JP2000158045A - Method for straightening shape of strip steel - Google Patents

Method for straightening shape of strip steel

Info

Publication number
JP2000158045A
JP2000158045A JP10332728A JP33272898A JP2000158045A JP 2000158045 A JP2000158045 A JP 2000158045A JP 10332728 A JP10332728 A JP 10332728A JP 33272898 A JP33272898 A JP 33272898A JP 2000158045 A JP2000158045 A JP 2000158045A
Authority
JP
Japan
Prior art keywords
shape
distance
steel strip
width direction
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10332728A
Other languages
Japanese (ja)
Inventor
Katsura Naito
桂 内藤
Kenji Hara
健治 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP10332728A priority Critical patent/JP2000158045A/en
Publication of JP2000158045A publication Critical patent/JP2000158045A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a strip steel having an excellent shape by eliminating fluctuation in shape or disturbances in measurement in a short span along the longitudinal direction and setting suitable shape-straightening conditions in accordance with the actual change in shape. SOLUTION: A distance is continuously measured from a travelling strip steel to each distance sensor by means of plural sensors arranged along the width direction; the timewise fluctuation of the measured distance is fast Fourier transformed at an interval not less than the time in which a wave generated in the steel strip passes for one period; and the elongation percentage by an elongation roll 1a is controlled so that the peak of the frequency obtained becomes zero. In addition, in straightening C-camber, the distances are each averaged out which are measured by the distance sensors arranged in the center part in the width direction and the edge part of the steel strip; and the rolling reduction of a C-camber straightening roll 1b is controlled in the manner that the difference becomes zero between the average distance at the edge part and that of the center part in the width direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、形状矯正ライン内で鋼
帯の形状を測定しながら、レベラーによる形状矯正を制
御する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling shape correction by a leveler while measuring the shape of a steel strip in a shape correction line.

【0002】[0002]

【従来の技術】鋼帯は、圧延,熱処理等により所定のサ
イズ及び材料特性が付与されている。しかし,圧延,熱
処理等の工程を経たままの鋼帯には、長手方向の反り
(以下、L反りという),板幅方向の反り(以下、C反
りという),耳伸び,中伸び,クォータ伸び(以下、波
形状という)等が生じており、必要な平坦度仕様を満足
しないことが多い。そのため、圧延,熱処理の後工程と
して形状矯正が必要になり、テンションレベラー,ロー
ラレベラー等によりL反り,C反り,波形状等を解消し
ている。
2. Description of the Related Art Steel strips are given predetermined sizes and material properties by rolling, heat treatment, or the like. However, in a steel strip that has undergone processes such as rolling and heat treatment, warpage in the longitudinal direction (hereinafter, referred to as L warpage), warpage in the sheet width direction (hereinafter, referred to as C warpage), ear elongation, middle elongation, and quarter elongation. (Hereinafter referred to as a wave shape) and the like, and often do not satisfy required flatness specifications. For this reason, shape correction is required as a post-process of rolling and heat treatment, and L-warp, C-warp, corrugation and the like are eliminated by a tension leveler, a roller leveler, or the like.

【0003】テンションレベラーによる形状矯正は、た
とえば図1に示すようにテンションレベラーロール1の
前後にブライドルロール2in,2out を配置し、ブライ
ドルロール2in,2out により鋼帯Sに張力を付加しな
がら、ブライドルロール2in,2out の周速差で鋼帯S
の伸び率を制御して形状矯正している。テンションレベ
ラーロール1は、鋼帯Sの走行方向に沿って多数配置さ
れており、鋼帯Sの伸長に働くロール群1a と、反り矯
正に働くロール群1b ,1c に別れる。
[0003] straightening by a tension leveler, for example, the bridle roll 2 in, 2 out and placed before and after the tension leveler roll 1 as shown in FIG. 1, the additional tension to the steel strip S by bridle rolls 2 in, 2 out While the bridle roll 2 in and 2 out have a difference in peripheral speed, the steel strip S
The shape is corrected by controlling the elongation percentage. Tension leveler roll 1 is arranged a number along the running direction of the steel strip S, and rolls 1 a acting on the extension of the steel strip S, break up the rolls 1 b, 1 c acting on the warp correction.

【0004】波形状は、鋼帯Sの長手方向に沿った歪み
が板幅方向で分布していることが原因であるので、高張
力下の伸長部で曲げ変形して鋼帯に所定の伸びを付与す
ることにより矯正される。伸び率は伸長ロールの圧下量
及び張力で変化するので、伸長域3で伸長ロールの圧下
量を設定し、ブライドルロール2in,2out の周速差に
よって張力を変化させることにより所定の伸び率を得て
いる。反り矯正域4では、矯正ロールの圧下量を調整す
ることにより伸長域3で発生又は変化した反りを矯正し
ている。矯正ロールの配置に関して種々のパターンが知
られているが、図1には、C反りを矯正する第1ユニッ
ト41 及びL反りを矯正する第2ユニット42 の二つの
ユニットで構成した反り矯正域4を示す。
[0004] The corrugated shape is caused by the fact that the strain along the longitudinal direction of the steel strip S is distributed in the width direction of the steel strip. Is corrected. Since the elongation rate changes with the amount of tension and the tension of the elongation roll, the elongation rate of the elongation roll is set in the elongation area 3 and the tension is changed by the peripheral speed difference between the bridle rolls 2 in and 2 out to obtain a predetermined elongation rate. Have gained. In the warp correction area 4, the warpage generated or changed in the extension area 3 is corrected by adjusting the amount of reduction of the correction roll. Various patterns are known with regard to the arrangement of the straightening roll, the warp correction in Figure 1, configured in the second unit 4 2 Two units for correcting the first unit 4 1 and L warp correcting C warp Region 4 is shown.

【0005】ローラレベラーによる形状矯正では、図2
に代表的なロール配置を示したローラレベラーが使用さ
れる。複数の上段ロール5u 及び下段ロール5d は、互
いに千鳥状に配置され、入側圧下量及び出側圧下量がそ
れぞれ独立して設定できるように一体となって上下に移
動する。一般的には、入側圧下量及び出側圧下量の調整
によって鋼帯Sが形状制御される。鋼帯Sの形状が長手
方向に沿って変動するので、インラインで鋼帯Sの形状
を測定しながら形状矯正条件が設定される。
[0005] In shape correction using a roller leveler, FIG.
A roller leveler showing a typical roll arrangement is used. A plurality of upper rolls 5 u and the lower roll 5 d are staggered from each other, the amount under inlet side pressure and out lateral pressure under weight moves up and down together so that it can be set independently. Generally, the shape of the steel strip S is controlled by adjusting the amount of reduction on the inlet side and the amount of reduction on the outlet side. Since the shape of the steel strip S varies along the longitudinal direction, the shape correction conditions are set while measuring the shape of the steel strip S in-line.

【0006】たとえば、特公平3−7330号公報で
は、図3に示すようにライン内に設けた形状測定器6
out でテンションレベラー矯正後の鋼帯Sの形状を測定
し、測定結果から求めた形状矯正条件を伸び率制御装置
8及び圧下量制御装置9に出力する。鋼帯Sの形状測定
には、L反り用,C反り用,耳伸び用,中伸び用,波形
状用のそれぞれに対応する形状測定器6が使用され、測
定結果に基づいてレベラー条件が変更される。また、特
開平7−96326号公報では、図4に示すようにテン
ションレベラーの入側で形状測定器6inをライン内に配
置し、テンションレベラー矯正前の鋼帯Sに生じている
波形状を測定している。測定結果は、形状矯正条件とし
て伸び率制御装置8に出力され、波形状に対応する条件
下で鋼帯Sが形状矯正される。波形状の測定には、形状
検出ロール又は板幅方向に配置された複数個の距離セン
サが使用される。鋼帯Sの長手方向に沿った歪みの板幅
方向分布を測定結果から算出し、板幅方向分布の差に応
じた伸び率が鋼帯Sに与えられるようにレベラー条件が
設定される。
For example, in Japanese Patent Publication No. Hei 3-7330, a shape measuring instrument 6 provided in a line as shown in FIG.
out , the shape of the steel strip S after the tension leveler straightening is measured, and the shape straightening conditions obtained from the measurement result are output to the elongation rate control device 8 and the rolling reduction amount control device 9. For measuring the shape of the steel strip S, a shape measuring device 6 corresponding to each of L warp, C warp, ear extension, medium extension, and wave shape is used, and the leveler condition is changed based on the measurement result. Is done. In Japanese Patent Application Laid-Open No. 7-96326, as shown in FIG. 4, a shape measuring instrument 6 in is arranged in the line at the entrance side of the tension leveler, and the wave shape generated in the steel strip S before the tension leveler is corrected is determined. Measuring. The measurement result is output to the elongation rate control device 8 as the shape correction condition, and the shape of the steel strip S is corrected under the condition corresponding to the wave shape. For the measurement of the wave shape, a shape detection roll or a plurality of distance sensors arranged in the plate width direction is used. The distribution of the strain in the width direction of the steel strip S in the plate width direction is calculated from the measurement result, and the leveler condition is set so that the elongation according to the difference in the distribution of the steel strip S is given to the steel strip S.

【0007】[0007]

【発明が解決しようとする課題】レベラー矯正後に形状
測定する方法(特公平3−7330号公報),レベラー
矯正前に形状測定する方法(特開平7−96326号公
報)の何れでも、鋼帯Sの形状を評価する検出信号は、
外乱を含むと共に鋼帯S内で常に変動する。外乱や変動
の原因としては、鋼帯Sのバタツキ等の影響を形状測定
器6in,6out が受けること、鋼帯Sの形状が長手方向
及び板幅方向に関して一定でないこと等が掲げられる。
外乱を含む検出信号から求められた形状矯正条件は適正
な形状矯正条件と異なるため、形状矯正された鋼帯Sの
形状が却って悪化することがある。また、波形状は一波
毎に波高さが微妙に変化しているので、形状を評価する
検出信号に応じてレベラー条件を逐一変化させて形状矯
正すると、形状測定から形状矯正までにタイムラグがあ
るため、過去の測定結果に基づいて現在の鋼帯Sを形状
矯正することになる。この場合にも、鋼帯Sの形状を悪
化させることになる。
In both the method of measuring the shape after leveler straightening (Japanese Patent Publication No. 3-7330) and the method of measuring the shape before leveler straightening (JP-A-7-96326), the steel strip S The detection signal for evaluating the shape of
It includes a disturbance and constantly fluctuates in the steel strip S. Causes of the disturbance and fluctuation include that the shape measuring devices 6 in and 6 out are affected by flapping of the steel strip S, that the shape of the steel strip S is not constant in the longitudinal direction and the sheet width direction.
Since the shape correction condition obtained from the detection signal including the disturbance is different from the appropriate shape correction condition, the shape of the steel strip S whose shape has been corrected may be rather deteriorated. In addition, since the wave height of the wave shape is slightly changed for each wave, if the shape is corrected by changing the leveler conditions one by one according to the detection signal for evaluating the shape, there is a time lag from the shape measurement to the shape correction. Therefore, the shape of the current steel strip S is corrected based on the past measurement results. Also in this case, the shape of the steel strip S is deteriorated.

【0008】[0008]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、板幅方向に沿っ
て配置された複数個の距離センサで走行中の鋼帯の長手
方向及び板幅方向の形状を連続測定し、鋼帯の長手方向
に沿った短いスパンでの形状変動,外乱等を排除するこ
とにより、全長及び全幅にわたって適正な条件下で鋼帯
を形状矯正し、良好な形状をもつ鋼帯を製造することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been devised in order to solve such a problem. The present invention is directed to a steel strip which is running with a plurality of distance sensors arranged along the width direction of the plate. Continuously measures the shape in the longitudinal direction and the width direction of the strip, and eliminates shape fluctuations and disturbances in a short span along the longitudinal direction of the steel strip, thereby correcting the shape of the steel strip under appropriate conditions over the entire length and width. And to produce a steel strip having a good shape.

【0009】本発明の形状矯正方法は、その目的を達成
するため、板幅方向に沿って配置した複数個の距離セン
サで走行中の鋼帯から各距離センサまでの距離を連続測
定し、鋼帯に生じている波が1周期分通過する時間以上
の間隔で測定距離の時間変化を高速フーリエ変換し、得
られた周波数のピークがゼロとなるように鋼帯の伸び率
を制御することを特徴とする。併せて、圧下量制御によ
りC反りを矯正することもできる。この場合には、鋼帯
の板幅方向中央部及び板端部に配置されている距離セン
サで測定された距離をそれぞれ平均化し、板端部での距
離平均値と板幅方向中央部での距離平均値との差がゼロ
となるようにレベラーの圧下量を制御する。
In order to achieve the object, the shape correcting method of the present invention continuously measures the distance from a running steel strip to each of the distance sensors with a plurality of distance sensors arranged along the width direction of the steel sheet. Fast Fourier transform of the time change of the measurement distance at intervals longer than the time during which the wave generated in the band passes for one cycle, and controlling the elongation rate of the steel strip so that the peak of the obtained frequency becomes zero. Features. At the same time, C warpage can be corrected by controlling the amount of reduction. In this case, the distances measured by the distance sensors disposed at the center and the ends of the steel strip in the sheet width direction are respectively averaged, and the average distance at the sheet end and the distance at the center of the sheet width direction are measured. The reduction amount of the leveler is controlled so that the difference from the distance average value becomes zero.

【0010】[0010]

【実施の形態】本発明に従った形状測定では、図5に示
すように鋼帯Sの板幅方向に沿って複数個の距離センサ
111 ,112 ・・・11i を配置し、走行中の鋼帯S
から各距離センサ111 ,112 ・・・11i までの距
離を連続測定する。鋼帯Sに波形状があると、距離セン
サ111 ,112 ・・・11i で検出された距離は、波
ピッチをλ,ライン速度をvとすると式(1)に従った
周期Tで変動する。 T=λ/v・・・・・(1) 具体的には、鋼帯Sの端部にある耳伸びを想定すると、
図6に示すようなパターンで走行中の鋼帯Sから各距離
センサ111 ,112 ・・・11i までの距離が変動す
る。ここで、波が1周期分通過する時間以上の間隔で距
離の時間変化を解析装置12で高速フーリエ変換する
と、図7に示すように波形状の波ピッチに相当する周波
数の位置に波形状の波高さに対応した強度のピークが得
られる。
In the shape measurement according to the present invention, a plurality of distance sensors 11 1 , 11 2 ... 11 i are arranged along the width direction of a steel strip S as shown in FIG. Inside steel strip S
From the distance to the distance sensors 11 1, 11 2 ··· 11 i to continuous measurement. If the steel strip S has a wave shape, the distances detected by the distance sensors 11 1 , 11 2 ... 11 i are represented by a period T according to the equation (1), where λ is a wave pitch and v is a line speed. fluctuate. T = λ / v (1) Specifically, assuming the ear extension at the end of the steel strip S,
The distance from the running steel strip S to each of the distance sensors 11 1 , 11 2 ... 11 i varies in a pattern as shown in FIG. Here, when the time change of the distance is performed by the fast Fourier transform by the analysis device 12 at intervals longer than the time during which the wave passes for one cycle, as shown in FIG. 7, the wave shape is located at a frequency position corresponding to the wave pitch of the wave shape. An intensity peak corresponding to the wave height is obtained.

【0011】高速フーリエ変換では、鋼帯Sの通板中に
鋼帯Sと距離センサ11までの距離の時間変化を、距離
変動の程度を表わす頻度と時間変動を表わす周波数との
関係に変換する。距離変動を表わす波高さが大きくなれ
ば高速フーリエ変換後のピークが高くなり、時間変動を
表わすピッチが短くなれば高速フーリエ変換後のピーク
の周波数が大きくなる。
In the fast Fourier transform, the temporal change of the distance between the steel strip S and the distance sensor 11 during the passing of the steel strip S is converted into the relationship between the frequency representing the degree of the distance variation and the frequency representing the time variation. . The peak after fast Fourier transform increases as the wave height indicating the distance variation increases, and the frequency of the peak after fast Fourier transform increases when the pitch indicating the time variation decreases.

【0012】ピークの周波数fは、式(2)で表わされ
る。 f=1/T ・・・・(2) 鋼帯Sの形状が長手方向に関して短いスパンで変動して
いる場合、ピークがなだらかになる。鋼帯Sのバタツキ
に起因して測定距離が変動する場合、変動が周期的であ
れば変動に応じた周波数の位置にピークが存在する。周
期的なバタツキによるピークの周波数は波形状によるピ
ークの周波数よりも十分に高いので、ピークを容易に識
別できる。波形状が1波ごとに、基準となる波ピッチに
対し、たとえば±10%の範囲で変動している場合、理
論上それぞれの波ごとに高速フーリエ変換したピークの
周波数は±11%の範囲で変化する。波高さが変化する
と、ピーク高さも波高さの変化に比例して変化する。数
個の波全体に対して高速フーリエ変換すると、ピークは
基準となる周期を中心とする分布をもつことになり、波
形状の変動幅が大きければ大きいほどピークの分布が大
きくなる。したがって、基準となる波形状及び短いスパ
ンでの形状の変動をピークのプロフィールから知ること
ができる。主たる外乱は、装置の機械振動の影響を受け
て発生する板のバタツキである。このときの周波数は、
一般に数十Hzから数百Hzの範囲にある。他方、波ピ
ッチは一般に10cmから1mの範囲にあり、たとえば
60m/分のライン速度で板が走行する場合、波形状に
よる周波数は10Hz程度以下になる。この周波数の相
違から、外乱のピークと波形状のピークを識別できる。
したがって、距離の時間変化のデータにおいて、距離の
時間変化を高速フーリエ変換することにより、外乱の影
響度が容易に把握され、外乱の影響が容易に排除され
る。
The peak frequency f is expressed by equation (2). f = 1 / T (2) When the shape of the steel strip S fluctuates in a short span in the longitudinal direction, the peak becomes gentle. When the measurement distance fluctuates due to the flapping of the steel strip S, if the fluctuation is periodic, a peak exists at a frequency position corresponding to the fluctuation. Since the frequency of the peak due to the periodic flapping is sufficiently higher than the frequency of the peak due to the wave shape, the peak can be easily identified. If the wave shape fluctuates for each wave in a range of, for example, ± 10% with respect to a reference wave pitch, the frequency of the peak subjected to fast Fourier transform for each wave is theoretically in a range of ± 11%. Change. As the wave height changes, the peak height also changes in proportion to the change in wave height. When fast Fourier transform is performed on all of several waves, the peaks have a distribution centered on a reference period, and the larger the fluctuation width of the wave shape, the larger the distribution of the peaks. Therefore, the reference wave shape and the variation of the shape in a short span can be known from the peak profile. The main disturbance is the fluttering of the plate generated under the influence of the mechanical vibration of the device. The frequency at this time is
Generally, it is in the range of several tens Hz to several hundred Hz. On the other hand, the wave pitch is generally in the range of 10 cm to 1 m. For example, when the board runs at a line speed of 60 m / min, the frequency due to the wave shape is about 10 Hz or less. From the difference in frequency, a disturbance peak and a wave-shaped peak can be identified.
Therefore, by performing the fast Fourier transform of the time change of the distance in the data of the time change of the distance, the influence of the disturbance can be easily grasped, and the influence of the disturbance can be easily eliminated.

【0013】レベラーによる形状矯正では、波に起因す
るピークが消失するように形状矯正条件を調整する。す
なわち、テンションレベラーでは伸び率制御装置8を用
いて伸長ロール1aによる伸び率を制御し(図8)、ロ
ーラレベラーでは圧下量制御装置9を用いて入側及び出
側の圧下量を制御する(図9)。制御に際し、解析装置
12で鋼帯Sから距離センサ111 ,112 ・・・11
i までの距離を時間平均すると、板幅中心部での平均距
離と板幅端部での平均距離の差としてC反りが求められ
る(図6参照)。そこで、テンションレベラー(図8)
では、平均距離の差がゼロになるように、圧下量制御装
置9を介してC反り矯正ロール1bの圧下量を制御す
る。なお、図8に示すテンションレベラーではL反り矯
正ロールをローラレベラータイプにしているが、ローラ
レベラータイプに替えて図1と同様なロール配置も採用
可能である。ローラレベラータイプにするか否かは、伸
長ロール1a,C反り矯正ロール1bについても同様で
ある。
[0013] In shape correction by a leveler, waves
The shape correction conditions are adjusted so that the peaks disappear. You
That is, in the tension leveler, the elongation rate control device 8 is used.
To control the elongation by the elongation roll 1a (FIG. 8).
In the roller leveler, the entrance side and the exit side are controlled by using the reduction amount controller 9.
The amount of reduction on the side is controlled (FIG. 9). Analysis device for control
Distance sensor 11 from steel strip S at 121 , 11Two ... 11
i The average distance at the center of the board width is averaged over time.
C warpage is calculated as the difference between the separation and the average distance at the edge of the plate width.
(See FIG. 6). Therefore, the tension leveler (Fig. 8)
In order to reduce the difference in average distance to zero,
The amount of reduction of the C warpage straightening roll 1b is controlled through the setting device 9.
You. Note that the tension leveler shown in FIG.
Although the regular roll is a roller leveler type,
Instead of the leveler type, a roll arrangement similar to that in Fig. 1 is also used.
It is possible. Whether to use the roller leveler type
The same applies to the long roll 1a and the C warp straightening roll 1b.
is there.

【0014】[0014]

【実施例】板端部を含む板幅方向中央部に5個のレーザ
式距離センサを290mmの等間隔で配列し、波ピッチ
13cmで耳伸びが生じている板幅1200mm,板厚
0.8mmの鋼帯をライン速度10m/分で通板し、鋼
帯表面から距離センサまでの距離を検出した。板端部に
おける距離は、測定結果を示す図10にみられる周期で
変動していた。図10の測定結果を高速フーリエ変換し
たところ、図11にみられるように耳伸びのピッチ13
cmに相当する周波数1.3Hzのところにピークがあ
った。ピークの強度は耳伸びの波高さに対応しているの
で、図11のピークに基づいて耳伸び形状をモニタでき
ることが判る。
EXAMPLE Five laser type distance sensors are arranged at equal intervals of 290 mm at the center of the plate width direction including the plate edge, and the wave width is 13 cm, the ear width is 1200 mm, and the plate thickness is 0.8 mm. Was passed through the steel strip at a line speed of 10 m / min, and the distance from the steel strip surface to the distance sensor was detected. The distance at the edge of the plate fluctuated at the cycle shown in FIG. 10 showing the measurement results. When the measurement result of FIG. 10 is subjected to the fast Fourier transform, as shown in FIG.
There was a peak at a frequency of 1.3 Hz corresponding to cm. Since the peak intensity corresponds to the wave height of the ear extension, it can be seen that the ear extension shape can be monitored based on the peak in FIG.

【0015】また、図10の距離を平均したところ3
9.5mmであった。他方、板幅方向中央部に配置して
いる距離センサで検出された鋼帯表面〜距離センサ間の
平均距離は39.0mmであった。すなわち、板端部で
の平均距離39.5mmと板幅方向中央部での平均距離
39.0mmとの差0.5mmのC反りが鋼帯に生じて
いることが判った。このようにして求められた波形状及
びC反りに応じ、テンションレベラーロール1とローラ
レベラー5u,5dを複合化した図12のラインで、高
速フーリエ変換後のピークがゼロになるように伸び率を
制御し、板端部と板幅方向中央部の平均距離の差がゼロ
になるようにC反り矯正ロール1bによる圧下量を制御
した。
When the distances in FIG. 10 are averaged, 3
It was 9.5 mm. On the other hand, the average distance between the steel strip surface and the distance sensor detected by the distance sensor disposed at the center in the plate width direction was 39.0 mm. That is, it was found that the steel strip had a C warpage of 0.5 mm, which was a difference between the average distance of 39.5 mm at the end of the plate and the average distance of 39.0 mm at the center in the width direction of the plate. According to the wave shape and the C-warp obtained in this manner, the elongation rate is set so that the peak after the fast Fourier transform becomes zero in the line of FIG. 12 in which the tension leveler roll 1 and the roller levelers 5u and 5d are combined. The amount of reduction by the C warpage straightening roll 1b was controlled so that the difference between the average distance between the plate edge and the center in the plate width direction became zero.

【0016】形状矯正後の鋼帯の耳高さ及びC反り量
を、鋼帯トップ部,ミドル部及びエンド部で測定した。
測定結果を、それぞれ図13及び図14に示す。なお、
比較のため鋼帯表面から距離センサまでの距離のみに基
づいて設定した条件下で形状矯正した鋼帯について同様
に耳高さ及びC反り量を測定した結果を、図13,図1
4に従来方法として示す。図13,図14から明らかな
ように、本発明に従って伸び率及び圧下量を制御するこ
とにより、形状矯正後の耳高さ及びC反りが小さくなっ
た。また、形状矯正された鋼帯内でも、耳高さ及びC反
りの変動量が小さくなっていた。
The ear height and the amount of C warpage of the steel strip after shape correction were measured at the top, middle and end of the steel strip.
The measurement results are shown in FIGS. 13 and 14, respectively. In addition,
For comparison, the results of similarly measuring the ear height and the amount of C warpage for the steel strip whose shape was corrected under the conditions set only based on the distance from the steel strip surface to the distance sensor are shown in FIGS.
FIG. 4 shows a conventional method. As is clear from FIGS. 13 and 14, by controlling the elongation and the amount of reduction according to the present invention, the ear height and the C warpage after the shape correction were reduced. In addition, even in the steel strip whose shape was corrected, the fluctuation amount of the ear height and the C warpage was small.

【0017】[0017]

【発明の効果】以上に説明したように、本発明では、鋼
帯表面から距離センサまでの距離を連続的に測定し、距
離の時間変化を高速フーリエ変換して得られる周波数の
ピークに基づいて鋼帯の伸び率を制御している。このよ
うにして形状矯正条件を設定するとき、長手方向に沿っ
た短いスパンでの形状変動や測定上の外乱が排除される
ので、実際の形状変化に対応して形状矯正条件が設定さ
れ、L反り,C反り,波形状等が抑制され、良好な形状
をもつ鋼帯が製造される。
As described above, according to the present invention, the distance from the surface of the steel strip to the distance sensor is continuously measured, and the time change of the distance is determined based on the frequency peak obtained by the fast Fourier transform. Controls the elongation of the steel strip. When setting the shape correction conditions in this manner, shape fluctuations in short spans along the longitudinal direction and disturbances in measurement are eliminated, so that the shape correction conditions are set corresponding to the actual shape change, and L Warp, C warp, corrugation, etc. are suppressed, and a steel strip having a good shape is manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 代表的なテンションレベラーの概略図FIG. 1 is a schematic diagram of a typical tension leveler.

【図2】 代表的なローラレベラーの概略図FIG. 2 is a schematic view of a typical roller leveler.

【図3】 形状矯正制御機構を備えた従来のテンション
レベラー
FIG. 3 shows a conventional tension leveler having a shape correction control mechanism.

【図4】 形状矯正制御機構を備えた従来のテンション
レベラー
FIG. 4 shows a conventional tension leveler having a shape correction control mechanism.

【図5】 本発明に従って鋼帯の幅方向に配置した複数
の距離センサ
FIG. 5 shows a plurality of distance sensors arranged in the width direction of a steel strip according to the present invention.

【図6】 走行中の鋼帯表面から距離センサまでの距離
の時間変化を表わすグラフ
FIG. 6 is a graph showing a time change of a distance from a running steel strip surface to a distance sensor.

【図7】 距離の時間変化を高速フーリエ変換した結果
を表わすグラフ
FIG. 7 is a graph showing a result of a fast Fourier transform of a time change of a distance.

【図8】 ローラレベラータイプのL反り矯正ロールを
備えたテンションレベラーの概略図
FIG. 8 is a schematic view of a tension leveler provided with a roller leveler type L warpage correcting roll.

【図9】 形状矯正条件設定用の距離センサが出側に配
置されたローラレベラーの概略図
FIG. 9 is a schematic view of a roller leveler in which a distance sensor for setting a shape correction condition is arranged on an output side.

【図10】 実施例で得られた鋼帯表面から距離センサ
までの距離の時間変化を表わすグラフ
FIG. 10 is a graph showing a temporal change in the distance from the steel strip surface to the distance sensor obtained in the example.

【図11】 同距離の時間変化を高速フーリエ変換した
結果を表わすグラフ
FIG. 11 is a graph showing a result of performing a fast Fourier transform on a time change of the same distance.

【図12】 実施例で使用した形状制御装置の概略図FIG. 12 is a schematic diagram of a shape control device used in the embodiment.

【図13】 耳高さの変化を本発明と従来方法とで対比
させたグラフ
FIG. 13 is a graph comparing the change in ear height between the present invention and the conventional method.

【図14】 C反り量の変化を本発明と従来方法とで対
比させたグラフ
FIG. 14 is a graph in which a change in the amount of C warpage is compared between the present invention and a conventional method.

【符号の説明】[Explanation of symbols]

1:テンションレベラーロール 1a:伸長ロール 1b:C反り矯正ロール 1
c:L反り矯正ロール 2in:ブライドルロール(入側) 2out :ブライド
ルロール(出側) 3:伸長域 4:反り矯正域 41 :第1ユニット
2 :第2ユニット 5u :ローラレベラーの上段ロール 5d :下段ロー
ル 6in:形状測定器(入側) 6out :形状測定器(出
側) 8:伸び率制御装置 9:圧下量制御装置 111 ,112 ・・・11i :距離センサ 12:解
析装置 S:鋼帯 T:距離変動の周期
1: tension leveler roll 1a: elongation roll 1b: C warp straightening roll 1
c: L warp correction roll 2 in: bridle roll (entering-side) 2 out: bridle roll (exit side) 3: elongation zone 4: warp correction region 4 1: the first unit 4 2: second unit 5 u: roller leveler Upper roll 5 d : Lower roll 6 in : Shape measuring device (entrance side) 6 out : Shape measuring device (outside) 8: Elongation rate control device 9: Reduction amount control device 11 1 , 11 2 ... 11 i : Distance sensor 12 : Analyzer S : Steel strip T : Period of distance fluctuation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 板幅方向に沿って配置した複数個の距離
センサで走行中の鋼帯から各距離センサまでの距離を連
続測定し、鋼帯に生じている波が1周期分通過する時間
以上の間隔で測定距離の時間変化を高速フーリエ変換
し、得られた周波数のピークがゼロとなるように鋼帯の
伸び率を制御することを特徴とする鋼帯の形状矯正方
法。
1. A continuous measurement of a distance from a running steel strip to each of the distance sensors by a plurality of distance sensors arranged along a sheet width direction, and a time required for a wave generated in the steel strip to pass for one cycle. A method for correcting the shape of a steel strip, comprising: performing a fast Fourier transform on a time change of a measured distance at the above intervals, and controlling an elongation rate of the steel strip so that an obtained frequency peak becomes zero.
【請求項2】 更に、鋼帯の板幅方向中央部及び板端部
に配置されている距離センサで測定された距離をそれぞ
れ平均化し、板端部での距離平均値と板幅方向中央部で
の距離平均値との差がゼロとなるようにレベラーの圧下
量を制御する請求項1記載の鋼帯の形状矯正方法。
2. The method according to claim 1, further comprising averaging distances measured by distance sensors disposed at a center portion and a plate end portion of the steel strip in the plate width direction, respectively, to calculate a distance average value at the plate end portion and a central portion in the plate width direction. The method for correcting the shape of a steel strip according to claim 1, wherein the amount of reduction of the leveler is controlled so that the difference from the distance average value in step (1) becomes zero.
JP10332728A 1998-11-24 1998-11-24 Method for straightening shape of strip steel Withdrawn JP2000158045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10332728A JP2000158045A (en) 1998-11-24 1998-11-24 Method for straightening shape of strip steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10332728A JP2000158045A (en) 1998-11-24 1998-11-24 Method for straightening shape of strip steel

Publications (1)

Publication Number Publication Date
JP2000158045A true JP2000158045A (en) 2000-06-13

Family

ID=18258208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10332728A Withdrawn JP2000158045A (en) 1998-11-24 1998-11-24 Method for straightening shape of strip steel

Country Status (1)

Country Link
JP (1) JP2000158045A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205114A (en) * 2000-12-28 2002-07-23 Taiho Kogyo Co Ltd Spraying device of sintering powder onto backing
JP2011079001A (en) * 2009-10-05 2011-04-21 Nippon Steel Engineering Co Ltd Tension roller leveler and warpage straightening method using the same
KR101030942B1 (en) * 2004-03-10 2011-04-28 아르셀러미탈 프랑스 Roller leveller with variable centre distance
KR101127125B1 (en) * 2009-12-23 2012-03-20 주식회사 포스코 Measurement device for roll gap
JP2015032669A (en) * 2013-08-01 2015-02-16 日産自動車株式会社 Method for producing sintered magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205114A (en) * 2000-12-28 2002-07-23 Taiho Kogyo Co Ltd Spraying device of sintering powder onto backing
JP4594518B2 (en) * 2000-12-28 2010-12-08 大豊工業株式会社 Dispersion device for powder for sintering on back metal
KR101030942B1 (en) * 2004-03-10 2011-04-28 아르셀러미탈 프랑스 Roller leveller with variable centre distance
JP2011079001A (en) * 2009-10-05 2011-04-21 Nippon Steel Engineering Co Ltd Tension roller leveler and warpage straightening method using the same
KR101127125B1 (en) * 2009-12-23 2012-03-20 주식회사 포스코 Measurement device for roll gap
JP2015032669A (en) * 2013-08-01 2015-02-16 日産自動車株式会社 Method for producing sintered magnet

Similar Documents

Publication Publication Date Title
US4750343A (en) Device for detecting and regulating the planeness of strip-shaped rolled products, especially thin-gage strips, for cold rolling mills
JPH0638961B2 (en) Shape control method for rolled material
JPS6227882B2 (en)
JP2000158045A (en) Method for straightening shape of strip steel
US20020174699A1 (en) Method of and apparatus for eliminating crossbow in metal strip
JPH0289757A (en) Method for adjusting meandering of band material
JPH07117364B2 (en) Shape measurement method for cold rolled steel sheet
JP3069001B2 (en) Feedback control method of sheet crown / shape model
CN108602098B (en) Strip steel shape correcting device and method
JP7314921B2 (en) Method for controlling meandering of hot-rolled steel strip, meandering control device, and hot rolling equipment
KR20040004946A (en) Method for controlling the automatic gauge control device and bender of rolling mill in hot rolling process
KR0136165B1 (en) Method and apparatus for controlling flatness
JPH05239556A (en) Method for preventing meandering of metal strip
KR100236159B1 (en) Shape control method of steel sheets
KR20030052421A (en) Supplementary equipment for measurement and improvement of strip flatness in skin pass mill
JP3117913B2 (en) Shape control method and temper rolling mill in temper rolling
JPH07164034A (en) Method for controlling shape of rolling sheet
KR100361567B1 (en) Elongation Control Device and Method of Skin Pass Mill in Continuous Annealing Line
JPH08257637A (en) Method for flattening tapered thick steel plate
JPH03243205A (en) Method for reducing l camber of cold rolling
JPH07303911A (en) Method for controlling sheet crown and shape
JPH03138002A (en) Wet rolling method
JPH06345304A (en) Snaking motion control method of band plate
JP2000176522A (en) Manufacture of steel sheet by camber control
JPS61195705A (en) Automatic controlling method for sheet width

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207