JP2000162369A - Neutron irradiation material inspection system - Google Patents

Neutron irradiation material inspection system

Info

Publication number
JP2000162369A
JP2000162369A JP10338791A JP33879198A JP2000162369A JP 2000162369 A JP2000162369 A JP 2000162369A JP 10338791 A JP10338791 A JP 10338791A JP 33879198 A JP33879198 A JP 33879198A JP 2000162369 A JP2000162369 A JP 2000162369A
Authority
JP
Japan
Prior art keywords
inspection system
neutron irradiation
gas
heating
neutron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10338791A
Other languages
Japanese (ja)
Inventor
Masato Koshiishi
正人 越石
Michiyoshi Yamamoto
道好 山本
Takahiko Kato
隆彦 加藤
Tomomi Nakamura
友美 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10338791A priority Critical patent/JP2000162369A/en
Publication of JP2000162369A publication Critical patent/JP2000162369A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To directly inspect a structure without gathering a sample by locally heating a material being subjected to neutron irradiation, and by directly analyzing a small amount of gas being discharged from a heating part for judging the content of He in the material. SOLUTION: A device body 8 is equipped with a water elimination mechanism, an argon gas inflow port, and a discharge port for discharging the mixture of the argon gas and a gas He being generated from a melting part. Heating is made by a high-frequency heating coil, and control is carried out by a current-controlling device 11. A current value is selected to become a temperature of 1,370-1,450 deg.C or more within the melting point range of stainless steel. Then, the relationship between heating time and the volume of the melting part are obtained. The discharge amount of He is divided by melting volume, and the concentration of He is obtained. The device body 8 is positioned in a material 1 to be measured so that the high-frequency heating coil is set to a measurement enforcement place, water in the device 8 is drained, and Ar gas 10 is allowed to flow. A part to be measured is heated by a specific current for specific time and is melted, and He being discharged from the melting part is allowed to flow to a gas analyzer 12 with the Ar gas for performing quantitative analysis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、中性子照射を受け
た材料の材料特性を評価するための材料検査システムに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material inspection system for evaluating material properties of a material that has been irradiated with neutrons.

【0002】[0002]

【従来の技術】原子力発電プラント等の中性子照射環境
下で使用される構造物や機器の材料内においては、ほう
素(B)やニッケル(Ni)等から核変換反応によりヘ
リウム(He)が発生する。このHeは、前記構造物や
機器に対する溶接等の熱加工による熱影響部に微小割れ
を発生させることが知られている。
2. Description of the Related Art Helium (He) is generated from boron (B), nickel (Ni), etc. by a transmutation reaction in materials of structures and equipment used in a neutron irradiation environment such as a nuclear power plant. I do. It is known that He causes micro-cracks in a heat-affected zone due to thermal processing such as welding to the structure or the device.

【0003】これについては、例えば、学術文献である
「ウェルディングジャーナル」1988年発行の第33頁か
ら第39頁(Weld.J., 1998, pp.33−39)に開示されて
いる。
[0003] This is disclosed, for example, in the academic literature, "Welding Journal", pp. 33-39, published in 1988 (Weld. J., 1998, pp. 33-39).

【0004】また、前記微小割れの発生しやすさは、材
料のHe含有量および熱加工の際の加熱の程度に依存す
ることが知られている。よって、材料中のHe含有量を
知ることは、例えば、溶接等の熱加工による微小割れ発
生の有無を予測し、また、微小割れの発生しない溶接条
件を設定するのに有用である。
It is known that the susceptibility of the micro-cracks depends on the He content of the material and the degree of heating during thermal processing. Therefore, knowing the He content in the material is useful for predicting, for example, the occurrence of micro-cracks due to thermal processing such as welding, and setting welding conditions that do not generate micro-cracks.

【0005】従来、炉内構造物のHe含有量測定には、
炉内構造物の一部を破壊的に切り出してそれを試料とし
て採取し、別に設けられた放射性物質を分析する専用の
ホットラボ内に設けられた質量分析計によりHe含有量
を測定する手法がとられていた。この手法を用いた照射
材の溶接可能性の診断方法について特開平7−244190号
公報として提案されている。この方法では原子炉の構造
物の一部を破壊的に取り出す必要があり、構造健全性の
評価を行うともに、試料の採取の特別な治工具が必要と
なる問題があった。
[0005] Conventionally, the measurement of the He content of the furnace internal structure has
A method of destructively cutting out a part of the furnace internal structure, sampling it as a sample, and measuring the He content by a mass spectrometer provided in a dedicated hot lab for separately analyzing radioactive materials. Had been. A method for diagnosing the weldability of the irradiated material using this technique has been proposed in Japanese Patent Application Laid-Open No. 7-244190. In this method, it is necessary to destructively take out a part of the structure of the nuclear reactor, and there is a problem that a special jig and a tool for sampling are required in addition to the evaluation of the structural integrity.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、従
来、試料の採取が必要であった中性子照射材料の検査シ
ステムに対して、試料の採取無しで直接構造物の検査が
可能な中性子照射材料検査システムを提供するものであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a neutron irradiation material inspection system which has conventionally required a sample to be obtained. A material inspection system is provided.

【0007】[0007]

【課題を解決するための手段】本発明の中性子照射材料
検査システムでは、中性子照射を受けた材料に対し、材
料を局部的に加熱し加熱部から放出される微量ガスを直
接分析して材料中のHe含有量を判定する。または、材
料を局部的に加熱し冷却後の割れ発生の有無からHe量
を判定する方法を提供する。
According to the neutron irradiation material inspection system of the present invention, a neutron-irradiated material is locally heated, and a trace gas released from the heating section is directly analyzed to analyze the material. Is determined. Alternatively, a method is provided in which the He amount is determined from the presence or absence of cracking after the material is locally heated and cooled.

【0008】[0008]

【発明の実施の形態】実施例1 図1は、本発明によるHe含有量判定方法を用いた中性
子照射材料検査装置構成の一例を示す図である。また、
装置本体部分の拡大図を図2に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a diagram showing an example of the configuration of a neutron irradiation material inspection apparatus using the He content determination method according to the present invention. Also,
FIG. 2 shows an enlarged view of the apparatus main body.

【0009】被測定材料1は、原子炉圧力容器2内の構
造物であり、圧力容器2には炉水3をはってある状態で
測定可能である。電源9,電流制御装置11,Arガス
供給装置10,気体分析装置12はオペレーションフロ
ア6に設置されている。図1は、被測定材料1がステン
レス鋼製のシュラウドである場合の例を示す。
The material to be measured 1 is a structure in the reactor pressure vessel 2 and can be measured with the reactor water 3 in the pressure vessel 2. The power supply 9, the current control device 11, the Ar gas supply device 10, and the gas analysis device 12 are installed on the operation floor 6. FIG. 1 shows an example in which the material to be measured 1 is a shroud made of stainless steel.

【0010】装置本体8は、被測定材1に接する開口部
14を有しており、装置本体8は被測定材料1とゴムパ
ッキン15により密着し、容器内の気密が保たれるよう
になっている。装置本体8は上部格子板4を通過可能な
大きさである。容器内には電気により発熱する高周波加
熱コイル19が設置されており、電流制御装置11によ
り所定の電流,所定の時間で加熱が行えるようになって
いる。
The apparatus main body 8 has an opening 14 in contact with the material 1 to be measured, and the apparatus main body 8 is in close contact with the material 1 to be measured by the rubber packing 15, so that the airtightness in the container is maintained. ing. The apparatus main body 8 is large enough to pass through the upper lattice plate 4. A high frequency heating coil 19 that generates heat by electricity is installed in the container, and the current control device 11 can perform heating with a predetermined current and a predetermined time.

【0011】また、装置本体8は水排除機構16,パー
ジガスであるArガス22の流入孔17およびArガス
と溶融部から発生した気体(He)23の混合物24を
排出するための排出口18を有している。装置本体は、
駆動装置接続部20で次に述べる駆動機構と電磁石機構
により脱着可能である。
The apparatus main body 8 has a water removing mechanism 16, an inlet 17 for Ar gas 22 as a purge gas, and an outlet 18 for discharging a mixture 24 of Ar gas and gas (He) 23 generated from the melting portion. Have. The device body is
The drive unit connection section 20 is detachable by a drive mechanism and an electromagnet mechanism described below.

【0012】駆動装置について説明する。駆動装置を図
3及び図4に示す。まず、炉心部に伸縮機構を有する2
次アーム31を有する支持ピラー30を挿入する。支持
ピラー30は上部格子板4を通過可能な太さであり、支
持ピラー駆動ロボット29とその駆動機構28に接続さ
れ、図3の状態で上部格子板4と下部炉心支持板5で大
きな揺れが起らないように拘束可能である。また、支持
ピラー駆動ロボット29とその駆動機構28及びチャン
バ駆動機構26とチャンバ駆動ロボット27はクレーン
25に接続されている。
The driving device will be described. The driving device is shown in FIGS. First, 2 which has a telescopic mechanism in the core
The support pillar 30 having the next arm 31 is inserted. The support pillar 30 is large enough to pass through the upper lattice plate 4 and is connected to the support pillar drive robot 29 and its drive mechanism 28. In the state of FIG. 3, large swings occur between the upper lattice plate 4 and the lower core support plate 5. Can be restrained from occurring. The supporting pillar driving robot 29 and its driving mechanism 28, and the chamber driving mechanism 26 and the chamber driving robot 27 are connected to the crane 25.

【0013】さらに図4に示すように、二次アーム31
は支持ピラー30に垂直な方向への伸縮機構を有し、か
つアーム先端は装置本体8と電磁石機構で合体可能であ
る。スライド機構29は装置本体8と電磁石機構33に
より脱着自在に接合されている。
Further, as shown in FIG.
Has an extension and contraction mechanism in a direction perpendicular to the support pillar 30, and the end of the arm can be combined with the apparatus main body 8 by an electromagnet mechanism. The slide mechanism 29 is detachably connected to the apparatus main body 8 by an electromagnet mechanism 33.

【0014】次にチャンバ駆動機構26(図3)によっ
て、装置本体8を被測定材料1であるシュラウド内面の
施工当該部に設置する。
Next, the apparatus main body 8 is set on the inner surface of the shroud, which is the material 1 to be measured, by the chamber driving mechanism 26 (FIG. 3).

【0015】加熱装置は、高周波加熱コイル19による
加熱とし、加熱温度および加熱時間は、電圧を一定と
し、電流及び電流を流す時間により制御する。電流と温
度の関係は、あらかじめオプティカルパイロメーターを
用いて求めておく。電流値は、ステンレス鋼の融点範囲
である1370〜1450℃以上の温度となる電流値を
えらび、次に加熱時間(電流を流す時間)と溶融部体積
の関係を求める。溶融部の体積は、装置本体8を用い
て、中性子照射を受けていない材料を加熱・溶融し、冷
却後、断面観察により溶け込み部の計測を行い、溶融部
体積を算出する。加熱時間(電流を流す時間),温度
(電流値)が増加するほど溶融部体積は増加するので、
両者の関係を求めておく。
The heating device is heated by the high-frequency heating coil 19, and the heating temperature and the heating time are controlled by a constant voltage, a current and a time for flowing the current. The relationship between the current and the temperature is determined in advance using an optical pyrometer. As the current value, a current value at which the temperature is equal to or higher than 1370 to 1450 ° C., which is the melting point range of stainless steel, is selected. The volume of the melted portion is calculated by heating and melting a material that has not been irradiated with neutrons by using the apparatus main body 8, cooling, and then measuring the melted portion by observing a cross section to calculate the volume of the melted portion. As the heating time (current flowing time) and the temperature (current value) increase, the volume of the molten zone increases.
Find the relationship between the two.

【0016】排出口18より排出された気体は気体分析
装置12により分析する。分析法は、質量分析器を用い
た定性および濃度の定量分析である。溶融部のHeはす
べて放出されるので、Heに関する分析結果より、He
の放出量を知ることが出来る。前記He放出量を前記溶
融部体積で割ることにより、被測定材中のHe濃度を求
めることが出来る。
The gas discharged from the outlet 18 is analyzed by the gas analyzer 12. The analytical method is qualitative and quantitative analysis of concentration using a mass spectrometer. Since all the He in the melted portion is released, the analysis result of He indicates that He
Release amount can be known. By dividing the amount of released He by the volume of the molten portion, the He concentration in the material to be measured can be obtained.

【0017】気体分析装置12は換気空調系等の配管7
に接続されており、分析後の気体は換気空調処理設備1
3で処理される。異なる部位を測定する場合は駆動装置
により所定の部位に移動させ、同様な手法で、He濃度
を測定する。
The gas analyzer 12 includes a pipe 7 for a ventilation air conditioning system or the like.
The gas after analysis is supplied to the ventilation and air conditioning system 1
It is processed in 3. When a different part is measured, the part is moved to a predetermined part by a driving device, and the He concentration is measured by a similar method.

【0018】図5に本実施例によるHe含有量判定方法
を用いた中性子照射材料検査方法の手順の一例を示す。
FIG. 5 shows an example of a procedure of a neutron irradiation material inspection method using the He content determination method according to the present embodiment.

【0019】装置本体8を高周波加熱コイル19が測定
実施個所にくるように被測定材1に位置決めする工程3
5の後、装置内の水を排除し36、Arガス22を流し
はじめる工程37に進み、被測定部を所定の電流・時間
で加熱する工程38の後、溶融させる工程39を行う。
Step 3 of positioning the apparatus main body 8 on the material 1 to be measured so that the high-frequency heating coil 19 comes to the place where the measurement is performed.
After 5, the water in the apparatus is removed 36, and the process proceeds to a step 37 in which the Ar gas 22 is started to flow, and after a step 38 of heating the portion to be measured with a predetermined current and time, a step 39 of melting is performed.

【0020】被測定材の溶融部から放出されたHeをA
rガスと共に気体分析装置12に流し、Heの定量分析
を行う工程40を行う。溶融部の体積を電流・時間から
求める工程41を行い、Heの定量分析結果および溶融
部体積からHe含有量(appm)を算出する工程24に進
む。
He released from the molten portion of the material to be measured is represented by A
A step 40 of flowing He gas to the gas analyzer 12 and quantitatively analyzing He is performed. Step 41 for obtaining the volume of the fusion zone from the current and time is performed, and the process proceeds to Step 24 for calculating the He content (appm) from the quantitative analysis result of He and the volume of the fusion zone.

【0021】以上の工程を行い、He含有量の算出が可
能となった。
By performing the above steps, the He content can be calculated.

【0022】実施例2 図6は、本発明によるHe含有量判定方法を用いた中性
子照射材料検査装置構成の一例を示す図である。また、
装置本体部分の拡大図を図7に示す。
Embodiment 2 FIG. 6 is a diagram showing an example of the configuration of a neutron irradiation material inspection apparatus using the He content determination method according to the present invention. Also,
FIG. 7 shows an enlarged view of the apparatus main body.

【0023】被測定材料1は、原子炉圧力容器2内の構
造物であり、圧力容器2には炉水3をはってある状態で
測定可能である。電源9,電流制御装置11,Arガス
供給装置10,気体分析装置12はオペレーションフロ
ア6に設置されている。図6は、被測定材料1がステン
レス鋼製のシュラウドである場合の例を示す。
The material 1 to be measured is a structure in the reactor pressure vessel 2 and can be measured with the reactor vessel 3 filled with the reactor water 3. The power supply 9, the current control device 11, the Ar gas supply device 10, and the gas analysis device 12 are installed on the operation floor 6. FIG. 6 shows an example in which the material to be measured 1 is a stainless steel shroud.

【0024】装置本体8は、被測定材1に接する開口部
14を有しており、装置本体8は被測定材料1とゴムパ
ッキン15により密着し、容器内の気密が保たれるよう
になっている。装置本体8は上部格子板4を通過可能な
大きさである。容器内には電気により発熱する高周波加
熱コイル19が設置されており、電流制御装置11によ
り所定の電流,所定の時間で加熱が行えるようになって
いる。
The apparatus main body 8 has an opening 14 in contact with the material 1 to be measured, and the apparatus main body 8 is in close contact with the material 1 to be measured by the rubber packing 15, so that the airtightness in the container is maintained. ing. The apparatus main body 8 is large enough to pass through the upper lattice plate 4. A high frequency heating coil 19 that generates heat by electricity is installed in the container, and the current control device 11 can perform heating with a predetermined current and a predetermined time.

【0025】また、装置本体8は水排除機構16,パー
ジガスであるArガス22の流入孔17およびArガス
と溶融部から発生した気体(He)23の混合物24を
排出するための排出口18を有している。装置本体は、
駆動装置接続部20で次に述べる駆動機構と電磁石機構
により脱着可能である。
The apparatus main body 8 has a water removal mechanism 16, an inlet 17 for Ar gas 22 as a purge gas, and an outlet 18 for discharging a mixture 24 of Ar gas and gas (He) 23 generated from the melting portion. Have. The device body is
The drive unit connection section 20 is detachable by a drive mechanism and an electromagnet mechanism described below.

【0026】また、装置本体8内にはポテンシャル法に
より欠陥を検出するための探触子47が設置されてお
り、探触子は容器外の表面き裂検出装置48に接続して
いる。
A probe 47 for detecting a defect by a potential method is installed in the apparatus main body 8, and the probe is connected to a surface crack detection device 48 outside the container.

【0027】駆動装置及び駆動手順は実施例1と同様で
ある。
The driving device and the driving procedure are the same as in the first embodiment.

【0028】また、本装置は表面を溶融する装置の加熱
量(温度×時間)を示す情報と前記溶融部近傍の表面き
裂検出装置のき裂発生情報より、演算評価するための中
性子照射材料検査評価装置44を有する。
Further, the present apparatus uses a neutron irradiation material for calculating and evaluating from the information indicating the heating amount (temperature × time) of the apparatus for melting the surface and the crack initiation information of the surface crack detection apparatus near the melting portion. It has an inspection evaluation device 44.

【0029】図5に本実施例によるHe含有量判定方法
を用いた中性子照射材料検査方法の手順の一例を示す。
FIG. 5 shows an example of a procedure of a neutron irradiation material inspection method using the He content determination method according to the present embodiment.

【0030】装置本体8を高周波加熱コイル19が測定
実施個所にくるように被測定材1に位置決めする工程3
5の後、装置内の水を排除し36、Arガス22を流し
はじめる工程37に進み、被測定部を所定の電流・時間
で加熱する工程38の後、溶融させる工程39を行う。
なお、初回の加熱時には、割れが発生しないように、被
測定材の融点と同程度の温度で極短時間加熱するものと
する。
Step 3 of positioning the apparatus main body 8 on the material 1 to be measured so that the high-frequency heating coil 19 is located at the place where the measurement is performed.
After 5, the water in the apparatus is removed 36, and the process proceeds to a step 37 in which the Ar gas 22 is started to flow, and after a step 38 of heating the portion to be measured with a predetermined current and time, a step 39 of melting is performed.
At the time of the first heating, the material to be measured is heated for a very short time at a temperature substantially equal to the melting point of the material to be measured so as not to cause cracks.

【0031】溶融部が冷却46した後、装置本体8を移
動させ被溶融部21に探触子45を設置する工程47を
行う。表面き裂検出装置43によりき裂発生有無の評価
を行う工程49の後、・き裂が発生していない場合は、
加熱工程38に戻り、再びき裂発生有無の評価49まで
を繰り返す。この際、加熱量は、図9に示すように時間
とともにステップ状に増加させていくものとする。
After the melted portion has cooled 46, a step 47 of moving the apparatus main body 8 and installing the probe 45 on the melted portion 21 is performed. After the step 49 of evaluating the presence or absence of a crack by the surface crack detection device 43, if no crack has occurred,
Returning to the heating step 38, the process up to the evaluation 49 of the presence or absence of cracks is repeated again. At this time, the heating amount is increased stepwise with time as shown in FIG.

【0032】・図10に、あらかじめ種々のHe含有量
の材料を用いて実験的に求めた、He含有量および加熱
量と、割れ発生有無の関係を示す。き裂が発生していた
場合には、き裂が発生するようになった加熱量の値53
からHe含有量54を推定することが出来る。材料のH
e量は局部的に表面を溶融する装置の入熱量を示す情報
と前記、溶融部近傍の表面き裂検出装置のき裂発生情報
より、演算評価する中性子照射材料検査評価装置44に
表示する。以上工程により、照射材の入熱量に対する割
れの有無の判定が可能となった。
FIG. 10 shows the relationship between the He content and the amount of heating and the occurrence of cracks, which were previously experimentally obtained by using materials having various He contents. If a crack has occurred, the value of the heating amount at which the crack began to occur 53
From the He content 54 can be estimated. H of material
The amount of e is displayed on the neutron irradiation material inspection / evaluation device 44 for calculating and estimating from the information indicating the heat input amount of the device for locally melting the surface and the crack occurrence information of the surface crack detection device near the melting portion. Through the above steps, it was possible to determine the presence or absence of cracks with respect to the heat input of the irradiated material.

【0033】図7におけるポテンシャル法によりき裂を
検出するための探触子47と被測定材料1および表面き
裂検出装置41の詳細な構成を図11に示す。ポテンシ
ャル法の原理は、き裂の進展による抵抗変化を電圧の変
化として取り出すもので、被測定部に4本の端子55〜
58を取り付け、端子55,58間に直流電流を印加す
る。また、端子56,57間の電位差Vを測定する。こ
の電位差はき裂の長さによって変化し、実験から求めた
マスターカーブ(図12)によりき裂の有無およびき裂
の長さを判定する。
FIG. 11 shows a detailed configuration of the probe 47, the material to be measured 1, and the surface crack detecting device 41 for detecting a crack by the potential method in FIG. The principle of the potential method is to take out the resistance change due to the propagation of a crack as a change in voltage.
58 is attached, and a direct current is applied between the terminals 55 and 58. Further, the potential difference V between the terminals 56 and 57 is measured. This potential difference changes depending on the length of the crack, and the presence or absence of a crack and the length of the crack are determined by a master curve (FIG. 12) obtained from an experiment.

【0034】測定は、CPU16によって制御されたデ
ータ記録ユニット60で行われる。データ記録ユニット
60はDCシステム電源及びリレーユニット62を制御
して直流電流を供給し電位差を測定する。測定されたデ
ータは、CPUに転送され、データ処理を行い、処理結
果を中性子照射材料検査評価装置44へ伝送する。
The measurement is performed in the data recording unit 60 controlled by the CPU 16. The data recording unit 60 controls the DC system power supply and the relay unit 62 to supply a DC current and measure a potential difference. The measured data is transferred to the CPU to perform data processing, and the processing result is transmitted to the neutron irradiation material inspection and evaluation device 44.

【0035】[0035]

【発明の効果】本発明においては、中性子照射量を受け
た材料に対し、材料中のHe含有量を判定し、およびも
しくは局部的に加熱し冷却後の割れ発生の有無からHe
量を判定することにより、非破壊で照射材の特性検査が
可能となった。
According to the present invention, the He content of the material which has been irradiated with neutrons is determined, and / or the He content is determined based on the presence or absence of cracks after local heating and cooling.
By determining the amount, it became possible to non-destructively inspect the characteristics of the irradiated material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に用いる中性子材料検査
装置の概略構成図。
FIG. 1 is a schematic configuration diagram of a neutron material inspection apparatus used in a first embodiment of the present invention.

【図2】本発明の第1の実施例に用いる中性子材料検査
装置の本体部分の構成図。
FIG. 2 is a configuration diagram of a main body of the neutron material inspection apparatus used in the first embodiment of the present invention.

【図3】本発明の第1の実施例に用いる中性子材料検査
装置の駆動機構の概略構成図。
FIG. 3 is a schematic configuration diagram of a drive mechanism of the neutron material inspection device used in the first embodiment of the present invention.

【図4】本発明の第1の実施例に用いる中性子材料検査
装置の駆動機構の部分拡大図。
FIG. 4 is a partially enlarged view of a drive mechanism of the neutron material inspection device used in the first embodiment of the present invention.

【図5】本発明の第1の実施例のHe含有量判定法を示
すフロー図。
FIG. 5 is a flowchart showing a He content determination method according to the first embodiment of the present invention.

【図6】本発明の第2の実施例に用いる中性子材料検査
装置の概略構成図。
FIG. 6 is a schematic configuration diagram of a neutron material inspection apparatus used in a second embodiment of the present invention.

【図7】本発明の第2の実施例に用いる中性子材料検査
装置の本体部分の構成図。
FIG. 7 is a configuration diagram of a main body of a neutron material inspection apparatus used in a second embodiment of the present invention.

【図8】本発明の第2の実施例のHe含有量判定法を示
すフロー図。
FIG. 8 is a flowchart showing a He content determination method according to a second embodiment of the present invention.

【図9】本発明の第2の実施例における加熱方法を示す
特性図。
FIG. 9 is a characteristic diagram showing a heating method according to the second embodiment of the present invention.

【図10】本発明の第2の実施例において、割れ発生時
の加熱量からHe含有量を判定する方法を示す特性図。
FIG. 10 is a characteristic diagram showing a method for determining a He content from a heating amount at the time of occurrence of a crack in the second embodiment of the present invention.

【図11】図7における電位差法によるき裂検出装置構
成図。
FIG. 11 is a configuration diagram of a crack detection device by the potential difference method in FIG. 7;

【図12】本発明の第2の実施例における電位差法によ
るき裂検出を説明する特性図。
FIG. 12 is a characteristic diagram illustrating crack detection by a potential difference method according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…被測定材料、2…圧力容器、3…炉水、4…上部格
子板、5…炉心支持板、6…加熱用コイル、7…換気空
調系配管、8…装置本体、9…電源、10…Arガス供
給装置、11…電流制御装置、12…気体分析装置、1
3…換気空調系処理設備、14…装置開口部、15…ゴ
ムパッキン、16…水排除機構、17…気体流入口、1
8…気体排出口、19…高周波加熱コイル、20…駆動
装置接続部、21…溶融部、22…Arガス、23…H
eガス、24…Ar・He混合ガス、25…クレーン、
26…チャンバ駆動機構、27…チャンバ駆動ロボッ
ト、28…支持ピラー駆動機構、29…支持ピラー駆動
ロボット、30…支持ピラー、31…二次アーム、32
…駆動機構操作装置、33…電磁石機構、34…スライ
ド機構、35…装置の設置、36…装置内の水の排除、
37…Arガス流通開始、38…加熱、39…溶融、4
0…He量の定量分析、41…溶融部体積の決定、42
…He含有量の算出、43…表面き裂検出装置、44…
中性子照射材料検査評価装置、45…探触子、46…冷
却、47…探触子の設置、48…き裂発生検出、49…
き裂発生有無判定、50…各種He量におけるき裂発生
有無と加熱量の関係、51…He含有量の判定、52…
表示、53…加熱量、54…He含有量、55〜58…
端子、59…DCシステム電源、60…データ収録ユニ
ット、61…CPU、62…リレーユニット、63…電
位差、64…き裂長さ。
DESCRIPTION OF SYMBOLS 1 ... Material to be measured, 2 ... Pressure vessel, 3 ... Reactor water, 4 ... Upper lattice plate, 5 ... Core support plate, 6 ... Heating coil, 7 ... Ventilation air-conditioning piping, 8 ... Device body, 9 ... Power supply, 10 Ar gas supply device 11 Current control device 12 Gas analyzer 1
3: Ventilation air conditioning system treatment equipment, 14: Device opening, 15: Rubber packing, 16: Water elimination mechanism, 17: Gas inlet, 1
8 ... gas outlet, 19 ... high frequency heating coil, 20 ... drive unit connection part, 21 ... melting part, 22 ... Ar gas, 23 ... H
e gas, 24 ... Ar / He mixed gas, 25 ... crane,
26 ... chamber driving mechanism, 27 ... chamber driving robot, 28 ... support pillar driving mechanism, 29 ... support pillar driving robot, 30 ... support pillar, 31 ... secondary arm, 32
... drive mechanism operating device, 33 ... electromagnet mechanism, 34 ... slide mechanism, 35 ... installation of the device, 36 ... removal of water in the device,
37: Ar gas flow started, 38: heating, 39: melting, 4
0: Quantitative analysis of He amount, 41: Determination of volume of molten portion, 42
... Calculation of He content 43 Surface crack detector 44
Neutron irradiation material inspection / evaluation device, 45: probe, 46: cooling, 47: installation of probe, 48: crack initiation detection, 49:
Determination of the presence or absence of cracks, 50: Relationship between the presence or absence of cracks and heating amount at various He amounts, 51: Determination of He content, 52 ...
Indication, 53 ... Heating amount, 54 ... He content, 55-58 ...
Terminal: 59: DC system power supply, 60: Data recording unit, 61: CPU, 62: Relay unit, 63: Potential difference, 64: Crack length.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G21F 9/02 G21C 17/00 J (72)発明者 加藤 隆彦 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 中村 友美 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 Fターム(参考) 2G075 AA03 BA18 CA07 DA07 DA09 EA03 EA07 FA04 FA20 FC01 FC13 GA00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G21F 9/02 G21C 17/00 J (72) Inventor Takahiko Kato 3-1-1 Sachicho, Hitachi City, Ibaraki Prefecture No. Inside Hitachi Hitachi, Ltd. Hitachi Plant (72) Inventor Tomomi Nakamura 3-1-1 Sayukicho, Hitachi City, Hitachi City, Ibaraki F-term inside Hitachi Plant Hitachi Plant Co., Ltd. 2G075 AA03 BA18 CA07 DA07 DA09 EA03 EA07 FA04 FA20 FC01 FC13 GA00

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】中性子照射を受けた材料に対し、前記材料
を局部的に加熱し加熱部分から放出される微量ガスを直
接分析して材料中のHe含有量を判定することを特徴と
する中性子照射材料検査システム。
1. A neutron irradiation method for a material which has been subjected to neutron irradiation, wherein the material is locally heated and a trace gas released from the heated portion is directly analyzed to determine the He content in the material. Irradiation material inspection system.
【請求項2】中性子照射を受けた材料に対し、前記材料
を局部的に加熱し加熱部分から放出される微量ガスを直
接分析して材料中のHe含有量を判定することを特徴と
する中性子照射材料検査方法。
2. The method according to claim 1, wherein the neutron-irradiated material is locally heated, and a trace gas released from the heated portion is directly analyzed to determine the He content in the material. Irradiation material inspection method.
【請求項3】原子力発電所において、微量ガス分析後の
気体を換気空調系等の排ガス処理装置で放射性物質を処
理することを特徴とする請求項1記載の中性子照射材料
検査システム。
3. The neutron irradiation material inspection system according to claim 1, wherein in the nuclear power plant, the gas after the trace gas analysis is processed into a radioactive substance by an exhaust gas treatment device such as a ventilation air conditioning system.
【請求項4】微量ガス分析器の前およびもしくは後ろに
放射性物質除去フィルターを有することを特徴とする請
求項1記載の中性子照射材料検査システム。
4. The neutron irradiation material inspection system according to claim 1, further comprising a radioactive substance removal filter before and / or after the trace gas analyzer.
【請求項5】微量ガス分析法はガスクロマトグラフィー
法であることを特徴とする請求項1記載の中性子照射材
料検査システム。
5. The neutron irradiation material inspection system according to claim 1, wherein the trace gas analysis method is a gas chromatography method.
【請求項6】微量ガス分析法は質量分析法であることを
特徴とする請求項1記載の中性子照射材料検査システ
ム。
6. The neutron irradiation material inspection system according to claim 1, wherein the trace gas analysis method is a mass spectrometry method.
【請求項7】中性子照射を受けた材料に対し、前記材料
を局部的に加熱しその加熱部の冷却後の割れ発生の有無
からHe量を判定することを特徴とする中性子照射材料
検査システム。
7. A neutron irradiation material inspection system characterized in that a neutron irradiation material inspection system is characterized by locally heating a neutron-irradiated material and judging the amount of He from the presence or absence of cracking after cooling of the heated portion.
【請求項8】中性子照射を受けた材料に対し、前記材料
を局部的に加熱しその加熱部の冷却後の割れ発生の有無
からHe量を判定することを特徴とする中性子照射材料
検査方法。
8. A method for inspecting a neutron-irradiated material, the method comprising locally heating the material which has been irradiated with neutrons, and judging the amount of He from the presence or absence of cracks after cooling the heated portion.
【請求項9】加熱は所定時間毎にステップ式に熱量を増
加させ、各ステップ毎に割れ発生の確認を行うことを特
徴とする請求項6記載の中性子照射材料検査システム。
9. The neutron irradiation material inspection system according to claim 6, wherein the amount of heat is increased stepwise at predetermined time intervals, and the occurrence of cracks is confirmed at each step.
【請求項10】加熱方法は高周波による加熱であること
を特徴とする請求項6記載の中性子照射材料検査システ
ム。
10. The neutron irradiation material inspection system according to claim 6, wherein the heating method is heating by high frequency.
【請求項11】割れ検出法は被加熱部に電流を流して電
場を形成し、電場の乱れ方から欠陥の形状を検出するポ
テンシャル法であることを特徴とする請求項6記載の中
性子照射材料検査システム。
11. The neutron irradiation material according to claim 6, wherein the crack detection method is a potential method for forming an electric field by applying a current to a heated portion and detecting a shape of a defect based on how the electric field is disturbed. Inspection system.
【請求項12】中性子照射を受けた材料に対し、局部的
に表面を溶融する装置と、局部溶融部から出るガスを処
理する装置と、溶融部近傍の表面き裂を検出する装置
と、前記局部的に表面を溶融する装置の入熱量を示す情
報と、前記溶融部近傍の表面き裂検出装置のき裂発生情
報より、材料のHe量を演算評価する装置から構成され
ることを特徴とする中性子照射材料検査システム。
12. An apparatus for locally melting a surface of a material irradiated with neutrons, an apparatus for processing gas emitted from a locally melted section, an apparatus for detecting a surface crack near a melted section, It is characterized by comprising a device for calculating and evaluating the He amount of the material from information indicating the heat input amount of the device for locally melting the surface and from crack occurrence information of the surface crack detection device near the melting portion. Neutron irradiation material inspection system.
JP10338791A 1998-11-30 1998-11-30 Neutron irradiation material inspection system Pending JP2000162369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10338791A JP2000162369A (en) 1998-11-30 1998-11-30 Neutron irradiation material inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10338791A JP2000162369A (en) 1998-11-30 1998-11-30 Neutron irradiation material inspection system

Publications (1)

Publication Number Publication Date
JP2000162369A true JP2000162369A (en) 2000-06-16

Family

ID=18321515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10338791A Pending JP2000162369A (en) 1998-11-30 1998-11-30 Neutron irradiation material inspection system

Country Status (1)

Country Link
JP (1) JP2000162369A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050667A2 (en) * 2003-11-14 2005-06-02 General Electric Company (A New York Corporation) System and method for estimating helium production in stainless steel core shrouds of nuclear reactors
CN100578215C (en) * 2007-06-12 2010-01-06 中国科学院广州地球化学研究所 Open type natural gas generating kinetics research device and use method thereof
CN112180012A (en) * 2020-09-29 2021-01-05 中国工程物理研究院核物理与化学研究所 High polymer material radiation outgassing evaluation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050667A2 (en) * 2003-11-14 2005-06-02 General Electric Company (A New York Corporation) System and method for estimating helium production in stainless steel core shrouds of nuclear reactors
WO2005050667A3 (en) * 2003-11-14 2005-09-29 Gen Electric System and method for estimating helium production in stainless steel core shrouds of nuclear reactors
CN100578215C (en) * 2007-06-12 2010-01-06 中国科学院广州地球化学研究所 Open type natural gas generating kinetics research device and use method thereof
CN112180012A (en) * 2020-09-29 2021-01-05 中国工程物理研究院核物理与化学研究所 High polymer material radiation outgassing evaluation method and application thereof
CN112180012B (en) * 2020-09-29 2023-02-03 中国工程物理研究院核物理与化学研究所 High polymer material radiation outgassing evaluation method and application thereof

Similar Documents

Publication Publication Date Title
Sazonova et al. Weld defects and automation of methods for their detection
US7010987B2 (en) Non-destructive method of detecting defects in braze-repaired cracks
JP2000162369A (en) Neutron irradiation material inspection system
LeTessier et al. Sizing of cracks using the alternating current field measurement technique
JP4155409B2 (en) Material degradation property evaluation method and evaluation apparatus using tracer hydrogen
JPH1123776A (en) Composite diagnostic system of reactor internal equipment
JPH11352051A (en) Device and method for inspecting corrosion surface
JPH0949897A (en) Method and device for detecting and repairing damage to in core equipment caused by irradiation
Shepard et al. Automated thermographic defect recognition and measurement
Karkhin et al. Computer—aided determination of diffusible hydrogen in deposited weld metal
JPS5847252A (en) Detecting method for flaw in welded part of reaction tube by ultrasonic flaw detection
CN216484550U (en) Corrosion on-line monitoring sensor based on electrochemical measurement technology
JPH10227754A (en) High temperature damage evaluation method for temper martensite stainless steel
JP2007051954A (en) Lifetime prediction system for plant piping, and its lifetime prediction method
EP1416269A1 (en) A non-destructive method of detecting defects in braze-repaired cracks
JPH0618514A (en) Method and device for inspecting and evaluating industrial plant
CN113848177A (en) Corrosion on-line monitoring sensor based on electrochemical measurement technology
JP3767915B2 (en) Diagnostic method and apparatus for reactor internal structure
CN107037042A (en) A kind of corrosion monitoring coating
Neuschaefer et al. Assessment of and standardization for quantitative nondestructive test
CN113607807A (en) Austenitic stainless steel sensitization damage test grading method and device
Parker et al. Non-destructive life assessment of high temperature components and weldments
JPS63274862A (en) Method for evaluating residual life of heat resisting steel
JP2001056316A (en) Method for measuring magnetic characteristics of material and method for evaluating degree of creep deterioration of structural member
RU2641616C1 (en) Device for welded joint inspection