JP2000160542A - Sand surface detecting device - Google Patents

Sand surface detecting device

Info

Publication number
JP2000160542A
JP2000160542A JP10339846A JP33984698A JP2000160542A JP 2000160542 A JP2000160542 A JP 2000160542A JP 10339846 A JP10339846 A JP 10339846A JP 33984698 A JP33984698 A JP 33984698A JP 2000160542 A JP2000160542 A JP 2000160542A
Authority
JP
Japan
Prior art keywords
sand
microstrip antenna
hollow tube
hollow pipe
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10339846A
Other languages
Japanese (ja)
Inventor
Hayae Kayano
早衛 萱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wadeco Co Ltd
Original Assignee
Wadeco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wadeco Co Ltd filed Critical Wadeco Co Ltd
Priority to JP10339846A priority Critical patent/JP2000160542A/en
Publication of JP2000160542A publication Critical patent/JP2000160542A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive and accurately detectable sand surface detecting device becoming no hindrance to supplying earth and sand and requring no acting of a new member or water and compressed air. SOLUTION: This device is to detect the sand surface in a sand pile creating hollow pipe 2 of earth and sand 12 inputted to the sand pile creating hollow pipe 2 driven in the processing ground 1. In this case, the device is provided with a microstrip antenna 13 installed on an inner wall of the sand pile creating hollow pipe 2, a network analyzer 8 for receiving a reflected wave from the sand surface through the microstrip antenna 13 by inputting a high frequency sweep signal to the sand pile creating hollow pipe 2 through the microstrip antenna 13 by generating the high frequency sweep signal and an arithmetic processing unit 11 for performing an operation for detecting the sand surface on the basis of frequency characteristic data on the reflected wave received by the network analyzer 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、処理地盤中に砂抗
を造成して地盤を補強、安定させる際、砂抗造成用中空
管に投入された土砂の該砂抗造成用中空管内における砂
面を検出するための装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for forming sand pits in a treated ground to reinforce and stabilize the ground. The present invention relates to a device for detecting a sand surface.

【0002】[0002]

【従来の技術】従来より、軟弱地盤の補強や海底に橋脚
を立設する場合等には、砂抗造成用中空管を打設し、そ
の管内に砂抗材料である土砂を投入し、堆積させること
が行われている。そのための装置の一例を図5に示す。
図示されるように、処理地盤1中に砂抗造成用中空管2
が加振装置3により打設されており、土砂供給口4から
土砂が投入され、砂抗造成用中空管2の底部に堆積す
る。土砂の投入は、土砂供給口4の下端に設けられた開
閉ハッチ5により制御される。また、砂抗造成用中空管
2は、その内部が圧縮空気供給排気管6を通じて圧縮空
気による加圧と、排気による減圧がなされ、更に開閉ハ
ッチ5の下方には、砂抗造成用中空管2を円形導波管と
して励振する同軸導波管変換器7が設置されている。同
軸導波管変換器7はネットワークアナライザ8に接続し
ており、ネットワークアナライザ8で発生された高周波
掃引信号を砂抗造成用中空管2の内部に入力させ、かつ
砂面からの反射波を受信してその受信信号をネットワー
クアナライザ8に送る。砂抗造成用中空管2の処理地盤
1中への打設深さは深度計9により計測され、制御処理
器10では砂抗造成用中空管2の打ち込み及び引き抜き
を制御する。また、制御処理器10及びネットワークア
ナライザ8は全体を制御するコンピュータ11に接続し
ており、このコンピュータ11はネットワークアナライ
ザ8で求めた周波数特性データから砂面位置を検出する
ための演算を行う。
2. Description of the Related Art Conventionally, in the case of reinforcing soft ground or erection of a pier on the seabed, a hollow pipe for sand pit formation is cast, and earth and sand which is a sand pit material is poured into the pipe. Deposits are being made. FIG. 5 shows an example of an apparatus for this purpose.
As shown, a hollow tube 2 for sand formation in a treated ground 1.
Is poured by the vibrating device 3, and the earth and sand is introduced from the earth and sand supply port 4, and is deposited on the bottom of the hollow tube 2 for sand formation. The loading of the earth and sand is controlled by an opening and closing hatch 5 provided at the lower end of the earth and sand supply port 4. Further, the inside of the sand pit forming hollow tube 2 is pressurized by compressed air through a compressed air supply / exhaust pipe 6 and decompressed by exhaust gas. A coaxial waveguide converter 7 for exciting the tube 2 as a circular waveguide is provided. The coaxial waveguide converter 7 is connected to a network analyzer 8, inputs a high-frequency sweep signal generated by the network analyzer 8 into the hollow tube 2 for sand formation, and outputs a reflected wave from the sand surface. It receives and sends the received signal to the network analyzer 8. The driving depth of the sand pit formation hollow tube 2 into the processing ground 1 is measured by a depth gauge 9, and a control processor 10 controls the driving and pulling out of the sand pit formation hollow tube 2. Further, the control processor 10 and the network analyzer 8 are connected to a computer 11 for controlling the whole, and the computer 11 performs an operation for detecting a sand surface position from the frequency characteristic data obtained by the network analyzer 8.

【0003】砂抗造成は、先ず加振装置3により砂抗造
成用中空管2を振動させながら処理地盤1の中に所定の
深さDまで打ち込む。次いで、開閉ハッチ5を開き、土
砂供給口4から土砂を供給して砂抗造成用中空管2内に
投入する。この投入により、砂抗造成用中空管2の底部
に高さHとなる土砂12が堆積する。この状態で開閉ハ
ッチ5を閉じ、その後、圧縮空気供給排気管6を通じて
砂抗造成用中空管2内に圧縮空気を供給して管内を加圧
しながら砂抗造成用中空管2を引き抜いていく。この引
き抜きの間に処理地盤1中に砂抗が造成されていき、同
時に砂抗造成用中空管2の処理地盤1からの深さDは深
度計9により計測され、制御処理器10によりその計測
値の処理が行われる。それとともに、ネットワークアナ
ライザ8は、内蔵する高周波発振器から掃引高周波信号
を発生し、同軸導波管変換器7から砂抗造成用中空管2
の内部に入力させ、次いで反射特性モードに切り換えて
砂面からの反射波を検出する。そして、コンピュータ1
1では反射波の周波数特性を基に、所定の演算式により
砂面(H)を算出する。
In the sand formation, first, the hollow tube 2 for sand formation is vibrated by the vibration device 3 and is driven into the treated ground 1 to a predetermined depth D. Next, the opening / closing hatch 5 is opened, and the earth and sand is supplied from the earth and sand supply port 4 and is charged into the hollow pipe 2 for sand formation. By this charging, earth and sand 12 having a height H is deposited on the bottom of the hollow tube 2 for sand formation. In this state, the opening / closing hatch 5 is closed, and thereafter, the compressed air is supplied into the sand-producing hollow tube 2 through the compressed-air supply / exhaust pipe 6 to pull out the sand-producing hollow tube 2 while pressurizing the inside of the tube. Go. During this withdrawal, sand pits are formed in the processing ground 1, and at the same time, the depth D of the hollow pipes 2 for sand formation from the processing ground 1 is measured by the depth gauge 9, and the control processor 10 controls the depth D. Processing of the measured value is performed. At the same time, the network analyzer 8 generates a swept high-frequency signal from the built-in high-frequency oscillator, and sends the swept high-frequency signal from the coaxial waveguide converter 7
And then switch to the reflection characteristic mode to detect the reflected wave from the sand surface. And computer 1
In step 1, the sand surface (H) is calculated based on the frequency characteristics of the reflected wave using a predetermined arithmetic expression.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
如く構成される砂面検出装置では、同軸導波管変換器7
が砂抗造成用中空管2の内壁から突出して設置されてい
るために、土砂供給口4から供給された土砂の通過及び
落下の妨げとなるばかりでなく、同軸導波管変換器7に
土砂が付着して検出精度を低下させる原因にもなる。ま
た、場合によっては、土砂の衝突により同軸導波管変換
器7が破損することもある。上記のような不具合に対し
て、特開平8−41854号公報には、同軸導波管変換
器7を折り返しダイポール形としたり、同軸導波管変換
器7の上方にひさしや羽根車状の回転体を付設したり、
同軸導波管変換器7に水や圧縮空気を作用させる等の対
策を施すことが記載されている。しかし、これらの対策
では、折り返しダイポール形とした場合には、砂抗造成
用中空管2の内壁より突出して設置されていることには
変わりなく、破損の問題が依然として残り、またひさし
等の新たな部材を付設する場合には、それら自体のコス
トに加えてメンテナンスが必要であり、更に水や圧縮空
気を作用させる場合にはそのランニングコストがかか
り、装置も複雑になる。
However, in the sand surface detecting device configured as described above, the coaxial waveguide converter 7 is not used.
Is protruded from the inner wall of the sand-producing hollow tube 2, not only hinders the passage and fall of the earth and sand supplied from the earth and sand supply port 4, but also prevents the coaxial waveguide converter 7 from passing. It may also cause the earth and sand to adhere and lower the detection accuracy. Further, in some cases, the coaxial waveguide converter 7 may be damaged by the impact of earth and sand. To cope with the above-described problems, Japanese Patent Application Laid-Open No. 8-41854 discloses that the coaxial waveguide converter 7 has a folded dipole shape or that an eaves or impeller-like rotation is provided above the coaxial waveguide converter 7. To attach the body,
It is described that countermeasures such as applying water or compressed air to the coaxial waveguide converter 7 are taken. However, with these countermeasures, in the case of the folded dipole type, it is still the same as being protruded from the inner wall of the hollow pipe 2 for sand formation, and the problem of breakage still remains, and the eaves and the like still remain. When adding new members, maintenance is required in addition to the cost of the members themselves, and when applying water or compressed air, the running cost is increased and the apparatus becomes complicated.

【0005】従って、本発明の目的は、供給される土砂
の妨げとならず、また新たな部材、あるいは水や圧縮空
気を作用させる必要の無い、安価で、正確な検出が可能
な砂面検出装置を提供することにある。
Accordingly, an object of the present invention is to provide an inexpensive and accurate sand surface detection which does not hinder the supplied earth and sand, and does not require the use of new members or the action of water or compressed air. It is to provide a device.

【0006】[0006]

【課題を解決するための手段】上記の目的は、本発明
の、処理地盤に打設された砂抗造成用中空管に投入され
た土砂の該砂抗造成用中空管内における砂面を検出する
ための装置であって、前記砂抗造成用中空管の内壁に装
着されたマイクロストリップアンテナと、高周波掃引信
号を発生し、前記マイクロストリップアンテナを介して
前記砂抗造成用中空管に入力させ、かつ砂面からの反射
波を前記マイクロストリップアンテナを介して受信する
ネットワークアナライザと、前記ネットワークアナライ
ザで受信された反射波の周波数特性データを基に砂面検
出のための演算を行う演算処理器とを具備することを特
徴とする砂面検出装置により達成される。
SUMMARY OF THE INVENTION It is an object of the present invention to detect a sand surface of earth and sand introduced into a hollow pipe for sand formation formed on a treated ground according to the present invention. A microstrip antenna mounted on the inner wall of the sand-producing hollow tube, generating a high-frequency sweep signal, and transmitting the high-frequency sweep signal to the sand-producing hollow tube via the microstrip antenna. A network analyzer for inputting and receiving a reflected wave from a sand surface via the microstrip antenna, and an operation for performing an operation for sand surface detection based on frequency characteristic data of the reflected wave received by the network analyzer And a processing device.

【0007】[0007]

【発明の実施の形態】以下、本発明に関して図面を参照
して詳細に説明する。本発明の砂面検出装置は、図5を
参照して説明した砂面検出装置の同軸導波管変換器7に
代えて、マイクロストリップアンテナ13を砂抗造成用
中空管2の内壁に装着したことを特徴とする。このマイ
クロストリップアンテナ13は、その構造自体は公知の
もので構わず、例えば図2に示すように、地金14の上
に誘電体15及び金属板からなるパッチ16を順次積層
し、砂抗造成用中空管2の内壁と同じ曲率に湾曲させた
ものである。また、パッチ16の表面を誘電体材料で保
護することが好ましい。また、マイクロストリップアン
テナ13は砂抗造成用中空管2の内壁面上に固定しても
よいが、図3に示すように、砂抗造成用中空管2にマイ
クロストリップアンテナ13の厚みに一致する凹部17
を設け、この凹部17にマイクロストリップアンテナ1
3を埋設することが特に好ましい。尚、マイクロストリ
ップアンテナ13の入出力用リード線18は、図3に示
されるように、砂抗造成用中空管2を貫通させて取り出
すようにする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. In the sand surface detection device of the present invention, a microstrip antenna 13 is mounted on the inner wall of the sand tube 2 for sand formation instead of the coaxial waveguide converter 7 of the sand surface detection device described with reference to FIG. It is characterized by having done. The structure of the microstrip antenna 13 may be a known one. For example, as shown in FIG. 2, a dielectric 16 and a patch 16 made of a metal plate are sequentially laminated on a base metal 14, and It is curved to the same curvature as the inner wall of the hollow tube 2 for use. Preferably, the surface of the patch 16 is protected by a dielectric material. Although the microstrip antenna 13 may be fixed on the inner wall surface of the hollow tube 2 for sand formation, as shown in FIG. Matching recess 17
And the microstrip antenna 1 is provided in the recess 17.
It is particularly preferred to bury 3. As shown in FIG. 3, the input / output lead 18 of the microstrip antenna 13 is made to pass through the sand-producing hollow tube 2 so as to be taken out.

【0008】マイクロストリップアンテナ13のパッチ
16の面積は特に制限されるものではなく、砂抗造成用
中空管2の規模(直径や全長)や測定に使用される高周
波掃引波の波長を勘案して適宜設定される。また、マイ
クロストリップアンテナ13は、検出誤差を最も小さく
する上で、砂抗造成用中空管2の反射経路における最も
高い位置から、測定に使用される高周波掃引波のλ/4
離間した位置に装着することが好ましい。
The area of the patch 16 of the microstrip antenna 13 is not particularly limited, and the size (diameter and overall length) of the hollow tube 2 for sand formation and the wavelength of a high-frequency sweep wave used for measurement are taken into consideration. Is set as appropriate. Further, in order to minimize the detection error, the microstrip antenna 13 is arranged to start from the highest position in the reflection path of the hollow pipe 2 for sand formation, and to perform λ / 4 of the high-frequency sweep wave used for measurement.
It is preferable to mount at a separated position.

【0009】マイクロストリップアンテナ13は平面で
あり、砂抗造成用中空管2の内壁面から突出することが
ないため、土砂の供給に際して何ら妨げにならず、また
破損のおそれも無い。また、垂直面であることから、土
砂が自然落下して付着することも無く、水や圧縮空気等
を作用させる必要も無い。
Since the microstrip antenna 13 is a flat surface and does not protrude from the inner wall surface of the hollow pipe 2 for sand formation, it does not hinder the supply of earth and sand, and there is no possibility of breakage. In addition, since it is a vertical surface, the earth and sand do not fall naturally and adhere to it, and there is no need to apply water, compressed air, or the like.

【0010】上記マイクロストリップアンテナ13以外
の部材は、図5に示した砂面位置検出装置のものと同様
で構わない。補足的な説明をすると、ネットワークアナ
ライザ8からは、160〜250MHzの範囲の高周波
掃引信号を発生させ、マイクロストリップアンテナ13
を介して砂抗造成用中空管2の内部に入力させる。そし
て、この高周波掃引信号は砂抗造成用中空管2の内部を
砂面に向かって伝搬し、その反射波がマイクロストリッ
プアンテナ13で受信され、その受信信号がネットワー
クアナライザ8に送られる。
The members other than the microstrip antenna 13 may be the same as those of the sand surface position detecting device shown in FIG. To give a supplementary explanation, a high frequency sweep signal in the range of 160 to 250 MHz is generated from the network analyzer 8 and the microstrip antenna 13 is generated.
Through the hollow pipe 2 for sand formation. Then, the high-frequency sweep signal propagates through the inside of the sand-producing hollow tube 2 toward the sand surface, the reflected wave is received by the microstrip antenna 13, and the received signal is sent to the network analyzer 8.

【0011】ここで、掃引信号による砂面の検出原理を
説明する。一般に、アンテナから距離Lだけ離間した対
象物に向けて送信波を発射し、t時間後に反射波を受信
したとすると、 t=2L/C ・・・(1) の関係が得られる。但し、Cは光速である。従って、t
を計測することにより、距離Lを算出することができ
る。この時、図4に示すように、送信波として、掃引時
間Tの間に直線的に周波数が増加及び減少を繰り返す掃
引波を使用すると、発射周波数fsと反射周波数frと
が上記時間差tだけずれて重なるようになる。そして、
この掃引による変調周波数(周波数の最大変化量)を
F、時間差tにおける周波数の差をfbとすると、 fb/F=t/T ・・・(2) の関係があり、(1)式と(2)式とから、 D=C・fb・T/2F ・・・(3) が得られる。従って、周波数差fb(=fs−fr)を
計測することにより、距離Dを算出することが可能とな
る。上記の掃引作業をネットワークアナライザ8で行
い、演算をコンピュータ11で行う。
Here, the principle of detecting a sand surface by a sweep signal will be described. In general, assuming that a transmission wave is emitted toward an object separated from the antenna by a distance L and a reflected wave is received after a time t, the following relationship is obtained: t = 2L / C (1). Here, C is the speed of light. Therefore, t
Is measured, the distance L can be calculated. At this time, as shown in FIG. 4, if a sweep wave whose frequency repeatedly increases and decreases linearly during the sweep time T is used as the transmission wave, the emission frequency fs and the reflection frequency fr are shifted by the time difference t. And overlap. And
Assuming that the modulation frequency (the maximum change amount of the frequency) by this sweep is F and the frequency difference at the time difference t is fb, there is a relationship of fb / F = t / T (2). From equation (2), D = C · fb · T / 2F (3) is obtained. Therefore, the distance D can be calculated by measuring the frequency difference fb (= fs−fr). The above sweeping operation is performed by the network analyzer 8, and the calculation is performed by the computer 11.

【0012】本発明の砂面検出装置は、種々の変更が可
能である。例えば、マイクロストリップアンテナ13の
パッチ16に代えて、マイクロストリップラインとする
こともできる。また、特開平8−41854号に記載さ
れているように、所定の基準位置を設定し、この基準位
置からの相対距離から砂面を算出するように上記演算式
を変更して砂面の検出を行うこともできる。
Various modifications can be made to the sand surface detecting device of the present invention. For example, instead of the patch 16 of the microstrip antenna 13, a microstrip line may be used. Further, as described in Japanese Patent Application Laid-Open No. 8-41854, a predetermined reference position is set, and the above arithmetic expression is changed so as to calculate the sand surface from a relative distance from the reference position, thereby detecting the sand surface. Can also be performed.

【0013】[0013]

【発明の効果】以上説明したように、本発明の砂面検出
装置によれば、砂抗造成用中空管内に突出する部材が一
切無いため土砂の付着や破損のおそれが無く、またメン
テナンスも不要となる。更に、水や圧縮空気などを作用
させる必要も無いことから、ランイングコストもかから
ない。このように、従来抱えていた土砂を供給する際の
不具合を全て解消することができる。
As described above, according to the sand surface detecting device of the present invention, since there is no projecting member in the hollow pipe for sand formation, there is no possibility of adhesion or breakage of earth and sand, and no maintenance is required. Becomes Furthermore, since there is no need to act on water or compressed air, there is no running cost. In this way, it is possible to eliminate all the problems that have conventionally occurred when supplying earth and sand.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の砂面検出装置の構成を示す概略図であ
る。
FIG. 1 is a schematic diagram showing a configuration of a sand surface detection device of the present invention.

【図2】マイクロストリップアンテナの一例を示す斜視
図(a)及び断面図(b)である。
2A and 2B are a perspective view and a cross-sectional view illustrating an example of a microstrip antenna.

【図3】マイクロストリップアンテナを砂抗造成用中空
管に埋設した状態を示す断面図である。
FIG. 3 is a cross-sectional view showing a state in which the microstrip antenna is embedded in a hollow tube for sand formation.

【図4】掃引信号による対象物の位置検出原理を説明す
るための図である。
FIG. 4 is a diagram for explaining a principle of detecting a position of an object by a sweep signal.

【図5】従来の砂面検出装置の構成を示す概略図であ
る。
FIG. 5 is a schematic diagram showing a configuration of a conventional sand surface detection device.

【符号の説明】[Explanation of symbols]

1 処理地盤 2 砂抗造成用中空管 3 加振装置 4 土砂供給口 5 開閉ハッチ 6 圧縮空気供給排気管 7 同軸導波管変換器 8 ネットワークアナライザ 9 深度計 10 制御処理器 11 コンピュータ 12 土砂 13 マイクロストリップアンテナ 14 地金 15 誘電体 16 パッチ 17 凹部 18 リード線 DESCRIPTION OF SYMBOLS 1 Processing ground 2 Hollow pipe for sand formation 3 Shaking device 4 Sediment supply port 5 Opening / closing hatch 6 Compressed air supply / exhaust pipe 7 Coaxial waveguide converter 8 Network analyzer 9 Depth gauge 10 Control processor 11 Computer 12 Sediment 13 Microstrip antenna 14 Metal 15 Dielectric 16 Patch 17 Concave part 18 Lead wire

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 処理地盤に打設された砂抗造成用中空管
に投入された土砂の該砂抗造成用中空管内における砂面
を検出するための装置であって、 前記砂抗造成用中空管の内壁に装着されたマイクロスト
リップアンテナと、 高周波掃引信号を発生し、前記マイクロストリップアン
テナを介して前記砂抗造成用中空管に入力させ、かつ砂
面からの反射波を前記マイクロストリップアンテナを介
して受信するネットワークアナライザと、 前記ネットワークアナライザで受信された反射波の周波
数特性データを基に砂面検出のための演算を行う演算処
理器とを具備することを特徴とする砂面検出装置。
1. An apparatus for detecting a sand surface of earth and sand introduced into a hollow pipe for sand formation formed on a treated ground, in the hollow pipe for sand formation. A microstrip antenna mounted on the inner wall of the hollow tube, generating a high-frequency sweep signal, inputting the high-frequency sweep signal through the microstrip antenna to the hollow tube for sand formation, and transmitting a reflected wave from a sand surface to the microstrip. A network analyzer for receiving via a strip antenna; and a sand surface, comprising: an arithmetic processor for performing an operation for sand surface detection based on frequency characteristic data of the reflected wave received by the network analyzer. Detection device.
【請求項2】 前記マイクロストリップアンテナが、前
記砂抗造成用中空管の内壁と同一面となるように埋設さ
せていることを特徴とする請求項1記載の砂面位置装
置。
2. The sand-surface positioning device according to claim 1, wherein the microstrip antenna is embedded so as to be flush with an inner wall of the sand-producing hollow tube.
【請求項3】 前記マイクロストリップアンテナが、前
記砂抗造成用中空管の反射経路における最も高い位置か
ら、使用される高周波掃引波のλ/4離間した位置に装
着されることを特徴とする請求項1または2に記載の砂
面検出装置。
3. The microstrip antenna according to claim 1, wherein the microstrip antenna is mounted at a position separated by λ / 4 of a high-frequency sweep wave to be used from a highest position in a reflection path of the hollow tube for sand formation. The sand surface detecting device according to claim 1.
JP10339846A 1998-11-30 1998-11-30 Sand surface detecting device Pending JP2000160542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10339846A JP2000160542A (en) 1998-11-30 1998-11-30 Sand surface detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10339846A JP2000160542A (en) 1998-11-30 1998-11-30 Sand surface detecting device

Publications (1)

Publication Number Publication Date
JP2000160542A true JP2000160542A (en) 2000-06-13

Family

ID=18331380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10339846A Pending JP2000160542A (en) 1998-11-30 1998-11-30 Sand surface detecting device

Country Status (1)

Country Link
JP (1) JP2000160542A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2000362C2 (en) * 2006-12-07 2008-06-10 Ihc Syst Bv System and method for measuring a concentration parameter of a solid / liquid mixture in a transport line.
CN104088271A (en) * 2014-06-12 2014-10-08 广东长大海外工程有限公司 Sand pile machine for deep soft foundation construction
CN105155599A (en) * 2015-09-25 2015-12-16 南京理工大学 Remote information monitoring and analyzing device and method for cement soil mixing pile

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2000362C2 (en) * 2006-12-07 2008-06-10 Ihc Syst Bv System and method for measuring a concentration parameter of a solid / liquid mixture in a transport line.
WO2008069670A1 (en) * 2006-12-07 2008-06-12 Ihc Systems B.V. System and method for measuring a concentration parameter of a solid/liquid mixture in a conveyor pipe
CN104088271A (en) * 2014-06-12 2014-10-08 广东长大海外工程有限公司 Sand pile machine for deep soft foundation construction
CN105155599A (en) * 2015-09-25 2015-12-16 南京理工大学 Remote information monitoring and analyzing device and method for cement soil mixing pile

Similar Documents

Publication Publication Date Title
US20020070017A1 (en) Method and apparatus for treating a wellbore with vibratory waves to remove particles therefrom
JP2001153638A (en) Cross section measuring method and measuring device for underground structure
JP2000160542A (en) Sand surface detecting device
RU2280863C1 (en) Nonlinear ultrasonic method and device for detecting cracksand their locations in solid body
EP2018552B1 (en) Acoustic method and apparatus for detection and characterization of a medium
JP2004293213A (en) Method for evaluating soundness of concrete pile
JP2003028622A (en) Method for measuring shape of structure and method for measuring degradation/damage
JP2004069301A (en) Acoustic inspection method and acoustic inspection device
CN1172196C (en) Acoustic resonance method of measuring sand flow cavity volume
JPS618646A (en) Method and device for measuring and/or monitoring surface tension of liquid
JP2002055088A (en) Apparatus and method for diagnosing tunnel
JP3046913B2 (en) Sand surface position detection device
JP2003041566A (en) Device for forming sand pile or the like with electric wave type sand top level gauge
JP3340527B2 (en) Sand surface position detection device
JPH08220074A (en) Method and device for measuring crack depth of reinforced concrete structure
JP4653624B2 (en) Crystal grain size measuring device, crystal grain size measuring method, program, and computer-readable storage medium
JP2000178955A (en) Method and device for investigating underground structure
JP2675129B2 (en) Measuring device for crushing range in jet injection method
JPH0493407A (en) Pile material discharge measurement method in pile driving construction method
JP3007302B2 (en) Judgment method of ground improvement area
JPH05231851A (en) Method and device for detecting void depth by blow with hammer
JP4078315B2 (en) Strain measuring apparatus and measuring method
JPH0320341Y2 (en)
JPH094397A (en) Lock bolt measuring method and device for tunnel
JPH0821824A (en) Probing method for defective filling