JP2000167392A - Adsorbing material regenerating apparatus and method therefor - Google Patents

Adsorbing material regenerating apparatus and method therefor

Info

Publication number
JP2000167392A
JP2000167392A JP10340314A JP34031498A JP2000167392A JP 2000167392 A JP2000167392 A JP 2000167392A JP 10340314 A JP10340314 A JP 10340314A JP 34031498 A JP34031498 A JP 34031498A JP 2000167392 A JP2000167392 A JP 2000167392A
Authority
JP
Japan
Prior art keywords
functional water
regenerating
adsorbed
activated carbon
contaminant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10340314A
Other languages
Japanese (ja)
Inventor
Kinya Kato
欽也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10340314A priority Critical patent/JP2000167392A/en
Publication of JP2000167392A publication Critical patent/JP2000167392A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for regenerating activated carbon not generating a drainage problem and not only moving an org. solvent capable of becoming a contaminant between media but fundamentally decomposing and purifying the same, and an adsorbing treatment apparatus utilizing the regeneration apparatus effectively. SOLUTION: The adsorbing material regenerating apparatus has a means for holding functional water containing a component generating the decomposition of a contaminant under the irradiation with light, a means 4 for irradiating this functional water with light, a means for holding an adsorbing material 1 adsorbing a contaminant, a means 5 for heating the adsorbing material 1 and a means for bringing the contaminant discharged from the adsorbing material 1 into contact with the functional water. The adsorbing material is regenerated by using this apparatus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、活性炭を用いた溶
剤回収装置や脱臭装置において、吸着破過した活性炭を
脱着再生する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for desorbing and regenerating adsorbed and broken activated carbon in a solvent recovery apparatus and a deodorizing apparatus using activated carbon.

【0002】[0002]

【従来の技術】従来、一般的におこなわれている活性炭
の再生技術は、蒸気等による加熱を利用して、活性炭か
ら被吸着物であるトリクロロエチレン、1,1,1-トリクロ
ロエタン、テトラクロロエチレン、cis-1,2-ジクロロ
エチレン、フロン等の有機溶剤の脱離操作をし、活性炭
の再生をおこなっている。
2. Description of the Related Art Conventionally, activated carbon regeneration technology is generally performed by utilizing heating by steam or the like to remove trichloroethylene, 1,1,1-trichloroethane, tetrachloroethylene, cis- Activated carbon is regenerated by removing organic solvents such as 1,2-dichloroethylene and chlorofluorocarbon.

【0003】このようなシステムは、活性炭塔と、この
活性炭塔の排出側に接続されるコンデンサ、デカンタ、
さらに、デカンタのドレイン側に接続される曝気槽とを
備えて構成されており、コンデンサは10〜30℃に温
度設定されて被吸着物と蒸気の液化をおこなった後、デ
カンタで被吸着物と水とを比重分離していた。そしてさ
らに下手側で、曝気槽において気体成分と排水の分離が
おこなわれて、外界へ排出して、処理を完了する。
[0003] Such a system comprises an activated carbon tower and a condenser, a decanter, connected to the discharge side of the activated carbon tower.
In addition, the condenser is provided with an aeration tank connected to the drain side of the decanter, and the condenser is set at a temperature of 10 to 30 ° C. to liquefy the adsorbed substance and vapor. Water and specific gravity were separated. Further, further on the lower side, the gas component and the wastewater are separated in the aeration tank, and discharged to the outside to complete the processing.

【0004】[0004]

【発明が解決しようとする課題】しかしながらこの方法
においては、以下のような問題がある場合がある。 1 回収された被吸着物である溶剤等の一部が排水中に
溶けこみ、さらなる排水処理が必要とされる場合があ
る。 2 被処理物が水溶性溶剤の場合は溶剤の回収が困難な
場合がある。 3 デカンタで溶剤の回収後さらなる有機溶媒の処理が
必要である。焼却処理はダイオキシンの発生などさらな
る汚染を引き起こす危険性がある。 4 曝気槽において気体成分と排水の分離がおこなわれ
た後、汚染物質を外界へ排出している。
However, this method may have the following problems. 1 A part of the collected solvent or the like as the substance to be adsorbed may be dissolved in the wastewater, and further wastewater treatment may be required. 2. When the object to be treated is a water-soluble solvent, it may be difficult to recover the solvent. 3 Further treatment of the organic solvent after recovery of the solvent in the decanter is required. Incineration may cause additional contamination, such as the generation of dioxins. 4. After separation of gas components and wastewater in the aeration tank, pollutants are discharged to the outside world.

【0005】よって本願の目的は、排水問題が生じず、
単に汚染物質となりうる有機溶媒を媒体間で移動するだ
けのものでなく、根本的に分解浄化する活性炭の再生方
法及びその装置を得ることにあり、さらにこの装置を有
効に利用した吸着処理装置を得ることにある。
Therefore, the object of the present invention is to prevent the problem of drainage from occurring,
An object of the present invention is to obtain a method and an apparatus for regenerating an activated carbon that fundamentally decomposes and purifies an activated carbon, instead of simply transferring an organic solvent that may become a pollutant between media. To get.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
の本発明による活性炭の再生装置は、光照射下で汚染物
質の分解を生じさせる成分を含む機能水を保持する手段
と;該機能水に光照射をおこなう手段と;該汚染物質を吸
着した吸着素材を加熱する手段;及び該吸着素材から加
熱により排出した汚染物質を機能水と接触させる手段を
有する吸着素材再生装置である。
According to the present invention, there is provided an activated carbon regenerating apparatus for retaining functional water containing a component which causes decomposition of pollutants under light irradiation; An apparatus for regenerating an adsorbed material, comprising: means for irradiating the contaminant with the functional water; means for irradiating the contaminant with the functional water; means for heating the adsorbed material adsorbing the contaminant;

【0007】また、本発明の吸着素材再生方法は、汚染
物質が吸着した吸着素材に加熱をおこない、該汚染物質
を排出させる工程と;該汚染物質と、光照射下で汚染物
質の分解を生じさせる成分を含む機能水とを、光照射下
で接触させる工程を有することを特徴とする。
Further, the method of the present invention for regenerating an adsorbed material comprises heating the adsorbed material to which the contaminant is adsorbed to discharge the contaminant; and decomposing the contaminant under light irradiation. A step of bringing the functional water containing the component to be contacted under light irradiation.

【0008】そして、それらの作用は次の通りである。The operation is as follows.

【0009】本願の活性炭の再生方法及びその装置にあ
っては、活性炭が所定の循環路内に配設され、この循環
路内の一部を構成する活性炭塔内で加熱を受ける。この
加熱により活性炭より脱離される被吸着物がガス状態で
脱離される。脱離したガス状態の被吸着物は、循環路内
に配設された機能水槽にて機能水と平衡状態に達する。
即ち、ガス状態の被吸着物は平衡条件に従って機能水中
に溶解する。ここで機能水に光照射をおこなうと機能水
の分解能力により溶解した被吸着物が分解される。そこ
でガス状態の被吸着物はさらに機能水中に溶け込み、順
次分解され、最終的に活性炭から被吸着物は脱離され、
活性炭が再生されるとともに、活性炭からの被吸着物も
分解され完全浄化がおこなわれる。
In the method and apparatus for regenerating activated carbon of the present invention, activated carbon is disposed in a predetermined circulation path, and is heated in an activated carbon tower which forms a part of the circulation path. The substance to be adsorbed desorbed from the activated carbon by this heating is desorbed in a gaseous state. The adsorbed substance in the desorbed gas state reaches an equilibrium state with functional water in a functional water tank disposed in the circulation path.
That is, the substance to be adsorbed in the gas state dissolves in the functional water according to the equilibrium conditions. Here, when the functional water is irradiated with light, the dissolved substance to be absorbed is decomposed by the decomposing ability of the functional water. Then, the adsorbed substance in the gaseous state further dissolves in the functional water and is sequentially decomposed, and finally the adsorbed substance is desorbed from the activated carbon,
As the activated carbon is regenerated, the substance to be adsorbed from the activated carbon is also decomposed, and complete purification is performed.

【0010】[0010]

【発明の実施の形態】以下、本願の実施の諸形態を図面
に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of the present invention will be described below with reference to the drawings.

【0011】[実施形態1]図1には本願の活性炭脱着シ
ステムのシステム構成が示されている。このシステム
は、処理対象の活性炭1が収納される活性炭槽2、機能
水槽3及びこの機能水に光を照射する光照射手段4とを
備えて構成されている。ここで、本実施形態では、活性
炭槽2には既に被吸着物が吸着した活性炭が供給できる
ようになっている。活性炭槽2には活性炭1を加熱する
手段としてヒータ5が備えられている。
[Embodiment 1] FIG. 1 shows a system configuration of an activated carbon desorption system of the present invention. This system includes an activated carbon tank 2 in which activated carbon 1 to be treated is stored, a functional water tank 3, and a light irradiation unit 4 for irradiating the functional water with light. Here, in the present embodiment, the activated carbon tank 2 can be supplied with activated carbon to which the substance to be adsorbed has already been adsorbed. The activated carbon tank 2 is provided with a heater 5 as a means for heating the activated carbon 1.

【0012】この構成の活性炭脱着システムにおいて
は、被吸着物を吸着して吸着破過した状態にある活性炭
1を、活性炭槽2の所定位置に収納し、ヒータ5を作動
させて、活性炭1を加熱するとともに、活性炭1より被吸
着物を脱離させて、活性炭1を再生する。この工程を再
生工程と呼ぶ。
In the activated carbon desorption system having this configuration, the activated carbon in the state of adsorbing the adsorbed substance and breaking through the adsorption is used.
The activated carbon 1 is stored in a predetermined position of the activated carbon tank 2, and the heater 5 is operated to heat the activated carbon 1, and the substance to be adsorbed is desorbed from the activated carbon 1 to regenerate the activated carbon 1. This step is called a regeneration step.

【0013】さらに、被吸着物のガスを、機能水槽3内
に導き、この混合ガスgの一部は平衡条件に従い機能水
中に溶け込む。さらに、機能水に光照射手段4であるラ
ンプで光り照射がおこなわれ、機能水中に溶け込んだ被
吸着物が分解される。この工程を溶解・浄化工程と呼
ぶ。
Further, the gas of the substance to be adsorbed is introduced into the functional water tank 3, and a part of the mixed gas g is dissolved in the functional water according to the equilibrium conditions. Further, the functional water is irradiated with light by a lamp as the light irradiating means 4 to decompose the adsorbed substance dissolved in the functional water. This step is called a dissolution / purification step.

【0014】ここで、機能水中への溶け込みを促進する
ためにポンプを用いても良い。図中6は機能水槽3に機
能水を供給する機能水生成装置である。機能水中に溶け
込んだ被吸着物が分解されることで平衡がくずれ、混合
ガスgの一部が機能水にさらに溶け込む。この反応が連
続的に進み最終的に活性炭1から脱離した被吸着物は機
能水中ですべて分解され、活性炭の再生が終了する。
[0014] Here, a pump may be used to promote the dissolution into the functional water. 6 is a functional water generator for supplying functional water to the functional water tank 3. The equilibrium is broken by the decomposition of the substance to be adsorbed dissolved in the functional water, and a part of the mixed gas g further dissolves in the functional water. This reaction proceeds continuously, and all the adsorbed substances finally desorbed from the activated carbon 1 are decomposed in the functional water, and the regeneration of the activated carbon is completed.

【0015】以下さらに詳細に、各機器について説明す
る。
Each device will be described in further detail below.

【0016】(処理対象となる活性炭1)本システムに使
用できる活性炭1は、いかなるものでも良いが、加熱手
段によって適切なものを選択することが望ましい。例え
ばマイクロ波加熱されるためには電気抵抗が大きい方が
望ましい。ピッチ系繊維状活性炭は、電気抵抗が層厚さ
150mmの場合約3Ωの抵抗を有するが、PAN系繊
維状活性炭ではその電気抵抗は遥かに小さいため、別の
加熱方法、例えばヒータ加熱または水蒸気脱着などの方
法をとる必要がある。
(Activated Carbon 1 to be Treated) The activated carbon 1 that can be used in the present system may be any one, but it is desirable to select an appropriate one by a heating means. For example, in order to perform microwave heating, it is desirable that the electric resistance is large. The electrical resistance of pitch-based fibrous activated carbon is
Although it has a resistance of about 3Ω in the case of 150 mm, the electric resistance of the PAN-based fibrous activated carbon is much smaller, so that it is necessary to take another heating method, for example, a method of heating a heater or desorbing steam.

【0017】(被吸着物)処理対象となる被吸着物として
は、トリクロロエチレン、1,1,1-トリクロロエタン、テ
トラクロロエチレン、cis-1,2-ジクロロエチレン、H
CFC、113-フロン、クロロホルム等を挙げることが
できる。
(Adsorbed object) The object to be treated includes trichloroethylene, 1,1,1-trichloroethane, tetrachloroethylene, cis-1,2-dichloroethylene, H
Examples thereof include CFC, 13-fluorocarbon, and chloroform.

【0018】(ヒータ)活性炭槽2の外部に取付けられた
ヒータ5は、たとえば、マイクロ波発振器で、周波数2
450MHz・1.2kWの通常、家庭用電子レンジに使用
されているものである。マイクロ波加熱の状況は、活性
炭槽2に設けられている遠赤外線隔測温度計2aによ
り、活性炭1の表面温度を検知され、マイクロ波の照射
エネルギーのコントロールがおこなわれる。
(Heater) The heater 5 attached to the outside of the activated carbon tank 2 is, for example, a microwave
450 MHz, 1.2 kW, which is usually used in household microwave ovens. The state of the microwave heating is such that the surface temperature of the activated carbon 1 is detected by the far-infrared distance thermometer 2a provided in the activated carbon tank 2, and the microwave irradiation energy is controlled.

【0019】表面温度の一例を挙げると、120℃であ
る。このシステムにおいては、加熱には蒸気を使用しな
いため、システムはドライシステムとなっており、活性
炭塔全体を加熱しないため、省エネ効果も大きく、設備
も安価である。
An example of the surface temperature is 120 ° C. In this system, since steam is not used for heating, the system is a dry system. Since the entire activated carbon tower is not heated, the energy saving effect is large and the equipment is inexpensive.

【0020】(機能水生成装置6及び機能水)機能水槽3
で用いられる機能水とは例えば水素イオン濃度(pH値)
が1以上4以下、好ましくは2以上3以下、作用電極を
プラチナ電極とし参照電極を銀-塩化銀としたときの酸
化還元電位が800mV以上1500mV以下、好まし
くは1000mV以上1300mV以下、かつ塩素濃度
が5mg/L以上150mg/L以下、好ましくは30mg/L以
上120mg/L以下の性状をもつ水を指す。
(Functional water generator 6 and functional water) Functional water tank 3
The functional water used in is, for example, hydrogen ion concentration (pH value)
The oxidation-reduction potential when the working electrode is a platinum electrode and the reference electrode is silver-silver chloride is 800 mV or more and 1500 mV or less, preferably 1000 mV or more and 1300 mV or less, and the chlorine concentration is 1 or more and 4 or less, preferably 2 or more and 3 or less. It refers to water having a property of 5 mg / L or more and 150 mg / L or less, preferably 30 mg / L or more and 120 mg / L or less.

【0021】このような機能水は電解質(例えば、塩化
ナトリウムや塩化カリウムなど)を原水に溶解し、この
水を一対の電極を有する水槽内で電気分解をおこなうこ
とによってその陽極近傍で得ることができる。ここで電
解前の原水中の電解質の濃度は例えば塩化ナトリウムで
は20mg/L〜2000mg/Lが望ましく、より好ましく
は200mg/L以上1000mg/L以下とするのがよい。
Such functional water can be obtained in the vicinity of its anode by dissolving an electrolyte (eg, sodium chloride or potassium chloride) in raw water and subjecting this water to electrolysis in a water tank having a pair of electrodes. it can. Here, the concentration of the electrolyte in the raw water before the electrolysis is, for example, preferably 20 mg / L to 2000 mg / L for sodium chloride, and more preferably 200 mg / L to 1000 mg / L.

【0022】またこのとき一対の電極間に隔膜を配置し
た場合、陽極近傍に生成される酸性水と陰極近傍にて生
成するアルカリ性の水との混合を防ぐことができ、有機
化合物の分解をより効率的におこなう事ができる酸性水
を得ることができる。
When a diaphragm is arranged between the pair of electrodes at this time, it is possible to prevent mixing of the acidic water generated near the anode and the alkaline water generated near the cathode, and to reduce the decomposition of the organic compound. It is possible to obtain acidic water that can be efficiently performed.

【0023】該隔膜としては例えばイオン交換膜等が好
適に用いられる。そしてこのような機能水を得る手段と
しては、市販の強酸性電解水生成器(例えば、商品名:オ
アシスバイオハーフ;旭硝子エンジニアリング(株)社
製、商品名:強電解水生成器(Model FW-200;アマ
ノ(株)社製等)を利用することができる。
As the diaphragm, for example, an ion exchange membrane is preferably used. As a means for obtaining such functional water, commercially available strongly acidic electrolyzed water generator (for example, trade name: Oasis Bio Half; manufactured by Asahi Glass Engineering Co., Ltd., trade name: strong electrolyzed water generator (Model FW- 200; manufactured by Amano Co., Ltd.).

【0024】また、隔膜をもたない装置から生成された
機能水も以上述べられてきた有機化合物の分解に用いる
ことができる。例えば酸化還元電位が300mV以上1
100mV以下、好ましくは500mV以上900mV
以下、かつ塩素濃度が2mg/L以上100mg/L以下、好
ましくは20mg/L以上80mg/L以下であり、pHは4
〜10、好ましくは5〜8の機能水である。
Further, functional water generated from a device having no diaphragm can also be used for the decomposition of the organic compounds described above. For example, the oxidation-reduction potential is 300 mV or more and 1
100 mV or less, preferably 500 mV or more and 900 mV
And the chlorine concentration is 2 mg / L or more and 100 mg / L or less, preferably 20 mg / L or more and 80 mg / L or less.
~ 10, preferably 5-8 functional waters.

【0025】上記した特性を有する酸性水は電解によっ
てばかりでなく原水に種々の試薬を溶解して調製するこ
とも可能である。例えば、塩酸0.001N〜0.1N、塩
化ナトリウム0.005N〜0.02N、及び次亜塩素酸
ナトリウム0.0001M〜0.01Mとすることにより得
ることができる。
The acidic water having the above characteristics can be prepared not only by electrolysis but also by dissolving various reagents in raw water. For example, it can be obtained by adjusting the concentration of hydrochloric acid to 0.001N to 0.1N, sodium chloride to 0.005N to 0.02N, and sodium hypochlorite to 0.0001M to 0.01M.

【0026】また、pH4以上の機能水も電解によって
ばかりでなく原水に種々の試薬を溶解して調製すること
も可能である。例えば、塩酸0.001N〜0.1N、水酸
化ナトリウム0.001N〜0.1N、及び次亜塩素酸ナト
リウム0.0001M〜0.01Mとすることにより得るこ
とができるし、次亜塩素酸塩のみ、例えば次亜塩素酸ナ
トリウム0.0001M〜0.01Mとすることでも得られ
る。
The functional water having a pH of 4 or more can be prepared not only by electrolysis but also by dissolving various reagents in raw water. For example, it can be obtained by adjusting the concentration of hydrochloric acid to 0.001 N to 0.1 N, sodium hydroxide to 0.001 N to 0.1 N, and sodium hypochlorite to 0.0001 M to 0.01 M, and hypochlorite. Only, for example, sodium hypochlorite can be obtained by adjusting the concentration to 0.0001M to 0.01M.

【0027】塩酸と次亜塩素酸塩でpHが4.0以下で塩
素濃度が2mg/L以上の機能水を調整することもでき
る。
Hydrochloric acid and hypochlorite can be used to prepare functional water having a pH of 4.0 or less and a chlorine concentration of 2 mg / L or more.

【0028】これらの機能水は、すべて光照射をおこな
うことで強い酸化能力を示し汚染有機物質を分解する本
発明に用いることができる。
All of these functional waters can be used in the present invention, which exhibits a strong oxidizing ability upon irradiation with light and decomposes polluting organic substances.

【0029】(光照射手段4)本発明に用いることのでき
る光照射手段としては、例えば、波長300〜500n
mの光が好ましく、350〜450nmの光を用いるの
がより好ましい。また機能水溶液と分解対象物に対する
光照射強度としては、例えば波長360nm近辺にピー
クを持つ光源では数百μW/cm2(300nm〜400nm
間を測定)の強度で実用上十分の分解が進む。
(Light irradiating means 4) As the light irradiating means which can be used in the present invention, for example, a wavelength of 300 to 500 n
m, and more preferably 350 to 450 nm. The light irradiation intensity for the functional aqueous solution and the decomposition target is, for example, several hundred μW / cm 2 (300 nm to 400 nm in a light source having a peak near a wavelength of 360 nm).
(Measurement is performed), the decomposition is practically sufficient.

【0030】そしてこの様な光の光源としては自然光
(例えば、太陽光等)または人工光(水銀ランプ、ブラッ
クライト、カラー蛍光ランプ等)を用いることができ
る。
As a light source of such light, natural light is used.
(Eg, sunlight) or artificial light (mercury lamp, black light, color fluorescent lamp, etc.) can be used.

【0031】[実施形態2]上記の実施例においては、被
吸着物を吸着して吸着破過した状態にある活性炭を再生
させるために使用される本願発明を採用する装置の例を
示したが、被処理物を含有する原ガスを吸着処理すると
ともに、閉ループ内において活性炭1による被処理物の
除去、活性炭1の再生を交互におこなうシステムを構成
することも可能である。
[Embodiment 2] In the above embodiment, an example of an apparatus adopting the present invention which is used to regenerate activated carbon in a state in which an adsorbed substance is adsorbed and adsorbed and broken has been described. It is also possible to constitute a system that performs the adsorption treatment of the raw gas containing the object to be treated, and alternately removes the object to be treated by the activated carbon 1 and regenerates the activated carbon 1 in a closed loop.

【0032】このような例を図2に示した。このシステ
ムにおいては、一対の活性炭塔2が設けられるととも
に、これらの活性炭塔2に対して、それぞれ個別に原ガ
ス供給路7及び原ガス排出路8が設けられている。機能
水槽3は活性炭塔2からのガスが開閉弁11a,bを介して
供給されるように配置され、6はこれに機能水を供給す
る機能水生成装置である。
FIG. 2 shows such an example. In this system, a pair of activated carbon towers 2 are provided, and a raw gas supply path 7 and a raw gas discharge path 8 are individually provided for these activated carbon towers 2. The functional water tank 3 is arranged so that the gas from the activated carbon tower 2 is supplied via the on-off valves 11a and 11b, and 6 is a functional water generator for supplying functional water to the functional water tank.

【0033】図示するものの作動状態について説明する
と、右側に配設されるものが、原ガスからの被吸着物の
除去をおこなって作動中のものであり、左側のものが、
活性炭の再生をおこなっているものである。
The operating state of the illustrated one will be described. The one disposed on the right is the one that is operating by removing the adsorbed material from the raw gas, and the one on the left is
Activated carbon is being regenerated.

【0034】各開閉弁11a,bの開閉によって被処理物の
吸着除去、活性炭の再生を交互におこなう構成となって
いる。原ガス供給路7から供給され、供給制御弁9によ
り7aを通り活性炭塔2aに入り吸着処理がおこなわれ
る。このとき各開閉弁11aは閉じており活性炭塔2aか
ら機能水槽3へガスが流入することはない。
The opening and closing of each of the on-off valves 11a and 11b alternately performs adsorption removal of the object to be treated and regeneration of the activated carbon. The raw material gas is supplied from the raw gas supply path 7 and enters the activated carbon tower 2a through the supply control valve 9 through 7a, where the adsorption treatment is performed. At this time, each on-off valve 11a is closed, and no gas flows into the functional water tank 3 from the activated carbon tower 2a.

【0035】吸着処置が終了したガスは8aを通り排出
制御弁10を介して排出路8から排出される。活性炭塔
2aで吸着処理をおこなっている間、活性炭塔2bでは再
生処理がおこなわれる。即ち9,10の制御弁が閉じら
れ、11bが開くことで、活性炭塔2b、機能水槽3が閉
空間となる。このときヒータ5bを作動させて、活性炭
1bを加熱するとともに、活性炭1bより被吸着物を脱離
させて、活性炭1bを再生する。
The gas having undergone the adsorption treatment is discharged from the discharge passage 8 through the discharge control valve 10 through 8a. While the adsorption treatment is performed in the activated carbon tower 2a, the regeneration treatment is performed in the activated carbon tower 2b. In other words, the control valves 9, 10 are closed and 11b is opened, so that the activated carbon tower 2b and the functional water tank 3 are closed spaces. At this time, the heater 5b is operated to heat the activated carbon 1b, and the object to be adsorbed is desorbed from the activated carbon 1b to regenerate the activated carbon 1b.

【0036】被吸着物のガスを、制御弁11bを介して機
能水槽3内に導き、この混合ガスgの一部は平衡条件に
従い機能水中に溶け込む。さらに、機能水に光照射手段
4であるランプで光り照射がおこなわれ、機能水中に溶
け込んだ被吸着物ガスが分解される。ブロアー等を用い
て、より積極的に機能水中へのガスの溶け込みを促進す
る手段を講じてもよい。
The gas to be adsorbed is introduced into the functional water tank 3 via the control valve 11b, and a part of the mixed gas g is dissolved in the functional water according to the equilibrium conditions. Further, the functional water is irradiated with light by a lamp as the light irradiation means 4 to decompose the gas to be adsorbed dissolved in the functional water. Using a blower or the like, a means for more positively promoting the dissolution of gas into the functional water may be taken.

【0037】この吸着除去、活性炭の再生を交互におこ
なうことで連続的な汚染物質の処理・活性炭の再生が可
能となった。
By alternately performing the adsorption removal and the regeneration of the activated carbon, continuous treatment of pollutants and regeneration of the activated carbon became possible.

【0038】[0038]

【実施例】本発明を実験的に確かめた例を以下に示す。The following is an example of experimentally confirming the present invention.

【0039】27.5mL容のガラスバイアル瓶を複数本
用意し各々に活性炭(粒状、関東化学)2.0gを入れ、テ
フロン(登録商標)ライナー付ブチルゴム栓とアルミシ
ールで密閉した。次に、ガラスバイアル瓶の中に10mg
のTCEをガスタイトシリンジでブチルゴム栓を通して
全てのガラスバイアル瓶にガス状態で添加した後、数時
間放置した。
A plurality of 27.5 mL glass vials were prepared, each containing 2.0 g of activated carbon (granular, Kanto Kagaku), and sealed with a butyl rubber stopper with a Teflon (registered trademark) liner and an aluminum seal. Next, put 10mg in a glass vial.
Was added in a gaseous state to all the glass vials through a butyl rubber stopper with a gas-tight syringe, and then left for several hours.

【0040】その後TCE濃度を測定し、ガラスバイア
ル瓶中のTCEガスはすべて活性炭に吸着したことを確
かめた。なおガラスバイアル瓶中の気相部分のTCE濃
度の測定は、ガラスバイアル瓶の気相部分をガスタイト
シリンジでサンプリングし、TCE濃度をガスクロマト
グラフィー(商品名:GC-14B(FID検出器付);島津製
作所(株)社製、カラムはJ&W社製DB-624)で測定し
た。
Thereafter, the TCE concentration was measured, and it was confirmed that all the TCE gas in the glass vial was adsorbed on the activated carbon. The TCE concentration of the gas phase in the glass vial was measured by sampling the gas phase of the glass vial with a gas tight syringe and measuring the TCE concentration by gas chromatography (trade name: GC-14B (with FID detector)). The column was measured by Shimadzu Corporation, and the column was measured by J & W DB-624).

【0041】次に、TCEが吸着した活性炭1を図3の
装置の活性炭槽2にいれた。機能水槽3にはpH2.1、
酸化還元電位1150mV、残留塩素濃度54mg/Lの機
能水を100mLいれた。活性炭を電熱ヒータ(シリコン
ラバーヒータ)5で加熱しながら機能水槽にブラックラ
イト蛍光ランプ4(商品名:FL10BLB;株式会社東芝
製、10W)の光を24時間照射し続けた。
Next, the activated carbon 1 on which TCE was adsorbed was placed in the activated carbon tank 2 of the apparatus shown in FIG. The function tank 3 has a pH of 2.1,
100 mL of functional water having an oxidation-reduction potential of 1150 mV and a residual chlorine concentration of 54 mg / L was added. While the activated carbon was heated by an electric heater (silicon rubber heater) 5, the functional water tank was continuously irradiated with light of a black light fluorescent lamp 4 (trade name: FL10BLB; manufactured by Toshiba Corporation, 10W) for 24 hours.

【0042】その後活性炭を取り出し直ちにn-hexane
10mLの入った容器に入れ、10分間攪拌した後n-hexan
e層を分取し、ECDガスクロマトグラフィーにてTC
E量を測定した。
Then, the activated carbon was taken out and immediately n-hexane
Put in a container containing 10 mL, stir for 10 minutes, then n-hexan
e layer was separated and TC was measured by ECD gas chromatography.
The E amount was measured.

【0043】その結果n-hexaneからTCEは検出されず
活性炭は再生されていることが解った。
As a result, no TCE was detected from n-hexane, and it was found that activated carbon was regenerated.

【0044】また、機能水槽、活性炭槽の気相部からも
TCEは検出されず、TCEは除去されたのみならず分
解されたことが示された。
No TCE was detected from the gas phase of the functional water tank or the activated carbon tank, indicating that TCE was not only removed but also decomposed.

【0045】[0045]

【発明の効果】本発明による活性炭の再生方法及びその
装置によって排水問題が生じず、単に汚染物質となりう
る有機溶媒を媒体間で移動するだけのものでなく根本的
に分解浄化することが可能となった。
According to the method and the apparatus for regenerating activated carbon of the present invention, no drainage problem occurs, and it is possible not only to transfer organic solvents which can be pollutants between media but also to purify them by radical decomposition. became.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様にかかる活性炭再生装置の
概略図である。
FIG. 1 is a schematic diagram of an activated carbon regeneration device according to one embodiment of the present invention.

【図2】本発明の他の実施態様にかかる活性炭再生装置
の概略図である。
FIG. 2 is a schematic view of an activated carbon regeneration device according to another embodiment of the present invention.

【図3】本発明を実験的に確かめたとき用いた活性炭再
生装置の概略図である。
FIG. 3 is a schematic view of an activated carbon regenerating apparatus used when the present invention has been experimentally confirmed.

【符号の説明】[Explanation of symbols]

1 活性炭 2(a,b) 活性炭塔、活性炭槽 3 機能水槽 4 光照射手段 5(a,b) ヒータ 6 機能水生成装置 7a,b 供給路 8a,b 排出路 9 供給制御弁 10 排出制御弁 11a,b 開閉弁 12 排水管 13 ポンプ Reference Signs List 1 activated carbon 2 (a, b) activated carbon tower, activated carbon tank 3 functional water tank 4 light irradiation means 5 (a, b) heater 6 functional water generator 7 a, b supply path 8 a, b discharge path 9 supply control valve 10 discharge control valve 11a, b On-off valve 12 Drain pipe 13 Pump

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 53/81 Fターム(参考) 4D002 AA17 AA21 AA22 BA04 BA08 BA09 BA20 CA07 DA02 DA03 DA26 DA35 DA37 DA41 DA70 EA05 EA07 EA08 GB02 GB08 GB09 GB20 4G066 AA05B CA33 DA03 GA02 GA03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01D 53/81 F-term (Reference) 4D002 AA17 AA21 AA22 BA04 BA08 BA09 BA20 CA07 DA02 DA03 DA26 DA35 DA37 DA41 DA70 EA05 EA07 EA08 GB02 GB08 GB09 GB20 4G066 AA05B CA33 DA03 GA02 GA03

Claims (25)

【特許請求の範囲】[Claims] 【請求項1】 汚染物質が吸着した吸着素材に加熱をお
こない、該汚染物質を排出させる工程と;該汚染物質
と、光照射下で該汚染物質の分解を生じさせる成分を含
む機能水とを、光照射下で接触させる工程とを有するこ
とを特徴とする吸着素材再生方法。
Heating the adsorbed material on which the contaminant is adsorbed to discharge the contaminant; and converting the contaminant and functional water containing a component that causes the decomposition of the contaminant under light irradiation. Contacting under light irradiation.
【請求項2】 前記機能水が次亜塩素酸を含む請求項1
に記載の吸着素材再生方法。
2. The method according to claim 1, wherein the functional water contains hypochlorous acid.
3. The method for regenerating an adsorbed material according to 1.
【請求項3】 前記機能水が電解質を含む水の電気分解
によって生成する、請求項1または2記載の吸着素材再
生方法。
3. The method of claim 1, wherein the functional water is generated by electrolysis of water containing an electrolyte.
【請求項4】 前記機能水が電解質を含む水の電気分解
により、陽極近傍に生成する酸性水である請求項3記載
の吸着素材再生方法。
4. The method for regenerating an adsorbed material according to claim 3, wherein the functional water is acidic water generated near an anode by electrolysis of water containing an electrolyte.
【請求項5】 前記電解質が塩化ナトリウム及び塩化カ
リウムの少なくとも一方である請求項3または4に記載
の吸着素材再生方法。
5. The method according to claim 3, wherein the electrolyte is at least one of sodium chloride and potassium chloride.
【請求項6】 前記機能水が更に無機酸を含む請求項2
ないし5のいずれか1項に記載の吸着素材再生方法。
6. The functional water according to claim 2, further comprising an inorganic acid.
6. The method for regenerating an adsorbed material according to any one of items 5 to 5.
【請求項7】 前記無機酸が塩酸、フッ酸、シュウ酸、
硫酸、リン酸及びホウ酸から選ばれる少なくとも一つで
ある請求項6記載の吸着素材再生方法。
7. The method according to claim 1, wherein the inorganic acid is hydrochloric acid, hydrofluoric acid, oxalic acid,
The method for regenerating an adsorbed material according to claim 6, wherein the method is at least one selected from sulfuric acid, phosphoric acid, and boric acid.
【請求項8】 前記機能水が次亜塩素酸塩水溶液である
請求項2記載の吸着素材再生方法。
8. The method according to claim 2, wherein the functional water is an aqueous solution of hypochlorite.
【請求項9】 前記次亜塩素酸塩が次亜塩素塩酸ナトリ
ウム及び次亜塩素塩酸カリウムの少なくとも一方である
請求項8記載の吸着素材再生方法。
9. The method according to claim 8, wherein the hypochlorite is at least one of sodium hypochlorite and potassium hypochlorite.
【請求項10】 前記機能水の塩素濃度が2〜150mg
/Lである請求項1ないし9のいずれか1項に記載の吸着
素材再生方法。
10. The chlorine concentration of the functional water is 2 to 150 mg.
The method according to any one of claims 1 to 9, wherein the ratio is / L.
【請求項11】 前記機能水が水素イオン濃度(pH値)1
〜4、酸化還元電位(作用電極:プラチナ電極、参照電
極:銀-塩化銀電極)800〜1500mV、及び塩素濃度
が5〜150mg/Lなる特性を有する請求項1ないし8及
び10のいずれか1項に記載の吸着素材再生方法。
11. The functional water has a hydrogen ion concentration (pH value) of 1
11. The redox potential (working electrode: platinum electrode, reference electrode: silver-silver chloride electrode) of 800 to 1500 mV, and a chlorine concentration of 5 to 150 mg / L. The method for regenerating an adsorbed material according to the paragraph.
【請求項12】 前記機能水が水素イオン濃度(pH値)
4〜10、酸化還元電位(作用電極:プラチナ電極、参照
電極:銀-塩化銀電極)300〜1100mV、及び塩素濃
度2〜100mg/Lなる特性を有する請求項1ないし10
記載の吸着素材再生方法。
12. The functional water has a hydrogen ion concentration (pH value).
11. The composition according to any one of claims 1 to 10, which has a characteristic of 4 to 10, an oxidation-reduction potential (working electrode: platinum electrode, reference electrode: silver-silver chloride electrode) of 300 to 110 mV, and a chlorine concentration of 2 to 100 mg / L.
The method for regenerating the adsorbed material as described.
【請求項13】 前記照射における光が、300〜50
0nmの波長域を含む光である請求項1ないし12のい
ずれか1項に記載の吸着素材再生方法。
13. The method according to claim 1, wherein the light in the irradiation is 300 to 50.
13. The method for regenerating an adsorbed material according to claim 1, wherein the light is a light including a wavelength range of 0 nm.
【請求項14】 前記汚染物質がハロゲン化脂肪族炭化
水素化合物である請求項1ないし13のいずれか1項に
記載の吸着素材再生方法。
14. The method according to claim 1, wherein the contaminant is a halogenated aliphatic hydrocarbon compound.
【請求項15】 前記ハロゲン化脂肪族炭化水素化合物
が塩素及びフッ素の少なくとも一方の元素で置換されて
いる脂肪族炭化水素化合物である請求項14記載の吸着
素材再生方法。
15. The method according to claim 14, wherein the halogenated aliphatic hydrocarbon compound is an aliphatic hydrocarbon compound substituted with at least one of chlorine and fluorine.
【請求項16】 前記ハロゲン化脂肪族炭化水素化合物
が、トリクロロエチレン、1,1,1-トリクロロエタン、テ
トラクロロエチレン、cis-1,2-ジクロロエチレン、H
CFC、113-フロン、クロロホルムの内の少なくとも
一つである請求項15記載の吸着素材再生方法。
16. The halogenated aliphatic hydrocarbon compound may be trichloroethylene, 1,1,1-trichloroethane, tetrachloroethylene, cis-1,2-dichloroethylene, H
16. The method for regenerating an adsorbed material according to claim 15, wherein the method is at least one of CFC, 11-fluorocarbon and chloroform.
【請求項17】 前記吸着素材が活性炭である請求項1
ないし16のいずれか1項に記載の吸着素材再生方法。
17. The method according to claim 1, wherein the adsorption material is activated carbon.
17. The method for regenerating an adsorbed material according to any one of items 16 to 16.
【請求項18】 光照射下で汚染物質の分解を生じさせ
る成分を含む機能水を保持する手段と;該機能水に光照
射をおこなう手段と;該汚染物質を吸着した吸着素材を
加熱する手段;及び該吸着素材から加熱により排出した
汚染物質を機能水と接触させる手段を有する吸着素材再
生装置。
18. A means for retaining functional water containing a component that causes decomposition of a contaminant under light irradiation; a means for irradiating the functional water with light; and a means for heating an adsorbing material that has adsorbed the contaminant. And an adsorbing material regenerating apparatus having means for bringing contaminants discharged from the adsorbing material by heating into contact with functional water.
【請求項19】 前記機能水が次亜塩素酸を含むことを
特徴とする請求項1記載の吸着素材再生装置。
19. The adsorptive material regenerating apparatus according to claim 1, wherein the functional water contains hypochlorous acid.
【請求項20】 前記機能水が電解質を含む水の電気分
解によって生成する、請求項18または19記載の吸着
素材再生装置。
20. The adsorption material regenerating apparatus according to claim 18, wherein the functional water is generated by electrolysis of water containing an electrolyte.
【請求項21】 前記機能水が電解質を含む水の電気分
解により、陽極近傍に生成する酸性水である請求項20
記載の吸着素材再生装置。
21. The functional water is an acidic water generated in the vicinity of an anode by electrolysis of water containing an electrolyte.
An apparatus for regenerating an adsorbed material as described in the above.
【請求項22】 前記機能水が水素イオン濃度(pH値)1
〜4、酸化還元電位(作用電極:プラチナ電極、参照電
極:銀-塩化銀電極)800〜1500mV、及び塩素濃
度が5〜150mg/Lなる特性を有する請求項18ないし
21のいずれか1項に記載の吸着素材再生装置。
22. The functional water has a hydrogen ion concentration (pH value) of 1
22. The method according to any one of claims 18 to 21, wherein the oxidation-reduction potential (working electrode: platinum electrode, reference electrode: silver-silver chloride electrode) is 800 to 1500 mV, and the chlorine concentration is 5 to 150 mg / L. An apparatus for regenerating an adsorbed material as described in the above.
【請求項23】 前記機能水が水素イオン濃度(pH値)
4〜10、酸化還元電位(作用電極:プラチナ電極、参照
電極:銀-塩化銀電極)300〜2300mV、及び塩素
濃度2〜100mg/Lなる特性を有する請求項18ないし
21のいずれか1項に記載の吸着素材再生装置。
23. The functional water has a hydrogen ion concentration (pH value).
22. The composition according to any one of claims 18 to 21, wherein the composition has characteristics of 4 to 10, an oxidation-reduction potential (working electrode: platinum electrode, reference electrode: silver-silver chloride electrode) of 300 to 2300 mV and a chlorine concentration of 2 to 100 mg / L. An apparatus for regenerating an adsorbed material as described in the above.
【請求項24】 前記照射をおこなう手段からの光が、
300〜500nmの波長域を含む光である請求項18
ないし23のいずれか1項に記載の吸着素材再生装置。
24. The light from the means for irradiating,
19. Light having a wavelength range of 300 to 500 nm.
24. The adsorption material reproducing apparatus according to any one of items 23 to 23.
【請求項25】 前記吸着素材が活性炭である請求項1
8ないし24のいずれか1項に記載の吸着素材再生装
置。
25. The method according to claim 1, wherein the adsorption material is activated carbon.
25. The adsorption material reproducing apparatus according to any one of 8 to 24.
JP10340314A 1998-11-30 1998-11-30 Adsorbing material regenerating apparatus and method therefor Pending JP2000167392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10340314A JP2000167392A (en) 1998-11-30 1998-11-30 Adsorbing material regenerating apparatus and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10340314A JP2000167392A (en) 1998-11-30 1998-11-30 Adsorbing material regenerating apparatus and method therefor

Publications (1)

Publication Number Publication Date
JP2000167392A true JP2000167392A (en) 2000-06-20

Family

ID=18335769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10340314A Pending JP2000167392A (en) 1998-11-30 1998-11-30 Adsorbing material regenerating apparatus and method therefor

Country Status (1)

Country Link
JP (1) JP2000167392A (en)

Similar Documents

Publication Publication Date Title
KR100415216B1 (en) Method for decomposing halogenated aliphatic hydrocarbon compounds having adsorption process and apparatus for decomposition having adsorption means
JP3461328B2 (en) Gas processing apparatus and method
JP2000336044A (en) Decomposition of halogenated aliphatic hydrocarbon compound or aromatic compound, installation to be used therefor, cleaning of exhaust gas and installation therefor
JP2006130216A (en) Method and apparatus for decomposing organic chlorine compound
JP3825958B2 (en) Chlorine-containing gas generator and contaminated gas decomposition apparatus using the chlorine-containing gas generator
Jatta et al. A column study of persulfate chemical oxidative regeneration of toluene gas saturated activated carbon
Bouaziz et al. New hybrid process combining adsorption on sawdust and electroxidation using a BDD anode for the treatment of dilute wastewater
de Mello et al. Combination of granular activated carbon adsorption and electrochemical oxidation processes in methanol medium for benzene removal
JP2004028550A (en) Separation method for separating each substance from mixed gas containing plural substance, and device therefor
JP2000167392A (en) Adsorbing material regenerating apparatus and method therefor
JP2002136867A (en) Adsorbent regeneration treatment process and equipment for the same
JP2001000828A (en) Decomposition method and device provided with adsorption electrode
JP2004321919A (en) Soil decontaminating method
JP3501719B2 (en) Pollutant decomposition apparatus and method
JP2001240559A (en) Decomposition method of organic chlorine compounds and decomposition apparatus therefor
JPH11179195A (en) Organic compound decomposition method, apparatus to be employed therefor, waste gas purification method, and apparatus to be employed therefor
JP2001062469A (en) Decomposition method of pollutant, decomposition device for pollutant, purifying device of groundwater and purifying method of groundwater
JP2000202424A (en) Polluted soil remediation method and device
JP2001240560A (en) Decomposition method with absorption process and decomposition apparatus with absorption means
JP2002001335A (en) Contaminant decomposing equipment and its method
JPH11197495A (en) Method for cleaning medium containing pollutant, device used therefor and method for extracting pollutant contained in medium
JP2003210980A (en) Method for regeneration treatment of adsorbent and apparatus therefor, and method for decomposing substance and apparatus therefor
JPH0445294A (en) Electrochemical treatment using activated carbon
JP3466965B2 (en) Method for decomposing halogenated aliphatic hydrocarbon compound or aromatic halogenated hydrocarbon compound, apparatus used therefor, method for purifying exhaust gas, and apparatus used therefor
JP3461312B2 (en) Decomposition method and decomposition apparatus for gaseous halogenated aliphatic hydrocarbon compound or gaseous halogenated aromatic hydrocarbon compound