JP2000158364A - Method and device for ultrasonic non-contact micromanipuration using plurality of sound source - Google Patents

Method and device for ultrasonic non-contact micromanipuration using plurality of sound source

Info

Publication number
JP2000158364A
JP2000158364A JP10347924A JP34792498A JP2000158364A JP 2000158364 A JP2000158364 A JP 2000158364A JP 10347924 A JP10347924 A JP 10347924A JP 34792498 A JP34792498 A JP 34792498A JP 2000158364 A JP2000158364 A JP 2000158364A
Authority
JP
Japan
Prior art keywords
ultrasonic
sound
electric signal
transducers
liquid medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10347924A
Other languages
Japanese (ja)
Other versions
JP2990273B1 (en
Inventor
Akiyuki Kozuka
小塚  晃透
Hideto Mitome
秀人 三留
Toru Tsujiuchi
亨 辻内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP34792498A priority Critical patent/JP2990273B1/en
Application granted granted Critical
Publication of JP2990273B1 publication Critical patent/JP2990273B1/en
Publication of JP2000158364A publication Critical patent/JP2000158364A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent microobjects from being limited in a region surrounded by oscillators and a reflective plate by trapping microobjects suspended in a liquid medium into a sound pressure node in a standing-wave sound-field and controlling an electric signal for driving the trapped microobjects to move them two-dimensionally. SOLUTION: In a liquid medium 18 where many microobjects 14 are dispersed and suspended, three ultrasonic oscillators 11a, 11b, 11c are arranged a given interval spaced so that they cross at one point 13 in the liquid medium 18 of respective sound shafts 12a, 12b, 12c. A given electric signal is impressed to each of ultrasonic oscillators 11a-11c to generate respective ultrasonic waves 15a-15c, and a sound field 16 of a standing wave is formed near cross region of each ultrasonic wave. In this sound field 16, the microobjects 14 are trapped into a sound pressure node in the sound field 16, these trapped microobjects 14 are two-dimensionally moved on a surface same as each of ultrasonic oscillators 11a-11c with changing phase of the electric signal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体媒質中におけ
る微小物体を捕捉し、二次元的或いは三次元的に移動可
能な、3音源もしくは4音源以上の複数音源を用いた超
音波非接触マイクロマニピュレーション方法およびその
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic non-contact micro using a plurality of sound sources of three or more than four sound sources capable of capturing a minute object in a liquid medium and moving two-dimensionally or three-dimensionally. The present invention relates to a manipulation method and a device therefor.

【0002】[0002]

【従来の技術】従来より、微小物体をハンドリングする
ためのマイクロマニピュレーション方法が、バイオテク
ノロジー、材料開発、マイクロマシン等の分野に於い
て、強く求められており、従来のスケールにおける物体
をハンドリングする機構をスケールダウンした方法、静
電気を用いた方法、レーザ光の放射圧を利用した方法、
超音波を用いた方法等が提案されている。
2. Description of the Related Art Conventionally, a micromanipulation method for handling a minute object has been strongly demanded in the fields of biotechnology, material development, micromachine, and the like, and a mechanism for handling an object on a conventional scale has been required. Scale-down method, method using static electricity, method using radiation pressure of laser light,
Methods using ultrasonic waves and the like have been proposed.

【0003】これらの提案された微小物体のハンドリン
グ技術において、超音波を用いたマイクロマニピュレー
ションは、音波を伝搬する媒質中であれば適用でき、ま
た対象とする物体は音響的に媒質と異なる音響インピー
ダンスを持ち、音波を反射または吸収するものであれば
良く、マイクロマニピュレーションの対象となる物体の
範囲が広く、更に波長のオーダの微小領域のみに力を作
用させることが可能等の幾つかの利点を有している。
In these proposed techniques for handling small objects, micromanipulation using ultrasonic waves can be applied in a medium that propagates sound waves, and the target object has an acoustic impedance that is acoustically different from the medium. Anything that reflects or absorbs sound waves may be used.There are several advantages, such as a wide range of objects to be micromanipulated, and the ability to apply force only to a small region on the order of wavelength. Have.

【0004】本発明の発明者達は、上記超音波を用いた
マイクロマニピュレーションとして、(1)凹面型振動
子を用いてその焦点位置に反射板を設置して生じる定在
波音場中で、周波数を変化することにより音圧の節に捕
捉した微小物体を音軸上で一次元的に移動させる方法を
提案した(特許第2700058号)。続いて、(2)
超音波振動子の裏面電極を短冊状に複数に分割し、電圧
を分割した電極に順次印加することにより、微小物体を
電極の配列方向へ移動させる方法を提案した(特許第2
723182号)。そして、(3)上記裏面電極を複数
に分割した振動子を湾曲して、音圧の節に捕捉した微小
物体を二次元的に移動させる手法を提案した(特願平9
−287953号)。更に、(4)平板振動子を2個用
いて、その音軸が交差するように設置し、音軸の交点近
傍に生成される定在波を用いて、微小物体を捕捉し、一
次元的に移動させる手法を提案した(特願平10−93
937)。
[0004] The inventors of the present invention have proposed, as micromanipulation using the above-mentioned ultrasonic wave, (1) a method of setting a frequency in a standing wave sound field generated by installing a reflector at a focal position using a concave type vibrator. (Japanese Patent No. 2700058) has proposed a method of moving a minute object captured in a node of sound pressure one-dimensionally on a sound axis by changing the sound pressure. Then, (2)
A method has been proposed in which a rear surface electrode of an ultrasonic transducer is divided into a plurality of strips and a voltage is sequentially applied to the divided electrodes, thereby moving a minute object in an electrode arrangement direction (Patent No. 2).
No. 723182). Then, (3) a method was proposed in which a vibrator obtained by dividing the back electrode into a plurality of parts was curved to two-dimensionally move a minute object captured at a node of sound pressure (Japanese Patent Application No. 9-279,976).
-287953). Further, (4) two flat plate vibrators are installed so that their sound axes cross each other, and a minute object is captured by using a standing wave generated near the intersection of the sound axes, and one-dimensionally. (Japanese Patent Application No. 10-93)
937).

【0005】[0005]

【発明が解決しようとする課題】上記超音波を用いた微
小物体の捕捉、移動方法中、(1)〜(3)の方法は、
振動子より超音波を反射板に向けて放射し、形成した定
在波音場の音圧の節により微小物体を捕捉し、振動子へ
供給する電気信号の周波数を変化させたり、電圧を印加
する電極を選択することにより音圧の節の位置を制御
し、捕捉した微小物体を移動させる。しかし、定在波音
場は、振動子と反射板に囲まれた領域にのみ生成される
ので、微小物体の移動範囲も上記定在波音場の生成した
領域に限られる。
Among the methods of capturing and moving a minute object using the above ultrasonic wave, the methods (1) to (3) are:
Ultrasonic waves are radiated from the vibrator toward the reflector, and the minute object is captured by the sound pressure node of the standing wave sound field, and the frequency of the electric signal supplied to the vibrator is changed or a voltage is applied. The position of the node of the sound pressure is controlled by selecting the electrode, and the captured minute object is moved. However, since the standing wave sound field is generated only in a region surrounded by the vibrator and the reflector, the moving range of the minute object is also limited to the region where the standing wave sound field is generated.

【0006】(4)の方法は、二つの超音波振動子をそ
の音軸が互いに交差するように配置し、超音波を夫々の
振動子より放射して、音軸の交差点近傍に生成された定
在波音場の音圧の節により微小物体を捕捉し、上記一対
の振動子へ供給する電気信号の位相又は周波数を互いに
変えて音圧の節の位置を制御し、捕捉した微小物体を移
動させる。しかし、この方法の微小物体の移動は、横方
向のみの一次元的であった。
In the method (4), two ultrasonic vibrators are arranged so that their sound axes intersect each other, and ultrasonic waves are emitted from the respective vibrators and generated near the intersection of the sound axes. A small object is captured by the node of the sound pressure of the standing wave sound field, the phase or frequency of the electric signal supplied to the pair of vibrators is changed to control the position of the node of the sound pressure, and the captured small object is moved. Let it. However, the movement of the minute object in this method is one-dimensional only in the lateral direction.

【0007】本発明は、上記問題点を解決するためにな
されたもので、定在波音場の音圧の節又は腹に捕捉した
微小物体を振動子と反射板に囲まれた領域に限定され
ず、二次元的或いは三次元的に移動することが可能な超
音波非接触マイクロマニピュレーション方法及び装置を
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problem, and is limited to a region surrounded by a vibrator and a reflector, in which a small object captured at a node or an antinode of a sound pressure of a standing wave sound field is limited. Another object of the present invention is to provide an ultrasonic non-contact micromanipulation method and apparatus capable of moving two-dimensionally or three-dimensionally.

【0008】[0008]

【課題を解決するための手段】この発明による超音波非
接触マイクロマニピュレーション方法は、微小物体が分
散、浮遊する液体媒質中に3個又はそれ以上の超音波振
動子をその音軸が一点で交差するように所定の距離を保
って配置し、上記超音波振動子を所定の電気信号で駆動
し、放射される超音波の音軸の交差区域近傍に生成され
る定在波音場中で、上記媒質中の微小物体を、上記音場
中の音圧の節または腹に捕捉し、駆動する電気信号を制
御して捕捉している微小物体を二次元的或いは三次元的
に移動することを特徴とする。また、この発明による超
音波非接触マイクロマニピュレーション装置は、微小物
体が分散する液体媒質中に所定の間隔を保って、その音
軸が液体媒質中において、一点で交差するように配置さ
れた3個又はそれ以上の超音波振動子と、上記超音波振
動子へ所定の電気信号を供給する手段と、から成り、放
射される超音波の交差区域近傍に生成される定在波音場
中の音圧の節または腹に上記媒質中の微小物体を捕捉
し、上記振動子へ供給する電気信号を制御して、捕捉し
た微小物体を二次元的或いは三次元的に移動させること
を特徴とする。
SUMMARY OF THE INVENTION An ultrasonic non-contact micromanipulation method according to the present invention is characterized in that three or more ultrasonic vibrators intersect at one point in a liquid medium in which a minute object disperses and floats. Placed at a predetermined distance so as to drive the ultrasonic transducer with a predetermined electric signal, in the standing wave sound field generated near the intersection of the sound axes of the emitted ultrasonic waves, The method captures a minute object in a medium at a node or an antinode of the sound pressure in the sound field, and controls the driving electric signal to move the captured minute object two-dimensionally or three-dimensionally. And Further, the ultrasonic non-contact micromanipulation device according to the present invention comprises three components arranged such that the sound axes thereof intersect at one point in the liquid medium while maintaining a predetermined interval in the liquid medium in which the minute object is dispersed. Or more ultrasonic transducers, and means for supplying a predetermined electric signal to the ultrasonic transducers, and a sound pressure in a standing wave sound field generated in the vicinity of the intersection of the emitted ultrasonic waves. A minute object in the medium is captured at a node or an antinode, and the captured minute object is moved two-dimensionally or three-dimensionally by controlling an electric signal supplied to the vibrator.

【0009】上記の超音波振動子へ供給する電気信号の
位相を変化させたり、周波数に差を与えて定在波音場の
位置を電気的に制御し、音圧の節または腹の位置を二次
元的或いは三次元的に移動することにより、捕捉されて
いる微小物体も二次元的或いは三次元的に移動すること
になる。
The position of the standing wave sound field is electrically controlled by changing the phase of the electric signal supplied to the ultrasonic vibrator or by giving a difference in the frequency, so that the position of the node or antinode of the sound pressure can be changed. By moving three-dimensionally or three-dimensionally, the captured minute object also moves two-dimensionally or three-dimensionally.

【0010】[0010]

【発明の実施の形態】以下、本発明を図面を用いて説明
する。図1は、本発明による3音源を用いた超音波非接
触マイクロマニピュレーション方法の原理図を示し、多
数の微小物体14が分散、浮遊する液体媒質18中に3
個の超音波振動子11a、11b、11cを、その音軸
12a、12b、12cが液体媒質中において、一点1
3で交差するよう所定の間隔を保って配置する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 shows a principle diagram of an ultrasonic non-contact micromanipulation method using three sound sources according to the present invention, in which a large number of minute objects 14 are dispersed in a floating liquid medium 18.
Each of the ultrasonic transducers 11a, 11b, and 11c has one sound axis 12a, 12b, and 12c in the liquid medium.
3 are arranged at predetermined intervals so as to intersect.

【0011】上記3個の超音波振動子11a、11b、
11cに所定の電気信号を供給すると、3個の振動子よ
りはそれぞれ超音波15a、15b、15cが発振し、
3個の超音波の交差区域近傍には、定在波の音場16が
形成される。図2は、定在波の音場16の拡大説明図で
あって、それぞれの3つの超音波15a、15b、15
cが交差して音圧の腹17を形成し、微小物体中、媒質
より密度が高く、音の伝搬が速い微小物体14a(一般
に固体)が音圧の腹17から斥力を受け、音圧の腹の間
に存在する音圧の節に捕捉され、媒質より密度が低く、
音の伝搬が遅い微小物体14b(例えば気泡)は音圧の
腹17に捕捉される。
The three ultrasonic transducers 11a, 11b,
When a predetermined electric signal is supplied to 11c, ultrasonic waves 15a, 15b, and 15c oscillate from the three vibrators, respectively.
A standing wave sound field 16 is formed near the intersection area of the three ultrasonic waves. FIG. 2 is an enlarged explanatory view of the sound field 16 of the standing wave, and shows three ultrasonic waves 15a, 15b, and 15 respectively.
c intersect to form an antinode 17 of the sound pressure. In the minute object, a minute object 14a (generally solid) having a higher density than the medium and having a fast sound propagation receives a repulsive force from the antinode 17 of the sound pressure. Captured by the nodes of the sound pressure existing between the belly, the density is lower than the medium,
The minute object 14 b (for example, a bubble) having a slow sound propagation is captured by the antinode 17 of the sound pressure.

【0012】上記超音波振動子11a、11b、11c
としては、共振周波数が同じで、同じ出力強度の平板円
形超音波振動子が用い得る。上記三個の振動子の配置
は、超音波による力のバランス及び位相変化量と微小物
体の移動距離、移動方向を考慮すると、音軸の交点13
を中心に対象な位置に配置すると制御が容易となる。し
かし、後述するが、必ずしも対象に配置する必要はな
い。ここで言う対象な位置とは、振動子が正三角形の各
頂点に位置し、音軸の交点は正三角形の中心に位置す
る。
The ultrasonic transducers 11a, 11b, 11c
For example, a flat circular ultrasonic transducer having the same resonance frequency and the same output intensity can be used. The arrangement of the three transducers can be determined by considering the balance of the force and the phase change amount due to the ultrasonic wave, the moving distance and the moving direction of the minute object, and the intersection 13 of the sound axes.
The control is facilitated by arranging them at target positions with respect to. However, as will be described later, it is not always necessary to dispose them on the target. Here, the target position means that the vibrator is located at each vertex of the equilateral triangle, and the intersection of the sound axes is located at the center of the equilateral triangle.

【0013】図3(a)に示すように、上記3個の超音
波振動子11a、11b、11cをその音軸12a、1
2b、12cが水平方向に向くよう配置することによ
り、3本の音軸の交点13は振動子と同一面に位置する
ことになり、超音波の放射により、音軸の交点13近傍
に形成された定在波の音場中を浮遊する微小物体は音圧
の節に捕捉され、振動子へ供給する電気信号の位相又は
周波数を変えることにより、捕捉された微小物体は、振
動子と同一面上を二次元的に移動することになる。尚、
上記説明では各振動子及び各音軸が同一水平面にある場
合について説明したが、各振動子及び各音軸が同一面に
あれば必ずしも水平である必要はない。
As shown in FIG. 3A, the three ultrasonic transducers 11a, 11b, 11c are connected to their sound axes 12a,
By arranging 2b and 12c so as to face in the horizontal direction, the intersection 13 of the three sound axes is located on the same plane as the vibrator, and is formed near the intersection 13 of the sound axes due to the emission of ultrasonic waves. The minute object floating in the sound field of the standing wave is captured by the node of the sound pressure, and by changing the phase or frequency of the electric signal supplied to the vibrator, the captured minute object is flush with the vibrator. It will move two-dimensionally above. still,
In the above description, the case where each vibrator and each sound axis are on the same horizontal plane has been described. However, if each vibrator and each sound axis are on the same plane, they need not necessarily be horizontal.

【0014】上記3個の超音波振動子11a、11b、
11cを、図3(b)に示すように、それぞれ所定角度
傾けてその音軸12a、12b、12cの交点13を振
動子を含む平面より上方へ位置させることもできる。こ
の場合、音軸の交点13が位置する振動子が設けられた
平面と平行な平面19において、微小物体を二次元的に
移動することが可能となる。例えば、音波を伝搬する高
分子膜などで仕切られた領域において、振動子を周辺部
に配置しなくても、ある一面から3つの音波を照射し
て、微小物体操作の対象となる領域で音軸を交差するこ
とで、上記の仕切られた領域中の微小物体を操作するこ
とが可能となる。従って、媒質中の微小物体を捕捉、移
動する位置により、3つの超音波振動子の音軸の交点の
高さを決定する。
The three ultrasonic transducers 11a, 11b,
As shown in FIG. 3B, 11c can be inclined at a predetermined angle so that the intersection 13 of the sound axes 12a, 12b, 12c can be positioned above a plane including the vibrator. In this case, it is possible to two-dimensionally move the minute object on a plane 19 parallel to the plane on which the vibrator on which the sound axis intersection 13 is located is provided. For example, in a region partitioned by a polymer film that propagates sound waves, three sound waves are irradiated from one surface without arranging a vibrator in the periphery, and sound is generated in a region where a small object is to be manipulated. By crossing the axes, it becomes possible to operate the minute object in the above-mentioned partitioned area. Therefore, the height of the intersection of the sound axes of the three ultrasonic transducers is determined based on the position at which the minute object in the medium is captured and moved.

【0015】定在波の音場16に形成する音圧の腹17
について、3つの超音波の干渉を2つの音波毎に考察す
る。図4(a)は、超音波振動子11b、11cに所定
の電気信号を加えて超音波15b、15cを放射した際
の音波の干渉を示す。それぞれの二つの超音波15b、
15cが交差してλ/(2sinθ)の間隔で音圧の腹
17を形成する(λは音波の波長、θは音軸の交差角度
の半分)。
The antinode 17 of the sound pressure formed in the sound field 16 of the standing wave
, The interference of three ultrasonic waves is considered for every two sound waves. FIG. 4A shows the interference of sound waves when a predetermined electric signal is applied to the ultrasonic transducers 11b and 11c and the ultrasonic waves 15b and 15c are emitted. Each two ultrasonic 15b,
15c intersect to form antinodes 17 of sound pressure at an interval of λ / (2 sin θ) (λ is the wavelength of the sound wave, and θ is half the crossing angle of the sound axis).

【0016】二つの振動子へ供給する電気信号を制御し
て超音波の位相を互いに変化すると、音圧の腹17は移
動する。図4(b)は、振動子11cの超音波の位相を
わずかに進めた場合の音波の干渉を示している。振動子
11cの超音波の位相が進んだことにより、音圧の腹1
7が振動子11cから振動子11bに向かう方向にΔl
だけ移動している。
When the electric signals supplied to the two vibrators are controlled to change the phases of the ultrasonic waves to each other, the antinode 17 of the sound pressure moves. FIG. 4B illustrates the interference of the sound waves when the phase of the ultrasonic waves of the transducer 11c is slightly advanced. Since the phase of the ultrasonic wave of the transducer 11c has advanced, the antinode of sound pressure 1
7 is Δl in a direction from the vibrator 11c to the vibrator 11b.
Just moving.

【0017】同様の現象は、図5(a)、(b)に示す
ように、3個の超音波振動子11a、11b、11c間
のそれぞれの2個の超音波の干渉により音圧の腹17は
生成され、図2に示したように連続した六角形の位置に
音圧の節が音圧の腹17間に形成される。なお、図5
(c)は図4と同じ場合であり、図5(a)、(b)と
の比較のために示した。尚、図1,2に於いては、複数
の微小物体が媒質18中を浮遊、捕捉されている状態を
示したが、任意に媒質へ投入した1個の微小物体を捕
捉、移動することも可能である。
A similar phenomenon occurs as shown in FIGS. 5 (a) and 5 (b). The interference of the two ultrasonic waves between the three ultrasonic transducers 11a, 11b and 11c causes the antinode of the sound pressure to decrease. 17 are generated, and nodes of sound pressure are formed between antinodes 17 of sound pressure at continuous hexagonal positions as shown in FIG. FIG.
(C) is the same as FIG. 4 and is shown for comparison with FIGS. 5 (a) and 5 (b). In FIGS. 1 and 2, a plurality of minute objects are shown floating and trapped in the medium 18. However, one minute object arbitrarily put into the medium may be trapped and moved. It is possible.

【0018】次に、3個の超音波振動子のうち、1個の
振動子の超音波の位相を変化させることを考察する。振
動子11cの位相を進めた場合、振動子11aと振動子
11cよりの超音波の干渉による音圧の腹17は、振動
子11cから振動子11aに向かう方向に移動し(図5
(b))、振動子11bと振動子11cの干渉による音
圧の腹17(図5(c))は、振動子11cから振動子
11bに向かう方向に移動する。3個の振動子11a、
11b、11cの3音波の干渉による音圧の腹の移動は
上記2方向へ向かう2ベクトルの合成ベクトルで表され
る。3個の超音波振動子11a、11b、11cが図6
(a)に示すように、正三角形の頂点に配置され、音軸
が三角形の中心で交差していれば、振動子11cの超音
波の位相を進めた際の音圧の腹17の移動ベクトルは、
振動子11cの超音波の音軸12cと重なり、位相を3
60゜変化した際の移動距離は2λ/3となる。但し、
図6(b)に示すように、振動子11a、11bの音軸
12a、12bが形成する角度が150゜、振動子11
a、11cの音軸12a、12cが形成する角度が15
0゜、振動子11b、11cの音軸12b、12cが形
成する角度が60゜のように、3個の振動子が正三角形
の頂点に配置していない場合は、振動子11cの超音波
の位相を進めた際の音圧の節の移動ベクトルは、振動子
11c−11b間および振動子11c−11a間のそれ
ぞれにおける音圧の腹17の移動ベクトルを合成した移
動ベクトルとなる(図6(b))。上述のように、音圧
の腹の間には音圧の節が存在し、音場を変化して音圧の
腹を移動する際には、同時に音圧の節も移動する。本装
置の応用例としては、主に固体粒子の操作が考えられ、
一般的に固体粒子は音圧の節に捕捉されるため、以下、
説明を簡単にするため、音圧の節に微小物体が捕捉され
ている場合について説明する。
Next, consider changing the phase of the ultrasonic wave of one of the three ultrasonic transducers. When the phase of the vibrator 11c is advanced, the antinode 17 of the sound pressure due to the interference of the ultrasonic waves from the vibrator 11a and the vibrator 11c moves in the direction from the vibrator 11c to the vibrator 11a (FIG. 5).
(B)) The antinode 17 of the sound pressure (FIG. 5C) due to the interference between the vibrator 11b and the vibrator 11c moves in the direction from the vibrator 11c toward the vibrator 11b. Three vibrators 11a,
The movement of the antinode of the sound pressure due to the interference of the three sound waves 11b and 11c is represented by a composite vector of the two vectors going in the two directions. FIG. 6 shows three ultrasonic transducers 11a, 11b, and 11c.
As shown in (a), if the sound axes are arranged at the vertices of an equilateral triangle and the sound axes intersect at the center of the triangle, the movement vector of the antinode 17 of the sound pressure when the ultrasonic phase of the transducer 11c is advanced. Is
It overlaps with the sound axis 12c of the ultrasonic wave of the transducer 11c, and has a phase of 3
The moving distance when changing by 60 ° is 2λ / 3. However,
As shown in FIG. 6B, the angle formed by the sound axes 12a and 12b of the vibrators 11a and 11b is 150 °,
The angle formed by the sound axes 12a and 12c of the a and 11c is 15
If the three transducers are not arranged at the vertices of an equilateral triangle, such as 0 ° and the angle formed by the sound axes 12b and 12c of the transducers 11b and 11c is 60 °, the ultrasonic wave of the transducer 11c The movement vector of the node of the sound pressure when the phase is advanced is a movement vector obtained by combining the movement vectors of the antinodes 17 of the sound pressure between the transducers 11c and 11b and between the transducers 11c and 11a (FIG. b)). As described above, the nodes of the sound pressure exist between the antinodes of the sound pressure. When the sound field is changed and the antinode of the sound pressure is moved, the nodes of the sound pressure also move at the same time. As an application example of this device, operation of solid particles is mainly considered,
Generally, solid particles are trapped in the nodes of sound pressure, so
For the sake of simplicity, a case where a minute object is captured in a node of sound pressure will be described.

【0019】一つの超音波の周波数にわずかに差を与え
た場合、超音波の位相を連続して一定速度で変化した場
合と等価である。例えば、周波数差が1Hzの場合、位
相を毎秒360゜の一定速度で連続して変化しているこ
とに相当する。よって、周波数にわずかな差を与える
と、音圧の節は一定速度で連続して移動し、音圧の節に
捕捉されている微小物体は、音圧の節の移動に伴って同
じ速度で移動する。
When a slight difference is given to the frequency of one ultrasonic wave, it is equivalent to a case where the phase of the ultrasonic wave is continuously changed at a constant speed. For example, when the frequency difference is 1 Hz, it corresponds to the phase changing continuously at a constant speed of 360 ° per second. Therefore, when a slight difference is given to the frequency, the nodes of the sound pressure move continuously at a constant speed, and the minute objects captured by the nodes of the sound pressure move at the same speed as the nodes of the sound pressure move. Moving.

【0020】同時に2個の超音波振動子より放射される
超音波の位相を変化させた場合、それぞれの振動子の超
音波の位相を変化したことによる音圧の節の移動ベクト
ルの合成ベクトルの方向に移動する。例えば、振動子を
正三角形の頂点に配置した図7(a)において、それぞ
れの振動子の位相を単独で変化すれば、それぞれの振動
子の音軸方向に音圧の節は移動するが、2個の振動子1
1bと11cの超音波15b、15cの位相の変化量Δ
φ1,Δφ2を同じ大きさΔφだけ変化した場合(図7
(b))、それぞれの移動ベクトルの合成ベクトル(Δ
x,Δy)である振動子11aの音軸12aの方向に移
動する(超音波15bと15cの位相を同じ大きさだけ
進めることは、相対的に超音波15aの位相を遅らせる
ことに等しい)。また、超音波15bと15cの位相を
同じ大きさΔφだけ、異なる方向(符号が逆)に変化さ
せると、振動子11aの音軸12aと垂直方向に移動す
ることが可能となる(図7(c))。
When the phases of the ultrasonic waves radiated from the two ultrasonic transducers are simultaneously changed, the combined vector of the movement vector of the node of the sound pressure due to the change in the phase of the ultrasonic wave of each of the transducers. Move in the direction. For example, in FIG. 7A in which the vibrators are arranged at the vertices of an equilateral triangle, if the phase of each vibrator is independently changed, the node of the sound pressure moves in the sound axis direction of each vibrator. Two vibrators 1
Phase change Δ of ultrasonic waves 15b and 15c of 1b and 11c
When φ 1 and Δφ 2 are changed by the same size Δφ (FIG. 7)
(B)), a composite vector (Δ
(x, Δy) in the direction of the sound axis 12a of the transducer 11a (advancing the phases of the ultrasonic waves 15b and 15c by the same magnitude is equivalent to relatively delaying the phase of the ultrasonic wave 15a). When the phases of the ultrasonic waves 15b and 15c are changed by the same magnitude Δφ in different directions (signs are reversed), the ultrasonic waves can be moved in a direction perpendicular to the sound axis 12a of the vibrator 11a (see FIG. c)).

【0021】上述の如く、2つの超音波の位相を任意に
変化することで、定在波音場を2次元上の任意の方向へ
移動することが可能となり、音波の節に捕捉された微小
物体もそれに伴って移動する。
As described above, by arbitrarily changing the phase of the two ultrasonic waves, it becomes possible to move the standing wave sound field in an arbitrary direction in two dimensions, and the minute object captured by the sound wave node Also moves with it.

【0022】図8は、本発明による4個の音源を用いた
超音波非接触マイクロマニピュレーション方法の概略図
を示し、微小物体が分散、浮遊する液体媒質中に4個の
超音波振動子11a、11b、11c、11dを、その
音軸12a、12b、12c、12dが液体媒質中にお
いて、一点13で交差するよう所定の間隔を保って配置
する。
FIG. 8 is a schematic diagram of an ultrasonic non-contact micromanipulation method using four sound sources according to the present invention, wherein four ultrasonic vibrators 11a, 11b, 11c, and 11d are arranged at predetermined intervals so that their sound axes 12a, 12b, 12c, and 12d intersect at a single point 13 in the liquid medium.

【0023】図8(a)は、上記4個の超音波振動子を
正三角錐の頂点に配置し、音軸の交点を正三角錐の中心
とした例である。上記4個の超音波振動子にそれぞれ所
定の電気信号を供給すると、4個の振動子よりはそれぞ
れ超音波15a、15b、15c、15dが発振し、4
個の超音波の交差区域近傍には、3個の振動子を配置し
た場合と同様に、定在波の音場が形成され、音圧の節に
音場中を浮遊している微小物体を捕捉する。上記4個の
超音波振動子のうち1個の電気信号の位相を変化する、
もしくは周波数を僅かにずらすと、その音軸方向に音場
が移動し、音圧の節に捕捉された微小物体は移動する。
又、3個の超音波による2次元移動と同様に、4個の場
合も複数(2もしくは3)の超音波の位相を変化する、
若しくは周波数を僅かにずらすと、各音軸の方向に移動
する移動ベクトルの合成ベクトルの方向に移動する。即
ち、3個の超音波を変化することで、3次元的な移動が
可能となる。図8(b)は、4個の振動子のうち1個の
振動子11dをその音軸上で移動し、残り3個の振動子
と同一面に配置した場合である。この場合にも、同様の
微小物体の移動操作が可能であり、上述の3個の超音波
の場合と同様に、仕切られた領域に対して、ある一面か
ら4方向の超音波を交差させることで、3次元の移動操
作が可能となる。
FIG. 8A shows an example in which the four ultrasonic transducers are arranged at the vertices of a regular triangular pyramid, and the intersection of the sound axes is set at the center of the regular triangular pyramid. When a predetermined electric signal is supplied to each of the four ultrasonic transducers, ultrasonic waves 15a, 15b, 15c, and 15d are oscillated from the four transducers, respectively.
A sound field of a standing wave is formed in the vicinity of the intersection area of the ultrasonic waves, similar to the case where three transducers are arranged, and a small object floating in the sound field at a node of the sound pressure is formed. Capture. Changing the phase of one electrical signal of the four ultrasonic transducers,
Alternatively, when the frequency is slightly shifted, the sound field moves in the direction of the sound axis, and the minute object captured by the node of the sound pressure moves.
Also, like the two-dimensional movement by three ultrasonic waves, the phase of a plurality of (two or three) ultrasonic waves changes in the case of four ultrasonic waves.
Alternatively, when the frequency is slightly shifted, the moving vector moves in the direction of the combined vector of the moving vectors moving in the direction of each sound axis. That is, three-dimensional movement is possible by changing three ultrasonic waves. FIG. 8B shows a case where one of the four transducers 11d is moved on its sound axis and arranged on the same plane as the remaining three transducers. In this case as well, the same operation of moving the minute object is possible, and as in the case of the three ultrasonic waves described above, the ultrasonic waves in four directions from one surface cross the partitioned area. Thus, a three-dimensional movement operation can be performed.

【0024】上記超音波振動子としては、出力強度及び
共振周波数の同じ平板円形超音波振動子が用い得る。上
記4個の振動子の配置は、超音波による力のバランス及
び位相変化量と移動距離、移動方向を考慮すると、音軸
の交点13を中心に等間隔にすると、制御が容易となる
が、音軸が一点で交差していれば、図8(a)に示すよ
うに、正三角錐の頂点に位置させる必要はないし、図8
(b)に示すように同一平面上に位置する必要はない。
As the ultrasonic transducer, a flat circular ultrasonic transducer having the same output intensity and resonance frequency can be used. The arrangement of the four transducers can be easily controlled by making the intervals around the sound axis intersection 13 in consideration of the balance of the force by the ultrasonic waves, the amount of phase change, the moving distance, and the moving direction. If the sound axes intersect at a single point, it is not necessary to position the sound axes at the vertices of the regular triangular pyramid as shown in FIG.
It is not necessary to be located on the same plane as shown in FIG.

【0025】超音波振動子は5台以上でもその音軸が一
点で交差するように配置すれば、超音波の放射により交
差点近傍で定在波音場が形成し、各振動子へ供給する電
気信号の位相又は周波数を制御することにより、4台の
場合と同様に、形成した定在波音場を三次元的に移動す
ることが可能である。
If five or more ultrasonic transducers are arranged so that their sound axes intersect at one point, a standing wave sound field is formed near the intersection by the emission of ultrasonic waves, and the electric signal supplied to each transducer , It is possible to move the formed standing wave sound field three-dimensionally, as in the case of four units.

【0026】図9は、本発明によるマイクロマニピュレ
ーション装置の一実施形態を示すブロック図である。3
台の超音波振動子11a、11b、11cは、液体媒質
18として水の入った水槽20の中に互いの振動子の音
軸12a、12b、12cが一点で交差するように固定
し、ファンクションジェネレータ21よりの正弦波交流
電圧をパワーアンプ22で増幅の上、3個の振動子へ印
加して液体媒質18中に超音波を放射する。3個の振動
子からは同一波長の超音波15a、15b、15cが放
射され、音軸の交点付近に定在波音場16が形成され
る。尚、14は媒質中に浮遊する捕捉すべき微小物体で
ある。
FIG. 9 is a block diagram showing an embodiment of the micromanipulation device according to the present invention. 3
The ultrasonic transducers 11a, 11b, and 11c are fixed in a water tank 20 containing water as a liquid medium 18 so that the sound axes 12a, 12b, and 12c of the respective transducers intersect at one point. The sine wave AC voltage from 21 is amplified by the power amplifier 22 and applied to the three vibrators to radiate ultrasonic waves into the liquid medium 18. Ultrasonic waves 15a, 15b, and 15c having the same wavelength are emitted from the three transducers, and a standing wave sound field 16 is formed near the intersection of the sound axes. In addition, 14 is a minute object to be captured floating in the medium.

【0027】図10は、ファンクションジェネレータを
用い周波数1.75MHz の正弦波交流を生成し、パワー
アンプで増幅の上、3個の超音波振動子へ供給し、形成
した定在波音場をシュリーレン法を用いて可視化した説
明図である。3台の振動子の音軸の交点付近に蜂の巣状
の六角形模様の明暗が観察され、定在波音場が形成され
ていることがわかる。シュリーレン像の明暗が、音圧の
腹(明)と節(暗)に対応する。
FIG. 10 shows that a sine wave alternating current having a frequency of 1.75 MHz is generated using a function generator, amplified by a power amplifier, supplied to three ultrasonic transducers, and the formed standing wave sound field is subjected to a Schlieren method. It is explanatory drawing visualized using. Near the intersection of the sound axes of the three vibrators, a honeycomb-like hexagonal pattern of light and dark was observed, indicating that a standing wave sound field was formed. The contrast of the Schlieren image corresponds to the antinodes (bright) and nodes (dark) of the sound pressure.

【0028】定在波音場中に平均径0.3mmのポリス
チレン粒子が浮遊している懸濁液をピペットを用いて注
入したところ、音圧の節にポリスチレン粒子が捕捉され
た。音圧の節は、連続した六角形模様の頂点の位置に生
成され、固体微小物体を捕捉する。又、六角形の中心に
は音圧の腹があり、固体粒子には斥力が働く。即ち、固
体粒子は六角形の中心から頂点に向かう力を受け、そこ
に既に粒子が存在すれば、六角形の辺を形作るように凝
集すると考えられる。3個の振動子が正三角形の頂点に
配置され、音軸の交点がその三角形の中心で交わってい
るのであれば、各振動子に印加する電圧の位相を変化す
ることで、音圧の節を各振動子の音軸と平行な線上を移
動することができ、同時に捕捉された粒子も移動するこ
とになる。また、周波数にわずかに差を与えた場合、位
相が一定速度で連続して変化することと等価であるの
で、捕捉した粒子を一定速度で動かすことができる。
When a suspension in which polystyrene particles having an average diameter of 0.3 mm were suspended in the standing-wave sound field was injected using a pipette, the polystyrene particles were captured at nodes of sound pressure. A node of sound pressure is generated at the position of a vertex of a continuous hexagonal pattern, and captures a solid minute object. The center of the hexagon has an antinode of sound pressure, and a repulsive force acts on the solid particles. That is, it is considered that the solid particles receive a force from the center of the hexagon to the apex, and if the particles already exist there, the solid particles aggregate to form the sides of the hexagon. If three vibrators are arranged at the vertices of an equilateral triangle and the intersection of sound axes intersects at the center of the triangle, the phase of the voltage applied to each vibrator is changed to reduce the sound pressure node. Can be moved on a line parallel to the sound axis of each transducer, and at the same time, the captured particles also move. Also, if a slight difference is given to the frequency, it is equivalent to the phase changing continuously at a constant speed, and thus the captured particles can be moved at a constant speed.

【0029】図11は、水中で1.75MHz(λ=0.
857mm)の超音波を音軸が成す角度2θを120゜
として生成した音場中で周波数に0.5Hzの差を与え
た際の粒子の移動を4秒間隔(位相変化:720゜/4
秒に相当)で撮影した多重露光写真である。まず最初に
3個の振動子を1.75MHz 、約20Vppの交流電圧
で駆動し、粒子を投入すると、写真下方に粒子3個が連
なって捕捉された。この粒子の捕捉形状は、六角形の音
圧の節の一つの頂点を含む辺に沿っていると考えられ
る。そして、上方の振動子に加える電気信号の周波数の
み、1.7499995MHz(周波数差0.5Hz、
すなわち位相変化:180゜/秒)としたところ、粒子
群は上方に0.29mm/秒(λ/3相当)の一定速度
で移動した。次に、上方の振動子の供給電気信号の周波
数を1.75MHzに戻し、左下の振動子の電気信号の
周波数を同様に1.7499995MHzに変化した。
すると、粒子群は左下に向かい、同じ速度で移動した。
このように、振動子間の周波数を制御することで粒子の
位置を二次元上で制御できることを示している。
FIG. 11 shows 1.75 MHz (λ = 0.75 MHz) in water.
In the sound field generated by setting the angle 2θ formed by the sound axis to the sound axis of 857 mm as 120 ° and giving a difference of 0.5 Hz to the frequency, the particles move at intervals of 4 seconds (phase change: 720 ° / 4).
(Equivalent to seconds). First, the three vibrators were driven at 1.75 MHz and an AC voltage of about 20 Vpp, and when the particles were injected, three particles were continuously captured below the photograph. The trapped shape of the particles is considered to be along the side including one vertex of the hexagonal sound pressure node. Only the frequency of the electric signal applied to the upper vibrator is 1.7499995 MHz (frequency difference 0.5 Hz,
That is, when the phase was changed to 180 ° / sec, the particle group moved upward at a constant speed of 0.29 mm / sec (corresponding to λ / 3). Next, the frequency of the electric signal supplied to the upper vibrator was returned to 1.75 MHz, and the frequency of the electric signal of the lower left vibrator was similarly changed to 1.7499999 MHz.
Then, the particle group moved to the lower left and moved at the same speed.
Thus, it is shown that the position of the particle can be controlled two-dimensionally by controlling the frequency between the vibrators.

【0030】[0030]

【発明の効果】以上説明したように、本発明の複数音源
を用いた超音波非接触マイクロマニピュレーション方法
および装置は、液体媒質中で微小物体を非接触で捕捉
し、位相変化および周波数に差を持たせることで移動を
可能とする。その移動方向は、3個の振動子を用いた場
合は2次元的に、4個若しくはそれ以上の振動子を用い
ることで3次元的に位置制御を可能とする。各振動子を
正三角形もしくは正三角錐の各頂点に配置し、それぞれ
音軸が中心で交差するように配置した場合、各振動子の
位相又は周波数を変化することで、それぞれの音軸と平
行な方向に捕捉した微小物体を移動することができる。
As described above, the ultrasonic non-contact micromanipulation method and apparatus using a plurality of sound sources according to the present invention captures a small object in a liquid medium in a non-contact manner and detects differences in phase change and frequency. It is possible to move by holding it. When three vibrators are used, the moving direction can be controlled two-dimensionally and three-dimensionally by using four or more vibrators. When each oscillator is arranged at each vertex of an equilateral triangle or an equilateral triangular pyramid, and arranged so that the sound axes intersect at the center, respectively, by changing the phase or frequency of each oscillator, it is parallel to each sound axis. The small object captured in the direction can be moved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による超音波マイクロマニピュレーショ
ン方法の原理図である。
FIG. 1 is a principle diagram of an ultrasonic micromanipulation method according to the present invention.

【図2】定在波音場の音圧の節又は腹に微小物体を捕捉
した状態の説明図である。
FIG. 2 is an explanatory diagram of a state in which a minute object is captured at a node or antinode of a sound pressure in a standing wave sound field.

【図3】3個の超音波振動子の音軸の交点の位置の説明
図である。
FIG. 3 is an explanatory diagram of positions of intersections of sound axes of three ultrasonic transducers.

【図4】2音源による超音波の干渉による音圧の腹の形
成、及び位相を変化した時の音圧の腹の移動を示した説
明図である。
FIG. 4 is an explanatory diagram showing formation of antinodes of sound pressure due to interference of ultrasonic waves by two sound sources, and movement of antinodes of sound pressure when the phase is changed.

【図5】2音源毎の音圧の腹の形成状態を示す説明であ
る。
FIG. 5 is an explanatory diagram showing a state of formation of a sound pressure antinode for each of two sound sources.

【図6】3個の超音波振動子を正三角形の頂点に配置し
た場合と、そうでない場合の音圧の腹の状態を示す説明
図である。
FIG. 6 is an explanatory diagram showing a state of antinodes of sound pressure when three ultrasonic transducers are arranged at the vertices of an equilateral triangle and when they are not.

【図7】2音源の超音波の位相変化による音圧の節の2
次元移動を示す説明図である。
FIG. 7 shows a second example of a sound pressure node due to a phase change of ultrasonic waves of two sound sources.
It is explanatory drawing which shows a dimension movement.

【図8】4個の超音波振動子の配置状態と音軸の交点位
置の説明図である。
FIG. 8 is an explanatory diagram of an arrangement state of four ultrasonic transducers and an intersection position of a sound axis.

【図9】本発明のマイクロマニピュレーション装置のブ
ロック図である。
FIG. 9 is a block diagram of the micromanipulation device of the present invention.

【図10】音軸の交点近傍で形成した定在波音場のシュ
リーレン像の写真である。
FIG. 10 is a photograph of a schlieren image of a standing wave sound field formed near an intersection of sound axes.

【図11】実施例で行った微小粒子の移動状態を示す多
重露光写真である。
FIG. 11 is a multiple exposure photograph showing the state of movement of fine particles performed in an example.

【符号の説明】[Explanation of symbols]

11a、11b、11c、11d 超音波振動子 12a、12b、12c、12d 超音波振動子の音
軸 13 音軸の交点 14 微小物体 15a、15b、15c、15d 超音波 16 定在波音場 17 音圧の腹 18 媒質 21 ファンクションジェネレータ 22 パワーアンプ
11a, 11b, 11c, 11d Ultrasonic vibrator 12a, 12b, 12c, 12d Sound axis of ultrasonic vibrator 13 Intersection of sound axis 14 Micro object 15a, 15b, 15c, 15d Ultrasonic wave 16 Standing wave sound field 17 Sound pressure Belly 18 medium 21 function generator 22 power amplifier

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 微小物体が分散する液体媒質中に、3個
の超音波振動子をその音軸が液体媒質中において一点で
交差するように所定の距離を保って配置し、上記3個の
超音波振動子を所定の電気信号で駆動し、放射される3
つの超音波の交差区域近傍に生成される定在波音場の音
圧の節若しくは腹に上記媒質中の微小物体を捕捉し、駆
動する電気信号を制御して捕捉している微小物体を二次
元的に移動することを特徴とする超音波非接触マイクロ
マニピュレーション方法。
In a liquid medium in which a minute object is dispersed, three ultrasonic vibrators are arranged at a predetermined distance so that their sound axes intersect at one point in the liquid medium. The ultrasonic vibrator is driven by a predetermined electric signal, and is radiated.
A micro object in the above medium is captured at the node or antinode of the sound pressure of the standing wave sound field generated near the intersection area of two ultrasonic waves, and the micro object captured by controlling the driving electric signal is two-dimensional Ultrasonic non-contact micromanipulation method characterized in that it moves in a dynamic manner.
【請求項2】 上記3個の超音波振動子から放射される
超音波の音軸を傾斜させて、3個の振動子を含む平面外
で音軸を交差させて定在波音場を形成させることを特徴
とする、請求項1項に記載の超音波非接触マイクロマニ
ピュレーション方法。
2. A standing wave sound field is formed by inclining the sound axes of ultrasonic waves emitted from the three ultrasonic transducers and crossing the sound axes outside a plane including the three transducers. The ultrasonic non-contact micromanipulation method according to claim 1, wherein:
【請求項3】 上記3個の超音波振動子のうち少なくと
も1個に異なる位相を与えた電気信号を供給して駆動す
ることを特徴とする、請求項1項に記載の超音波非接触
マイクロマニピュレーション方法。
3. The ultrasonic non-contact micro device according to claim 1, wherein at least one of the three ultrasonic transducers is driven by supplying an electric signal having a different phase. Manipulation method.
【請求項4】 上記3個の超音波振動子のうちの少なく
とも1個に周波数が異なる電気信号を供給して駆動する
ことを特徴とする、請求項1項に記載の超音波非接触マ
イクロマニピュレーション方法。
4. The ultrasonic non-contact micromanipulation according to claim 1, wherein at least one of the three ultrasonic transducers is driven by supplying an electric signal having a different frequency. Method.
【請求項5】 微小物体が存在する液体媒質中に所定の
間隔を保って、その音軸が液体媒質中において一点で交
差するように配置された3個の超音波振動子と、上記3
個の超音波振動子へ所定の電気信号を供給する手段とか
ら成り、放射される3つの超音波の交差区域近傍に生成
される定在波音場の音圧の節若しくは腹に上記媒質中の
微小物体を捕捉し、上記振動子へ供給する電気信号を制
御して、捕捉した微小物体を二次元的に移動することを
特徴とする超音波非接触マイクロマニピュレーション装
置。
5. Three ultrasonic vibrators arranged so that their sound axes intersect at one point in the liquid medium while maintaining a predetermined interval in the liquid medium in which the minute object exists;
Means for supplying a predetermined electric signal to the plurality of ultrasonic transducers, and a node or an antinode of the sound pressure of the standing wave sound field generated in the vicinity of the intersection of the three radiated ultrasonic waves. An ultrasonic non-contact micromanipulation device characterized in that a minute object is captured and an electric signal supplied to the vibrator is controlled to move the captured minute object two-dimensionally.
【請求項6】 上記3個の超音波振動子は、3個の振動
子を含む平面より上方でその音軸が交差するように所定
の傾斜を持って配置されていることを特徴とする請求項
5に記載の超音波非接触マイクロマニピュレーション装
置。
6. The ultrasonic transducer according to claim 1, wherein the three ultrasonic transducers are arranged at a predetermined inclination above a plane including the three transducers so that their sound axes intersect. Item 6. An ultrasonic non-contact micromanipulation device according to item 5.
【請求項7】 微小物体が存在する液体媒質中に、4個
又はそれ以上の超音波振動子をその音軸が液体媒質中に
おいて一点で交差するように所定の距離を保って、上記
4個以上の超音波振動子を所定の電気信号で駆動し、放
射される4つ以上の超音波の交差区域近傍に生成される
定在波音場の音圧の節若しくは腹に上記媒質中の微小物
体を捕捉し、駆動する電気信号を制御して捕捉している
微小物体を三次元的に移動することを特徴とする超音波
非接触マイクロマニピュレーション方法。
7. A method according to claim 1, wherein four or more ultrasonic vibrators are placed in a liquid medium in which a minute object is present at a predetermined distance such that their sound axes intersect at one point in the liquid medium. The above ultrasonic vibrator is driven by a predetermined electric signal, and a minute object in the medium is formed at a node or antinode of a sound pressure of a standing wave sound field generated near an intersection area of four or more ultrasonic waves to be radiated. An ultrasonic non-contact micromanipulation method, characterized in that a small object that is captured is controlled three-dimensionally by controlling an electric signal for capturing and driving the object.
【請求項8】 上記4個以上の超音波振動子を同一平面
上に配置して音軸が振動子を含む平面外で交差するよう
に配置することを特徴とする、請求項7項に記載の超音
波非接触マイクロマニピュレーション方法。
8. The apparatus according to claim 7, wherein the four or more ultrasonic transducers are arranged on the same plane, and arranged so that sound axes intersect outside a plane including the transducers. Ultrasonic non-contact micromanipulation method.
【請求項9】 上記4個以上の超音波振動子のうちの少
なくとも1個に異なる位相を与えた電気信号を供給して
駆動することを特徴とする、請求項7項に記載の超音波
非接触マイクロマニピュレーション方法。
9. The ultrasonic non-transmission device according to claim 7, wherein at least one of the four or more ultrasonic transducers is driven by supplying an electric signal having a different phase. Contact micromanipulation method.
【請求項10】 上記4個以上の超音波振動子のうちの
少なくとも1個に周波数が異なる電気信号を供給して駆
動することを特徴とする、請求項7項に記載の超音波非
接触マイクロマニピュレーション方法。
10. The ultrasonic non-contact micro device according to claim 7, wherein an electric signal having a different frequency is supplied to at least one of the four or more ultrasonic transducers to drive them. Manipulation method.
【請求項11】 微小物体が存在する液体媒質中に所定
の間隔を保って、その音軸が液体媒質中において一点で
交差するように配置された4個以上の超音波振動子と、
上記4個以上の超音波振動子へ所定の電気信号を供給す
る手段とから成り、放射される4つ以上の超音波の交差
区域近傍に生成される定在波音場の音圧の節若しくは腹
に上記媒質中の微小物体を捕捉し、上記振動子へ供給す
る電気信号を制御して、捕捉した微小物体を三次元的に
移動することを特徴とする超音波非接触マイクロマニピ
ュレーション装置。
11. Four or more ultrasonic vibrators arranged so that their sound axes intersect at one point in the liquid medium while maintaining a predetermined interval in the liquid medium in which the minute object exists;
Means for supplying a predetermined electric signal to the four or more ultrasonic transducers, and a node or antinode of a sound pressure of a standing wave sound field generated in the vicinity of the intersection of the four or more ultrasonic waves to be radiated. An ultrasonic non-contact micromanipulation apparatus characterized in that a micro object in the medium is captured, an electric signal supplied to the vibrator is controlled, and the captured micro object is moved three-dimensionally.
【請求項12】 上記4個以上の超音波振動子は、4個
以上の振動子を含む平面より上方でその音軸が交差する
ように所定の傾斜を持って配置されていることを特徴と
する請求項11に記載の超音波非接触マイクロマニピュ
レーション装置。
12. The ultrasonic transducer according to claim 1, wherein the ultrasonic transducers are arranged at a predetermined inclination so that their sound axes intersect above a plane including the transducers. The ultrasonic non-contact micromanipulation device according to claim 11.
JP34792498A 1998-11-20 1998-11-20 Ultrasonic non-contact micromanipulation method and apparatus using multiple sound sources Expired - Lifetime JP2990273B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34792498A JP2990273B1 (en) 1998-11-20 1998-11-20 Ultrasonic non-contact micromanipulation method and apparatus using multiple sound sources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34792498A JP2990273B1 (en) 1998-11-20 1998-11-20 Ultrasonic non-contact micromanipulation method and apparatus using multiple sound sources

Publications (2)

Publication Number Publication Date
JP2990273B1 JP2990273B1 (en) 1999-12-13
JP2000158364A true JP2000158364A (en) 2000-06-13

Family

ID=18393544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34792498A Expired - Lifetime JP2990273B1 (en) 1998-11-20 1998-11-20 Ultrasonic non-contact micromanipulation method and apparatus using multiple sound sources

Country Status (1)

Country Link
JP (1) JP2990273B1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343302A (en) * 2003-05-14 2004-12-02 National Institute Of Advanced Industrial & Technology External sound perceiving apparatus
US7674300B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7673516B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7703698B2 (en) 2006-09-08 2010-04-27 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment chamber and continuous flow mixing system
US7712353B2 (en) 2006-12-28 2010-05-11 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7740666B2 (en) 2006-12-28 2010-06-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7785674B2 (en) 2007-07-12 2010-08-31 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US7947184B2 (en) 2007-07-12 2011-05-24 Kimberly-Clark Worldwide, Inc. Treatment chamber for separating compounds from aqueous effluent
US7998322B2 (en) 2007-07-12 2011-08-16 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber having electrode properties
US8034286B2 (en) 2006-09-08 2011-10-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment system for separating compounds from aqueous effluent
US8057573B2 (en) 2007-12-28 2011-11-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for increasing the shelf life of formulations
CN102350694A (en) * 2011-09-20 2012-02-15 浙江大学 Flexible ultrasonic radiometric force clamp based on microscopic visual servo
US8143318B2 (en) 2007-12-28 2012-03-27 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
US8163388B2 (en) 2008-12-15 2012-04-24 Kimberly-Clark Worldwide, Inc. Compositions comprising metal-modified silica nanoparticles
US8182552B2 (en) 2006-12-28 2012-05-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US8206024B2 (en) 2007-12-28 2012-06-26 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for particle dispersion into formulations
US8215822B2 (en) 2007-12-28 2012-07-10 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing antimicrobial formulations
US8454889B2 (en) 2007-12-21 2013-06-04 Kimberly-Clark Worldwide, Inc. Gas treatment system
US8632613B2 (en) 2007-12-27 2014-01-21 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
US8685178B2 (en) 2008-12-15 2014-04-01 Kimberly-Clark Worldwide, Inc. Methods of preparing metal-modified silica nanoparticles
US8858892B2 (en) 2007-12-21 2014-10-14 Kimberly-Clark Worldwide, Inc. Liquid treatment system
CN104690737A (en) * 2015-02-05 2015-06-10 杭州电子科技大学 Ultrasonic standing wave suspension clamping type carrying mechanical hand
US9239036B2 (en) 2006-09-08 2016-01-19 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment and delivery system and process
US9283188B2 (en) 2006-09-08 2016-03-15 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US9421504B2 (en) 2007-12-28 2016-08-23 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343302A (en) * 2003-05-14 2004-12-02 National Institute Of Advanced Industrial & Technology External sound perceiving apparatus
US7703698B2 (en) 2006-09-08 2010-04-27 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment chamber and continuous flow mixing system
US9283188B2 (en) 2006-09-08 2016-03-15 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US9239036B2 (en) 2006-09-08 2016-01-19 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment and delivery system and process
US8034286B2 (en) 2006-09-08 2011-10-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment system for separating compounds from aqueous effluent
US8616759B2 (en) 2006-09-08 2013-12-31 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment system
US8182552B2 (en) 2006-12-28 2012-05-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7674300B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7673516B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7712353B2 (en) 2006-12-28 2010-05-11 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7740666B2 (en) 2006-12-28 2010-06-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7785674B2 (en) 2007-07-12 2010-08-31 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US7947184B2 (en) 2007-07-12 2011-05-24 Kimberly-Clark Worldwide, Inc. Treatment chamber for separating compounds from aqueous effluent
US7998322B2 (en) 2007-07-12 2011-08-16 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber having electrode properties
US8454889B2 (en) 2007-12-21 2013-06-04 Kimberly-Clark Worldwide, Inc. Gas treatment system
US8858892B2 (en) 2007-12-21 2014-10-14 Kimberly-Clark Worldwide, Inc. Liquid treatment system
US8632613B2 (en) 2007-12-27 2014-01-21 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
US8206024B2 (en) 2007-12-28 2012-06-26 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for particle dispersion into formulations
US8057573B2 (en) 2007-12-28 2011-11-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for increasing the shelf life of formulations
US8215822B2 (en) 2007-12-28 2012-07-10 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing antimicrobial formulations
US8143318B2 (en) 2007-12-28 2012-03-27 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
US9421504B2 (en) 2007-12-28 2016-08-23 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
US8685178B2 (en) 2008-12-15 2014-04-01 Kimberly-Clark Worldwide, Inc. Methods of preparing metal-modified silica nanoparticles
US8163388B2 (en) 2008-12-15 2012-04-24 Kimberly-Clark Worldwide, Inc. Compositions comprising metal-modified silica nanoparticles
CN102350694A (en) * 2011-09-20 2012-02-15 浙江大学 Flexible ultrasonic radiometric force clamp based on microscopic visual servo
CN104690737A (en) * 2015-02-05 2015-06-10 杭州电子科技大学 Ultrasonic standing wave suspension clamping type carrying mechanical hand

Also Published As

Publication number Publication date
JP2990273B1 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
JP2990273B1 (en) Ultrasonic non-contact micromanipulation method and apparatus using multiple sound sources
JP2545427B2 (en) Granular material handling method and apparatus
US6055859A (en) Non-contact micromanipulation method and apparatus
US7601267B2 (en) Method for positioning small particles in a fluid
JP2703302B2 (en) Manipulating means
JP5483239B2 (en) Non-contact conveying apparatus, non-contact conveying method and non-contact conveying system
CN104428733B (en) Time-reversal tactile stimulation interface
Haake et al. Positioning of small particles by an ultrasound field excited by surface waves
JPH09193055A (en) Noncontact micromanipulation method using ultrasonic wave
Cheng et al. Thin film PZT-based PMUT arrays for deterministic particle manipulation
Li et al. Phononic-crystal-enabled dynamic manipulation of microparticles and cells in an acoustofluidic channel
Gallego-Juárez et al. Recent developments in vibrating-plate macrosonic transducers
Zhang et al. Multi-scale patterning of microparticles using a combination of surface acoustic waves and ultrasonic bulk waves
US6682214B1 (en) Acoustic wave micromixer using fresnel annular sector actuators
US6766691B2 (en) Method and apparatus for optical acoustic molding
Thomas et al. Development of an acoustic levitation linear transportation system based on a ring-type structure
JP2913031B1 (en) Non-contact micromanipulation method and apparatus using two sound sources
Masuda et al. Noncontact transportation of planar object in an ultrasound waveguide
US3397605A (en) Frequency modulated radiant energy scanner employing cavitation induced diffraction
Kozuka et al. Control of position of a particle using a standing wave field generated by crossing sound beams
Deng et al. Relative position control and coalescence of independent microparticles using ultrasonic waves
Kozuka et al. Two-dimensional acoustic micromanipulation using a line-focused transducer
JP2005203976A (en) Ultrasonic linear array transducer
JP2899691B2 (en) Non-contact micromanipulation method
JP2723182B1 (en) Non-contact micromanipulation method and apparatus

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term