JP2000159508A - Ozone generator - Google Patents

Ozone generator

Info

Publication number
JP2000159508A
JP2000159508A JP10334701A JP33470198A JP2000159508A JP 2000159508 A JP2000159508 A JP 2000159508A JP 10334701 A JP10334701 A JP 10334701A JP 33470198 A JP33470198 A JP 33470198A JP 2000159508 A JP2000159508 A JP 2000159508A
Authority
JP
Japan
Prior art keywords
cooling water
cylindrical container
pair
end plates
tube group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10334701A
Other languages
Japanese (ja)
Inventor
Yoko Ikeda
田 葉 子 池
Yoshio Mochida
田 芳 雄 餅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10334701A priority Critical patent/JP2000159508A/en
Publication of JP2000159508A publication Critical patent/JP2000159508A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ozone generator of which the cooling efficiency is improved. SOLUTION: This ozone generator has the cooling water inlet 21 and the cooling water outlet 22, is equipped with the cylindrical vessel 10 into which the cooling water flows and a pair of end plates 17, 17 that are arranged in the cylindrical vessel 10. The stainless steel tube group 11a comprising a plurality of stainless tube pipes 11 are arranged in the couple of the end plates 17, 17. Discharge tubes 12 are set each inside individual stainless tubes 11, respectively. The baffle plate 26 is set between the cooling water inlet 21 and the stainless steel pipe group 11a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば浄水処理シ
ステムに適用されるオゾン発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozone generator applied to, for example, a water purification system.

【0002】[0002]

【従来の技術】河川・湖沼を水源とする場合、水質の悪
化により従来の浄水処理では臭気成分や有害成分の除去
が行えないので、オゾンによる分解と生物活性炭による
除去工程を組み入れた高度浄水処理システムが注目され
ている。
2. Description of the Related Art When a river or lake is used as a water source, the odorous and harmful components cannot be removed by conventional water purification treatment due to deterioration of water quality. The system is drawing attention.

【0003】図12に高度浄水処理システムの系統構成
の一例を示す。河川・湖沼から取水した被処理水1は凝
集沈殿槽2において、被処理水に含まれる成分が凝集沈
殿される。その後被処理水1は砂濾過槽3で更に濾過さ
れ、オゾン反応槽4に導かれる。オゾン反応槽4は、そ
の内部にオゾン発生装置6で生成されたオゾンを注入す
るための散気管5を有している。散気管5から注入され
たオゾンは、オゾン反応槽4内の被処理水に含まれる臭
気成分、有機物をその強力な酸化作用にて分解する。そ
の後、被処理水1は生物活性炭槽7へ送られ、被処理水
1に含まれる分解生成物は生物活性炭槽7にて除去され
る。
FIG. 12 shows an example of a system configuration of an advanced water purification system. In the coagulation sedimentation tank 2, components of the water to be treated 1 taken from rivers and lakes are coagulated and settled. Thereafter, the water to be treated 1 is further filtered in the sand filtration tank 3 and led to the ozone reaction tank 4. The ozone reactor 4 has an air diffuser 5 for injecting the ozone generated by the ozone generator 6 into the inside thereof. The ozone injected from the air diffuser 5 decomposes odor components and organic substances contained in the water to be treated in the ozone reaction tank 4 by its strong oxidizing action. Thereafter, the water to be treated 1 is sent to the biological activated carbon tank 7, and the decomposition products contained in the water to be treated 1 are removed in the biological activated carbon tank 7.

【0004】図13にオゾン発生装置6の概略を示す。
図13に示すように、オゾン発生装置6は冷却水入口2
1と冷却水出口22とを有する円筒容器10と、円筒容
器10内に配置された多数のステンレス管11(電極
管)とを有し、各ステンレス管11内には図示しない放
電管が挿入されている。また多数のステンレス管11
は、円筒容器10内の一対の端板により固定されてい
る。
FIG. 13 schematically shows an ozone generator 6.
As shown in FIG. 13, the ozone generator 6 is connected to the cooling water inlet 2.
1 and a plurality of stainless steel tubes 11 (electrode tubes) arranged in the cylindrical container 10, and a discharge tube (not shown) is inserted into each of the stainless steel tubes 11. ing. Many stainless steel tubes 11
Is fixed by a pair of end plates in the cylindrical container 10.

【0005】図13において、ステンレス管11と放電
管との間で放電が行われて、原料空気の一部がオゾンと
なる。この間冷却水入口21から円筒容器10へ入った
冷却水は、規則的に配置された多数のステンレス管11
からなるステンレス管群11aの間を流れる間にステン
レス管11内の空気を冷却して温度上昇した後、冷却水
出口22から流出する。
In FIG. 13, a discharge is performed between the stainless steel tube 11 and the discharge tube, and a part of the raw material air becomes ozone. During this time, the cooling water that has entered the cylindrical container 10 from the cooling water inlet 21 is filled with a large number of regularly arranged stainless steel tubes 11.
The air in the stainless steel tube 11 is cooled while flowing between the stainless steel tube groups 11a, and the temperature of the air is raised.

【0006】[0006]

【発明が解決しようとする課題】冷却水入口21から円
筒容器10に入った冷却水は、ステンレス管11の外側
を流れる間に放電により発熱した空気を冷却しながら次
第にその温度は上昇していく。ステンレス管11の両端
を端板にシール溶接するには、円筒容器10内面と最外
周のステンレス管11との間に、一定の間隔が必要であ
り、必然的に円筒容器10内面とステンレス管群11a
との間に隙間が生ずる。冷却水入口21から速い流速で
円筒容器10内に入った冷却水のほとんどは、ステンレ
ス管11の長手方向に分散することなく円筒容器10内
面とステンレス管群11aとの隙間あるいは冷却水入口
21に近いステンレス管群11aの内部を通って冷却水
出口22へと向かう。このためステンレス管群11a内
部、特に冷却水入口21から離れたステンレス管群11
aの内部を通過する冷却水量が減って冷却効率が低下す
る恐れがある。冷却効率が低下するとステンレス管11
と放電管との間の放電の際に発生する熱を十分に除去で
きなくなり、空気温度が上昇する。放電に使用する単位
電力あたりのオゾン発生量(オゾン収率)は、空気温度
が高くなるほど低下するので、冷却効率が低下して空気
温度が上昇するとオゾン収率は低下する。
The temperature of the cooling water entering the cylindrical container 10 from the cooling water inlet 21 gradually rises while cooling the air generated by the discharge while flowing outside the stainless steel tube 11. . In order to seal both ends of the stainless steel tube 11 to the end plate, a certain distance is required between the inner surface of the cylindrical container 10 and the outermost stainless steel tube 11, and inevitably the inner surface of the cylindrical container 10 and the stainless steel tube group. 11a
And a gap is generated between them. Most of the cooling water that has entered the cylindrical container 10 at a high flow rate from the cooling water inlet 21 does not disperse in the longitudinal direction of the stainless steel tube 11 and enters the gap between the inner surface of the cylindrical container 10 and the stainless steel tube group 11 a or the cooling water inlet 21. It goes to the cooling water outlet 22 through the inside of the nearby stainless steel tube group 11a. For this reason, the stainless steel tube group 11a inside the stainless steel tube group 11a,
There is a possibility that the amount of cooling water passing through the inside of “a” decreases and the cooling efficiency decreases. When the cooling efficiency decreases, the stainless steel pipe 11
It is not possible to sufficiently remove the heat generated during the discharge between the discharge tube and the discharge tube, and the air temperature rises. Since the amount of ozone generated per unit electric power (ozone yield) used for discharging decreases as the air temperature increases, the ozone yield decreases as the cooling efficiency decreases and the air temperature increases.

【0007】本発明は、上述した事情を考慮してなされ
たもので、冷却効率を改善することにより、オゾン収率
の高いオゾン発生装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide an ozone generator having a high ozone yield by improving cooling efficiency.

【0008】[0008]

【課題を解決するための手段】本発明は、冷却水入口と
冷却水出口を有し冷却水が流入する円筒容器と、この円
筒容器内に配置された一対の端板と、一対の端板間にお
いて円筒容器の軸線方向に延びるとともに、各々の内部
に被覆管が挿着された多数の電極管からなる電極管群を
備え、冷却水入口と電極管群との間に、緩衝板を設けた
ことを特徴とするオゾン発生装置、冷却水入口と冷却水
出口を有し冷却水が流入する円筒容器と、この円筒容器
内に配置された一対の端板と、一対の端板間において円
筒容器の軸線方向に延びるとともに、各々の内部に被覆
管が挿着された多数の電極管からなる電極管群を備え、
冷却水入口と電極管群との間に、一対の端板間に延びる
多孔板を設けたことを特徴とするオゾン発生装置、冷却
水入口と冷却水出口を有し冷却水が流入する円筒容器
と、この円筒容器内に配置された一対の端板と、一対の
端板間において円筒容器の軸線方向に延びるとともに、
各々の内部に被覆管が挿着された多数の電極管からなる
電極管群を備え、円筒容器と電極管群との間に、円筒容
器内面から半径方向内方へ延びるショートパス防止板を
設けたことを特徴とするオゾン発生装置、冷却水入口と
冷却水出口を有し冷却水が流入する円筒容器と、この円
筒容器内に配置された一対の端板と、一対の端板間にお
いて円筒容器の軸線方向に延びるとともに、各々の内部
に被覆管が挿着された多数の電極管からなる電極管群を
備え、円筒容器と電極管群との間に、一対の端板間に延
びるショートパス防止管を設けたことを特徴とするオゾ
ン発生装置、冷却水入口と冷却水出口を有し冷却水が流
入する円筒容器と、この円筒容器内に配置された一対の
端板と、一対の端板間において円筒容器の軸線方向に延
びるとともに、各々の内部に被覆管が挿着された多数の
電極管からなる電極管群を備え、電極管群内において、
各電極管の間の間隙は広い間隙から狭い間隙まで変化し
ており、広い間隙内が冷却水流入領域となっていること
を特徴とするオゾン発生装置、および冷却水入口と冷却
水出口を有し冷却水が流入する円筒容器と、この円筒容
器内に配置された一対の端板と、一対の端板間において
円筒容器の軸線方向に延びるとともに、各々の内部に被
覆管が挿着された多数の電極管からなる電極管群を備
え、電極管群内に一対の端板間に延びるとともに一側縁
が円筒容器内面に当接する仕切板を設けたことを特徴と
するオゾン発生装置である。
SUMMARY OF THE INVENTION The present invention provides a cylindrical container having a cooling water inlet and a cooling water outlet, through which cooling water flows, a pair of end plates disposed in the cylindrical container, and a pair of end plates. An electrode tube group consisting of a number of electrode tubes, each of which extends in the axial direction of the cylindrical container therebetween, and a cladding tube is inserted therein, and a buffer plate is provided between the cooling water inlet and the electrode tube group An ozone generator, a cylindrical container having a cooling water inlet and a cooling water outlet, through which cooling water flows, a pair of end plates disposed in the cylindrical container, and a cylinder between the pair of end plates. While extending in the axial direction of the container, provided with an electrode tube group consisting of a number of electrode tubes in each of which a cladding tube is inserted,
An ozone generator characterized by providing a perforated plate extending between a pair of end plates between a cooling water inlet and an electrode tube group, a cylindrical container having a cooling water inlet and a cooling water outlet, into which cooling water flows. And, a pair of end plates arranged in the cylindrical container, while extending in the axial direction of the cylindrical container between the pair of end plates,
An electrode tube group consisting of a large number of electrode tubes in each of which a cladding tube is inserted, and a short path prevention plate extending radially inward from the inner surface of the cylindrical container is provided between the cylindrical container and the electrode tube group. An ozone generator, a cylindrical container having a cooling water inlet and a cooling water outlet, through which cooling water flows, a pair of end plates disposed in the cylindrical container, and a cylinder between the pair of end plates. An electrode tube group consisting of a large number of electrode tubes, each of which extends in the axial direction of the container and has a coating tube inserted therein, is provided between the pair of end plates between the cylindrical container and the electrode tube group. An ozone generator characterized by having provided a path prevention pipe, a cylindrical container having a cooling water inlet and a cooling water outlet, through which cooling water flows, a pair of end plates arranged in the cylindrical container, and a pair of While extending in the axial direction of the cylindrical container between the end plates, Inside an electrode tube bundle comprising a plurality of electrode tubes cladding is inserted in, in the electrode tube group,
The gap between each electrode tube changes from a wide gap to a narrow gap. The ozone generator has a feature that the wide gap is a cooling water inflow area, and has a cooling water inlet and a cooling water outlet. A cylindrical container into which cooling water flows, a pair of end plates disposed in the cylindrical container, and a pair of end plates extending in the axial direction of the cylindrical container, and a cladding tube is inserted into each of them. An ozone generator comprising: an electrode tube group including a large number of electrode tubes; and a partition plate extending between a pair of end plates and having one side edge in contact with the inner surface of the cylindrical container in the electrode tube group. .

【0009】本発明によれば冷却水入口から円筒容器内
に流入する冷却水を十分電極管群内にゆき渡らせること
ができる。電極管を十分に冷却した冷却水は、その後冷
却水出口から流出する。
According to the present invention, the cooling water flowing into the cylindrical container from the cooling water inlet can be sufficiently spread into the electrode tube group. The cooling water that has sufficiently cooled the electrode tube then flows out of the cooling water outlet.

【0010】[0010]

【発明の実施の形態】第1の実施の形態 以下、図面を参照して本発明の実施の形態について説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment An embodiment of the present invention will be described below with reference to the drawings.

【0011】図1(a)(b)および図2は本発明によ
るオゾン発生装置の第1の実施の形態を示す図である。
図1(a)(b)および図2に示すように、オゾン発生
装置は冷却水入口21と冷却水出口22とを有し、冷却
水が流入する円筒容器10と、円筒容器10内に配置さ
れた一対の端板17,17と、一対の端板17,17間
に延びるとともに一対の端板17,17に固着された多
数のステレンス管(電極管)11とを備えている。
FIGS. 1A, 1B and 2 are views showing a first embodiment of an ozone generator according to the present invention.
As shown in FIGS. 1A and 1B and FIG. 2, the ozone generator has a cooling water inlet 21 and a cooling water outlet 22, and is disposed in a cylindrical container 10 into which cooling water flows, and disposed in the cylindrical container 10. A pair of end plates 17, 17, and a number of stainless steel tubes (electrode tubes) 11 extending between the pair of end plates 17, 17 and fixed to the pair of end plates 17, 17.

【0012】このうち一対の端板17,17は円筒容器
10の軸線方向の両側に配置され、また多数のステンレ
ス管11は円筒容器10の軸線方向に延びるとともにス
テンレス管群11aを構成している。
A pair of end plates 17, 17 are disposed on both sides of the cylindrical container 10 in the axial direction, and a large number of stainless tubes 11 extend in the axial direction of the cylindrical container 10 and constitute a stainless tube group 11a. .

【0013】さらに各ステンレス管11内には、放電管
12が同心円状に挿着されている。放電管12は図1
(b)に示すようにガラス管13と、ガラス管13内面
に被覆されたステンレス皮膜14とからなり、ステンレ
ス管11と放電管12との間は放電空間となっている。
A discharge tube 12 is concentrically inserted into each stainless steel tube 11. The discharge tube 12 is shown in FIG.
As shown in FIG. 2B, a glass tube 13 and a stainless steel film 14 coated on the inner surface of the glass tube 13 constitute a discharge space between the stainless tube 11 and the discharge tube 12.

【0014】なお円筒容器10は側壁6と、側壁6の両
側に設けられた一対の鏡板16,16とからなり、円筒
容器10内は一対の端板17,17により区画され、円
筒容器10の両側に入口水室18と出口水室19とが形
成されている。
The cylindrical container 10 includes a side wall 6 and a pair of end plates 16 provided on both sides of the side wall 6, and the inside of the cylindrical container 10 is defined by a pair of end plates 17, 17. An inlet water chamber 18 and an outlet water chamber 19 are formed on both sides.

【0015】また入口水室18側には原料空気入口15
が設けられ、出口水室19側にはオゾン化空気出口20
が設けられている。さらに各放電管12のステンレス皮
膜14には、ヒューズ24を介して接続板25が接続さ
れ、この接続板25は高圧硝子23に接続されている。
The raw material air inlet 15 is located on the inlet water chamber 18 side.
An ozonized air outlet 20 is provided on the outlet water chamber 19 side.
Is provided. Further, a connection plate 25 is connected to the stainless steel film 14 of each discharge tube 12 via a fuse 24, and the connection plate 25 is connected to the high-pressure glass 23.

【0016】また図1(a)(b)および図2に示すよ
うに、冷却水入口21と電極管群11aとの間に緩衝板
26が設けられ、この緩衝板26は冷却水入口21の口
径より大きな形状を有している。また緩衝板26は円筒
容器10から所定の間隔をもって、この円筒容器10内
に支持脚27を介して取付けられている。
As shown in FIGS. 1A and 1B and FIG. 2, a buffer plate 26 is provided between the cooling water inlet 21 and the electrode tube group 11a. It has a shape larger than the caliber. The buffer plate 26 is attached to the cylindrical container 10 via a support leg 27 at a predetermined interval from the cylindrical container 10.

【0017】次にこのような構成からなる本実施の形態
の作用について説明する。まず原料空気が原料空気入口
15を経て鏡板16と端板17から構成される入口水室
18に入り、その後原料空気はステンレス管11と放電
管12との間の放電空間内を流れる。この際高圧電極と
なるステンレス皮膜14と接地電極となるステンレス管
11との隙間に生ずる放電により原料空気の一部がオゾ
ンに変わってオゾン化空気が形成される。このオゾン化
空気は、鏡板16と端板17との間の出口水室19を経
て、オゾン化空気出口20から流出する。放電に伴なっ
てステンレス管11に生じる発熱は、ステンレス管11
外側を流れる冷却水により除去される。冷却水は冷却水
入口21から円筒容器10内に入り、ステンレス管11
の外側を流れ、ステンレス管11内の空気を冷却して温
度上昇した後、冷却水出口22から外部へ放出される。
Next, the operation of this embodiment having the above-described configuration will be described. First, the raw material air enters the inlet water chamber 18 composed of the end plate 16 and the end plate 17 via the raw material air inlet 15, and thereafter the raw material air flows in the discharge space between the stainless steel tube 11 and the discharge tube 12. At this time, a part of the raw material air is changed to ozone by discharge generated in a gap between the stainless steel film 14 serving as a high voltage electrode and the stainless steel tube 11 serving as a ground electrode, and ozonized air is formed. The ozonized air flows out of the ozonized air outlet 20 through the outlet water chamber 19 between the end plate 16 and the end plate 17. Heat generated in the stainless steel tube 11 due to the discharge is generated by the stainless steel tube 11.
It is removed by cooling water flowing outside. The cooling water enters the cylindrical container 10 through the cooling water inlet 21 and is
After cooling the air in the stainless steel tube 11 to raise the temperature, the air is discharged from the cooling water outlet 22 to the outside.

【0018】この間、冷却水入口21から円筒容器10
内に入った冷却水は、緩衝板26に当たった後、緩衝板
26と円筒容器10との隙間を通って円筒容器10内に
おいて、ステンレス管群10a内のステンレス管10間
での軸線方向および円周方向へ流出する。これにより冷
却水を円筒容器10内全長にわたって分散させることが
でき、円筒容器10内の冷却効率が改善される。このた
めステンレス管11内を流れる空気の温度が従来に比べ
低くなり、オゾン収率の高いオゾン発生装置を実現する
ことができる。また、緩衝板26により、冷却水入口2
1から流入する高速の冷却水がステンレス管11に直接
当たることはなく、このためステンレス管11の振動を
防ぐことができる。このため高い信頼性のオゾン発生装
置を実現できる。
During this time, the cylindrical vessel 10 is
After hitting the buffer plate 26, the cooling water that has entered the inside of the cylindrical container 10 passes through the gap between the buffer plate 26 and the cylindrical container 10 and in the axial direction between the stainless steel tubes 10 in the stainless steel tube group 10a. Outflow in the circumferential direction. Thereby, the cooling water can be dispersed over the entire length in the cylindrical container 10, and the cooling efficiency in the cylindrical container 10 is improved. For this reason, the temperature of the air flowing through the stainless tube 11 becomes lower than before, and an ozone generator with a high ozone yield can be realized. In addition, the buffer plate 26 allows the cooling water inlet 2
The high-speed cooling water flowing in from 1 does not directly hit the stainless steel tube 11, so that the vibration of the stainless steel tube 11 can be prevented. Therefore, a highly reliable ozone generator can be realized.

【0019】第2の実施の形態 次に図3および図4により本発明の第2の実施の形態に
ついて説明する。図3および図4に示す第2の実施の形
態は緩衝板26の代わりに多孔板28を設けたものであ
り、他の構成は図1および図2に示す第1の実施の形態
と略同一である。図3および図4において、図1および
図2に示す第1の実施の形態と同一部分は便宜的に図示
を簡略化して説明する。
Second Embodiment Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment shown in FIGS. 3 and 4, a perforated plate 28 is provided instead of the buffer plate 26, and other configurations are substantially the same as those in the first embodiment shown in FIGS. It is. 3 and 4, the same parts as those in the first embodiment shown in FIGS. 1 and 2 will be described in a simplified manner for convenience.

【0020】図3および図4に示すように、円筒容器1
0内に冷却水入口21を覆って多孔板28が設けられ、
この多孔板28は円筒容器10内面からの支持脚27を
介して取り付けられる。図3に示すように、この多孔板
28は四角形の板状をなし、その両端部は一対の端板1
7に接続され、一対の側縁は図4に示すように円筒容器
10内面に接続されている。このように多孔板28は円
筒容器10内面から一定の間隔を保持して設置される。
As shown in FIG. 3 and FIG.
0, a perforated plate 28 is provided to cover the cooling water inlet 21;
The perforated plate 28 is attached via support legs 27 from the inner surface of the cylindrical container 10. As shown in FIG. 3, the perforated plate 28 has a rectangular plate shape, and both end portions thereof have a pair of end plates 1.
7, and a pair of side edges are connected to the inner surface of the cylindrical container 10 as shown in FIG. In this way, the perforated plate 28 is installed at a constant distance from the inner surface of the cylindrical container 10.

【0021】図3および図4において、冷却水入口21
から円筒容器10内に入った冷却水は、多孔板28の細
孔(図示せず)を通ってステンレス管11の長手方向に
一様に流出する。これにより冷却水をステンレス管10
a内のステンレス管11間において、円筒容器10全長
にわたって均一に分散させることができ、冷却効率が改
善される。このためステンレス管11内を流れる空気の
温度が従来に比べ低くなり、オゾン収率の高いオゾン発
生装置を実現することができる。また、多孔板28を設
けたことにより、冷却水入口21から流入する高速の冷
却水がステンレス管11に当たる際の流速を低減できる
ので、ステンレス管11の振動が発生しない高い信頼性
のオゾン発生装置を実現できる。
3 and 4, the cooling water inlet 21
The cooling water having flowed into the cylindrical container 10 through the pores (not shown) of the perforated plate 28 flows out uniformly in the longitudinal direction of the stainless steel tube 11. As a result, the cooling water is
The stainless steel pipes 11a can be uniformly dispersed over the entire length of the cylindrical container 10, and the cooling efficiency is improved. For this reason, the temperature of the air flowing through the stainless tube 11 becomes lower than before, and an ozone generator with a high ozone yield can be realized. In addition, since the perforated plate 28 is provided, the flow velocity when the high-speed cooling water flowing from the cooling water inlet 21 hits the stainless steel tube 11 can be reduced, so that a highly reliable ozone generator that does not generate vibration of the stainless steel tube 11. Can be realized.

【0022】第3の実施の形態 次に図5および図6により本発明の第3の実施の形態に
ついて説明する。図5および図6に示す第3の実施の形
態は、冷却水出口22を覆って追加多孔板29を設けた
ものであり、他は図3および図4に示す第2の実施の形
態と略同一である。
Third Embodiment Next, a third embodiment of the present invention will be described with reference to FIGS. In the third embodiment shown in FIGS. 5 and 6, an additional perforated plate 29 is provided so as to cover the cooling water outlet 22, and the others are substantially the same as the second embodiment shown in FIGS. Are identical.

【0023】図5および図6に示すように、追加多孔板
29が円筒容器10内面に支持脚29aを介して取り付
けられている。図5に示すように、この追加多孔板29
は四角形の板状をなし、その両端部は一対の端板17に
接続され、一対の側縁は図6に示すように円筒容器10
内面に接続されている。このように追加多孔板29は円
筒容器10内面から一定の間隔を保持して設置される。
As shown in FIGS. 5 and 6, an additional perforated plate 29 is attached to the inner surface of the cylindrical container 10 via support legs 29a. As shown in FIG.
Has a rectangular plate shape, both ends of which are connected to a pair of end plates 17 and a pair of side edges are formed in a cylindrical container 10 as shown in FIG.
Connected to the inner surface. As described above, the additional perforated plate 29 is installed at a constant distance from the inner surface of the cylindrical container 10.

【0024】図5および図6において、冷却水入口21
から円筒容器10内に入った冷却水は、多孔板28の細
孔(図示せず)を通ってステンレス管11の長手方向に
一様に流出する。ステンレス管群11a内のステンレス
管11間を上昇した冷却水は追加多孔板29の細孔(図
示せず)を通って追加多孔板29と円筒容器10で構成
される流路40内に集合し、冷却水出口22より流出す
る。
5 and 6, the cooling water inlet 21
The cooling water having flowed into the cylindrical container 10 through the pores (not shown) of the perforated plate 28 flows out uniformly in the longitudinal direction of the stainless steel tube 11. The cooling water that has risen between the stainless tubes 11 in the stainless tube group 11a passes through the pores (not shown) of the additional perforated plate 29 and collects in the flow path 40 formed by the additional perforated plate 29 and the cylindrical container 10. Out of the cooling water outlet 22.

【0025】図5および図6において多孔板28と追加
多孔板29を設置したことにより、これら多孔板28と
追加多孔板29間に挟まれたステンレス管群11a内の
ステンレス管11間を流れる冷却水をステンレス管11
と直交させることができる。一般にステンレス管11に
直交する流れはステンレス管11に対して傾斜した流れ
よりも高い伝熱性能を与えるので、ステンレス管11内
を流れる空気の温度が従来に比べ低くなり、更にオゾン
収率の高いオゾン発生装置を実現することができる。
5 and 6, the perforated plate 28 and the additional perforated plate 29 are provided, so that the cooling flowing between the stainless tubes 11 in the stainless tube group 11a sandwiched between the perforated plate 28 and the additional perforated plate 29 is performed. Water to stainless steel tube 11
And can be orthogonal. Generally, the flow perpendicular to the stainless steel tube 11 gives higher heat transfer performance than the inclined flow to the stainless steel tube 11, so that the temperature of the air flowing through the stainless steel tube 11 becomes lower than before and the ozone yield is higher. An ozone generator can be realized.

【0026】第4の実施の形態 次に図7により本発明の第4の実施の形態について説明
する。図7に示す実施の形態は円筒容器10内にショー
トパス防止板30を設けたものであり、他は図1および
図2に示す第1の実施の形態と同一である。
Fourth Embodiment Next, a fourth embodiment of the present invention will be described with reference to FIG. The embodiment shown in FIG. 7 has a short path prevention plate 30 provided in a cylindrical container 10, and the other points are the same as those of the first embodiment shown in FIGS.

【0027】図7において、図1および図2に示す第1
の実施の形態と同一部分は便宜的に図示を簡略化して説
明する。
In FIG. 7, the first shown in FIG. 1 and FIG.
The same parts as those of the first embodiment will be described by simplifying the drawing for convenience.

【0028】図7に示すように、円筒容器10とステン
レス管群11aとの間に円周方向に所定間隔をおいて複
数のショートパス防止板30が設けられている。各ショ
ートパス防止板30は、端板17の間にわたって設置さ
れ、かつ半径方向内方へ延びている。
As shown in FIG. 7, a plurality of short path preventing plates 30 are provided between the cylindrical container 10 and the stainless steel tube group 11a at predetermined intervals in the circumferential direction. Each short path prevention plate 30 is installed between the end plates 17 and extends radially inward.

【0029】図7において、冷却水入口21から円筒容
器10内に入った冷却水は、ステンレス管11の長手方
向に分散するとともに、ステンレス管11で構成される
ステンレス管群11a内を流れる間にステンレス管11
内の空気と熱交換して次第に温度上昇し、冷却水出口2
2より流出する。この際、円筒容器10内の冷却水はス
テンレス管群11a内へと導かれるため、ステンレス管
群11a内のステンレス管11間を流れる冷却水量が増
加して冷却効率が改善される。このためステンレス管1
1内を流れる空気の温度が従来に比べ低くなり、オゾン
収率の高いオゾン発生装置を実現することができる。
In FIG. 7, the cooling water that has entered the cylindrical container 10 from the cooling water inlet 21 is dispersed in the longitudinal direction of the stainless steel pipe 11 and flows through the stainless steel pipe group 11 a composed of the stainless steel pipe 11. Stainless steel pipe 11
The temperature gradually rises by exchanging heat with the air inside, and the cooling water outlet 2
It flows out from 2. At this time, since the cooling water in the cylindrical container 10 is guided into the stainless steel tube group 11a, the amount of cooling water flowing between the stainless steel tubes 11 in the stainless steel tube group 11a increases, and the cooling efficiency is improved. For this reason, stainless steel pipe 1
The temperature of the air flowing through the inside 1 is lower than before, and an ozone generator having a high ozone yield can be realized.

【0030】なお、ショートパス防止板30を円筒容器
10内面に複数設置することにより、ステンレス管群1
1a内から円筒容器10内面側に一旦流出した冷却水を
ステンレス管群11a内へと再び戻すことができるの
で、冷却効率を一層改善することができる。
By installing a plurality of short path prevention plates 30 on the inner surface of the cylindrical container 10, the stainless steel tube group 1
Since the cooling water once flowing out of the inside of the cylindrical vessel 10 from the inside of the cylindrical tube 10 can be returned to the inside of the stainless steel tube group 11a, the cooling efficiency can be further improved.

【0031】第5の実施の形態 次に図8により本発明の第5の実施の形態について説明
する。図8に示す実施の形態は円筒容器10内にショー
トパス防止板30の代わりにショートパス防止管31を
設けたものであり、他は図7に示す実施の形態と略同一
である。
Fifth Embodiment Next, a fifth embodiment of the present invention will be described with reference to FIG. The embodiment shown in FIG. 8 is different from the embodiment shown in FIG. 7 in that a short path prevention pipe 31 is provided in the cylindrical container 10 instead of the short path prevention plate 30.

【0032】図8に示すように、円筒容器10とステン
レス管群11aとの間に複数のショートパス防止管31
が取り付けられている。このショートパス防止管31の
両端は、一対の端板17によって支持されている。
As shown in FIG. 8, a plurality of short path prevention pipes 31 are provided between the cylindrical vessel 10 and the stainless steel pipe group 11a.
Is attached. Both ends of the short path prevention tube 31 are supported by a pair of end plates 17.

【0033】図8において円筒容器10とステンレス管
群11aとの隙間を流れる冷却水は、ショートパス防止
管31によってステンレス管群11a内のステンレス管
11間へと導くことができる。
In FIG. 8, the cooling water flowing in the gap between the cylindrical vessel 10 and the stainless steel pipe group 11a can be guided between the stainless steel pipes 11 in the stainless steel pipe group 11a by the short path prevention pipe 31.

【0034】上記の構成により、冷却水のショートパス
を低減できるので、オゾン収率の高いオゾン発生装置を
実現することができる。
With the above configuration, the short path of the cooling water can be reduced, so that an ozone generator having a high ozone yield can be realized.

【0035】第6の実施の形態 次に図9により本発明の第6の実施の形態について説明
する。図9に示す実施の形態はステンレス管群11a内
の各ステンレス管11間の間隙を広い間隙から狭い間隙
まで変化させ、広い間隙を冷却水流入レーン(冷却水流
入領域)32としたものである。
Sixth Embodiment Next, a sixth embodiment of the present invention will be described with reference to FIG. In the embodiment shown in FIG. 9, the gap between the stainless tubes 11 in the stainless tube group 11a is changed from a wide gap to a narrow gap, and the wide gap is used as a cooling water inflow lane (cooling water inflow area) 32. .

【0036】図9において、図1および図2に示す第1
の実施の形態と同一部分は便宜的に図示を簡略化して説
明する。
In FIG. 9, the first type shown in FIGS.
The same parts as those of the first embodiment will be described by simplifying the drawing for convenience.

【0037】図9において冷却水入口21から円筒容器
10内に入った冷却水は、冷却水流入レーン32に沿っ
てステンレス管群11a内部へと導かれるため、ステン
レス管群11a外側の隙間を流れてショートパスする冷
却水量を低減できる。このためオゾン収率の高いオゾン
発生装置を実現することができる。
In FIG. 9, the cooling water that has entered the cylindrical vessel 10 from the cooling water inlet 21 is guided to the inside of the stainless steel tube group 11a along the cooling water inflow lane 32, and flows through the gap outside the stainless steel tube group 11a. As a result, the amount of cooling water to be short-passed can be reduced. Therefore, an ozone generator having a high ozone yield can be realized.

【0038】第7の実施の形態 次に図10により本発明の第7の実施の形態について説
明する。図10に示す実施の形態はステンレス管群11
a内に仕切板33およびショートパス防止板34を設け
たものである。
Seventh Embodiment Next, a seventh embodiment of the present invention will be described with reference to FIG. The embodiment shown in FIG.
The partition plate 33 and the short-path prevention plate 34 are provided in a.

【0039】図10において、図1および図2に示す第
1の実施の形態と同一部分は便宜的に図示を簡略化して
説明する。
In FIG. 10, the same parts as those in the first embodiment shown in FIGS. 1 and 2 will be described in a simplified manner for convenience.

【0040】ステンレス管11で構成されるステンレス
管群11aは仕切板33により複数の管群35a,35
b,35cに分割され、この仕切板33の両端は一対の
端板17に接続している。また、図10に示すように、
仕切板33の一側縁のみが円筒容器10内面に接続され
ている。冷却水入口21側および冷却水出口22側の管
群35aと35cには、各々管群35a,35cと円筒
容器10との隙間にショートパス防止板34が設置され
ている。
The stainless steel tube group 11a composed of the stainless steel tubes 11 is divided into a plurality of tube groups 35a, 35 by a partition plate 33.
b, 35c, and both ends of the partition plate 33 are connected to a pair of end plates 17. Also, as shown in FIG.
Only one side edge of the partition plate 33 is connected to the inner surface of the cylindrical container 10. In the tube groups 35a and 35c on the cooling water inlet 21 side and the cooling water outlet 22 side, short path prevention plates 34 are installed in gaps between the tube groups 35a and 35c and the cylindrical container 10, respectively.

【0041】図10において、冷却水入口21から円筒
容器10内に入った冷却水は、仕切板33と円筒容器1
0で囲まれる管群35aを通過した後、仕切板33と円
筒容器10との隙間を通って管群35bに入る。管群3
5bを通過した冷却水は仕切板33と円筒容器10との
隙間を通って管群35cに入る。仕切板33と円筒容器
10で囲まれる管群35cを通過した冷却水は冷却水出
口22へと至る。冷却水入口21および冷却水出口22
側に位置する管群35a,35cにおいては、ショート
パス防止板34によってショートパスが防止される。
In FIG. 10, the cooling water that has entered the cylindrical container 10 from the cooling water inlet 21 is separated by the partition plate 33 and the cylindrical container 1.
After passing through the tube group 35a surrounded by 0, the gas enters the tube group 35b through the gap between the partition plate 33 and the cylindrical container 10. Tube group 3
The cooling water passing through 5b passes through the gap between the partition plate 33 and the cylindrical container 10 and enters the tube group 35c. The cooling water that has passed through the pipe group 35c surrounded by the partition plate 33 and the cylindrical container 10 reaches the cooling water outlet 22. Cooling water inlet 21 and cooling water outlet 22
In the tube groups 35a and 35c located on the side, the short path is prevented by the short path prevention plate 34.

【0042】図10に示す実施形態によれば、冷却性能
阻害の原因となるステンレス管群11aと円筒容器10
との隙間を大幅に減らすことができ、冷却水がステンレ
ス管群11aを通過する際の流速を上げることにより冷
却性能が改善される。その結果、オゾン発生装置のオゾ
ン収率を一段と高めることができる。
According to the embodiment shown in FIG. 10, the stainless steel tube group 11a and the cylindrical vessel 10
Can be greatly reduced, and the cooling performance is improved by increasing the flow velocity of the cooling water when passing through the stainless steel tube group 11a. As a result, the ozone yield of the ozone generator can be further increased.

【0043】第8の実施の形態 次に図11により本発明の第8の実施の形態について説
明する。
Eighth Embodiment Next, an eighth embodiment of the present invention will be described with reference to FIG.

【0044】図11に示す実施の形態は、ステンレス管
11で構成されるステンレス管群11aが仕切板33に
より複数の管群35a,35b,35cに分割され、こ
の仕切板33の両端が一対の端板17に接続されたもの
であり、他は図10に示す第7の実施の形態と略同一で
ある。
In the embodiment shown in FIG. 11, a stainless tube group 11a composed of stainless tubes 11 is divided into a plurality of tube groups 35a, 35b, 35c by a partition plate 33, and both ends of the partition plate 33 are a pair. The other components are connected to the end plate 17, and the other components are substantially the same as those of the seventh embodiment shown in FIG.

【0045】図11に示すように、仕切板33の一端縁
が円筒容器10内面に接続されている。また冷却水入口
21側および冷却水出口22側の管群35aと35cに
は、それぞれ管群35a,35cと円筒容器10との間
に隔壁36が設置されている。この隔壁36は四角形状
となっており、各辺は一対の端板17と円筒容器10内
面に接続されている。
As shown in FIG. 11, one end edge of the partition plate 33 is connected to the inner surface of the cylindrical container 10. In the tube groups 35a and 35c on the side of the cooling water inlet 21 and the side of the cooling water outlet 22, a partition 36 is provided between the tube groups 35a and 35c and the cylindrical container 10, respectively. The partition 36 has a square shape, and each side is connected to the pair of end plates 17 and the inner surface of the cylindrical container 10.

【0046】図11において、冷却水入口21から円筒
容器10内に入った冷却水は、仕切板33と隔壁36で
囲まれる管群35aを通過した後、仕切板33と円筒容
器10との隙間を通って上下の仕切板33で囲まれる管
群35bに入る。管群35bを通過した冷却水は仕切板
33と円筒容器10との隙間を通って管群35cに入
る。仕切板33と隔壁36で囲まれる管群35cを通過
した冷却水は冷却水出口22へと至る。
In FIG. 11, the cooling water entering the cylindrical container 10 from the cooling water inlet 21 passes through a pipe group 35 a surrounded by the partition plate 33 and the partition 36, and then a gap between the partition plate 33 and the cylindrical container 10 is formed. Through the pipe group 35b surrounded by the upper and lower partition plates 33. The cooling water that has passed through the tube group 35b enters the tube group 35c through a gap between the partition plate 33 and the cylindrical container 10. The cooling water that has passed through the pipe group 35 c surrounded by the partition plate 33 and the partition 36 reaches the cooling water outlet 22.

【0047】このように本実施形態によれば、冷却性能
阻害の原因となるステンレス管群11aと円筒容器10
との間の隙間により生じるショートパスの問題を解消で
きるとともに、冷却水がステンレス管群11aを通過す
る際の流速が上がることにより冷却性能が改善される。
このためオゾン発生装置のオゾン収率を一段と高めるこ
とができる。
As described above, according to the present embodiment, the stainless steel tube group 11a and the cylindrical container 10
The problem of the short path caused by the gap between the pipes can be solved, and the cooling performance is improved by increasing the flow velocity of the cooling water when passing through the stainless steel tube group 11a.
For this reason, the ozone yield of the ozone generator can be further increased.

【0048】なお、上記各実施の形態1〜8を各々独立
した実施の形態として説明したが、これらの実施の形態
を所望により組み合せてオゾン発生装置を構成してもよ
い。
Although the first to eighth embodiments have been described as independent embodiments, these embodiments may be combined as desired to form an ozone generator.

【0049】[0049]

【発明の効果】以上詳述したように、本発明によれば、
冷却水を電極管群内に十分ゆき渡らすことにより、電極
管を十分冷却することができる。このため冷却効率を改
善することができるので、オゾン発生装置のオゾン収率
を高めることができる。
As described in detail above, according to the present invention,
By sufficiently spreading the cooling water into the electrode tube group, the electrode tubes can be sufficiently cooled. Thus, the cooling efficiency can be improved, and the ozone yield of the ozone generator can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるオゾン発生装置の第1の実施の形
態を示す概略断面図。
FIG. 1 is a schematic sectional view showing a first embodiment of an ozone generator according to the present invention.

【図2】図1に示すオゾン発生装置の横断面図。FIG. 2 is a cross-sectional view of the ozone generator shown in FIG.

【図3】本発明によるオゾン発生装置の第2の実施の形
態を示す概略断面図。
FIG. 3 is a schematic sectional view showing a second embodiment of the ozone generator according to the present invention.

【図4】図2に示すオゾン発生装置の横断面図。FIG. 4 is a cross-sectional view of the ozone generator shown in FIG.

【図5】本発明によるオゾン発生装置の第3の実施の形
態を示す概略断面図。
FIG. 5 is a schematic sectional view showing a third embodiment of the ozone generator according to the present invention.

【図6】図5に示すオゾン発生装置の横断面図。FIG. 6 is a cross-sectional view of the ozone generator shown in FIG.

【図7】本発明によるオゾン発生装置の第4の実施の形
態を示す横断面図。
FIG. 7 is a cross-sectional view showing a fourth embodiment of the ozone generator according to the present invention.

【図8】本発明によるオゾン発生装置の第5の実施の形
態を示す横断面図。
FIG. 8 is a cross-sectional view showing a fifth embodiment of the ozone generator according to the present invention.

【図9】本発明によるオゾン発生装置の第6の実施の形
態を示す横断面図。
FIG. 9 is a cross-sectional view showing a sixth embodiment of the ozone generator according to the present invention.

【図10】本発明によるオゾン発生装置の第7の実施の
形態を示す横断面図。
FIG. 10 is a cross-sectional view showing a seventh embodiment of the ozone generator according to the present invention.

【図11】本発明によるオゾン発生装置の第8の実施の
形態を示す横断面図。
FIG. 11 is a cross-sectional view showing an eighth embodiment of the ozone generator according to the present invention.

【図12】高度浄水処理システムを示す系統図。FIG. 12 is a system diagram showing an advanced water purification system.

【図13】従来のオゾン発生装置の概略断面図。FIG. 13 is a schematic sectional view of a conventional ozone generator.

【符号の説明】[Explanation of symbols]

10 円筒容器 11 ステンレス管 11a ステンレス管群 17 端板 21 冷却水入口 22 冷却水出口 26 緩衝板 27 支持脚 28,29 多孔板 30,34 ショートパス防止板 31 ショートパス防止管 32 冷却水流入レーン 33 仕切板 35a,35b,35c 管群 36 隔壁 DESCRIPTION OF SYMBOLS 10 Cylindrical container 11 Stainless steel tube 11a Stainless steel tube group 17 End plate 21 Cooling water inlet 22 Cooling water outlet 26 Buffer plate 27 Support leg 28, 29 Perforated plate 30, 34 Short path prevention plate 31 Short path prevention tube 32 Cooling water inflow lane 33 Partition plate 35a, 35b, 35c Tube group 36 Partition wall

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】冷却水入口と冷却水出口を有し冷却水が流
入する円筒容器と、 この円筒容器内に配置された一対の端板と、 一対の端板間において円筒容器の軸線方向に延びるとと
もに、各々の内部に被覆管が挿着された多数の電極管か
らなる電極管群を備え、 冷却水入口と電極管群との間に、緩衝板を設けたことを
特徴とするオゾン発生装置。
1. A cylindrical container having a cooling water inlet and a cooling water outlet into which cooling water flows, a pair of end plates disposed in the cylindrical container, and an axial direction of the cylindrical container between the pair of end plates. Ozone generation characterized by comprising an electrode tube group consisting of a large number of electrode tubes each of which extends and in which a cladding tube is inserted, and a buffer plate is provided between the cooling water inlet and the electrode tube group. apparatus.
【請求項2】冷却水入口と冷却水出口を有し冷却水が流
入する円筒容器と、 この円筒容器内に配置された一対の端板と、 一対の端板間において円筒容器の軸線方向に延びるとと
もに、各々の内部に被覆管が挿着された多数の電極管か
らなる電極管群を備え、 冷却水入口と電極管群との間に、一対の端板間に延びる
多孔板を設けたことを特徴とするオゾン発生装置。
2. A cylindrical container having a cooling water inlet and a cooling water outlet into which cooling water flows, a pair of end plates disposed in the cylindrical container, and an axial direction of the cylindrical container between the pair of end plates. An electrode tube group consisting of a large number of electrode tubes, each of which extends and has a cladding tube inserted therein, is provided.A perforated plate extending between a pair of end plates is provided between the cooling water inlet and the electrode tube group. An ozone generator characterized by the above-mentioned.
【請求項3】多孔板は円筒容器内面に当接する一対の側
縁を有することを特徴とする請求項2記載のオゾン発生
装置。
3. The ozone generator according to claim 2, wherein the perforated plate has a pair of side edges abutting on the inner surface of the cylindrical container.
【請求項4】冷却水出口と電極管群との間に、一対の端
板間に延びる追加多孔板を設けたことを特徴とする請求
項3記載のオゾン発生装置。
4. The ozone generator according to claim 3, wherein an additional perforated plate extending between the pair of end plates is provided between the cooling water outlet and the electrode tube group.
【請求項5】冷却水入口と冷却水出口を有し冷却水が流
入する円筒容器と、 この円筒容器内に配置された一対の端板と、 一対の端板間において円筒容器の軸線方向に延びるとと
もに、各々の内部に被覆管が挿着された多数の電極管か
らなる電極管群を備え、 円筒容器と電極管群との間に、円筒容器内面から半径方
向内方へ延びるショートパス防止板を設けたことを特徴
とするオゾン発生装置。
5. A cylindrical container having a cooling water inlet and a cooling water outlet, into which cooling water flows, a pair of end plates disposed in the cylindrical container, and an axial direction of the cylindrical container between the pair of end plates. An electrode tube group consisting of a large number of electrode tubes, each of which extends and has a cladding tube inserted therein, is provided between the cylindrical container and the electrode tube group to prevent a short path extending radially inward from the inner surface of the cylindrical container. An ozone generator comprising a plate.
【請求項6】冷却水入口と冷却水出口を有し冷却水が流
入する円筒容器と、 この円筒容器内に配置された一対の端板と、 一対の端板間において円筒容器の軸線方向に延びるとと
もに、各々の内部に被覆管が挿着された多数の電極管か
らなる電極管群を備え、 円筒容器と電極管群との間に、一対の端板間に延びるシ
ョートパス防止管を設けたことを特徴とするオゾン発生
装置。
6. A cylindrical container having a cooling water inlet and a cooling water outlet, through which cooling water flows, a pair of end plates disposed in the cylindrical container, and an axial direction of the cylindrical container between the pair of end plates. An electrode tube group consisting of a large number of electrode tubes each of which extends and has a cladding tube inserted therein, and a short path prevention tube extending between a pair of end plates is provided between the cylindrical container and the electrode tube group. Ozone generator characterized by the above-mentioned.
【請求項7】冷却水入口と冷却水出口を有し冷却水が流
入する円筒容器と、 この円筒容器内に配置された一対の端板と、 一対の端板間において円筒容器の軸線方向に延びるとと
もに、各々の内部に被覆管が挿着された多数の電極管か
らなる電極管群を備え、 電極管群内において、各電極管の間の間隙は広い間隙か
ら狭い間隙まで変化しており、広い間隙内が冷却水流入
領域となっていることを特徴とするオゾン発生装置。
7. A cylindrical container having a cooling water inlet and a cooling water outlet into which cooling water flows, a pair of end plates disposed in the cylindrical container, and an axial direction of the cylindrical container between the pair of end plates. An electrode tube group consisting of a large number of electrode tubes, each of which extends and has a cladding tube inserted therein, has a gap between electrode tubes varying from a wide gap to a narrow gap in the electrode tube group. An ozone generator characterized in that a wide gap serves as a cooling water inflow area.
【請求項8】冷却水入口と冷却水出口を有し冷却水が流
入する円筒容器と、 この円筒容器内に配置された一対の端板と、 一対の端板間において円筒容器の軸線方向に延びるとと
もに、各々の内部に被覆管が挿着された多数の電極管か
らなる電極管群を備え、 電極管群内に一対の端板間に延びるとともに一側縁が円
筒容器内面に当接する仕切板を設けたことを特徴とする
オゾン発生装置。
8. A cylindrical container having a cooling water inlet and a cooling water outlet, through which cooling water flows, a pair of end plates disposed in the cylindrical container, and an axial direction of the cylindrical container between the pair of end plates. An electrode tube group comprising a large number of electrode tubes, each of which extends and has a cladding tube inserted therein, and a partition extending between a pair of end plates in the electrode tube group and having one side edge in contact with the inner surface of the cylindrical container. An ozone generator comprising a plate.
JP10334701A 1998-11-25 1998-11-25 Ozone generator Pending JP2000159508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10334701A JP2000159508A (en) 1998-11-25 1998-11-25 Ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10334701A JP2000159508A (en) 1998-11-25 1998-11-25 Ozone generator

Publications (1)

Publication Number Publication Date
JP2000159508A true JP2000159508A (en) 2000-06-13

Family

ID=18280257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10334701A Pending JP2000159508A (en) 1998-11-25 1998-11-25 Ozone generator

Country Status (1)

Country Link
JP (1) JP2000159508A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518877A (en) * 2004-11-09 2008-06-05 オゾニア インテルナシオナール Ozone generator and its electrodes
JP2009221075A (en) * 2008-03-18 2009-10-01 Metawater Co Ltd Water-cooled ozone generation apparatus
JP2010228975A (en) * 2009-03-27 2010-10-14 Metawater Co Ltd Ozone generator
CN103304019A (en) * 2013-06-19 2013-09-18 安泽嘉 Waste liquid tank purifying device
KR101712995B1 (en) * 2016-01-26 2017-03-07 이면규 Ozonic water supply apparatus
KR20170089428A (en) * 2017-02-17 2017-08-03 이면규 Ozonic water supply apparatus
US10144643B2 (en) 2014-06-12 2018-12-04 Kabushiki Kaisha Toshiba Ozone generation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518877A (en) * 2004-11-09 2008-06-05 オゾニア インテルナシオナール Ozone generator and its electrodes
JP2009221075A (en) * 2008-03-18 2009-10-01 Metawater Co Ltd Water-cooled ozone generation apparatus
JP2010228975A (en) * 2009-03-27 2010-10-14 Metawater Co Ltd Ozone generator
CN103304019A (en) * 2013-06-19 2013-09-18 安泽嘉 Waste liquid tank purifying device
US10144643B2 (en) 2014-06-12 2018-12-04 Kabushiki Kaisha Toshiba Ozone generation device
KR101712995B1 (en) * 2016-01-26 2017-03-07 이면규 Ozonic water supply apparatus
KR20170089428A (en) * 2017-02-17 2017-08-03 이면규 Ozonic water supply apparatus
KR101997918B1 (en) 2017-02-17 2019-07-08 이면규 Ozonic water supply apparatus

Similar Documents

Publication Publication Date Title
JP3419765B2 (en) Ozone oxidizer
US7833421B2 (en) Degermination through cavitation
US3850232A (en) Reactor cooling system with an evaporation tank
JP2000159508A (en) Ozone generator
KR850003550A (en) Post Treatment Unit of Polyolefin Powder
US3913531A (en) Sediment blowdown arrangement for a shell and tube vapor generator
EP0095203A2 (en) Method of operating a liquid-liquid heat exchanger
DK1235623T3 (en) Filter membrane module with integrated heat exchanger
CN108675388A (en) A kind of purifier and purification method of used water difficult to degradate
RU2136600C1 (en) Reactor and process of water purification
RU2697213C1 (en) Vertical shell-and-tube heat exchanger
RU2378582C1 (en) Boiler
JP2003028977A (en) Moisture separator and steam generator
KR850000424A (en) Ethylene oxide reactor
JPS5840081B2 (en) Blowdown equipment for steam generators
JP2002255513A (en) Ozone generator
EP3784297A1 (en) Method and device for improving the efficiency of treating fluids applied to a uv reactor
JP4197779B2 (en) Wet exhaust gas treatment equipment
SU510634A1 (en) Heat exchanger
US2713476A (en) Apparatus for treating gases by means of a liquid
CN217398478U (en) Vertical type surrounding heat exchange separation device and wastewater treatment system
GB1565571A (en) Apparatus for the aeration of liquids
JPH07195092A (en) Descending dissolution type ozone reaction chamber
JPS57127432A (en) Ventilating and stirring device with incorporated heat exchanger
SU816519A1 (en) Horisontal adsorber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041116