JP2000154947A - Ammonia absorption refrigeration machine - Google Patents

Ammonia absorption refrigeration machine

Info

Publication number
JP2000154947A
JP2000154947A JP10327368A JP32736898A JP2000154947A JP 2000154947 A JP2000154947 A JP 2000154947A JP 10327368 A JP10327368 A JP 10327368A JP 32736898 A JP32736898 A JP 32736898A JP 2000154947 A JP2000154947 A JP 2000154947A
Authority
JP
Japan
Prior art keywords
ammonia
pipe
ammonia liquid
liquid
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10327368A
Other languages
Japanese (ja)
Inventor
Takashi Onishi
尚 大西
Yukio Hiranaka
幸男 平中
Noboru Tsubakihara
昇 椿原
Katsuo Iwata
克雄 岩田
Masaharu Kodera
雅晴 古寺
Masaru Fujita
優 藤田
Terubumi Matsuda
光史 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Hitachi Zosen Corp
Osaka Gas Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Hitachi Zosen Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd, Hitachi Zosen Corp, Osaka Gas Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP10327368A priority Critical patent/JP2000154947A/en
Publication of JP2000154947A publication Critical patent/JP2000154947A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ammonia absorption refrigeration machine capable of sufficiently extracting and evaporating ammonia liquid even if a refrigerant regenerator is enlarged in size. SOLUTION: A double pipe structure comprising an inner tube 11 connected to an ammonia, extraction pipe 5 and an outer tube 12 connected to an ammonia liquid conveyance pipe 3 is employed for a refrigerant regenerator 6 provided between the ammonia liquid extraction pipe 5 for extracting ammonia solution containing water from an evaporator 1 and the ammonia liquid conveyance pipe 3 for conveying the ammonia liquid from a condenser to the evaporator 1, and the inner diameter d2 of an inlet section of the inner tube 11 is reduced. Because liquid flow quantity flowing inside the inner tube 11 is reduced in relation to heat transfer area in the inner tube 11, the ammonia liquid containing water is sufficiently heated and effective evaporation is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アンモニア吸収冷
凍機に関するもので、特に蒸発器から取り出されるアン
モニア液を加熱して蒸発させる冷媒再生部に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ammonia absorption refrigerator, and more particularly to a refrigerant regeneration section for heating and evaporating an ammonia liquid taken out of an evaporator.

【0002】[0002]

【従来の技術】従来、アンモニア吸収冷凍機の蒸発器に
おいては、アンモニア液が蒸発するときの潜熱により被
冷却流体を冷却しているが、熱効率すなわち冷却効率を
向上させるために、下記のような構成が採られていた。
2. Description of the Related Art Conventionally, in an evaporator of an ammonia absorption refrigerator, a fluid to be cooled is cooled by latent heat when an ammonia liquid evaporates. However, in order to improve thermal efficiency, that is, cooling efficiency, the following method is used. The configuration was adopted.

【0003】すなわち、図3に示すように、蒸発器51
で蒸発されたアンモニア蒸気を吸収器(図示せず)へ移
送するアンモニア蒸気移送管61の途中に、凝縮器52
からアンモニア液移送管62を介して移送されるアンモ
ニア液の冷却を行う過冷却器71が配置され、さらに蒸
発器51内での水の濃縮すなわち水の蓄積を防止するた
め(蒸発器内に水が蓄積されると、被冷却流体の冷却効
率が低下してしまう)に、蒸発器51の下部に溜まった
アンモニア液(実際には、アンモニア水溶液)を取り出
すアンモニア液取出管72の途中に、凝縮器52からア
ンモニア液移送管62を介して温度の高いアンモニア液
を導いて、アンモニア液取出管72内を流れるアンモニ
ア液を加熱してアンモニアの蒸発と水分の蒸発とを同時
に行わせる冷媒再生器73が設けられていた。また、こ
の冷媒再生器73としては、蒸発器51からのアンモニ
ア液が流れる内筒と、凝縮器52からのアンモニア液が
流れる外筒とからなる二重管式のものが使用されてい
た。
[0003] That is, as shown in FIG.
In the middle of an ammonia vapor transfer pipe 61 for transporting the ammonia vapor evaporated in the above to an absorber (not shown), a condenser 52 is provided.
A supercooler 71 for cooling the ammonia solution transferred from the container via the ammonia solution transfer pipe 62 is provided. Further, in order to prevent water concentration in the evaporator 51, that is, accumulation of water (water Accumulates, the cooling efficiency of the fluid to be cooled is reduced), and the ammonia liquid (actually, an aqueous ammonia solution) collected in the lower portion of the evaporator 51 is condensed in the middle of an ammonia liquid extraction pipe 72. A high-temperature ammonia liquid is introduced from the heater 52 through the ammonia liquid transfer pipe 62 to heat the ammonia liquid flowing through the ammonia liquid take-out pipe 72 so as to simultaneously perform the evaporation of ammonia and the evaporation of water. Was provided. As the refrigerant regenerator 73, a double-tube type having an inner cylinder through which the ammonia liquid from the evaporator 51 flows and an outer cylinder through which the ammonia liquid from the condenser 52 flows is used.

【0004】[0004]

【発明が解決しようとする課題】上記従来の構成におい
て、冷凍機を大型化させようとすると、冷媒再生器につ
いても、その処理能力を大きくする必要がある。この場
合、内筒および外筒の内径を大きくすることになるが、
内筒の外表面積である伝熱面積の増加に比べて、内筒内
を流れる液体流量の増加の方が大きくなるため、冷媒再
生器におけるアンモニア液の蒸発量が減少する。したが
って、蒸発器でのアンモニア濃度が低下するとアンモニ
ア液の蒸発温度が上昇するため、冷媒再生器でのアンモ
ニア液の蒸発量がさらに減少し、アンモニア液を取り出
すというエアリフト作用が行われず、冷媒再生機能が発
揮し得ないという問題が生じる。
In the conventional structure described above, if the size of the refrigerator is to be increased, the processing capacity of the refrigerant regenerator also needs to be increased. In this case, the inner diameter of the inner cylinder and the outer cylinder is increased,
Since the increase in the flow rate of the liquid flowing through the inner cylinder is larger than the increase in the heat transfer area, which is the outer surface area of the inner cylinder, the evaporation amount of the ammonia liquid in the refrigerant regenerator decreases. Therefore, when the ammonia concentration in the evaporator decreases, the evaporating temperature of the ammonia liquid increases, so that the amount of evaporation of the ammonia liquid in the refrigerant regenerator further decreases, and the air lift function of removing the ammonia liquid is not performed, and the refrigerant regeneration function is not performed. Cannot be exhibited.

【0005】そこで、本発明は、冷媒再生器が大型化し
た場合でも、アンモニア液を十分に取り出し蒸発させ得
るアンモニア吸収冷凍機を提供することを目的とする。
Accordingly, an object of the present invention is to provide an ammonia absorption refrigerator capable of sufficiently removing and evaporating the ammonia liquid even when the size of the refrigerant regenerator is increased.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明のアンモニア吸収冷凍機は、アンモニア液移
送管を介して、凝縮器から導かれたアンモニア液を蒸発
させる蒸発器およびこの蒸発器で蒸発されたアンモニア
蒸気を吸収器に導くアンモニア蒸気移送管を有するアン
モニア吸収式冷凍機において、上記蒸発器の下部からア
ンモニア液を取り出して上記アンモニア蒸気移送管に導
くアンモニア液取出管を設け、上記アンモニア蒸気移送
管とアンモニア液移送管との間で熱交換を行う過冷却部
を設け、上記アンモニア液取出管とアンモニア液移送管
との間で熱交換を行う冷媒再生部を設け、かつこの冷媒
再生部を、上記アンモニア液取出管に接続される内筒と
上記アンモニア液移送管に接続される外筒とからなる二
重管構造にするとともに、内筒の入口側の内径を小さく
したものである。
In order to solve the above-mentioned problems, an ammonia absorption refrigerator of the present invention comprises an evaporator for evaporating an ammonia solution introduced from a condenser through an ammonia solution transfer pipe, and the evaporator. In an ammonia absorption refrigerator having an ammonia vapor transfer pipe for guiding the ammonia vapor evaporated in the absorber to an absorber, an ammonia liquid take-out pipe for taking out an ammonia liquid from a lower part of the evaporator and leading the ammonia liquid to the ammonia vapor transfer pipe is provided. A supercooling section for performing heat exchange between the ammonia vapor transfer pipe and the ammonia liquid transfer pipe; a refrigerant regeneration section for performing heat exchange between the ammonia liquid extraction pipe and the ammonia liquid transfer pipe; and The regeneration unit has a double pipe structure including an inner cylinder connected to the ammonia liquid extraction pipe and an outer cylinder connected to the ammonia liquid transfer pipe. A, it is obtained by reducing the inlet side of the inner diameter of the inner cylinder.

【0007】上記各構成において、冷媒再生部における
内筒の入口側での内径を小さくしたので、内筒における
伝熱面積に対し、内筒内を流れる液体流量が減少される
ため、この内筒内を流れる水分を含むアンモニア液が十
分に加熱されて蒸発が効率良く行われる。
In each of the above constructions, since the inner diameter of the refrigerant regeneration section on the inlet side of the inner cylinder is reduced, the flow rate of the liquid flowing through the inner cylinder is reduced with respect to the heat transfer area of the inner cylinder. The ammonia liquid containing water flowing in the inside is sufficiently heated, and the evaporation is efficiently performed.

【0008】[0008]

【発明の実施の形態】以下、本発明の第1の実施の形態
におけるアンモニア吸収冷凍機を、図1に基づき説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an ammonia absorption refrigerator according to a first embodiment of the present invention will be described with reference to FIG.

【0009】本第1の実施の形態におけるアンモニア吸
収冷凍機は、図1に示すように、主として、冷媒である
アンモニア液を蒸発させる蒸発器1と、この蒸発器1で
蒸発されたアンモニア蒸気をアンモニア蒸気移送管2を
介して導きアンモニア水溶液に吸収させる吸収器(図示
せず)と、この吸収器でアンモニア蒸気を吸収して濃度
が濃くなったアンモニア水溶液をアンモニア水溶液移送
管(図示せず)を介して導きアンモニアの再生を行う再
生器(図示せず)と、この再生器で得られたアンモニア
蒸気をアンモニア蒸気移送管(図示せず)を介して導き
凝縮させる凝縮器(図示せず)と、この凝縮器で得られ
たアンモニア液を上記蒸発器1に移送するアンモニア液
移送管3とから構成されている。
As shown in FIG. 1, the ammonia absorption refrigerator according to the first embodiment mainly includes an evaporator 1 for evaporating an ammonia liquid as a refrigerant and an ammonia vapor evaporated by the evaporator 1. An absorber (not shown) that is guided through an ammonia vapor transfer pipe 2 and absorbs the ammonia aqueous solution, and an ammonia aqueous solution transport pipe (not shown) that absorbs the ammonia vapor and increases the concentration by the absorber. A regenerator (not shown) for guiding ammonia through the regenerator, and a condenser (not shown) for guiding and condensing ammonia vapor obtained by the regenerator via an ammonia vapor transfer pipe (not shown) And an ammonia solution transfer pipe 3 for transferring the ammonia solution obtained by the condenser to the evaporator 1.

【0010】そして、冷凍機における熱効率の向上を図
るために、蒸発器1からのアンモニア蒸気を吸収器へ移
送するアンモニア蒸気移送管2の途中に、凝縮器から移
送されるアンモニア液の冷却を行う過冷却器(過冷却
部)4が配置され、さらに蒸発器1内での水の濃縮すな
わち水の蓄積を防止するために、蒸発器1内のアンモニ
ア液(少量の水分を含むアンモニア液)をアンモニア液
取出管5を介して導くとともに、凝縮器からのアンモニ
ア液をアンモニア液移送管3を介して導き、蒸発器1か
ら導かれたアンモニア液を加熱してアンモニアの蒸発と
水分の蒸発とを同時に行わせる冷媒再生器(冷媒再生
部)6が設けられている。
[0010] In order to improve the thermal efficiency of the refrigerator, the ammonia liquid transferred from the condenser is cooled in the middle of the ammonia vapor transfer pipe 2 for transferring the ammonia vapor from the evaporator 1 to the absorber. A supercooler (supercooling unit) 4 is provided, and furthermore, in order to prevent concentration of water in the evaporator 1, that is, accumulation of water, the ammonia liquid (ammonia liquid containing a small amount of water) in the evaporator 1 is removed. The ammonia liquid from the condenser is guided through the ammonia liquid transfer pipe 3, and the ammonia liquid guided from the evaporator 1 is heated to evaporate ammonia and water. A refrigerant regenerator (refrigerant regenerating unit) 6 for simultaneous operation is provided.

【0011】上記冷媒再生器6は二重管構造にされてい
る。すなわち、冷媒再生器6は、アンモニア液取出管5
に接続される内筒11と、アンモニア液移送管3に接続
される外筒12とから構成されるとともに、内筒11の
下方入口部が所定高さ(L)に亘って、その上方部分の
穴径、すなわち内径(d1)よりも小さい(細い)内径
(d2)にされている。また、上記アンモニア液取出管
5の内筒11への接続部分(勿論、接続部近傍でもよ
い)には、オリフィス13が設けられて、流れ込む流量
がなるべく均一となるようにされている。
The refrigerant regenerator 6 has a double pipe structure. That is, the refrigerant regenerator 6 includes the ammonia liquid extraction pipe 5
And an outer cylinder 12 connected to the ammonia liquid transfer pipe 3, and a lower inlet portion of the inner cylinder 11 extends over a predetermined height (L) of an upper portion thereof. The inner diameter (d 2 ) is smaller (smaller) than the inner diameter (d 1 ). Further, an orifice 13 is provided at a connection portion (of course, in the vicinity of the connection portion) of the ammonia liquid extraction pipe 5 to the inner cylinder 11 so that a flow rate of the orifice 13 is made as uniform as possible.

【0012】上記外筒12と内筒11における内径の関
係は、例えば下記(1)式に示すように設定される。 d2≦0.8d1・・・・(1) そして、上記(1)式に示す関係の他、小径部の内径d
2は25mm以下の範囲に、さらに小径部の長さLは2
0mm以上の範囲に設定される。
The relationship between the inner diameter of the outer cylinder 12 and the inner diameter of the inner cylinder 11 is set, for example, as shown in the following equation (1). d 2 ≦ 0.8d 1 (1) In addition to the relationship shown in the above equation (1), the inner diameter d of the small diameter portion
2 is in the range of 25 mm or less, and the length L of the small diameter portion is 2
It is set to a range of 0 mm or more.

【0013】なお、上記アンモニア液移送管3は過冷却
器4および冷媒再生器6に対して直列に接続され、また
冷媒再生器6の外筒12の入口部12aは、側壁部の下
部に設けられるとともに、外筒12の出口部12bは、
側壁部の上部に設けられている。なお、7は冷媒再生器
6より下流側のアンモニア液移送管3途中に設けられた
膨張弁である。
The ammonia liquid transfer pipe 3 is connected in series to the subcooler 4 and the refrigerant regenerator 6, and the inlet 12a of the outer cylinder 12 of the refrigerant regenerator 6 is provided below the side wall. And the outlet 12b of the outer cylinder 12
It is provided on the upper part of the side wall part. Reference numeral 7 denotes an expansion valve provided in the middle of the ammonia liquid transfer pipe 3 downstream of the refrigerant regenerator 6.

【0014】上記構成において、凝縮器からアンモニア
液移送管3を介して蒸発器1に移送されたアンモニア液
は蒸発されて、アンモニア蒸気移送管2を介して吸収器
に移送される。
In the above configuration, the ammonia liquid transferred from the condenser to the evaporator 1 via the ammonia liquid transfer pipe 3 is evaporated and transferred to the absorber via the ammonia vapor transfer pipe 2.

【0015】そして、この冷凍サイクルの動作時に、凝
縮器から蒸発器1に移送されるアンモニア液は、過冷却
器4にて蒸発器1からのアンモニア蒸気により冷却され
て熱効率の向上が図られる。また、同時に、蒸発器1で
蒸発されずにかつ水分を含むアンモニア液は、アンモニ
ア液取出管5内に取り出され、冷媒再生器6の内筒11
内に入り、ここで、内筒11と外筒12との間の環状空
間室a内を流れる凝縮器からのアンモニア液により加熱
され、アンモニアの蒸発および水の蒸発が行われて冷媒
の再生が行われる。この蒸発されたアンモニア蒸気およ
び水蒸気は、アンモニア蒸気移送管2に入り、吸収器に
移送される。
During the operation of the refrigeration cycle, the ammonia liquid transferred from the condenser to the evaporator 1 is cooled by the ammonia vapor from the evaporator 1 in the supercooler 4 to improve the thermal efficiency. At the same time, the ammonia liquid that has not been evaporated by the evaporator 1 and contains water is taken out into the ammonia liquid take-out pipe 5 and the inner cylinder 11 of the refrigerant regenerator 6
Here, it is heated by the ammonia liquid from the condenser flowing in the annular space chamber a between the inner cylinder 11 and the outer cylinder 12, and the evaporation of the ammonia and the water is performed, and the regeneration of the refrigerant is performed. Done. The evaporated ammonia vapor and water vapor enter the ammonia vapor transfer pipe 2 and are transferred to the absorber.

【0016】ところで、上記冷媒再生器6において、内
筒11の入口部の内径が所定高さに亘って小さく絞られ
ているため、この部分の内筒単位面積当たりの伝熱面積
が大きくなる。すなわち、環状空間室a内を流れるアン
モニア液の持つ熱が効率良く伝達されて、内筒11内を
流れるアンモニア液および水の蒸発が十分に行われる。
このように、蒸発が盛んに行われると、エアリフト作用
が十分に発揮されるため、水分を含むアンモニア液が効
率良く蒸発器1から取り出される。
In the above-mentioned refrigerant regenerator 6, since the inner diameter of the inlet portion of the inner cylinder 11 is narrowed down to a predetermined height, the heat transfer area per unit area of the inner cylinder in this portion is increased. That is, the heat of the ammonia liquid flowing in the annular space chamber a is efficiently transmitted, and the ammonia liquid and water flowing in the inner cylinder 11 are sufficiently evaporated.
As described above, when the evaporation is actively performed, the air lift function is sufficiently exhibited, so that the ammonia liquid containing water is efficiently extracted from the evaporator 1.

【0017】このように、冷媒再生器6における内筒1
1の入口部の内径を小さくしたので(絞ったので)、内
筒11内を通過する液体流量に対する内筒11における
伝熱面積が増加するため、この部分を通過する水分を含
むアンモニア液が十分に加熱されて蒸発が促進され、し
たがってこの部分での、エアリフト作用が十分に発揮さ
れるため、冷媒再生能力が増大し、アンモニア吸収冷凍
機の大型化に対処することができる。
As described above, the inner cylinder 1 in the refrigerant regenerator 6
Since the inner diameter of the inlet portion of the first cylinder 1 is reduced (squeezed), the heat transfer area in the inner cylinder 11 with respect to the flow rate of the liquid passing through the inner cylinder 11 increases. Thus, evaporation is promoted, and the air lift action in this portion is sufficiently exhibited, so that the refrigerant regeneration capacity is increased, and it is possible to cope with an increase in the size of the ammonia absorption refrigerator.

【0018】次に、本発明の第2の実施の形態における
アンモニア吸収冷凍機を、図2に基づき説明する。本第
2の実施の形態におけるアンモニア吸収冷凍機と、上述
した第1の実施の形態におけるものとの異なる箇所は、
冷媒再生器にあるため、本説明においては、この部分に
だけ着目して説明する。
Next, an ammonia absorption refrigerator according to a second embodiment of the present invention will be described with reference to FIG. The difference between the ammonia absorption refrigerator of the second embodiment and that of the first embodiment described above is as follows.
Since it is in the refrigerant regenerator, in this description, only this portion will be described.

【0019】すなわち、図2に示すように、所定高さに
亘って内径が小さくされた内筒11の外周に対応する外
筒12の下部を、内筒11と同じように、その上方部の
内径D1よりも小さい(細い)内径D2としたものであ
る。
That is, as shown in FIG. 2, the lower part of the outer cylinder 12 corresponding to the outer periphery of the inner cylinder 11 whose inner diameter has been reduced over a predetermined height is, similarly to the inner cylinder 11, the upper part of the upper part. smaller than the inner diameter D 1 (thin) is obtained by the inner diameter D 2.

【0020】このように、外筒12の内径についても、
内筒11と同様に小さくしたので、外筒12の入口部に
供給されるアンモニア液は、この小径部で流速が早くな
り、内筒11内を流れる液体に与える熱量が増加するた
め、アンモニア液および水の蒸発が、第1の実施の形態
のものよりも、効率良く行われる。すなわち、アンモニ
ア吸収冷凍機が大型化した場合でも、冷媒再生器におけ
るエアリフト作用が、上記第1の実施の形態のものに比
べて、さらに増大される。
As described above, the inner diameter of the outer cylinder 12 is also
Since the diameter of the ammonia liquid supplied to the inlet of the outer cylinder 12 is reduced as in the case of the inner cylinder 11, the flow rate of the ammonia liquid increases at this small diameter portion, and the amount of heat applied to the liquid flowing through the inner cylinder 11 increases. And the evaporation of water are performed more efficiently than in the first embodiment. That is, even when the size of the ammonia absorption refrigerator is increased, the air lift function in the refrigerant regenerator is further increased as compared with the first embodiment.

【0021】ところで、上記各実施の形態においては、
アンモニア液取出管5の内筒11への接続部分にオリフ
ィス13を設けるように説明したが、小径部の長さLを
さらに長くしてこの長くした部分での圧力損失がオリフ
ィスによる圧力損失と同じになるようにすることにより
オリフィスを省略することができ、また内筒11の小径
部の内径を、オリフィスによる絞り作用も加えて発揮し
得るような、さらに小さい内径d3にすることにより、
オリフィスを省略することができる。
In each of the above embodiments,
It has been described that the orifice 13 is provided at the connection portion of the ammonia liquid extraction pipe 5 to the inner cylinder 11, but the length L of the small diameter portion is further increased, and the pressure loss at the elongated portion is the same as the pressure loss due to the orifice. by it is possible to omit the orifice and the inner diameter of the small diameter portion of the inner cylinder 11, as may be exerted also added throttling by the orifice, into smaller inner diameter d 3 by the so that,
Orifices can be omitted.

【0022】[0022]

【発明の効果】以上のように本発明の構成によると、冷
媒再生部における内筒の入口側の内径を小さくしたの
で、内筒における伝熱面積に対し、内筒内を流れる液体
流量が減少されるため、この内筒内を流れる水分を含む
アンモニア液が十分に加熱されて蒸発が促進され、した
がってこの部分でのエアリフト作用が十分に発揮される
ので、アンモニア吸収冷凍機の大型化に対処することが
できる。
As described above, according to the structure of the present invention, the inner diameter of the refrigerant regeneration section on the inlet side of the inner cylinder is reduced, so that the flow rate of the liquid flowing through the inner cylinder is reduced with respect to the heat transfer area of the inner cylinder. As a result, the ammonia liquid containing water flowing in the inner cylinder is sufficiently heated to promote evaporation, and thus the air lift action in this portion is sufficiently exhibited, thereby coping with the enlargement of the ammonia absorption refrigerator. can do.

【0023】また、内筒の小径部に対応する外筒の内径
についても小さくすることにより、内筒内を流れる水分
を含むアンモニア液の流量に対し、外筒内を流れる加熱
用のアンモニア液の通過速度が早くなり、したがって冷
媒再生部での蒸発をより促進させることができる。
Further, by reducing the inner diameter of the outer cylinder corresponding to the small diameter portion of the inner cylinder, the flow rate of the ammonia liquid for heating flowing in the outer cylinder is reduced with respect to the flow rate of the ammonia liquid containing water flowing in the inner cylinder. The passage speed is increased, so that the evaporation in the refrigerant regeneration section can be further promoted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態におけるアンモニア
吸収冷凍機の要部構成を示す図である。
FIG. 1 is a diagram showing a main configuration of an ammonia absorption refrigerator according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態におけるアンモニア
吸収冷凍機の要部構成を示す図である。
FIG. 2 is a diagram illustrating a main configuration of an ammonia absorption refrigerator according to a second embodiment of the present invention.

【図3】従来例におけるアンモニア吸収冷凍機の要部構
成を示すブロック図である。
FIG. 3 is a block diagram showing a main configuration of an ammonia absorption refrigerator in a conventional example.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 アンモニア蒸気移送管 3 アンモニア液移送管 4 過冷却器 5 アンモニア液取出管 6 冷媒再生器 11 内筒 12 外筒 13 オリフィス DESCRIPTION OF SYMBOLS 1 Evaporator 2 Ammonia vapor transfer pipe 3 Ammonia liquid transfer pipe 4 Subcooler 5 Ammonia liquid discharge pipe 6 Refrigerant 11 Inner cylinder 12 Outer cylinder 13 Orifice

フロントページの続き (72)発明者 大西 尚 大阪府大阪市中央区平野町4丁目1−2 大阪瓦斯株式会社内 (72)発明者 平中 幸男 大阪府大阪市中央区平野町4丁目1−2 大阪瓦斯株式会社内 (72)発明者 椿原 昇 大阪府大阪市中央区平野町4丁目1−2 大阪瓦斯株式会社内 (72)発明者 岩田 克雄 兵庫県尼崎市扶桑町1番10号 住友精密工 業株式会社内 (72)発明者 古寺 雅晴 大阪府大阪市住之江区南港北1丁目7番89 号 日立造船株式会社内 (72)発明者 藤田 優 大阪府大阪市住之江区南港北1丁目7番89 号 日立造船株式会社内 (72)発明者 松田 光史 大阪府大阪市住之江区南港北1丁目7番89 号 日立造船株式会社内 Fターム(参考) 3L093 BB01 BB37 LL05 MM02 Continuation of the front page (72) Inventor Takashi Onishi 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Inside Osaka Gas Co., Ltd. (72) Inventor Yukio Hiranaka 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Osaka Gas Co., Ltd. (72) Inventor Noboru Tsubakihara 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Osaka Gas Co., Ltd. (72) Inventor Katsuo Iwata 1-10 Fuso-cho, Amagasaki-shi, Hyogo Sumitomo Precision Industries (72) Inventor Masaharu Kodera 1-7-89 Minami Kohoku, Suminoe-ku, Osaka-shi, Osaka Hitachi Zosen Corporation (72) Inventor Yu Fujita 1-7-89, Minami-Kohita, Suminoe-ku, Osaka-shi, Osaka No. Hitachi Zosen Corporation (72) Inventor Mitsumi Matsuda 1-7-89 Minami Kohoku, Suminoe-ku, Osaka City, Osaka Prefecture F-term in Hitachi Zosen Corporation 3L093 BB01 BB37 LL05 MM02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】アンモニア液移送管を介して、凝縮器から
導かれたアンモニア液を蒸発させる蒸発器およびこの蒸
発器で蒸発されたアンモニア蒸気を吸収器に導くアンモ
ニア蒸気移送管を有するアンモニア吸収式冷凍機におい
て、上記蒸発器の下部からアンモニア液を取り出して上
記アンモニア蒸気移送管に導くアンモニア液取出管を設
け、上記アンモニア蒸気移送管とアンモニア液移送管と
の間で熱交換を行う過冷却部を設け、上記アンモニア液
取出管とアンモニア液移送管との間で熱交換を行う冷媒
再生部を設け、かつこの冷媒再生部を、上記アンモニア
液取出管に接続される内筒と上記アンモニア液移送管に
接続される外筒とからなる二重管構造にするとともに、
内筒の入口側の内径を小さくしたことを特徴とするアン
モニア吸収冷凍機。
An ammonia absorption type having an evaporator for evaporating an ammonia liquid introduced from a condenser through an ammonia liquid transfer pipe and an ammonia vapor transfer pipe for introducing ammonia vapor evaporated by the evaporator to an absorber. In the refrigerator, an ammonia liquid take-out pipe is provided for taking out the ammonia liquid from the lower part of the evaporator and leading the ammonia liquid to the ammonia vapor transfer pipe, and a supercooling section for performing heat exchange between the ammonia vapor transfer pipe and the ammonia liquid transfer pipe. A refrigerant regenerating section for performing heat exchange between the ammonia liquid extracting pipe and the ammonia liquid transferring pipe is provided, and the refrigerant regenerating section is connected to the inner cylinder connected to the ammonia liquid extracting pipe and the ammonia liquid transferring section. With a double pipe structure consisting of an outer cylinder connected to the pipe,
An ammonia absorption refrigerator having a reduced inner diameter on the inlet side of the inner cylinder.
【請求項2】アンモニア液取出管の冷媒再生部における
内筒への接続部近傍に、オリフィスを設けたことを特徴
とする請求項1記載のアンモニア吸収冷凍機。
2. The ammonia absorption refrigerator according to claim 1, wherein an orifice is provided near a connection of the ammonia liquid extraction pipe to the inner cylinder in the refrigerant regeneration section.
【請求項3】冷媒再生部における内筒の小径部に対応す
る外筒の所定部分の内径を、小さくしたことを特徴とす
る請求項1または2に記載のアンモニア吸収冷凍機。
3. The ammonia absorption refrigerator according to claim 1, wherein the inside diameter of a predetermined portion of the outer cylinder corresponding to the small diameter portion of the inner cylinder in the refrigerant regeneration section is reduced.
JP10327368A 1998-11-18 1998-11-18 Ammonia absorption refrigeration machine Pending JP2000154947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10327368A JP2000154947A (en) 1998-11-18 1998-11-18 Ammonia absorption refrigeration machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10327368A JP2000154947A (en) 1998-11-18 1998-11-18 Ammonia absorption refrigeration machine

Publications (1)

Publication Number Publication Date
JP2000154947A true JP2000154947A (en) 2000-06-06

Family

ID=18198367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10327368A Pending JP2000154947A (en) 1998-11-18 1998-11-18 Ammonia absorption refrigeration machine

Country Status (1)

Country Link
JP (1) JP2000154947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839078B1 (en) * 2007-04-06 2008-06-19 삼성전자주식회사 Refrigerant cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839078B1 (en) * 2007-04-06 2008-06-19 삼성전자주식회사 Refrigerant cycle device

Similar Documents

Publication Publication Date Title
CN100491866C (en) Multistage-cascaded compression type heat pump set under large temperature difference
JPS61119954A (en) Absorption heat pump/refrigeration system
JP2000154947A (en) Ammonia absorption refrigeration machine
JP3283621B2 (en) Absorption refrigerators and chiller / heaters using both low-temperature regenerators and low-temperature regenerators for waste heat recovery
CN207856340U (en) A kind of small reduction ratio thermo-compression evaporation enrichment facility of action of forced stirring
JPH06241615A (en) Evaporator for refrigerating machine
CN105435480A (en) Vacuum push-pull alcohol concentration system
JPH10232065A (en) Ammonia absorption refrigerating machine
CN205252562U (en) Pure concentrated system is recommended in vacuum
JPH11148743A (en) Ammonium absorption refrigerating machine
JPH04244565A (en) Condenser
JPS63161360A (en) Refrigeration cycle
CN210569375U (en) Heat exchanger system and water chilling unit
JP2018096673A (en) Absorption type heat exchanging system
CN107477907A (en) Fume hot-water compound type lithium bromide absorption type handpiece Water Chilling Units
JP2000088392A (en) Ammonia absorption refrigerating machine
JP2000320918A (en) Ammonia absorption freezer
CN210772889U (en) Heat exchanger system and water chilling unit
JP2000121195A (en) Ammonia absorption refrigerating machine
JPH11201575A (en) Ammonium absorption refrigerating machine
JP2000171124A (en) Ammonium absorption refrigerating machine
JP3489934B2 (en) Evaporator in absorption refrigerator
JPH0350373Y2 (en)
JPH10205908A (en) Direct-fired absorption refrigerating machine
KR200161048Y1 (en) Regenerator of absorption type refrigerator