JP2000160211A - METHOD FOR REGENERATING Sm-Fe-N BASE ALLOY POWDER - Google Patents

METHOD FOR REGENERATING Sm-Fe-N BASE ALLOY POWDER

Info

Publication number
JP2000160211A
JP2000160211A JP10338296A JP33829698A JP2000160211A JP 2000160211 A JP2000160211 A JP 2000160211A JP 10338296 A JP10338296 A JP 10338296A JP 33829698 A JP33829698 A JP 33829698A JP 2000160211 A JP2000160211 A JP 2000160211A
Authority
JP
Japan
Prior art keywords
alloy powder
raw material
regenerating
mixture
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10338296A
Other languages
Japanese (ja)
Other versions
JP3624724B2 (en
Inventor
Michiya Kume
道也 久米
Takaharu Ichinomiya
敬治 一ノ宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP33829698A priority Critical patent/JP3624724B2/en
Publication of JP2000160211A publication Critical patent/JP2000160211A/en
Application granted granted Critical
Publication of JP3624724B2 publication Critical patent/JP3624724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently regenerating the scrap of a bond magnet contg. Sm-Fe-N base alloy powder. SOLUTION: Scrap of a compsn. for a bond magnet is baked in the temp. range of 600 to 1,500 deg.C in the presence of oxygen, is mixed with a new raw material mixture required for producing new alloy powder and is mixed with metal Ca or Ca hydride by the amt. 1.1 to 2.0 times the theoretical one needed for reducing Sm oxide in this mixture to a metal state, and reduction diffusing treatment in which it is heated in the temp. range of 900 to 1,200 deg.C is executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、Sm−Fe−N系合金
粉末樹脂中に含有するボンド磁石のスクラップから、高
品質の同合金粉末を再生する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating a high-quality Sm-Fe-N alloy powder from a bonded magnet scrap contained in a resin powder of the Sm-Fe-N alloy powder.

【0002】[0002]

【従来の技術】希土類磁石は高性能磁石として知られ、
その歴史は浅いにもかかわらず、その市場規模はフェラ
イトと肩を並べるに至った。また、この希土類磁石はそ
の磁性粉末を樹脂に含有させて成形したボンド磁石とし
ての用途も急速に拡大し、その使用量も焼結磁石に並ぶ
勢いである。
2. Description of the Related Art Rare earth magnets are known as high performance magnets,
Despite its short history, its market size has come close to ferrite. Further, the use of the rare earth magnet as a bonded magnet formed by incorporating the magnetic powder in a resin is rapidly expanding, and the amount of the rare earth magnet used is almost equal to that of the sintered magnet.

【0003】希土類磁石の開発に当たっては、磁気特性
の向上が中心課題とされ、その経済的側面は比較的おろ
そかにされてきたが、昨今の地球環境問題に関する取り
組みに関連し次第に検討がなされるようになってきた。
特に、希土類ボンド磁石製造工程中から出てくるスクラ
ップ、あるいはモーター等に組み込まれて市場に出回っ
た後、廃棄物として回収されるスクラップから、効率良
く高品質に磁性粉末を回収する方法が必要とされてい
る。
[0003] In the development of rare-earth magnets, improvement of magnetic properties has been a central issue, and its economic aspects have been relatively neglected. However, it will be gradually examined in connection with recent approaches to global environmental issues. It has become
In particular, there is a need for a method for efficiently collecting high-quality magnetic powder from scraps that come out of the rare earth bonded magnet manufacturing process or scraps that are assembled into motors and sold on the market and then collected as waste. Have been.

【0004】特公昭61−153201号には湿水素雰
囲気で希土類磁石スクラップを加熱処理する方法が開示
されている。この方法は、樹脂のみ選択的に燃焼し、合
金粉末を酸化しないような条件で樹脂の除去を行ってい
る。しかし、実際にはそのような制御はそれほど簡単で
はなく、特に、Sm−Fe−N系合金粉末は、結晶中に
Nを有し、これは不活性ガス中600℃程度の低温で加
熱処理されても結晶からのNの脱離が起こり、磁気特性
を低下させてしまうという問題が起こる。従って、この
特公昭61−153201号の方法をSm−Fe−N系
合金粉末の再生に適用することはできない。
Japanese Patent Publication No. Sho 61-153201 discloses a method of heating a rare earth magnet scrap in a wet hydrogen atmosphere. In this method, the resin is removed under conditions such that only the resin is selectively burned and the alloy powder is not oxidized. However, such control is not so easy in practice. In particular, the Sm-Fe-N-based alloy powder has N in the crystal, which is heated at a low temperature of about 600 ° C. in an inert gas. However, there arises a problem that N is desorbed from the crystal and the magnetic properties are degraded. Therefore, the method of JP-B-61-153201 cannot be applied to the regeneration of Sm-Fe-N-based alloy powder.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明は上述
したように、Sm−Fe−N系合金粉末を含んだボンド
磁石のスクラップを効率よく高品質に再生する方法を提
供することを目的とする。さらに、高価なSmの使用量
を低減することができるSm−Fe−N系合金粉末の再
生方法を提供する。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method for efficiently and efficiently regenerating a scrap of a bonded magnet containing an Sm-Fe-N alloy powder as described above. I do. Further, the present invention provides a method for regenerating an Sm-Fe-N-based alloy powder capable of reducing the amount of expensive Sm used.

【0006】[0006]

【発明を解決するための手段】本発明者等は上述した課
題を解決するために鋭意検討した結果、ボンド磁石のス
クラップを大気中で特定温度範囲で焼成して樹脂の成分
を燃焼し、そのとき同時にSm及びFeを酸化し、これ
を新品原料に混合して還元拡散行うことで課題を解決す
ることを見いだした。
The present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, the scrap of the bonded magnet was burned in a specific temperature range in the atmosphere to burn the resin components, and the resin was burned. At the same time, they have found that the problem is solved by simultaneously oxidizing Sm and Fe, mixing them with new raw materials and performing reduction diffusion.

【0007】すなわち、本発明のSm−Fe−N系合金
粉末の再生方法は、Sm−Fe−N系合金粉末と樹脂か
らなるボンド磁石あるいはそれに使用するコンパウンド
等のボンド磁石用組成物のスクラップから、Sm−Fe
−N系合金粉末を再生する方法において、次の工程をそ
の順で備えることを特徴とする。 (a)該ボンド磁石用組成物のスクラップを酸素存在下
600〜1500℃の温度範囲で焼成する。 (b)得られた焼成物を平均粒径が1μm〜10μmの
範囲に粉砕し、必要ならば、水素あるいは炭化水素によ
る還元ガス雰囲気中300〜900℃の温度範囲で還元
処理する。 (c)新品の合金粉末を製造するのに必要とされるSm
原料成分とFe原料成分を所定比率に混合した新品原料
混合物と、(b)工程で得られた処理物を混合し、この
混合物中のSm酸化物を金属状態まで還元するのに必要
な理論量の1.1〜2.0倍の金属Caあるいは水素化
Caを混合し、900〜1200℃の温度範囲で加熱す
る還元拡散処理を行う。 (d)還元拡散処理により得られた生成物を、窒素、あ
るいは窒素を含む化合物のガス雰囲気中300〜700
℃の温度範囲で加熱して窒化処理を行う。 (e)(d)工程で得られた処理物を水に入れて崩壊
し、水洗、酸洗浄を行う。但し、窒化は還元拡散処理の
後に行っても構わない。
That is, the method for regenerating the Sm-Fe-N-based alloy powder of the present invention uses a bonded magnet composed of an Sm-Fe-N-based alloy powder and a resin or a scrap of a bonded magnet composition such as a compound used for the same. , Sm-Fe
A method for regenerating an -N-based alloy powder is characterized in that the following steps are provided in this order. (A) firing the scrap of the bonded magnet composition in a temperature range of 600 to 1500 ° C. in the presence of oxygen; (B) The obtained fired product is pulverized to have an average particle size of 1 μm to 10 μm, and if necessary, reduced in a reducing gas atmosphere of hydrogen or hydrocarbon at a temperature range of 300 to 900 ° C. (C) Sm required to produce a new alloy powder
The stoichiometric amount required to mix a new raw material mixture obtained by mixing the raw material components and the Fe raw material components in a predetermined ratio with the processed product obtained in the step (b), and to reduce the Sm oxide in the mixture to a metallic state. Is reduced and diffused by mixing metal Ca or hydrogenated Ca 1.1 to 2.0 times of the above and heating in a temperature range of 900 to 1200 ° C. (D) The product obtained by the reduction diffusion treatment is placed in a gas atmosphere of nitrogen or a compound containing nitrogen in a gas atmosphere of 300 to 700.
A nitriding treatment is performed by heating in a temperature range of ° C. (E) The treated product obtained in the step (d) is put in water to disintegrate, and washed with water and acid. However, nitriding may be performed after the reduction diffusion treatment.

【0008】本発明のSm−Fe−N系合金粉末の再生
方法は、前記(c)工程において、還元拡散処理を行う
べき前記混合物は、r値が10.6〜12.4の範囲と
なるように調整することが好ましい。但し、r値は次式
で定義され、ASm及びAFeは、それぞれ原料酸化物中の
Sm及びFeの原子数である。 r=ASm/(ASm+AFe)×100
In the method for regenerating an Sm—Fe—N alloy powder according to the present invention, in the step (c), the mixture to be subjected to the reduction diffusion treatment has an r value in a range of 10.6 to 12.4. It is preferable to adjust as follows. Here, the r value is defined by the following equation, and ASm and AFe are the numbers of atoms of Sm and Fe in the raw material oxide, respectively. r = ASm / (ASm + AFe) × 100

【0009】本発明のSm−Fe−N系合金粉末の再生
方法は、前記(c)工程において、前記新品原料混合物
100重量部に対し、(b)工程で得られる処理物を最
大で400重量部混合することが好ましい。ここで、新
品原料混合物とは、新品の合金粉末を製造するのに必要
とされるSmとFeを所定比率に混合した原料混合物の
ことである。
In the method for regenerating an Sm-Fe-N-based alloy powder according to the present invention, in the step (c), the treated material obtained in the step (b) may be added up to 400 parts by weight with respect to 100 parts by weight of the new raw material mixture. Partial mixing is preferred. Here, the new raw material mixture is a raw material mixture obtained by mixing Sm and Fe at a predetermined ratio, which is necessary for producing a new alloy powder.

【0010】[0010]

【発明の実施の形態】本発明のSm−Fe−N系合金粉
末として適用可能なものとして代表的なものにSm2F
e17N3合金粉末がある。この合金粉末はニュークリエ
イションと呼ばれる保磁力発現機構を示し、結晶粒子の
小粒子化、均一性がそのまま保磁力の大きさに結びつく
という特徴をもつ。
BEST MODE FOR CARRYING OUT THE INVENTION A typical example of a material applicable to the Sm-Fe-N alloy powder of the present invention is Sm2F.
There is e17N3 alloy powder. This alloy powder exhibits a coercive force development mechanism called nucleation, and has the feature that the reduction in the size and uniformity of crystal grains directly leads to the magnitude of the coercive force.

【0011】本発明の再生の対象となるのは、このSm
−Fe−N系合金粉末をフィラーとして、樹脂バインダ
ーにより成形したボンド磁石(コンパウンドを含む)の
スクラップである。スクラップは製造工程中から出るも
の、あるいは市場から回収されるものを含み、これらは
物理的な変形、化学的な腐食あるいは酸化を受け正常に
機能しなくなったもの全てを対象としている。
The object of reproduction of the present invention is this Sm
-It is a scrap of a bonded magnet (including a compound) molded with a resin binder using Fe-N-based alloy powder as a filler. Scraps include those that come out of the manufacturing process or are recovered from the market, and cover all those that have failed due to physical deformation, chemical corrosion or oxidation.

【0012】一般にボンド磁石の成形方法は、大きく分
けて、圧縮成形法、射出成形法および押出成形法が適用
されている。圧縮成形法は、前記コンパウンドをプレス
金型中に充填し、これを圧縮成形して成形体を得、その
後、加熱して結合樹脂である熱硬化性樹脂を硬化させて
磁石を製造する方法である。磁石中の樹脂バインダ量が
10vol%以下と少ない。圧縮成型法に用いる熱硬化性
樹脂として代表的なものエポキシ樹脂があり、それ以外
にベークライト、ユリア樹脂、メラミン樹脂等が使用さ
れている。押出成形法は、加熱溶融されたコンパウンド
を押出成形機の金型から押し出すとともに冷却固化し、
所望の長さに切断して磁石とする方法である。結合樹脂
の添加量は約20vol%と圧縮成形法に比べて多い。射
出成形法は、前記コンパウンドを加熱溶融し、十分な流
動性を持たせた状態で該溶融物を金型内に注入し、所定
の磁石形状に成形する方法である。樹脂バインダの添加
量は約40vol%と、押出成形法よりさらに多い。射
出、押出成形用の樹脂バインダーとしては、ポリスチレ
ン、ポリアミド、ポリカーボネート、ポリエステル等の
エンジニアリング樹脂が用いられ、ポリフェニレンサル
ファイド(PPS)、液晶ポリマー等のスーパーエンジ
ニアリング樹脂が使用されている。本発明は、大気中6
00〜1500℃の温度範囲で焼成するため、これらの
樹脂を全て燃焼消失する。
In general, a compression molding method, an injection molding method, and an extrusion molding method are generally applied to a method of molding a bonded magnet. The compression molding method is a method in which the compound is filled in a press die, and the molded product is compression-molded to obtain a molded body, and then heated to cure a thermosetting resin as a binding resin to produce a magnet. is there. The amount of resin binder in the magnet is as small as 10 vol% or less. As a thermosetting resin used in the compression molding method, there is a typical epoxy resin, and in addition, bakelite, urea resin, melamine resin and the like are used. In the extrusion molding method, the heated and melted compound is extruded from the mold of the extrusion molding machine and solidified by cooling,
This is a method of cutting into a desired length to form a magnet. The addition amount of the binder resin is about 20 vol%, which is larger than that of the compression molding method. The injection molding method is a method in which the compound is heated and melted, the molten material is injected into a mold in a state where sufficient fluidity is provided, and the compound is molded into a predetermined magnet shape. The addition amount of the resin binder is about 40 vol%, which is even larger than the extrusion molding method. Engineering resins such as polystyrene, polyamide, polycarbonate, and polyester are used as resin binders for injection and extrusion molding, and super-engineering resins such as polyphenylene sulfide (PPS) and liquid crystal polymers are used. The present invention relates to the use of 6
Since the resin is fired in a temperature range of 00 to 1500 ° C., all of these resins are burned and disappeared.

【0013】本発明において、樹脂を効率よく燃焼させ
るためにはボンド磁石スクラップを先ず数mm角に粗粉
砕しておくことが好ましい。燃焼はあまり大きな塊があ
ると、樹脂が完全に燃焼するのに余分な時間がかかり、
時間、燃料の浪費となるからである。この粗粉砕には例
えば、ジョークラッシャー、インペラーブレーカー、ハ
ンマーミル等が使用できる。
In the present invention, in order to burn the resin efficiently, it is preferable that the bonded magnet scrap is first roughly crushed into a few mm square. If the combustion is too large, the resin will take extra time to completely burn,
Time and fuel are wasted. For this coarse pulverization, for example, a jaw crusher, an impeller breaker, a hammer mill or the like can be used.

【0014】通常、樹脂は大気中で400℃程度の温度
があれば燃焼可能であるが、本発明において、樹脂の燃
焼を大気中600〜1500℃の高温で行うのは、樹脂
の燃焼を目的とするに加え、FeとSmの金属の酸化
と、それに引き続くSmとFeの複酸化物の生成を目的
としている。従って、樹脂は必ずしも必要とせず、以下
に説明する作用効果はボンド磁石に限るものではなく、
Sm−Fe−N系合金粉末そのものの再生にも適用可能
である。
Normally, a resin can be burned in the atmosphere at a temperature of about 400 ° C., but in the present invention, burning the resin at a high temperature of 600 to 1500 ° C. in the atmosphere is intended for the purpose of burning the resin. In addition to the above, the purpose is to oxidize the metal of Fe and Sm, and to subsequently form a double oxide of Sm and Fe. Therefore, the resin is not necessarily required, and the operation and effects described below are not limited to the bonded magnet.
It is also applicable to the regeneration of the Sm-Fe-N-based alloy powder itself.

【0015】FeとSmの複酸化物として、SmFeO
3、Sm3Fe5O12、Sm2FeO4等があり、これらは
大気中で600℃以上の温度で加熱することにより生成
する。特に、Sm2O3とFe2O3を混合したものを60
0〜1100℃程度までの比較的低温で加熱するとSm
FeO3が生成しやすく、それより高温になるとそれに
Sm3Fe5O12の複合酸化物が混入するようになり、1
400℃を超えるとSmFeO3のピークはほとんど消
失し、Sm3Fe5O12が主成分となる。この複酸化物は
酸素存在下でないと生成しない。従って、大気中で60
0℃以上の高温で焼成して生じたFeの酸化物、Smの
酸化物はさらに反応して複酸化物を生成する。
As a double oxide of Fe and Sm, SmFeO
3, Sm3Fe5O12, Sm2FeO4, etc., which are generated by heating at a temperature of 600 ° C. or more in the atmosphere. In particular, a mixture of Sm2O3 and Fe2O3
When heated at a relatively low temperature of about 0 to 1100 ° C, Sm
FeO3 is easily produced, and when the temperature is higher than that, a mixed oxide of Sm3Fe5O12 comes to be mixed therein.
When the temperature exceeds 400 ° C., the peak of SmFeO 3 almost disappears, and Sm 3 Fe 5 O 12 becomes the main component. This double oxide is not produced unless oxygen is present. Therefore, 60
The oxide of Fe and the oxide of Sm generated by firing at a high temperature of 0 ° C. or more further react to form a double oxide.

【0016】ボンド磁石を上記条件で焼成した処理物
は、複酸化物と同時にFe2O3を含む混合物であり、こ
れを平均粒径が1μm〜10μmの範囲に粉砕し、必要
な場合、水素あるいは炭化水素による還元ガス雰囲気中
300〜900℃の温度範囲で還元処理する。この還元
により、Fe2O3に含まれる酸素を除去することができ
る。しかし、複酸化物の酸素は還元されないで残る。
The treated product obtained by firing the bonded magnet under the above-mentioned conditions is a mixture containing Fe2O3 at the same time as the double oxide. This mixture is pulverized to an average particle size in the range of 1 μm to 10 μm. In a reducing gas atmosphere in a temperature range of 300 to 900 ° C. Oxygen contained in Fe2O3 can be removed by this reduction. However, the oxygen of the double oxide remains without being reduced.

【0017】ここで、必要な場合とは、次工程の還元拡
散において、新品原料混合物に対する(b)工程で得ら
れる処理物(再生すべき酸化物全量(主として、複酸化
物、Fe2O3))が多くなる場合である。具体的には、
新品原料混合物100重量部に対する再生すべき酸化物
全量が29重量部より多くなる場合で、この場合、Fe
2O3の存在量が多くなり過ぎ、Caによる還元反応が爆
発的に起こり、発熱により粒子が粗大化するのみなら
ず、最悪の場合は爆発的な反応により生成物が炉内に飛
散する問題がある。
Here, the necessary case means that, in the reduction diffusion in the next step, the treated product (total amount of oxides to be regenerated (mainly double oxides, Fe 2 O 3)) obtained in the step (b) with respect to the new raw material mixture is used. In many cases. In particular,
When the total amount of oxides to be regenerated is more than 29 parts by weight per 100 parts by weight of the new raw material mixture, in this case, Fe
The amount of 2O3 present becomes too large, and the reduction reaction by Ca explosively occurs, causing not only the particles to be coarsened due to heat generation, but also, in the worst case, the product to scatter in the furnace due to the explosive reaction. .

【0018】還元拡散工程の前に水素あるいは炭化水素
等の還元ガスにより還元処理を行った場合、新品原料混
合物100重量部に対して、(b)の工程で得られる処
理物は400重量部まで混合することができる。400
重量部を超えて混合を行った場合、新品種原料に比べて
粒度分布の安定性や異物の混入の点で不安のあるリサイ
クル原料の割合が増すことで還元拡散工程時に異常粒子
成長を起こし、結果として満足できる磁気特性を示さな
くなる。しかし、逆に、還元処理を施していない処理物
を還元拡散工程時に29重量部程度以下新品原料混合物
に混合することで、還元拡散工程の反応がFe2O3の燃
焼による自己発熱により促進する。
When the reduction treatment is performed with a reducing gas such as hydrogen or hydrocarbon before the reduction diffusion step, the processed material obtained in the step (b) is reduced to 400 parts by weight with respect to 100 parts by weight of the new raw material mixture. Can be mixed. 400
If the mixing is performed in excess of parts by weight, the ratio of recycled material that is unsafe in terms of stability of particle size distribution and contamination of foreign substances increases compared to new breed material, causing abnormal particle growth during the reduction diffusion process, As a result, satisfactory magnetic properties are not exhibited. However, conversely, by mixing the processed material which has not been subjected to the reduction treatment with a new raw material mixture in an amount of about 29 parts by weight or less in the reduction diffusion step, the reaction in the reduction diffusion step is promoted by self-heating due to the combustion of Fe2O3.

【0019】還元拡散工程において、Caあるいは水素
化はSm2O3と複酸化物の酸素を還元するのに必要とさ
れる理論量の1.1〜2.0倍を使用する。この範囲よ
りも少ないと十分な還元が行われず、逆に、この範囲よ
り多いと過剰となり、反応に無関係な未反応のCa金属
が多く残留する。その結果、後の工程における水への崩
壊反応において、過剰なCaが多く残留すると大きな急
速な発熱反応が起こり、磁性粉末の性能を悪化する。
In the reduction diffusion step, Ca or hydrogenation uses 1.1 to 2.0 times the theoretical amount required to reduce Sm 2 O 3 and oxygen of the double oxide. When the amount is less than this range, sufficient reduction is not performed. On the other hand, when the amount is more than this range, the amount becomes excessive, and a large amount of unreacted Ca metal unrelated to the reaction remains. As a result, in the disintegration reaction to water in the subsequent step, if a large amount of excess Ca remains, a large rapid exothermic reaction occurs, deteriorating the performance of the magnetic powder.

【0020】還元拡散反応はAr、He等の不活性雰囲
気中で900〜1200℃の温度範囲で行う。それはこ
の温度範囲より低温でも還元拡散は起こるが、反応は極
めて緩慢となってあまり実用的でないためであり、この
温度範囲より反応温度が高くなると、還元拡散反応は急
激に起こり制御が困難となるからである。
The reduction diffusion reaction is carried out in an inert atmosphere such as Ar or He at a temperature of 900 to 1200 ° C. The reason is that although reduction diffusion occurs even at a temperature lower than this temperature range, the reaction is extremely slow and is not very practical.If the reaction temperature is higher than this temperature range, the reduction diffusion reaction occurs rapidly and becomes difficult to control. Because.

【0021】還元拡散工程により得られた生成物をその
まま同じ反応機中に置いたまま温度を下げて、雰囲気ガ
スをAr、He等の不活性雰囲気から、窒素を含むガ
ス、例えばN2あるいはNH3等に切り替え、300〜7
00℃の温度範囲で加熱することで還元拡散工程により
得られた生成物を窒化処理することができる。窒化はこ
の温度範囲より低温では反応速度が遅過ぎて実用でき
ず、この範囲より高温では窒化反応は進むが、生成する
結晶がアモルファス化するため、磁気特性の良い合金粉
末を得ることができない。
While the product obtained by the reduction diffusion step is kept in the same reactor as it is, the temperature is lowered, and the atmosphere gas is changed from an inert atmosphere such as Ar or He to a gas containing nitrogen such as N2 or NH3. Switch to 300-7
By heating in a temperature range of 00 ° C., the product obtained in the reduction diffusion step can be subjected to a nitriding treatment. If the temperature is lower than this temperature range, the reaction speed is too slow to be practical. If the temperature is higher than this range, the nitridation reaction proceeds, but the resulting crystal becomes amorphous, so that an alloy powder having good magnetic properties cannot be obtained.

【0022】窒化工程で得られたSm−Fe−Nの多孔
質の合金ブロックを粉末化するために、反応生成物をイ
オン交換水中に投入すると合金ブロックは直ちに崩壊す
る。この時、反応生成物中のCaOとCaN等の未反応
のCa化合物あるいは残余のCa金属が水と反応して微
細なCa(OH)2 を生成し浮遊している。この浮遊物
をデカンテーション等により除去し、さらに酸処理を行
うと完全な除去が行える。
In order to pulverize the porous Sm-Fe-N alloy block obtained in the nitriding step, when the reaction product is put into ion-exchanged water, the alloy block immediately collapses. At this time, unreacted Ca compounds such as CaO and CaN in the reaction product or the remaining Ca metal react with water to generate fine Ca (OH) 2 and float. If the suspended matter is removed by decantation or the like, and further subjected to an acid treatment, complete removal can be performed.

【0023】ここでは、還元拡散反応の後に引き続き窒
化処理する方法について説明したが、窒化反応は、還元
拡散工程で得られる合金ブロックを水に投入して崩壊
し、洗浄して粉末化した後に行っても良い。
Here, the method of performing the nitriding treatment after the reduction diffusion reaction has been described. The nitridation reaction is performed after the alloy block obtained in the reduction diffusion step is poured into water, collapsed, washed, and powdered. May be.

【0024】本発明のSm−Fe−N系合金粉末の再生
方法において、前記(c)工程において、還元拡散処理
を行うべき原料混合物は、r値が10.6〜12.4の
範囲となるように調製することが好ましい。但し、r値
は次式で定義され、ASm及びAFeは、それぞれ原料酸化
物中のSm及びFeの原子数である。r=ASm/(ASm
+AFe)×100
In the method for regenerating an Sm-Fe-N-based alloy powder according to the present invention, the raw material mixture to be subjected to the reduction diffusion treatment in the step (c) has an r value in the range of 10.6 to 12.4. It is preferable to prepare as follows. Here, the r value is defined by the following equation, and ASm and AFe are the numbers of atoms of Sm and Fe in the raw material oxide, respectively. r = ASm / (ASm
+ AFe) × 100

【0025】図1にSm2Fe17N3系強磁性材料の原料
仕込み比率r=ASm/(ASm+AFe)×100と、真の
保磁力iHcの関係を示す。同図中の二本の曲線
(イ)、及び(ロ)はそれぞれ、本発明品と比較品につ
いて数多くのデータを基にプロットしたものである。こ
こにいう本発明品とは、還元拡散に供する原料中にボン
ド磁石のスクラップについて上述したような再生処理を
行ったものである。
FIG. 1 shows the relationship between the raw material charging ratio r = ASm / (ASm + AFe) × 100 of the Sm2Fe17N3 ferromagnetic material and the true coercive force iHc. The two curves (a) and (b) in the figure are plotted based on a large number of data for the product of the present invention and the comparative product, respectively. The term "product of the present invention" used herein refers to a material obtained by subjecting a scrap of a bonded magnet to the above-described regeneration treatment in a raw material to be subjected to reduction diffusion.

【0026】図2にSm2Fe17N3系強磁性材料の原料
仕込み比率r=ASm/(ASm+AFe)×100と、残留
磁化Brの関係を示す。同図中の二本の曲線(イ)、及
び(ロ)はそれぞれ、本発明品と比較品について数多く
のデータを基にプロットしたものである。
FIG. 2 shows the relationship between the raw material charging ratio r = ASm / (ASm + AFe) × 100 of the Sm2Fe17N3 ferromagnetic material and the residual magnetization Br. The two curves (a) and (b) in the figure are plotted based on a large number of data for the product of the present invention and the comparative product, respectively.

【0027】新品原料混合物に対して、水素還元処理物
が100重量部含んでいるものであり、その具体的な製
造方法については実施例2及び3として後述する。一
方、比較品とは上述したようなボンド磁石のスクラップ
処理をした水素還元物を新品原料混合物に混合しなかっ
た場合であり、比較例1として後述する。
The hydrogen-reduced product is 100 parts by weight with respect to the new raw material mixture, and a specific production method thereof will be described later as Examples 2 and 3. On the other hand, the comparative product is a case where the hydrogen reduced product which has been subjected to the scrap treatment of the bonded magnet as described above is not mixed with the new raw material mixture, and will be described later as Comparative Example 1.

【0028】尚、Sm2Fe17N3系強磁性材料の真の保
磁力は、その粒子径にも強く依存するので本発明品、比
較品とも平均粒子径は3μmになるように調整してあ
る。図1及び2より、本発明品、比較品ともrの値が1
0.5より増加するに伴い保磁力及び残留磁化が向上し
ている。これはSm2Fe17N3系強磁性材料の金属元素
中のSm比率が、化学量論比で10.53%であること
に対応している。(r=2/(2+17)×100=1
0.53%)いずれの場合も、Smの仕込み比率は化学
量論比よりも大きくする必要がある。これは主として金
属Smの蒸発や酸化に起因する。
Since the true coercive force of the Sm2Fe17N3 ferromagnetic material strongly depends on its particle diameter, the average particle diameter of both the product of the present invention and the comparative product is adjusted to 3 μm. 1 and 2, the value of r was 1 for both the product of the present invention and the comparative product.
The coercive force and the remanent magnetization are improved with increasing from 0.5. This corresponds to the Sm ratio in the metal element of the Sm2Fe17N3 ferromagnetic material being 10.53% in stoichiometric ratio. (R = 2 / (2 + 17) × 100 = 1
In either case, the charging ratio of Sm needs to be larger than the stoichiometric ratio. This is mainly due to evaporation and oxidation of the metal Sm.

【0029】図1及び2より比較品ではr値が12.5
で保磁力及び残留磁化が極大となるのに対し、本発明品
ではいずれも11.5で極大に達し、しかも保磁力及び
残留磁化とも比較品の極大より大きくなる。すなわち、
本発明では比較的高価なSmを少なく仕込めると同時に
高特性が得られることを示している。還元拡散の原料に
複酸化物を使用する本発明の方法を適用することによ
り、還元拡散の反応性を向上でき、還元拡散温度を低下
することが可能となる。その結果、鉄に比べて蒸気圧の
高いSm仕込み比率を低減することが可能となる。
1 and 2, the r value of the comparative product was 12.5.
, The coercive force and the remanent magnetization are maximized, whereas in the case of the present invention, the maximum is reached at 11.5, and the coercive force and the remanent magnetization are both larger than the maximum of the comparative product. That is,
The present invention shows that high characteristics can be obtained while reducing relatively expensive Sm. By applying the method of the present invention using a composite oxide as a raw material for reduction diffusion, the reactivity of reduction diffusion can be improved, and the reduction diffusion temperature can be lowered. As a result, it is possible to reduce the Sm charging ratio having a higher vapor pressure than iron.

【0030】金属Caの融点は842℃であり、また、
金属Smの融点は1074℃である。従って、還元拡散
反応は温度が1100℃以上あれば十分であるように思
えるが、実際には反応性改善のためにSmの揮発も考慮
して、従来より1100〜1200℃の範囲で行われて
いた。これに対し本発明において、ボンド磁石等のスク
ラップを大気中で600〜1500℃の温度範囲で加熱
する工程を有し、この工程において複酸化物が生成す
る。この複酸化物を原料に混合しているために、還元拡
散の反応性が向上し、その結果、900〜1200℃の
温度範囲で還元拡散反応を完結する。
The melting point of metal Ca is 842 ° C.
The melting point of metal Sm is 1074 ° C. Therefore, it seems that the reduction diffusion reaction is sufficient if the temperature is 1100 ° C. or higher. However, in actuality, in consideration of volatilization of Sm for improving the reactivity, the reduction diffusion reaction is conventionally performed in the range of 1100 to 1200 ° C. Was. In contrast, the present invention includes a step of heating scrap such as a bonded magnet in the atmosphere at a temperature in the range of 600 to 1500 ° C., and a double oxide is generated in this step. Since the mixed oxide is mixed with the raw material, the reactivity of reduction diffusion is improved, and as a result, the reduction diffusion reaction is completed in a temperature range of 900 to 1200 ° C.

【0031】本発明において、原料混合物に占める複酸
化物は、全体の1wt%以上、好ましくは5wt%以上
存在すると還元拡散工程において反応性が改善する。複
酸化物の定量は、複酸化物を既知量混合して得た原料の
X線回折を測定し、複酸化物に特徴のあるピークの高さ
と複酸化物の混合濃度から検量線を作成することで行っ
た。
In the present invention, when the amount of the double oxide in the raw material mixture is 1 wt% or more, preferably 5 wt% or more, the reactivity is improved in the reduction diffusion step. For the quantitative determination of multiple oxides, X-ray diffraction of a raw material obtained by mixing known amounts of multiple oxides is measured, and a calibration curve is created from the peak height characteristic of the multiple oxides and the mixed concentration of the multiple oxides. I went by that.

【0032】なぜこのような微量の複酸化物の存在が還
元拡散反応の反応性を高くするのかについては次のよう
に推定している。還元拡散反応は、一般に還元剤によっ
て金属に還元された希土類金属と遷移金属が、それぞれ
固相のままで互いに拡散しながら合金を形成していく反
応である。反応が固相間であるため拡散には時間がかか
るが、長すぎると粒子成長が進み、所望の粒子径より大
きくなるため、反応時間には短時間に制限され、その結
果、拡散が十分でない部分が生じ、合金の組成が不均一
になる。これに対し、複酸化物は、還元された時点で既
に互いに拡散しており、直ちに合金が形成されうる。さ
らに残りの希土類金属、遷移金属も複酸化物由来の合金
への拡散になるので、単体間の拡散よりも有利であり、
結果として短時間で拡散、合金化が終了し、径が小さく
かつ組成の均一な合金粒子が得られる。
The reason why the presence of such a small amount of double oxide enhances the reactivity of the reduction diffusion reaction is estimated as follows. The reduction diffusion reaction is a reaction in which a rare earth metal and a transition metal reduced to a metal by a reducing agent generally diffuse into each other in a solid phase to form an alloy. The diffusion takes time because the reaction is between solid phases, but if it is too long, the particle growth proceeds and becomes larger than the desired particle diameter, so the reaction time is limited to a short time, and as a result, the diffusion is not sufficient Parts are formed and the composition of the alloy becomes non-uniform. On the other hand, the multiple oxides have already diffused into each other when they are reduced, and an alloy can be formed immediately. Furthermore, since the remaining rare earth metals and transition metals also diffuse into the alloy derived from the double oxide, it is more advantageous than the diffusion between the simple substances,
As a result, diffusion and alloying are completed in a short time, and alloy particles having a small diameter and a uniform composition can be obtained.

【0033】ここまで、新品原料混合物に混合するボン
ド磁石スクラップの処理について詳しく述べたが、本発
明において、新品原料混合物に使用するFe、Sm原料
についても次のような好ましい実施態様がある。
The treatment of the bonded magnet scrap mixed with the new raw material mixture has been described in detail. In the present invention, the following preferred embodiments are also used for the Fe and Sm raw materials used for the new raw material mixture.

【0034】新品のFe原料は、平均粒径が0.5〜
2.0μmの範囲の微粒子Fe金属が好ましく使用でき
る。あるいはFeO、Fe3O4、Fe2O3等の微粒子の
Feの酸化物を還元ガス等により還元することで、微粒
子で粒度分布のシャープなFe金属粉を得ることができ
る。得られる合金粉末は、Fe粉末の粒子形状、大きさ
を引き継ぐので、粒子形状、粒度分布の良い合金粉末を
得るためには、Fe原料は非常に重要である。
The new Fe raw material has an average particle size of 0.5 to
Fine particle Fe metal in the range of 2.0 μm can be preferably used. Alternatively, by reducing Fe oxides of fine particles such as FeO, Fe3O4, and Fe2O3 with a reducing gas or the like, fine metal particles having a sharp particle size distribution can be obtained. Since the obtained alloy powder inherits the particle shape and size of the Fe powder, the Fe raw material is very important for obtaining an alloy powder having a good particle shape and particle size distribution.

【0035】さらに粒子特性の良い新品原料混合物を得
るために、Sm、Feを酸に溶解し、Sm及びFeイオ
ンと不溶性の塩を生成する物質を溶液中で反応させ諸条
件を制御することで粒子特性の優れた粒子を沈殿させ、
得られる沈殿物を焼成して金属酸化物とし、さらに還元
することで還元拡散工程に供する優れた粒子特性の原料
混合物を得る。特に、Sm2Fe17N3合金粉末は保磁力
発現機構がニュークリエイション型であるため、合金粉
末の粒子特性(粒子径、粒度分布)は特に重要となる。
In order to obtain a new raw material mixture having better particle characteristics, Sm and Fe are dissolved in an acid, and a substance which forms an insoluble salt with Sm and Fe ions is reacted in a solution to control various conditions. Precipitate particles with excellent particle properties,
The obtained precipitate is calcined to form a metal oxide, and further reduced to obtain a raw material mixture having excellent particle characteristics to be subjected to a reduction diffusion step. In particular, since the Sm2Fe17N3 alloy powder has a nucleation-type coercive force development mechanism, the particle characteristics (particle size, particle size distribution) of the alloy powder are particularly important.

【0036】上述した原料混合物は、いずれも平均粒子
径10μm以下である必要がある。好ましくは5μm以
下であり、さらに好ましくは平均粒子径が0.2μmか
ら2μmの範囲にある。
Each of the above-mentioned raw material mixtures must have an average particle diameter of 10 μm or less. Preferably it is 5 μm or less, and more preferably the average particle size is in the range of 0.2 μm to 2 μm.

【0037】このように、本願発明において、ボンド磁
石用組成物のスクラップを大気中600〜1500℃の
温度範囲で焼成することで、SmとFeの複酸化物を生
成し、その結果、還元拡散反応をより低温で促進するこ
とができ、しかも、還元拡散工程の前に原料の補正をす
る必要がないため、加熱により得られた原料をそのまま
還元拡散工程に供することができる。また、これら複酸
化物を得るにはSm2O3とFe2O3を上述したような高
温で加熱することが必要となるが、この二種の酸化物か
ら複酸化物を得る反応は、酸化雰囲気で行われ、Sm金
属が遊離することはないため、Smの揮発の問題はな
い。
As described above, in the present invention, by firing the scrap of the composition for a bonded magnet in the temperature range of 600 to 1500 ° C. in the air, a double oxide of Sm and Fe is generated, and as a result, reduction diffusion Since the reaction can be promoted at a lower temperature and there is no need to correct the raw material before the reduction diffusion step, the raw material obtained by heating can be directly used in the reduction diffusion step. Further, in order to obtain these composite oxides, it is necessary to heat Sm2O3 and Fe2O3 at a high temperature as described above. The reaction to obtain a composite oxide from these two kinds of oxides is performed in an oxidizing atmosphere, Since Sm metal is not released, there is no problem of volatilization of Sm.

【0038】本発明により得られたSm2Fe17N3は、
機械的衝撃力による粉砕作用を受けていないので、従来
の粉砕法により得られた同粉末に比べて特性面で優位性
を持つ。ここでいう機械的衝撃による粉砕法とは粉末冶
金工業では一般的に採用される方法であって、ジョーク
ラッシャー、スタンプミル、ロールクラッシャー、ハン
マーミル、ピンミル、ボールミル、振動ミル、アトライ
タ、サンドミル、ジェットミル、ホモジナイザ等を指す
がこれらに限定されるものではない。
The Sm2Fe17N3 obtained according to the present invention is
Since it is not subjected to a pulverizing action by a mechanical impact force, it has an advantage in characteristics as compared with the same powder obtained by a conventional pulverizing method. The pulverization method by mechanical impact here is a method generally employed in the powder metallurgy industry, and includes a jaw crusher, a stamp mill, a roll crusher, a hammer mill, a pin mill, a ball mill, a vibration mill, an attritor, a sand mill, and a jet. It refers to, but is not limited to, a mill, a homogenizer, and the like.

【0039】[0039]

【実施例】[実施例1]Sm2Fe17N3系の合金粉末
(フィッシャー・サブ・シーブ・サイザーによる平均粒
径が2.5μm)を60wt%とナイロンが40wt%
からなるボンド磁石のスクラップを、ハンマーミルを用
いて3mm角まで粉砕した。次に、粉砕品をアルミナ坩
堝に入れて大気中850℃で5時間焼成し、樹脂を完全
に除去した。
[Example 1] 60% by weight of Sm2Fe17N3 based alloy powder (average particle size by Fisher sub sieve sizer: 2.5 μm) and 40% by weight of nylon
Was ground to 3 mm square using a hammer mill. Next, the pulverized product was placed in an alumina crucible and calcined at 850 ° C. for 5 hours in the atmosphere to completely remove the resin.

【0040】得られた焼成物を大気を使用したジェット
ミルを用いて平均粒径2.0μmまで粉砕した。粉砕品
について、Cu-Kαを発生源とするX線回折測定を行
った結果、2θで35.6°のピークからα−Fe2O3
が、22.8゜、31.9゜、32.7゜、33.1
゜、46.7゜、58.9゜のピークから、SmFeO
3複酸化物が生成していることが確認された。
The obtained fired product was ground to a mean particle size of 2.0 μm by using a jet mill using the atmosphere. The pulverized product was subjected to an X-ray diffraction measurement using Cu-Kα as a source. As a result, it was found that a peak at 2θ was 35.6 ° and α-Fe2O3 was obtained.
But 22.8%, 31.9%, 32.7%, 33.1%
{, 46.7}, and 58.9} peaks indicate that SmFeO
It was confirmed that three double oxides were formed.

【0041】粉砕物を水素雰囲気中700℃で3時間熱
処理して還元したところ、2θ=35.6°のピークの
α−Fe2O3は消失し、その代わりにα−Feに由来す
る2θ=44.7°のピークと複酸化物の混合物を得
た。得られた還元物の化学分析の結果、Smは17.6
重量%、Feは55.7重量%であった。
When the pulverized product was reduced by heat treatment at 700 ° C. for 3 hours in a hydrogen atmosphere, α-Fe 2 O 3 having a peak at 2θ = 35.6 ° disappeared, and instead 2θ = 44. A mixture of the peak at 7 ° and the double oxide was obtained. As a result of chemical analysis of the obtained reduced product, Sm was 17.6.
% By weight and Fe was 55.7% by weight.

【0042】これに対し、新品のSm2Fe17N3合金粉
末を得る目的で、原料として平均粒径0.3μmのSm
2O3の粉末698gと平均粒径5.3μmのカルボニル
鉄1731gを、窒素雰囲気の乾式ボールミルで3時間
混合した。
On the other hand, in order to obtain a new Sm 2 Fe 17 N 3 alloy powder, Sm having an average particle size of 0.3 μm was used as a raw material.
698 g of 2O3 powder and 1731 g of carbonyl iron having an average particle diameter of 5.3 μm were mixed in a dry ball mill in a nitrogen atmosphere for 3 hours.

【0043】新品原料1000gに対し、ボンド磁石ス
クラップの処理より得られた還元物200gをボールミ
ルにより混合した。この状態でr値は11.4となって
いる。この混合物に、さらに径が10mm以下の粒状金
属カルシウム748.9gを混合し、それを鋼製容器に
入れ、ガス雰囲気炉中でアルゴンガス雰囲気下1150
℃の温度で1時間加熱して還元拡散を行った後冷却し
た。引き続き同じ炉内に窒素ガスを流しながら450℃
で20時間加熱して窒化した後冷却した。得られた反応
物をイオン交換水中に投入して崩壊し、副生するCa
(OH)2をデカンテーションにより除去し、酸洗浄し
た。次に洗浄済みスラリーを濾過し、固形分をを乾燥し
てSm2Fe17N3系合金粉末を得た。
200 g of a reduced product obtained from the treatment of the bonded magnet scrap was mixed with 1000 g of a new raw material by a ball mill. In this state, the r value is 11.4. To this mixture, 748.9 g of granular metallic calcium having a diameter of 10 mm or less was further mixed, and the mixture was placed in a steel container and placed in a gas atmosphere furnace under an argon gas atmosphere under 1150 g.
The mixture was heated at a temperature of 1 ° C. for 1 hour to perform reduction diffusion, and then cooled. 450 ° C while continuously flowing nitrogen gas into the same furnace
For 20 hours, and then cooled. The obtained reactant is put into ion-exchanged water to disintegrate,
(OH) 2 was removed by decantation and acid washed. Next, the washed slurry was filtered and the solid content was dried to obtain an Sm2Fe17N3 alloy powder.

【0044】得られた合金粉末は次のような磁気特性を
示した。 iHc 11.8kOe Br 12.0kG BHmax 31.5MGOe 但し、合金粉末の平均粒径は2.8μmである。
The obtained alloy powder exhibited the following magnetic properties. iHc 11.8 kOe Br 12.0 kG BHmax 31.5 MGOe However, the average particle size of the alloy powder is 2.8 μm.

【0045】ここで、磁気特性は次のようにして測定し
た。Sm2Fe17N3系合金粉末を最大磁場20kOeの
VSM(振動試料型磁力計)で磁気特性を測定する。こ
のとき合金粉末微粉をパラフィンワックスと共にサンプ
ルケースに詰め、ドライヤーでパラフィンワックスを溶
融させてから20kOeの配向磁場でその磁化容易軸を
揃え、着磁磁場40kOeでパルス着磁する。またSm
2Fe17N3金属間化合物の真密度は7.66g/mlと
し反磁場補正せずに評価する。
Here, the magnetic characteristics were measured as follows. The magnetic characteristics of the Sm2Fe17N3 alloy powder are measured by a VSM (vibrating sample magnetometer) having a maximum magnetic field of 20 kOe. At this time, the alloy powder is packed in a sample case together with paraffin wax, the paraffin wax is melted by a drier, the axes of easy magnetization are aligned with an orientation magnetic field of 20 kOe, and pulse magnetization is performed with a magnetization magnetic field of 40 kOe. Also Sm
The true density of the 2Fe17N3 intermetallic compound was 7.66 g / ml and evaluated without demagnetizing field correction.

【0046】[実施例2]新品のSm2Fe17N3合金粉
末を得るために原料として、平均粒径0.3μmのSm
2O3の粉末650gと、平均粒径1.3μmのα−Fe
2O3の粉末2316gをボールミルを用いてイオン交換
水中で2時間湿式混合し乾燥した。この乾燥品を水素ガ
スを流通させながら600℃で4時間加熱処理をしてS
m2O3とα−Feの混合物を得た。このようにして得ら
れた新品原料1000gに対し、実施例1と同様にして
得られるボンド磁石スクラップ還元処理品200gを混
合し、それ以外は実施例1と同様にしてSm2Fe17N3
系合金粉末を得た。この状態でr値は11.4となって
いる。
Example 2 As a raw material for obtaining a new Sm 2 Fe 17 N 3 alloy powder, Sm having an average particle size of 0.3 μm was used.
650 g of 2O3 powder and α-Fe having an average particle size of 1.3 μm
2316 g of 2O3 powder was wet-mixed in ion-exchanged water for 2 hours using a ball mill and dried. This dried product is heated at 600 ° C. for 4 hours while flowing hydrogen gas to form S.
A mixture of m2 O3 and α-Fe was obtained. To 1000 g of the new raw material thus obtained, 200 g of a bonded magnet scrap-reduced product obtained in the same manner as in Example 1 was mixed, and otherwise the same as in Example 1 except for Sm2Fe17N3.
A system alloy powder was obtained. In this state, the r value is 11.4.

【0047】得られた合金粉末は次のような磁気特性を
示した。 iHc 16.2kOe Br 12.5kG BHmax 36.4MGOe 但し、合金粉末の平均粒径は2.6μmである。
The obtained alloy powder exhibited the following magnetic properties. iHc 16.2 kOe Br 12.5 kG BHmax 36.4 MGOe However, the average particle size of the alloy powder is 2.6 μm.

【0048】[実施例3]新品のSm2Fe17N3合金粉
末を得るために原料として、平均粒径0.3μmのSm
2O3の粉末650gと、平均粒径1.3μmのα−Fe
2O3の粉末2316gをボールミルを用いてイオン交換
水中で2時間湿式混合し乾燥し、次に大気下1100℃
で7時間加熱し、冷却後再度ボールミルを用いてイオン
交換水中で8時間湿式粉砕を行ない乾燥して、複酸化物
を含んだ目標組成の平均粒径0.9μmの原料粉末を得
た。得られた粉末を、Cu−Kαを発生源とするX線回
折測定を行った結果、2θで35.6°のピークからα
−Fe2O3が、22.8゜、31.9゜、32.7゜、
33.1゜、46.7゜、58.9゜のピークから、S
mFeO3結晶が生成していることが確認された。
Example 3 As a raw material for obtaining a new Sm 2 Fe 17 N 3 alloy powder, Sm having an average particle size of 0.3 μm was used.
650 g of 2O3 powder and α-Fe having an average particle size of 1.3 μm
2316 g of 2O3 powder was wet-mixed in ion-exchanged water for 2 hours using a ball mill and dried, and then dried at 1100 ° C. in air.
For 7 hours, and after cooling, wet grinding was performed again in ion-exchanged water for 8 hours using a ball mill, followed by drying to obtain a raw material powder having a target composition and an average particle diameter of 0.9 μm containing a double oxide. The obtained powder was subjected to X-ray diffraction measurement using Cu-Kα as a source.
-Fe2O3 is 22.8%, 31.9%, 32.7%,
From peaks at 33.1, 46.7, and 58.9, S
It was confirmed that mFeO3 crystals were formed.

【0049】得られた酸化物原料1000gに対し、実
施例1と同じボンド磁石スクラップについて、大気中8
50℃で5時間焼成し、振動ミルを使用して平均粒径
1.9μmまで粉砕したもの200g混合した。この状
態でr値は10.7となっている。
With respect to 1000 g of the obtained oxide raw material, the same bonded magnet scrap as that of Example 1
The mixture was baked at 50 ° C. for 5 hours and ground to a mean particle size of 1.9 μm using a vibration mill, and 200 g of the mixture was mixed. In this state, the r value is 10.7.

【0050】この混合物を水素ガスを流通させながら6
00℃で4時間加熱処理し、得られた粉末のX線回折測
定を行った結果、35.6°のα−Fe2O3のピークは
消失し、代わりに44.7゜にα−Feのピークが検出
された。また、SmFeO3結晶に関するピークは変化
なく存在していた。その後は実施例1と同様にしてSm
2Fe17N3系合金粉末を得た。
The mixture was mixed with 6
The powder was heat-treated at 00 ° C for 4 hours, and the obtained powder was subjected to X-ray diffraction measurement. As a result, the peak of α-Fe2O3 at 35.6 ° disappeared, and the peak of α-Fe at 44.7 ° instead. was detected. Further, the peak relating to the SmFeO3 crystal was present without any change. After that, Sm
2Fe17N3 alloy powder was obtained.

【0051】得られた合金粉末は次のような磁気特性を
示した。 iHc 10.5kOe Br 11.6kG BHmax 32.4MGOe 但し、合金粉末の平均粒径は2.8μmである。
The obtained alloy powder exhibited the following magnetic properties. iHc 10.5 kOe Br 11.6 kG BHmax 32.4 MGOe However, the average particle size of the alloy powder is 2.8 μm.

【0052】[実施例4]新品のSm2Fe17N3合金粉
末を得るための原料として平均粒径0.3μmのSm2
O3の粉末698gと平均粒径5.3μmのカルボニル
鉄1731gを、窒素雰囲気の乾式ボールミルで3時間
混合した。この混合品1000gに対し、実施例1と同
じボンド磁石スクラップについて、実施例1と同様に大
気中850℃で5時間焼成し、ボールミルを使用して平
均粒径3.4μmまで粉砕したもの200gを混合し
た。この状態でr値は11.4となっている。この混合
物に、さらに10mm以下の粒状金属カルシウム74
8.9gと混合し、それを鋼製容器に入れ、ガス雰囲気
炉中でアルゴンガス雰囲気下1150℃の温度で1時間
加熱して還元拡散を行った後冷却した。その後は、実施
例1と同様にして次に示す磁気特性を有するSm2Fe1
7N3系合金粉末を得た。
Example 4 As a raw material for obtaining a new Sm2Fe17N3 alloy powder, Sm2 having an average particle size of 0.3 μm was used.
698 g of O3 powder and 1731 g of carbonyl iron having an average particle size of 5.3 μm were mixed in a dry ball mill in a nitrogen atmosphere for 3 hours. With respect to 1000 g of this mixture, the same bonded magnet scrap as in Example 1 was baked in the air at 850 ° C. for 5 hours in the same manner as in Example 1, and 200 g of the ground magnet scrap was pulverized to an average particle size of 3.4 μm using a ball mill. Mixed. In this state, the r value is 11.4. This mixture is further mixed with granular metallic calcium 74 of 10 mm or less.
The mixture was placed in a steel container, heated in an atmosphere of argon gas at a temperature of 1150 ° C. for 1 hour, subjected to reductive diffusion, and then cooled. Thereafter, in the same manner as in Example 1, Sm2Fe1 having the following magnetic characteristics was used.
7N3 alloy powder was obtained.

【0053】得られた合金粉末は次のような磁気特性を
示した。 iHc 10.2kOe Br 11.8kG BHmax 29.8MGOe 平均粒径 3.4μm
The obtained alloy powder exhibited the following magnetic properties. iHc 10.2 kOe Br 11.8 kG BHmax 29.8 MGOe Average particle size 3.4 μm

【0054】[比較例1]新品のSm2Fe17N3合金粉
末を得るために原料として、平均粒径0.3μmのSm
2O3の粉末650gと、平均粒径1.3μmのα−Fe
2O3の粉末2688gをボールミルを用いてイオン交換
水中で2時間湿式混合し乾燥した。この乾燥品を水素ガ
スを流通させながら600℃で4時間加熱処理をしてS
m2O3とα−Feの混合物を得た。このようにして得ら
れた新品原料に対し、ボンド磁石スクラップ処理品を一
切混合せず、その後は実施例1と同様にしてSm2Fe1
7N3系合金粉末を得た。この状態でr値は11.4とな
っている。
Comparative Example 1 As a raw material for obtaining a new Sm2Fe17N3 alloy powder, Sm having an average particle size of 0.3 μm was used.
650 g of 2O3 powder and α-Fe having an average particle size of 1.3 μm
2688 g of 2O3 powder was wet-mixed in ion-exchanged water for 2 hours using a ball mill and dried. This dried product is heated at 600 ° C. for 4 hours while flowing hydrogen gas to form S.
A mixture of m2 O3 and α-Fe was obtained. The new raw material obtained in this manner was not mixed with a bonded magnet scrap-treated product at all, and thereafter Sm2Fe1 was treated in the same manner as in Example 1.
7N3 alloy powder was obtained. In this state, the r value is 11.4.

【0055】得られた合金粉末は次のような磁気特性を
示した。 iHc 12.4kOe Br 11.2kG BHmax 26.7MGOe 但し、合金粉末の平均粒径は2.9μmである。
The obtained alloy powder exhibited the following magnetic properties. iHc 12.4 kOe Br 11.2 kG BHmax 26.7 MGOe However, the average particle size of the alloy powder is 2.9 μm.

【0056】[0056]

【発明の効果】以上説明したように、本発明に従いSm
−Fe−N系合金粉末を再生処理することで、再生品で
ありながら高品質な磁気特性を有する合金粉末を得るこ
とができる。しかも、ボンド磁石スクラップを大気中高
温で焼成しているため、複酸化物が生成し、これを新品
原料に混合しているので還元拡散反応の反応性がより高
くなり、その結果、従来より低温での還元拡散反応が可
能となり、Feに比較して高揮発成分でしかも高価なS
mの仕込み比率を削減することができる。
As described above, according to the present invention, Sm
-By regenerating the Fe-N-based alloy powder, it is possible to obtain an alloy powder having high-quality magnetic characteristics while being a recycled product. Moreover, since the bonded magnet scrap is fired at a high temperature in the atmosphere, a double oxide is generated, and the mixed oxide is mixed with a new raw material, so that the reactivity of the reduction diffusion reaction becomes higher. , Which has a higher volatile component than Fe and is expensive.
m can be reduced.

【0057】また、この再生方法は、新品のSm−Fe
−N系合金粉末を得るための製造設備を使用することが
できるため、特別な付加的な設備を必要とせず、経済的
な再生が可能である。
This regenerating method uses a new Sm-Fe
Since the production equipment for obtaining the -N-based alloy powder can be used, no special additional equipment is required, and economical regeneration is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明品と比較品の保磁力とr値の関係を示す
特性図
FIG. 1 is a characteristic diagram showing a relationship between a coercive force and an r value of a product of the present invention and a comparative product.

【図2】本発明品と比較品の保磁力と還元拡散反応温度
の関係を示す特性図
FIG. 2 is a characteristic diagram showing a relationship between coercive force and reduction / diffusion reaction temperature of a product of the present invention and a comparative product.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C22C 33/02 H01F 1/06 A Fターム(参考) 4K017 AA01 BA06 BB12 CA06 DA04 EA03 EH01 EH18 FA01 FB03 FB10 4K018 AA27 AD10 BA13 BA20 BD01 KA46 5E040 AA03 AA19 CA01 HB00 HB01 HB09 HB11 HB15 HB17 NN18 5E062 CC05 CD04 CG01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) // C22C 33/02 H01F 1/06 A F term (reference) 4K017 AA01 BA06 BB12 CA06 DA04 EA03 EH01 EH18 FA01 FB03 FB10 4K018 AA27 AD10 BA13 BA20 BD01 KA46 5E040 AA03 AA19 CA01 HB00 HB01 HB09 HB11 HB15 HB17 NN18 5E062 CC05 CD04 CG01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Sm−Fe−N系合金粉末と樹脂からな
るボンド磁石あるいはそれに使用するコンパウンド等の
ボンド磁石用組成物のスクラップから、Sm−Fe−N
系合金粉末を再生する方法において、次の工程をその順
で備えることを特徴とするSm−Fe−N系合金粉末の
再生方法。 (a)該ボンド磁石用組成物のスクラップを酸素存在下
600〜1500℃の温度範囲で焼成する。 (b)得られた焼成物を平均粒径が1μm〜10μmの
範囲に粉砕し、必要ならば、水素あるいは炭化水素によ
る還元ガス雰囲気中300〜900℃の温度範囲で還元
処理する。 (c)新品の合金粉末を製造するのに必要とされるSm
成分原料とFe成分原料を所定比率に混合した新品原料
混合物と、(b)工程で得られた処理物を混合し、この
混合物中のSm酸化物を金属状態まで還元するのに必要
な理論量の1.1〜2.0倍の金属Caあるいは水素化
Caを混合し、900〜1200℃の温度範囲で加熱す
る還元拡散処理を行う。 (d)還元拡散処理により得られた生成物を、窒素、あ
るいは窒素を含む化合物のガス雰囲気中300〜700
℃の温度範囲で加熱して窒化処理を行う。 (e)(d)工程で得られた処理物を水に入れて崩壊
し、水洗、酸洗浄を行う。但し、窒化は還元拡散処理の
後に行っても構わない。
An Sm-Fe-N alloy from a bonded magnet composed of a Sm-Fe-N-based alloy powder and a resin or a bonded magnet composition such as a compound used for the same.
A method for regenerating an Sm-Fe-N-based alloy powder, comprising the following steps in the order of regenerating the Sm-Fe-N-based alloy powder. (A) firing the scrap of the bonded magnet composition in a temperature range of 600 to 1500 ° C. in the presence of oxygen; (B) The obtained fired product is pulverized to have an average particle size of 1 μm to 10 μm, and if necessary, reduced in a reducing gas atmosphere of hydrogen or hydrocarbon at a temperature range of 300 to 900 ° C. (C) Sm required to produce a new alloy powder
The new raw material mixture obtained by mixing the component raw materials and the Fe component raw materials at a predetermined ratio, and the treated product obtained in the step (b) are mixed, and the stoichiometric amount required to reduce the Sm oxide in the mixture to a metal state Is reduced and diffused by mixing metal Ca or hydrogenated Ca 1.1 to 2.0 times of the above and heating in a temperature range of 900 to 1200 ° C. (D) The product obtained by the reduction diffusion treatment is placed in a gas atmosphere of nitrogen or a compound containing nitrogen in a gas atmosphere of 300 to 700.
A nitriding treatment is performed by heating in a temperature range of ° C. (E) The treated product obtained in the step (d) is put in water to disintegrate, and washed with water and acid. However, nitriding may be performed after the reduction diffusion treatment.
【請求項2】 前記(c)工程において、還元拡散処理
を行うべき前記混合物は、r値が10.6〜12.4の
範囲となるように調整することを特徴とする請求項1に
記載のSm−Fe−N系合金粉末の再生方法。但し、r
値は次式で定義され、ASm及びAFeは、それぞれ原料酸
化物中のSm及びFeの原子数である。r=ASm/(A
Sm+AFe)×100
2. The method according to claim 1, wherein in the step (c), the mixture to be subjected to the reduction diffusion treatment is adjusted so that the r value is in a range of 10.6 to 12.4. The method for regenerating the Sm-Fe-N-based alloy powder described above Where r
The value is defined by the following equation, where ASm and AFe are the number of atoms of Sm and Fe in the raw material oxide, respectively. r = ASm / (A
Sm + AFe) × 100
【請求項3】 前記(c)工程において、前記新品原料
混合物100重量部に対し、(b)工程で得られる処理
物を最大で400重量部混合することを特徴とする請求
項1に記載のSm−Fe−N系合金粉末の再生方法。
3. The process according to claim 1, wherein in the step (c), the processed product obtained in the step (b) is mixed at a maximum of 400 parts by weight with respect to 100 parts by weight of the new raw material mixture. A method for regenerating an Sm-Fe-N alloy powder.
JP33829698A 1998-11-30 1998-11-30 Method for regenerating Sm-Fe-N alloy powder Expired - Fee Related JP3624724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33829698A JP3624724B2 (en) 1998-11-30 1998-11-30 Method for regenerating Sm-Fe-N alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33829698A JP3624724B2 (en) 1998-11-30 1998-11-30 Method for regenerating Sm-Fe-N alloy powder

Publications (2)

Publication Number Publication Date
JP2000160211A true JP2000160211A (en) 2000-06-13
JP3624724B2 JP3624724B2 (en) 2005-03-02

Family

ID=18316807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33829698A Expired - Fee Related JP3624724B2 (en) 1998-11-30 1998-11-30 Method for regenerating Sm-Fe-N alloy powder

Country Status (1)

Country Link
JP (1) JP3624724B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217052A (en) * 2001-01-22 2002-08-02 Sumitomo Metal Ind Ltd Method of regenerating rare earth magnet
JP2003051418A (en) * 2001-01-22 2003-02-21 Sumitomo Metal Ind Ltd Method for recycling rare-earth magnet scrap
JP2006269637A (en) * 2005-03-23 2006-10-05 Sumitomo Metal Mining Co Ltd Rare earth-transition metal-nitrogen system magnet powder, its manufacturing method and composite for bond magnet using same and bond magnet
JP2012069962A (en) * 2011-10-19 2012-04-05 Asahi Kasei Chemicals Corp Solid material for magnets
JP2019167565A (en) * 2018-03-22 2019-10-03 日亜化学工業株式会社 Method of producing anisotropic magnetic powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217052A (en) * 2001-01-22 2002-08-02 Sumitomo Metal Ind Ltd Method of regenerating rare earth magnet
JP2003051418A (en) * 2001-01-22 2003-02-21 Sumitomo Metal Ind Ltd Method for recycling rare-earth magnet scrap
JP2006269637A (en) * 2005-03-23 2006-10-05 Sumitomo Metal Mining Co Ltd Rare earth-transition metal-nitrogen system magnet powder, its manufacturing method and composite for bond magnet using same and bond magnet
JP2012069962A (en) * 2011-10-19 2012-04-05 Asahi Kasei Chemicals Corp Solid material for magnets
JP2019167565A (en) * 2018-03-22 2019-10-03 日亜化学工業株式会社 Method of producing anisotropic magnetic powder

Also Published As

Publication number Publication date
JP3624724B2 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
JP3171558B2 (en) Magnetic materials and bonded magnets
KR20000048146A (en) Rare earth/iron/boron-based per manent magnet alloy composition
EP1026706B1 (en) FEEDSTOCK POWDER FOR R-Fe-B MAGNET AND PROCESS FOR PRODUCING R-Fe-B MAGNET
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
JP2000160211A (en) METHOD FOR REGENERATING Sm-Fe-N BASE ALLOY POWDER
JP2015120958A (en) Rare earth-iron-nitrogen based magnetic alloy and method for manufacturing the same
JP2004091811A (en) Method for manufacturing raw powder of rare-earth magnet
JP2005272986A (en) Rare earth-transition metal-nitrogen-based magnet alloy powder, manufacturing method therefor and rare-earth bond magnet using it
CN116168940A (en) Rare earth magnet and method for producing same
JP3770734B2 (en) Method for producing Sm-Fe-N alloy powder
US7338566B2 (en) Alloy for sm-co based magnet, method for production thereof, sintered magnet and bonded magnet
JPH0372124B2 (en)
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP3336028B2 (en) Method for producing rare earth-transition metal-nitrogen alloy powder
JP2000040611A (en) Resin coupled permanent magnet material and magnetization thereof as well as encoder using the same
JP2000294416A (en) Rare earth bonded magnet
JP2002217052A (en) Method of regenerating rare earth magnet
JP3567742B2 (en) Method for producing rare earth Fe-based alloy powder
JP2002038206A (en) Method for producing rare earth-transition metal- nitrogen-based alloy powder
JP2006299402A (en) Raw material alloy for r-t-b system sintered magnet and r-t-b system sintered magnet and producing method therefor
JPH05247600A (en) Magnet material and its production
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JP2001044013A (en) Reproducing method for rare earth/iron/nitride magnet material
JPH05166615A (en) Production of magnet and mother alloy for it
JP4127083B2 (en) Rare earth-transition metal-nitrogen based alloy powder manufacturing method, rare earth-transition metal-nitrogen based alloy powder and bonded magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees