin
JPH08260233A (en) Production of ultrahigh-molecular weight polyolefin filament
JPS62218428A (en) Moisture-permeable film and its production
JP2000212826A (en) Cement reinforcing fiber
DE102004010698A1 (en) Expandable resin material comprising 1-butene/propylene copolymer and thermally-decomposable blowing agent, used for production of polypropylene-based resin foam, e.g. for packaging and thermal insulation
JP2002273789A (en) Method for manufacturing thermoplastic resin molding
JP2967935B2 (en) Method for producing polyethylene molded article and stretch molded article