JP2000157507A - Nuclear magnetic resonance imaging system - Google Patents

Nuclear magnetic resonance imaging system

Info

Publication number
JP2000157507A
JP2000157507A JP10335863A JP33586398A JP2000157507A JP 2000157507 A JP2000157507 A JP 2000157507A JP 10335863 A JP10335863 A JP 10335863A JP 33586398 A JP33586398 A JP 33586398A JP 2000157507 A JP2000157507 A JP 2000157507A
Authority
JP
Japan
Prior art keywords
coil
signal
echo
image
navigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10335863A
Other languages
Japanese (ja)
Other versions
JP2000157507A5 (en
JP4072879B2 (en
Inventor
Masahiro Takizawa
将宏 瀧澤
Tetsuhiko Takahashi
哲彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP33586398A priority Critical patent/JP4072879B2/en
Publication of JP2000157507A publication Critical patent/JP2000157507A/en
Publication of JP2000157507A5 publication Critical patent/JP2000157507A5/ja
Application granted granted Critical
Publication of JP4072879B2 publication Critical patent/JP4072879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable photographing with precision even concerning soft tissue by permitting an image re-constituting means to be provided with means for correcting the movement of a testee at every small RF reception coil through the use of a multiple coil as the reception coil, synthesizing signals which are corrected by means of the respective correcting means and obtaining the image where a body movement is corrected. SOLUTION: Each small RF coil 602 is connected to a signal detecting part 406 having an A/D converter and an orthogonal detection circuit 604 at every coil with each preamplifier 603. The signal detected by each small RF coil 602 is converted into two groups of digital signals by the signal detecting part 406 and transmitted to a signal processing part 407. The signal processing part 407 is provided with the means for executing a signal processing such as a phase correction or the like in the digital signal, an image re-constituting means(Fourier transform means) 605 and the means 606 for synthesizing image signals so that the signals are synthesized by re-constituting the images at every coil 602. The signal processing part 407 is provided with the body movement correcting means using a navigation echo as a signal processing means and the synthesized image is displayed in a display part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検体中の水素や
燐等からの核磁気共鳴(以下、NMRという)信号を測定
し、核の密度分布や緩和時間分布等を映像化する核磁気
共鳴撮影装置(以下、MRI装置という)に関し、特に体
動補正用のナビゲーションエコーの付加を伴うMRI装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear magnetic field for measuring a nuclear magnetic resonance (hereinafter, referred to as NMR) signal from hydrogen, phosphorus, or the like in an object to visualize a nuclear density distribution, a relaxation time distribution, and the like. The present invention relates to a resonance imaging apparatus (hereinafter, referred to as an MRI apparatus), and more particularly, to an MRI apparatus with addition of a navigation echo for correcting a body motion.

【0002】[0002]

【従来の技術】MRIでは、NMR現象によって被検体組織を
構成する原子核スピンから発生するNMR信号を計測する
際に、信号に位置情報を付与するために傾斜磁場を印加
する。この傾斜磁場として、スライスエンコード方向、
位相エンコード方向、周波数エンコード方向の3軸方向
の傾斜磁場が用いられ、これら傾斜磁場によってエンコ
ードされた信号をフーリエ変換することにより2次元或
いは3次元画像として再構成することができる。
2. Description of the Related Art In MRI, when measuring an NMR signal generated from nuclear spins constituting a tissue of a subject by an NMR phenomenon, a gradient magnetic field is applied to give positional information to the signal. As the gradient magnetic field, the slice encode direction,
Gradient magnetic fields in three axial directions of the phase encode direction and the frequency encode direction are used, and a signal encoded by these gradient magnetic fields can be reconstructed as a two-dimensional or three-dimensional image by performing a Fourier transform.

【0003】このようなMRIによる撮影中に、被検体が
動くと画像に大きなアーチファクトが生じることが知ら
れている。これを体動アーチファクトという。この体動
アーチファクトが発生する理由は、本来所定の計測点に
ある所定の位相エンコード量が与えられるべきところ
が、動きによりそのエンコード量が他の計測点に印加さ
れることとなり、被検体の動きの前後で各取得エコーの
位相が変化し、この変化したエコーを含めて位相エンコ
ード方向(またはスライスエンコード方向)にフーリエ
変換するために生じる。
[0003] It is known that large artifacts occur in images when the subject moves during such MRI imaging. This is called a body movement artifact. The reason for the occurrence of this body motion artifact is that a predetermined phase encoding amount at a predetermined measurement point should be given, but the encoding amount is applied to another measurement point by motion, and the motion of the subject The phase of each acquired echo changes before and after, and this is caused by performing the Fourier transform in the phase encoding direction (or the slice encoding direction) including the changed echo.

【0004】この体動アーチファクトを除去する手法と
してナビゲーションエコーを利用した撮影法が提案され
ている(「ナビゲータを用いた高速インターリーブエコ
ープレナーイメージング:4テスラにおける高解像度解
剖学的および機能的画像」MAGNETIC RESONANCE IN MEDI
CINE, 35:895-902, June 1996, Seong-Gi Kim et a
l)。この手法では、撮影シーケンスを繰り返すとき
に、例えばその繰り返し毎に本来の計測エコー(NMR信
号)とは別個に位相エンコード量0のエコー信号を発生
させて、これをナビゲーションエコーとし、繰り返し毎
のナビゲーションエコーの位相の変化から、繰り返しの
間に生じた体動による信号の位相変化を推定し、補正す
る。
As a technique for removing the body motion artifact, an imaging method using a navigation echo has been proposed (“High-speed interleaved echo planar imaging using a navigator: high-resolution anatomical and functional images at 4 Tesla”). RESONANCE IN MEDI
CINE, 35: 895-902, June 1996, Seong-Gi Kim et a
l). In this method, when the imaging sequence is repeated, for example, an echo signal with a phase encoding amount of 0 is generated separately from the original measurement echo (NMR signal) at each repetition, and this is used as a navigation echo. From the change in the phase of the echo, the change in the phase of the signal due to the body motion generated during the repetition is estimated and corrected.

【0005】[0005]

【発明が解決しようとする課題】しかしナビゲーション
エコーを用いた撮影方法では、撮像視野内に局所的な体
動があったときに対応できない場合がある。例えば図1
0(a)に示すように複数の受信コイルからなるマルチ
プルコイル1000を用いた場合、体動1021が各受信コイル
の感度分布間で一様であった場合には有効であるが、同
図(b)に示すように被検体1011の組織や構造1012によ
って異なる動き1022〜1024があった場合には、対処でき
ない。このような局所的な動きは、腹部領域のような柔
らかい組織において生じやすい。また腹部では同図
(c)に示すように呼吸等の影響により被検体の背側と
腹側で動き1025が異なる場合がある。
However, the imaging method using the navigation echo may not be able to cope with a local body movement in the imaging field of view. For example, FIG.
When a multiple coil 1000 including a plurality of receiving coils is used as shown in FIG. 0 (a), it is effective when the body motion 1021 is uniform among the sensitivity distributions of the respective receiving coils. If there are different movements 1022 to 1024 depending on the tissue or structure 1012 of the subject 1011 as shown in b), it cannot be dealt with. Such local movement is likely to occur in soft tissue such as the abdominal region. In the abdomen, the movement 1025 may differ between the dorsal side and the abdominal side of the subject due to the influence of respiration and the like as shown in FIG.

【0006】そこで本発明は、ナビゲーションエコーを
付加的に発生し、取得する機能を備えたMRI装置におい
て、局所的な体動がある場合でも、体動補正が可能であ
り、これにより腹部領域のような柔らかい組織について
も精度よい撮影が可能なMRI装置を提供することを目的
とする。
Accordingly, the present invention provides an MRI apparatus having a function of additionally generating and acquiring a navigation echo, which is capable of correcting body movement even when there is local body movement. It is an object of the present invention to provide an MRI apparatus capable of performing accurate imaging of such a soft tissue.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明のMRI装置は、被検体の置かれた空間に高周
波磁場および傾斜磁場の各磁場を所定のパルスシーケン
スに従って印加する手段と、NMR信号を受信する受信コ
イルと、受信コイルで受信したNMR信号を処理し、画像
を再構成する手段とを備えたMRI装置において、受信コ
イルとして、複数の小型RF受信コイルからなるマルチプ
ルコイルを用いるとともに、画像再構成手段は、小型RF
受信コイル毎に、被検体の体動を補正する手段を備え、
各補正手段によって補正された信号を合成し体動の補正
された画像を得る。
In order to achieve the above object, an MRI apparatus according to the present invention comprises: means for applying a high-frequency magnetic field and a gradient magnetic field to a space where a subject is placed according to a predetermined pulse sequence; In an MRI apparatus including a receiving coil for receiving an NMR signal and a means for processing the NMR signal received by the receiving coil and reconstructing an image, a multiple coil including a plurality of small RF receiving coils is used as the receiving coil. In addition, the image reconstruction means is a small RF
A means for correcting the body movement of the subject is provided for each receiving coil,
The signals corrected by the respective correction means are combined to obtain an image in which the body motion is corrected.

【0008】本発明のMRI装置では、画像再構成手段は
マルチプルコイルを構成する小型RF受信コイル毎に体動
補正手段を備え、各小型RF受信コイルで取得されたエコ
ー信号の組に対し、それぞれ適切な体動を補正を行った
後、信号合成を行い、画像を得るので、被検体の局所的
な動きを精度良く補正できる。
In the MRI apparatus according to the present invention, the image reconstructing means includes a body movement correcting means for each of the small RF receiving coils constituting the multiple coils, and each of the sets of echo signals acquired by each of the small RF receiving coils is provided for each of the small RF receiving coils. After the appropriate body motion is corrected, signal synthesis is performed to obtain an image, so that the local motion of the subject can be corrected with high accuracy.

【0009】体動補正としては、ナビゲーションエコー
を利用した体動補正を採用することができ、その場合体
動補正手段は、前記パルスシーケンスの繰り返しにおい
て、付加的に発生したナビゲーションエコーを小型RF受
信コイル毎に取得する手段と、同一の小型RF受信コイル
で取得されたナビゲーションエコーとエコー信号の組で
被検体の体動を補正する手段とからなる。
As the body movement correction, a body movement correction using a navigation echo can be adopted. In this case, the body movement correction means receives the navigation echo additionally generated in the small RF reception in the repetition of the pulse sequence. It consists of a means for acquiring each coil and a means for correcting the body movement of the subject with a set of the navigation echo and the echo signal acquired by the same small RF receiving coil.

【0010】[0010]

【発明の実施の形態】以下、本発明のMRI装置の実施例
を図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an MRI apparatus according to the present invention will be described below with reference to the drawings.

【0011】図1は、本発明が適用される典型的なMRI
装置の構成を示す図である。このMRI装置は、被検体401
が置かれる空間に均一な静磁場を発生する磁石402と、
この空間に傾斜磁場を発生する傾斜磁場コイル403と、
この空間に高周波(RF)磁場を発生する照射コイル404
と、被検体401が発生するNMR信号を検出する受信コイル
405を備えている。被検体は、ベッド412に横たわった状
態で前記空間に搬入される。
FIG. 1 shows a typical MRI to which the present invention is applied.
FIG. 2 is a diagram illustrating a configuration of an apparatus. This MRI apparatus is used for the subject 401
A magnet 402 that generates a uniform static magnetic field in the space where
A gradient magnetic field coil 403 for generating a gradient magnetic field in this space;
An irradiation coil 404 that generates a radio frequency (RF) magnetic field in this space
And a receiving coil that detects the NMR signal generated by the subject 401
405. The subject is carried into the space while lying on the bed 412.

【0012】傾斜磁場コイル403は、X、Y、Zの3方向の
傾斜磁場コイルで構成され、傾斜磁場電源409からの信
号に応じてそれぞれ傾斜磁場を発生する。照射コイル40
4はRF送信部410の信号に応じて高周波磁場を発生する。
The gradient magnetic field coil 403 is constituted by gradient magnetic field coils in three directions of X, Y and Z, and generates a gradient magnetic field in accordance with a signal from the gradient magnetic field power supply 409. Irradiation coil 40
4 generates a high-frequency magnetic field according to the signal of the RF transmission unit 410.

【0013】受信コイル405は、相対的に高感度な小型R
Fコイルを複数個並べて、各小型RFコイルで受信した信
号を合成することにより、小型RFコイルの高い感度を保
ったまま視野を拡大し高感度化を図るようにした受信専
用RFコイルであり、小型RFコイルとして同種のものを組
合せたものや、形状やタイプの異なるものを組合せたも
のなど公知のマルチプルコイルを採用することができ
る。また静磁場の向きによって垂直磁場用或いは水平磁
場用とする。
The receiving coil 405 is a small-sized R having a relatively high sensitivity.
A receive-only RF coil that arranges multiple F coils and combines the signals received by each small RF coil to expand the field of view and increase the sensitivity while maintaining the high sensitivity of the small RF coil. Known multiple coils, such as a combination of the same type of small RF coils or a combination of different shapes and types, can be employed. Further, depending on the direction of the static magnetic field, it is used for a vertical magnetic field or a horizontal magnetic field.

【0014】マルチプルコイルの各小型RFコイルが受信
した信号は、信号検出部406で検出され、信号処理部
(画像再構成部)407で信号処理され、合成された画像
信号に変換される。
A signal received by each of the small RF coils of the multiple coil is detected by a signal detection unit 406, processed by a signal processing unit (image reconstructing unit) 407, and converted into a combined image signal.

【0015】4つの小型RFコイル602からなるマルチプ
ルコイル601の信号検出部406および信号処理部407の詳
細を図2に示す。各小型RFコイル602はそれぞれプリア
ンプ603を介して、コイル毎にA/D変換器および直交検波
回路604を備えた信号検出部406に接続されている。各小
型RFコイルで検出された信号は、信号検出部406で二系
列のデジタル信号に変換され、信号処理部407に送出さ
れる。信号処理部407はこれらデジタル信号に位相補正
等の信号処理を行う手段と、画像再構成手段(フーリエ
変換手段)605と、画像信号を合成する手段606とを備
え、小型RFコイル毎に画像再構成し、これを信号合成す
る。この信号処理部407は、信号処理手段として後述す
るナビゲーションエコーを用いた体動補正手段を備えて
いる。合成された画像は表示部408で表示される。
FIG. 2 shows the details of the signal detection unit 406 and the signal processing unit 407 of the multiple coil 601 composed of four small RF coils 602. Each small RF coil 602 is connected via a preamplifier 603 to a signal detection unit 406 having an A / D converter and a quadrature detection circuit 604 for each coil. A signal detected by each small RF coil is converted into a two-series digital signal by a signal detection unit 406 and transmitted to a signal processing unit 407. The signal processing unit 407 includes means for performing signal processing such as phase correction on these digital signals, image reconstruction means (Fourier transform means) 605, and means 606 for synthesizing image signals. And constructs a signal. The signal processing unit 407 includes a body motion correcting unit using a navigation echo described later as a signal processing unit. The synthesized image is displayed on the display unit 408.

【0016】制御部11は、これら傾斜磁場電源409、RF
送信部410、信号検出部406をパルスシーケンスと呼ばれ
る撮影シーケンスに従って制御する。本発明ではパルス
シーケンスに、画像再構成に必要なNMR信号の取得の際
に、ナビゲーションエコーを付加的に発生し、取得する
制御が加えられる。
The control unit 11 controls these gradient magnetic field power supplies 409, RF
The transmission unit 410 and the signal detection unit 406 are controlled in accordance with an imaging sequence called a pulse sequence. In the present invention, a control for additionally generating and acquiring a navigation echo when acquiring an NMR signal required for image reconstruction is added to the pulse sequence.

【0017】ナビゲーションエコーの発生を含むパルス
シーケンスの1例を図3に示す。このパルスシーケンス
は、スピンエコー法を基本としたシーケンスで、被検体
の組織を構成する原子核スピンを励起するRF磁場203と
励起した磁化を反転するRF磁場204を、スライスを選択
する傾斜磁場205、206と同時に印加した後、信号に位相
エンコードを付与する傾斜磁場207を印加し、極性が反
転する傾斜磁場208を印加してサンプリング時間209にNM
R信号をスピンエコー信号210として計測する。図示する
シーケンス211を位相エンコード傾斜磁場の強度を変え
ながら繰り返し時間202TRで繰り返し、画像再構成に必
要な数のエコー信号210を取得する。
FIG. 3 shows an example of a pulse sequence including generation of a navigation echo. This pulse sequence is a sequence based on the spin echo method, in which an RF magnetic field 203 for exciting nuclear spins constituting the tissue of the subject and an RF magnetic field 204 for reversing the excited magnetization, a gradient magnetic field 205 for selecting slices, After the application at the same time as 206, a gradient magnetic field 207 for imparting phase encoding to the signal is applied, and a gradient magnetic field 208 for inverting the polarity is applied.
The R signal is measured as a spin echo signal 210. The illustrated sequence 211 is repeated at a repetition time 202TR while changing the intensity of the phase encoding gradient magnetic field, and the number of echo signals 210 required for image reconstruction is obtained.

【0018】ナビゲーションエコーを発生し、取得する
ステップ304は、反転RF磁場204と位相エンコード傾斜磁
場207との間に挿入され、このステップ304では極性が判
定する読み出し傾斜磁場301を印加してサンプリング時
間302にナビゲーションエコー303を計測する。このナビ
ゲーションエコーは位相エンコードが付与されていない
位相エンコード量0の信号である。図示する例では繰り
返し時間TR毎に1つのナビゲーションエコーを取得して
いるが、繰り返し時間が短いシーケンスの場合には、い
くつかの繰り返し毎に1つのナビゲーションエコーを取
得するようにしてもよい、繰り返し時間TR内に例えば複
数の軸についてナビゲーションエコーを取得するように
してもよい。
A step 304 for generating and acquiring a navigation echo is inserted between the reversal RF magnetic field 204 and the phase encoding gradient magnetic field 207. In this step 304, a reading gradient magnetic field 301 whose polarity is determined is applied and the sampling time is increased. At 302, a navigation echo 303 is measured. This navigation echo is a signal having no phase encoding and no phase encoding amount. In the illustrated example, one navigation echo is acquired for each repetition time TR. However, in the case of a sequence with a short repetition time, one navigation echo may be acquired for every several repetitions. For example, a navigation echo for a plurality of axes may be acquired within the time TR.

【0019】次に本発明のMRI装置において、このよう
なナビゲーションエコーを用いて画像のために計測した
エコー信号210(以下、本計測エコーという)を補正す
る手順について図4を参照して説明する。
Next, a procedure for correcting an echo signal 210 (hereinafter referred to as a main measurement echo) measured for an image using such a navigation echo in the MRI apparatus of the present invention will be described with reference to FIG. .

【0020】パルスシーケンスの繰り返しによって計測
された本計測エコーはブロック101内に示すように、各
小型RF受信コイル毎に増幅され、A/D変換・直交検波
後、信号処理部407に送出される。一方、本計測エコー
と同時に計測されたナビゲーションエコーについても、
ブロック102に示すように各小型RF受信コイル毎に増幅
され、A/D変換・直交検波後、信号処理部407に送出され
る。信号処理部407は、小型RF受信コイル毎に設けられ
た補正手段103により、小型RF受信コイル毎に計測され
た本計測エコーとナビゲーションエコーの組で補正を行
う。
The main measurement echo measured by the repetition of the pulse sequence is amplified for each small RF receiving coil as shown in a block 101, and is transmitted to the signal processing unit 407 after A / D conversion and quadrature detection. . On the other hand, for the navigation echo measured at the same time as the main measurement echo,
As shown in a block 102, the signal is amplified for each small RF receiving coil, and after A / D conversion and quadrature detection, is transmitted to the signal processing unit 407. The signal processing unit 407 performs correction using a combination of a main measurement echo and a navigation echo measured for each small RF receiving coil by the correction unit 103 provided for each small RF receiving coil.

【0021】ナビゲーションエコーによる体動補正で
は、繰り返し時間TR毎に取得されたナビゲーションエコ
ーの一つ、例えば最初のナビゲーションエコーを基準と
して、ある繰り返し時間内で計測されたナビゲーション
エコーと基準ナビゲーションエコーとの位相のずれに基
づき、その繰り返し時間内で計測された本計測エコーを
補正する。
In the body motion correction using the navigation echo, one of the navigation echoes acquired for each repetition time TR, for example, the first navigation echo is used as a reference, and the navigation echo measured within a certain repetition time and the reference navigation echo are used. Based on the phase shift, the main measurement echo measured within the repetition time is corrected.

【0022】補正手段103による処理方法としては、ハ
イブリッド空間での補正、実空間での補正などがあり、
その実施例を図5〜図7に示す。各図中、ナビゲーショ
ンエコー701と本計測エコー信号702は同一の小型RFコイ
ルで計測された組である。
The processing method by the correction means 103 includes correction in a hybrid space and correction in a real space.
The embodiment is shown in FIGS. In each figure, the navigation echo 701 and the main measurement echo signal 702 are a pair measured by the same small RF coil.

【0023】図5に示す実施例では、まず取得したナビ
ゲーションエコー701と本計測エコー信号702を、ナビゲ
ーションエコーを取得した軸方向にそれぞれ1次元フー
リエ変換703する。例えば図3に示すパルスシーケンス
では、読み出し方向の傾斜磁場301の反転によってナビ
ゲーションエコーを発生しており、このナビゲーション
エコーの取得した軸方向は読み出し方向である。
In the embodiment shown in FIG. 5, the acquired navigation echo 701 and the main measurement echo signal 702 are each subjected to one-dimensional Fourier transform 703 in the axial direction in which the navigation echo was acquired. For example, in the pulse sequence shown in FIG. 3, a navigation echo is generated by reversing the gradient magnetic field 301 in the reading direction, and the axis direction in which the navigation echo is obtained is the reading direction.

【0024】ナビゲーションエコーを1次元フーリエ変
換した信号について、基準ナビゲーションエコーを1次
元フーリエ変化した信号との位相差を求め、この位相差
に基づきハイブリッド空間で本計測エコーのナビゲーシ
ョン補正704を行う。これはナビゲーションエコーを取
得した軸方向についての体動補正となる。次いで最初の
1次元フーリエ変換703とは異なる軸で1次元フーリエ
変換して補正された画像信号706を得る。
The phase difference between the signal obtained by subjecting the navigation echo to one-dimensional Fourier transform and the signal obtained by subjecting the reference navigation echo to one-dimensional Fourier change is obtained, and the navigation correction 704 of the main measurement echo is performed in the hybrid space based on the phase difference. This is body movement correction in the axial direction from which the navigation echo was acquired. Next, a corrected image signal 706 is obtained by performing one-dimensional Fourier transform on an axis different from that of the first one-dimensional Fourier transform 703.

【0025】図6に示す実施例では、計測したナビゲー
ションエコー701と基準ナビゲーションエコーとの位相
差を求め、この位相差に基づき本計測エコー702をk空
間でナビゲーション補正704する。その後、本計測エコ
ー702を2次元フーリエ変換(707)し、補正された画像
信号706を得る。
In the embodiment shown in FIG. 6, the phase difference between the measured navigation echo 701 and the reference navigation echo is obtained, and based on this phase difference, the main measurement echo 702 is subjected to navigation correction 704 in k-space. After that, the main measurement echo 702 is subjected to a two-dimensional Fourier transform (707) to obtain a corrected image signal 706.

【0026】図7に示す第三の実施例では、ナビゲーシ
ョンエコー701を、ナビゲーションエコーを取得した軸
方向に1次元フーリエ変換(703)し、同様に1次元フ
ーリエ変換後の基準ナビゲーションとの位置変化から相
関関係により位相変化量を計算する。この計算された位
相変化量を用いて本計測エコー702についてナビゲーシ
ョン補正704を行う。その後、本計測エコーの2次元フ
ーリエ変換(707)を行い、補正された画像信号706を得
る。
In the third embodiment shown in FIG. 7, the navigation echo 701 is subjected to a one-dimensional Fourier transform (703) in the axial direction from which the navigation echo was acquired, and similarly, the position change from the reference navigation after the one-dimensional Fourier transform is performed. , The amount of phase change is calculated from the correlation. The navigation correction 704 is performed on the main measurement echo 702 using the calculated phase change amount. Thereafter, a two-dimensional Fourier transform (707) of the main measurement echo is performed to obtain a corrected image signal 706.

【0027】これらの実施例のナビゲーション補正704
においてナビゲーションエコーの位相差を本計測エコー
の位相差に変換するには、例えば複素差分により信号の
位相変化を取り除く方法がある。
The navigation correction 704 of these embodiments
In order to convert the phase difference of the navigation echo into the phase difference of the main measurement echo, there is a method of removing a phase change of a signal by a complex difference, for example.

【0028】尚、信号処理手段407による補正処理は、
上記処理のいずれでもよいが、ナビゲーションエコーの
フーリエ変換処理や位置関係から位相相関を求める処理
等が不要である点で、またピクセル単位の体動を補正し
得る点で図6に示す処理が有利である。
The correction processing by the signal processing means 407 is as follows.
Any of the above processes may be used, but the process shown in FIG. 6 is advantageous in that the Fourier transform process of the navigation echo and the process of obtaining the phase correlation from the positional relationship are unnecessary, and that the body motion can be corrected in pixel units. It is.

【0029】このような補正処理103を各小型RFコイル
について行った後、各コイル毎に得られた画像信号706
を合成して1枚の画像を再構成する。合成は、単に信号
の加算処理を行ってもよいが、「マルチプルコイルによ
る頭頸部MRIの広視野高感度化」(MEDICAL IMAGING TEC
HNOLOGY, Vol.15, No.6, November 1997)に記載される
技術を適用し、各小型RFコイルからの画像信号にその小
型RFコイルの感度分布で重み付けして行うことが好まし
い。感度分布の重み付けは次式で表わされる。
After performing such correction processing 103 for each small RF coil, the image signal 706 obtained for each coil is obtained.
Are combined to reconstruct one image. In the synthesis, the signal may simply be added, but “multiple coils for wide field and high sensitivity of head and neck MRI” (MEDICAL IMAGING TEC
HNOLOGY, Vol.15, No.6, November 1997), it is preferable that the image signal from each small RF coil is weighted by the sensitivity distribution of the small RF coil. The weighting of the sensitivity distribution is expressed by the following equation.

【0030】[0030]

【数1】 (式中、en(i,j)はn番目の小型コイルの画像信号、W
n(i,j)はn番目の小型コイルの感度分布、S(i,j)は合
成された画像信号を表わす。) このような処理を行うことにより感度分布の異なる小型
コイルを組合せたマルチプルコイルでも高いS/Nの画像
を得ることができる このようにして得られた画像は、撮影中に図8に示すよ
うに局所的な被検体の動き1022〜1024があった場合で
も、各々のRFコイル6021〜6024でこれら動きを補正し
た後に信号合成して得たものであるので、動きの影響の
無い画像となる。勿論、図10(a)に示すように全体
的な動き1021がある場合にもその動きを補正した画像を
得ることができる。さらに図10(c)に示すような腹
部撮影画像において、被検体の背側と腹側で動きが異な
る場合でも画像では動きの影響を無くすことができる。
(Equation 1) (Where, en (i, j) is the image signal of the nth small coil, W
n (i, j) represents the sensitivity distribution of the nth small coil, and S (i, j) represents the synthesized image signal. By performing such processing, a high S / N image can be obtained even with a multiple coil combining small coils having different sensitivity distributions. The image obtained in this way during shooting is shown in FIG. Even if there are local movements of the subject 1022 to 1024, the images are obtained by synthesizing the signals after correcting these movements with the respective RF coils 6021 to 6024, so that the image is free from the influence of the movements. . Of course, even when there is an overall motion 1021 as shown in FIG. 10A, an image in which the motion is corrected can be obtained. Further, in the abdomen photographed image as shown in FIG. 10 (c), even if the movement is different between the back side and the abdomen side of the subject, the influence of the movement can be eliminated in the image.

【0031】尚、以上の実施例では信号処理部407の処
理として、パルスシーケンスの繰り返し毎に計測された
ナビゲーションエコーのうちの1つを基準としてナビゲ
ーション補正を行う場合を説明したが、プリスキャンを
伴う撮影の場合には、このプリスキャンでナビゲーショ
ンエコーを取得し、これを基準としてナビゲーション補
正することも可能である。そのような実施例を図9に示
す。
In the above embodiment, the signal processing unit 407 performs the navigation correction based on one of the navigation echoes measured at each repetition of the pulse sequence. In the case of accompanying imaging, it is possible to acquire a navigation echo by this pre-scan and perform navigation correction based on the navigation echo. Such an embodiment is shown in FIG.

【0032】プリスキャンは、外乱等によって本計測エ
コーに生じる変化を補正するために本計測に先立って実
効されるエコー信号の計測であり、この実施例ではプリ
スキャン111の際にナビゲーションエコー7011とエコー
信号7021をそれぞれ各小型RFコイル602で取得する。次
に本計測のパルスシーケンスを実行し、本実施例では、
ナビゲーションエコー7012と本計測エコー7022をそれぞ
れ各小型RFコイル602で取得する。
The prescan is a measurement of an echo signal which is executed prior to the main measurement in order to correct a change generated in the main measurement echo due to disturbance or the like. In this embodiment, the navigation echo 7011 and the navigation echo 7011 are used during the prescan 111. An echo signal 7021 is acquired by each small RF coil 602. Next, the pulse sequence of the main measurement is executed, and in this embodiment,
The navigation echo 7012 and the main measurement echo 7022 are acquired by the small RF coils 602, respectively.

【0033】信号処理部は、各小型RFコイル毎に、同一
の小型RFコイルで計測されたナビゲーションエコー7011
と7012を用いて、本計測エコー7022のナビゲーション補
正113を行う。この場合、プリスキャン111で取得したナ
ビゲーションエコー7011を基準として、ナビゲーション
エコー7012の位相差を求め、対応する本計測エコー7022
を補正する。この補正方法は、図5〜図7に示す実施例
のいずれの方法であってもよい。次にナビゲーション補
正された信号について、プリスキャン111で取得したエ
コー信号7011を用いた補正114を行う。この補正114は、
例えば位相補正や振幅補正であり、計測空間で行うこと
もハイブリッド空間で行うことも可能であるが、ナビゲ
ーション補正と合せることが好適である。
The signal processing unit is provided for each small RF coil, for the navigation echo 7011 measured by the same small RF coil.
The navigation correction 113 of the main measurement echo 7022 is performed using the In this case, the phase difference of the navigation echo 7012 is determined based on the navigation echo 7011 acquired in the prescan 111, and the corresponding main measurement echo 7022 is determined.
Is corrected. This correction method may be any of the embodiments shown in FIGS. Next, the navigation-corrected signal is corrected 114 using the echo signal 7011 acquired in the pre-scan 111. This correction 114
For example, phase correction and amplitude correction can be performed in the measurement space or in the hybrid space.

【0034】このように小型RFコイル毎に信号補正114
を行った後、補正が計測空間或いはハイブリッド空間の
補正であれば必要なフーリエ変換後、補正後の信号706
を得る。これを前述のように合成し画像を得る。この場
合にも、各小型RFコイルで取得した信号でナビゲーショ
ン補正を行った後、信号合成を行うので撮影の対象であ
る組織が局所に動いた場合でも、画像では動きの影響を
無くすことができる。
As described above, the signal correction 114 is performed for each small RF coil.
Is performed, and if the correction is correction in the measurement space or the hybrid space, the necessary signal 706 is obtained after the necessary Fourier transform.
Get. These are combined as described above to obtain an image. Also in this case, after performing navigation correction with the signal acquired by each small RF coil, signal synthesis is performed, so that even if the tissue to be photographed moves locally, the effect of the movement can be eliminated in the image. .

【0035】本発明は、以上の実施例で開示された内容
にとどまらず、各種形態を取り得る。例えば、上記実施
例では、パルスシーケンスとしてSEシーケンスを記載し
たが、FSEシーケンスやEPIシーケンスに本発明を適用し
てもよい。また本発明におけるナビゲーションエコーを
付加的に発生し、取得する機能として、読み出し方向の
ナビゲーションエコーを適用する場合を示したが、オー
ビタルナビゲーションエコーや、3次元イメージングの
スライスエンコード方向、2次元イメージングの位相エ
ンコード方向のナビゲーションエコーを用いて本発明の
補正を行うことも可能である。また、2軸以上にナビゲ
ーションエコーを適用してもよい。さらに、計測空間や
ハイブリッド空間のナビゲーンョン補正を組み合わせて
用いても良い。
The present invention can take various forms other than the contents disclosed in the above embodiments. For example, in the above embodiment, the SE sequence is described as the pulse sequence, but the present invention may be applied to an FSE sequence or an EPI sequence. Also, the case where the navigation echo in the readout direction is applied as a function to additionally generate and acquire the navigation echo in the present invention has been described. However, the orbital navigation echo, the slice encoding direction in three-dimensional imaging, and the phase in two-dimensional imaging It is also possible to perform the correction of the present invention using the navigation echo in the encoding direction. Further, a navigation echo may be applied to two or more axes. Further, navigation correction in a measurement space or a hybrid space may be used in combination.

【0036】[0036]

【発明の効果】本発明は、受信コイルとして複数の小型
RFコイルからなるマルチプルコイルを採用すると共に信
号処理部に小型RFコイル毎にナビゲーション補正する手
段を備えたことにより、被検体の局所的な動きを精度良
く補正できる。
According to the present invention, a plurality of small-sized receiving coils are used.
By employing a multiple coil composed of RF coils and providing the signal processing unit with means for performing navigation correction for each small RF coil, local movement of the subject can be accurately corrected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用されるMRI装置の全体構成を示す
図。
FIG. 1 is a diagram showing an overall configuration of an MRI apparatus to which the present invention is applied.

【図2】マルチプルコイルの信号検出部と信号処理部を
示す図。
FIG. 2 is a diagram showing a signal detection unit and a signal processing unit of a multiple coil.

【図3】ナビゲーションエコーの発生が付加されたパル
スシーケンスを示す図。
FIG. 3 is a diagram showing a pulse sequence to which generation of a navigation echo is added.

【図4】本発明のMRI装置の信号処理部における処理を
示す図。
FIG. 4 is a view showing processing in a signal processing unit of the MRI apparatus of the present invention.

【図5】信号処理部におけるナビゲーション補正の一実
施例を示す図。
FIG. 5 is a diagram showing an embodiment of navigation correction in a signal processing unit.

【図6】信号処理部におけるナビゲーション補正の他の
実施例を示す図。
FIG. 6 is a diagram showing another embodiment of the navigation correction in the signal processing unit.

【図7】信号処理部におけるナビゲーション補正の他の
実施例を示す図。
FIG. 7 is a diagram showing another embodiment of the navigation correction in the signal processing unit.

【図8】本発明のMRI装置の効果を説明する図。FIG. 8 is a diagram illustrating the effect of the MRI apparatus of the present invention.

【図9】信号処理部におけるナビゲーション補正の他の
実施例を示す図。
FIG. 9 is a diagram showing another embodiment of the navigation correction in the signal processing unit.

【図10】ナビゲーション補正における課題を説明する
図。
FIG. 10 is a diagram illustrating a problem in navigation correction.

【符号の説明】[Explanation of symbols]

402・・・・・・静磁場磁石 403・・・・・・傾斜磁場コイル 404・・・・・・照射コイル 405・・・・・・受信コイル 406・・・・・・信号検出部 407・・・・・・信号処理部(画像再構成手段) 408・・・・・・表示部 602・・・・・・小型RF受信コイル 402: Static magnetic field magnet 403: Gradient magnetic field coil 404: Irradiation coil 405: Receiving coil 406: Signal detector 407 ····· Signal processing unit (image reconstruction means) 408 ····· Display unit 602 ······· Small RF receiving coil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被検体の置かれた空間に高周波磁場および
傾斜磁場の各磁場を所定のパルスシーケンスに従って印
加する手段と、前記核磁気共鳴信号を受信する受信コイ
ルと、前記受信コイルで受信した核磁気共鳴信号を処理
し、画像を再構成する手段とを備えた核磁気共鳴撮影装
置において、 前記受信コイルとして、複数の小型RF受信コイルからな
るマルチプルコイルを用いるとともに、前記画像再構成
手段は、小型RF受信コイル毎に、被検体の体動を補正す
る手段を備え、各補正手段によって補正された信号を合
成し体動の補正された画像を得ることを特徴とする核磁
気共鳴撮影装置。
1. A means for applying a high-frequency magnetic field and a gradient magnetic field to a space in which a subject is placed according to a predetermined pulse sequence, a receiving coil for receiving the nuclear magnetic resonance signal, and a signal received by the receiving coil. In the nuclear magnetic resonance imaging apparatus having a means for processing a nuclear magnetic resonance signal and reconstructing an image, while using a multiple coil composed of a plurality of small RF receiving coils as the receiving coil, the image reconstructing means is A nuclear magnetic resonance imaging apparatus comprising, for each small RF receiving coil, means for correcting the body movement of the subject, and synthesizing the signals corrected by the respective correcting means to obtain an image in which the body movement is corrected. .
JP33586398A 1998-11-26 1998-11-26 Nuclear magnetic resonance imaging system Expired - Fee Related JP4072879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33586398A JP4072879B2 (en) 1998-11-26 1998-11-26 Nuclear magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33586398A JP4072879B2 (en) 1998-11-26 1998-11-26 Nuclear magnetic resonance imaging system

Publications (3)

Publication Number Publication Date
JP2000157507A true JP2000157507A (en) 2000-06-13
JP2000157507A5 JP2000157507A5 (en) 2006-01-19
JP4072879B2 JP4072879B2 (en) 2008-04-09

Family

ID=18293233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33586398A Expired - Fee Related JP4072879B2 (en) 1998-11-26 1998-11-26 Nuclear magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP4072879B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003052442A1 (en) * 2001-12-14 2003-06-26 Koninklijke Philips Electronics N.V. Diffusion-weighted parallel imaging with navigator - signal - based phase correction
WO2006051911A1 (en) * 2004-11-12 2006-05-18 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus, image data correction apparatus, and image data correction method
JP2006218285A (en) * 2005-01-12 2006-08-24 Hitachi Medical Corp Magnetic resonance imaging apparatus and image reconstitution method by using the same
JP2007202903A (en) * 2006-02-03 2007-08-16 Hitachi Medical Corp Magnetic resonance imaging apparatus and magnetic resonance spectrum measuring method
JP2007229443A (en) * 2006-02-06 2007-09-13 Toshiba Corp Magnetic resonance imaging device, and imaging condition setting method for magnetic resonance imaging device
JP2008539852A (en) * 2005-05-02 2008-11-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Independent motion correction in each signal channel of magnetic resonance imaging system
JP2009543648A (en) * 2006-07-18 2009-12-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Multi-coil MRI artifact suppression
US7877129B2 (en) 2001-09-13 2011-01-25 Hitachi Medical Corporation Magnetic resonance imaging apparatus and RF reception coil apparatus
JP2012183431A (en) * 2006-02-06 2012-09-27 Toshiba Corp Magnetic resonance imaging device
JP2014503290A (en) * 2010-12-22 2014-02-13 コーニンクレッカ フィリップス エヌ ヴェ Parallel MRI method for rigid body motion compensation using calibration scan, coil sensitivity map and navigator
US8781553B2 (en) 2007-05-07 2014-07-15 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and control method thereof
US8818487B2 (en) 2008-10-15 2014-08-26 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and magnetic resonance imaging method
US9532728B2 (en) 2010-01-20 2017-01-03 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus
US9927502B2 (en) 2007-02-19 2018-03-27 Toshiba Medical Systems Corporation Respiration suppressing mat and magnetic resonance imaging apparatus and method
JP2018196661A (en) * 2017-05-25 2018-12-13 株式会社日立製作所 Magnetic resonance imaging apparatus and body motion correction method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7877129B2 (en) 2001-09-13 2011-01-25 Hitachi Medical Corporation Magnetic resonance imaging apparatus and RF reception coil apparatus
WO2003052442A1 (en) * 2001-12-14 2003-06-26 Koninklijke Philips Electronics N.V. Diffusion-weighted parallel imaging with navigator - signal - based phase correction
JP2011240201A (en) * 2004-11-12 2011-12-01 Toshiba Corp Magnetic resonance imaging apparatus and image data correcting device
US8526703B2 (en) 2004-11-12 2013-09-03 Kabushiki Kaisha Toshiba Making different corrections for different areas of magnetic resonance image data
JPWO2006051911A1 (en) * 2004-11-12 2008-05-29 株式会社東芝 Magnetic resonance imaging apparatus, image data correction apparatus, and image data correction method
WO2006051911A1 (en) * 2004-11-12 2006-05-18 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus, image data correction apparatus, and image data correction method
JP4861821B2 (en) * 2004-11-12 2012-01-25 株式会社東芝 Magnetic resonance imaging apparatus and image data correction apparatus
US8126237B2 (en) 2004-11-12 2012-02-28 Kabushiki Kaisha Toshiba Magnetic resonance imaging and correcting device
JP2006218285A (en) * 2005-01-12 2006-08-24 Hitachi Medical Corp Magnetic resonance imaging apparatus and image reconstitution method by using the same
JP4721857B2 (en) * 2005-01-12 2011-07-13 株式会社日立メディコ Magnetic resonance imaging apparatus and image reconstruction method using the same
JP2008539852A (en) * 2005-05-02 2008-11-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Independent motion correction in each signal channel of magnetic resonance imaging system
JP2007202903A (en) * 2006-02-03 2007-08-16 Hitachi Medical Corp Magnetic resonance imaging apparatus and magnetic resonance spectrum measuring method
JP2007229443A (en) * 2006-02-06 2007-09-13 Toshiba Corp Magnetic resonance imaging device, and imaging condition setting method for magnetic resonance imaging device
JP2012183431A (en) * 2006-02-06 2012-09-27 Toshiba Corp Magnetic resonance imaging device
JP2009543648A (en) * 2006-07-18 2009-12-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Multi-coil MRI artifact suppression
US9927502B2 (en) 2007-02-19 2018-03-27 Toshiba Medical Systems Corporation Respiration suppressing mat and magnetic resonance imaging apparatus and method
US8781553B2 (en) 2007-05-07 2014-07-15 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and control method thereof
US8971992B2 (en) 2007-05-07 2015-03-03 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and control method thereof
US8818487B2 (en) 2008-10-15 2014-08-26 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and magnetic resonance imaging method
US9532728B2 (en) 2010-01-20 2017-01-03 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus
JP2014503290A (en) * 2010-12-22 2014-02-13 コーニンクレッカ フィリップス エヌ ヴェ Parallel MRI method for rigid body motion compensation using calibration scan, coil sensitivity map and navigator
JP2018196661A (en) * 2017-05-25 2018-12-13 株式会社日立製作所 Magnetic resonance imaging apparatus and body motion correction method

Also Published As

Publication number Publication date
JP4072879B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
JP6513398B2 (en) MR image reconstruction using prior information constrained regularization
JP6243522B2 (en) Parallel MRI with multi-echo Dixon water-fat separation and B0 distortion correction using regularized detection reconstruction
US7372269B2 (en) Magnetic resonance imaging method and apparatus
EP2730935B1 (en) Motional error correction in functional magnetic resonance imaging
JP4152381B2 (en) Magnetic resonance imaging system
US7319324B2 (en) MRI method and apparatus using PPA image reconstruction
JP5599893B2 (en) MR imaging using navigator
JP5848713B2 (en) Magnetic resonance imaging apparatus and contrast-enhanced image acquisition method
US4949042A (en) Magnetic resonance imaging system
JP2003079595A (en) Magnetic resonance imaging device and rf receiving coil therefor
JPH11113878A (en) Magnetic resonance imaging method
US7498809B2 (en) Magnetic resonance imaging device with multiple RF coils applying half-pulse waveforms for selective excitation of a local region
JP4072879B2 (en) Nuclear magnetic resonance imaging system
JP2004121466A (en) Magnetic resonance imaging equipment
JP2017529960A (en) Propeller MR imaging with artifact suppression
CN109716155B (en) MR imaging with dickson-type water/fat separation
US20060164087A1 (en) Magnetic resonance method and device
JP4343317B2 (en) Magnetic resonance imaging system
JP2000041970A (en) Method and instrument for magnetic resonance imaging
US7157909B1 (en) Driven equilibrium and fast-spin echo scanning
CN112912749A (en) MR imaging using motion compensated image reconstruction
JP4675936B2 (en) Nuclear magnetic resonance imaging system
JP3983792B2 (en) Nuclear magnetic resonance imaging system
CN111164444B (en) Dixon-type water/fat separation MR imaging with improved fat displacement correction
JP4678916B2 (en) Magnetic resonance imaging system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees