JP2000154026A - Molding die of glass bottle - Google Patents

Molding die of glass bottle

Info

Publication number
JP2000154026A
JP2000154026A JP10326277A JP32627798A JP2000154026A JP 2000154026 A JP2000154026 A JP 2000154026A JP 10326277 A JP10326277 A JP 10326277A JP 32627798 A JP32627798 A JP 32627798A JP 2000154026 A JP2000154026 A JP 2000154026A
Authority
JP
Japan
Prior art keywords
mol
chromium
nitrogen
thin film
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10326277A
Other languages
Japanese (ja)
Inventor
Hidefumi Kanazawa
秀文 金澤
Mikio Ueda
幹夫 上田
Tetsuo Nakanishi
哲夫 中西
Takaya Ishii
孝也 石井
Norio Asagi
典生 浅儀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon ITF Inc
Asahi Beer Pax Co Ltd
Original Assignee
Nippon ITF Inc
Asahi Beer Pax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon ITF Inc, Asahi Beer Pax Co Ltd filed Critical Nippon ITF Inc
Priority to JP10326277A priority Critical patent/JP2000154026A/en
Publication of JP2000154026A publication Critical patent/JP2000154026A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/30Details of blowing glass; Use of materials for the moulds
    • C03B9/48Use of materials for the moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a glass molding die coated with a ceramic thin film which has a reduced reactivity with glass and good sliding property with glass. SOLUTION: This molding die for glass bottles is produced by applying a ceramic thin film on the glass molding face of the molding die base. The base body 1 consists of an iron-based metal. The amount of chromium and nitrogen in the ceramic thin film are controlled to 65 to 75 mol% chromium and 35 to 25 mol% nitrogen in the lower layer side, and 52 to 60 mol.% chromium and 48 to 40 mol.% nitrogen in the upper layer side. The amount of chromium increases while the amount of nitrogen decreases to the lower layer side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融ガラスを金型
に流し込んで凝固成形されるガラス瓶を成型するための
金型に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for molding a glass bottle to be solidified by pouring molten glass into the mold.

【0002】[0002]

【従来の技術】ガラス瓶は、一般に1000℃を越える高温
の溶融ガラスを鋳鉄製の金型に注入して凝固析出させる
方法で成型される。ガラスの凝固時の不均一冷却による
割れを防止するために金型は常時500度前後の高温に保
持され、連続的に「注入→成型→取り出し」の作業が繰
り返される。
2. Description of the Related Art Glass bottles are generally formed by pouring molten glass having a high temperature exceeding 1000 ° C. into a mold made of cast iron to solidify and precipitate. In order to prevent cracks due to uneven cooling during the solidification of the glass, the mold is always kept at a high temperature of about 500 ° C., and the operation of “injection → molding → removal” is continuously repeated.

【0003】この作業において、高温のガラスと金型の
表面が反応して焼きつきを起こし製品が金型から抜けな
くなったり、破損することがある。
In this operation, the high-temperature glass and the surface of the mold react with each other to cause seizure, and the product may not come off the mold or may be damaged.

【0004】また、成型後の製品を金型から取り出す際
に生じる製品と金型とのこすれから金型の摩耗が生じ製
品の外観を著しく損なう。鋳造のタクトを短くするため
に、特に意識的に金型成型面を粗くしたり、意匠のため
のマークや印字を必要とする製品もあり、金型の摩耗に
よる表面外観の損傷は歩留まりに重大な影響を与えるも
のである。
In addition, when the product after molding is removed from the mold, rubbing between the product and the mold causes wear of the mold, which significantly impairs the appearance of the product. In order to shorten the tact time of casting, some products require specially conscious roughening of the mold molding surface or marking or printing for design, and damage to the surface appearance due to mold wear is critical to yield. Has a significant effect.

【0005】このような現象を防止するため、金型成型
面に潤滑油や黒鉛、硫黄を含む離型性樹脂を定期的に塗
布する作業法が一般的に採用されているが、高温での塗
布作業は安全面での問題があるのみでなく、成型作業中
に蒸発、飛散するため工場の作業環境を著しく害する。
In order to prevent such a phenomenon, a work method of regularly applying a release resin containing lubricating oil, graphite, and sulfur to a molding surface of a mold is generally adopted. The coating operation not only has a safety problem, but also evaporates and scatters during the molding operation, which significantly impairs the working environment of the factory.

【0006】さらに、潤滑剤や離型剤の残滓が金型表面
に焼き付き、製品の表面状態を著しく害し、製品の歩留
まりを大きく低下させる原因となっている。
[0006] Furthermore, the residue of the lubricant and the release agent is seized on the surface of the mold, significantly impairing the surface condition of the product, and causing a great decrease in the yield of the product.

【0007】[0007]

【発明が解決しようとする課題】これらの問題を改善す
るために、特殊な組成の鉄合金の表面を故意に粗くした
り、微細孔を開けて冷却効果をコントロールする手法
(特開平8-109449号公報)が提案されている。しかし、
金型の摩擦による表面状態が変化し、安定した寿命が得
られていない。
In order to solve these problems, a method of intentionally roughening the surface of an iron alloy having a special composition or forming fine holes to control the cooling effect (Japanese Patent Laid-Open No. 8-109449) Publication). But,
The surface condition changes due to the friction of the mold, and a stable life is not obtained.

【0008】また、耐熱性のある金属を成型面にメッキ
して潤滑性を上げる手法も提案されている。しかし、こ
の方法も、メッキ層の耐熱性が不足で、高温での作業中
にクラックを生じたり、剥離に至るため実用的でない。
[0008] There has also been proposed a method of plating a molding surface with a heat-resistant metal to improve lubricity. However, this method is also not practical because the heat resistance of the plating layer is insufficient and cracks occur during operation at a high temperature, or peeling occurs.

【0009】さらに、類似の公知技術としては、光学素
子用ガラス成型金型にクロムと窒素の化合物を形成する
技術が知られている(特開平3-61616号公報)。この技
術は使用温度範囲が600℃以下であり、また小型高精度
部品が対象のため、金属基材として超硬合金や耐熱金属
など膨張係数の小さい金属が使用でき、詳細な膜構造の
検討なしに実施できる。その上、きわめて表面の滑らか
な製品の静的なガラス成型用であるため、もともと摩耗
が少なく、表面層の硬さの要求が比較的緩やかである。
一方、ビール瓶などの成型用途は、金型に対するコス
ト、使用温度範囲、ブロー成型する際の溶融流動ガラス
に対する耐摩耗性など極めて制約が多く、膜組成の詳細
な設計を経る必要があった。
Further, as a similar known technique, there is known a technique of forming a compound of chromium and nitrogen in a glass molding die for an optical element (Japanese Patent Application Laid-Open No. 3-61616). Since this technology has an operating temperature range of 600 ° C or less and is intended for small and high-precision parts, metals with a small expansion coefficient such as cemented carbide and heat-resistant metal can be used as the metal substrate, and no detailed film structure has been studied. Can be implemented. In addition, since it is used for static glass molding of a product having a very smooth surface, the abrasion is originally low, and the requirements for the hardness of the surface layer are relatively moderate.
On the other hand, for molding applications such as beer bottles, there are many restrictions such as the cost for the mold, the operating temperature range, and the abrasion resistance to the molten fluid glass during blow molding, and it was necessary to go through a detailed design of the film composition.

【0010】従って、本発明の主目的は、ガラスとの反
応性が少なく、ガラスとの摺動性のよいセラミック薄膜
を被覆したガラス成型金型を提供することにある。
[0010] Accordingly, it is a main object of the present invention to provide a glass molding die coated with a ceramic thin film having low reactivity with glass and good slidability with glass.

【0011】[0011]

【課題を解決するための手段】本発明金型は、金型のガ
ラス成型面にセラミック薄膜を被覆したガラス瓶成型金
型であって、前記セラミック薄膜におけるクロムおよび
窒素の含有量は、下層側でクロム:65〜75モル%、窒
素:35〜25モル%であり、上層側でクロム:52〜60モル
%、窒素:48〜40モル%であって、下層側ほどクロムの
含有量が多く窒素の含有量が少ないことを特徴とする。
A mold according to the present invention is a glass bottle molding mold in which a glass molding surface of a mold is coated with a ceramic thin film, wherein the content of chromium and nitrogen in the ceramic thin film is lower. Chromium: 65-75 mol%, Nitrogen: 35-25 mol%, Chromium in the upper layer: 52-60 mol%, Nitrogen: 48-40 mol%, the lower layer has a higher chromium content and nitrogen Characterized by a low content of

【0012】ここで、上記組成限定は、セラミック薄膜
の全体組成を100モル%として規定している。セラミッ
ク薄膜はクロムと窒素を主成分とするもので、両元素が
薄膜全体に占める割合は、例えば90モル%以上とするこ
とが適切である。従って、このセラミック薄膜には、水
素、アルゴン、鉄、シリコンなどの不可避的不純物を含
有しても良いことは言うまでもない。
Here, the above composition limitation defines the total composition of the ceramic thin film as 100 mol%. The ceramic thin film contains chromium and nitrogen as main components, and the ratio of both elements to the whole thin film is suitably, for example, 90 mol% or more. Therefore, it goes without saying that the ceramic thin film may contain unavoidable impurities such as hydrogen, argon, iron and silicon.

【0013】また、セラミック薄膜における下層側(ガ
ラス成形面側)から上層側への組成変化は連続的であっ
ても段階的であってもよい。つまり、連続的な組成変化
を持つセラミック薄膜は、下層側ほどクロムの含有量が
多く、上層側ほど窒素含有量が多くなるよう、順次クロ
ムと窒素の含有量を変化させて傾斜構造に構成する。一
方、段階的な組成変化を持つセラミック薄膜は、積層構
造を有し、各層で段階的にクロムと窒素の含有量が異な
るように薄膜を形成する。特に、段階的に組成変化を形
成した場合、セラミック薄膜を最下層、中間層および最
上層からなる複数層に形成し、各層におけるクロムおよ
び窒素の含有量は次のように構成することが好ましい。
この場合、中間層自体を複数層に構成することも含む。
The composition change from the lower layer side (glass molding surface side) to the upper layer side of the ceramic thin film may be continuous or stepwise. In other words, a ceramic thin film having a continuous composition change has a gradient structure in which the chromium and nitrogen contents are sequentially changed so that the chromium content is higher in the lower layer and the nitrogen content is higher in the upper layer. . On the other hand, a ceramic thin film having a stepwise composition change has a laminated structure, and a thin film is formed such that the contents of chromium and nitrogen differ stepwise in each layer. In particular, when the composition change is formed stepwise, it is preferable that the ceramic thin film is formed in a plurality of layers including a lowermost layer, an intermediate layer, and an uppermost layer, and the contents of chromium and nitrogen in each layer are configured as follows.
In this case, the intermediate layer itself includes a plurality of layers.

【0014】最下層:クロム:70〜75モル%、窒素:
30〜25モル% 中間層:クロム:60〜70モル%、窒素:40〜30モル% 最上層:クロム:52〜60モル%、窒素:48〜40モル%
Lowermost layer: chromium: 70-75 mol%, nitrogen:
30-25 mol% Intermediate layer: Chromium: 60-70 mol%, Nitrogen: 40-30 mol% Top layer: Chromium: 52-60 mol%, Nitrogen: 48-40 mol%

【0015】上記セラミック薄膜の厚さは5〜20μmが
適切である。また、このようなセラミック薄膜はイオン
プレーティング法やPVD(物理気相合成法)などによ
り形成すれば良い。
The thickness of the ceramic thin film is suitably 5 to 20 μm. Such a ceramic thin film may be formed by an ion plating method, a PVD (physical vapor phase synthesis) method, or the like.

【0016】金型の基材材料としては、鋳鉄、軟鉄など
の鉄系材料が挙げられる。セラミック薄膜を形成する場
合、予め金型の基材表面を研磨しておくことが望まし
い。なお、セラミック薄膜は、金型基材の成形面の他、
金型構成部品同士の接合面にも形成することが望まし
い。
Examples of the base material of the mold include iron-based materials such as cast iron and soft iron. When a ceramic thin film is formed, it is desirable that the surface of the base material of the mold be polished in advance. The ceramic thin film has a molding surface of a mold substrate,
It is desirable to form it also on the joint surface between the mold components.

【0017】以下、本発明に至る経緯や上記構成の限定
理由を説明する。クロムと窒素を構成の主元素とするセ
ラミック薄膜は化学的に安定しており、摺動性の良いこ
とでも知られている。発明者らはこのセラミック薄膜を
ガラス瓶成型金型基材の成型面に被覆してガラスとの焼
き付きや付着を防止し、製品の工場環境の汚染源となる
潤滑剤の塗布工程をなくして、大幅にガラス瓶の製造コ
ストを低減することを目的に研究を行った。
Hereinafter, the process leading to the present invention and the reasons for limiting the above-described configuration will be described. Ceramic thin films containing chromium and nitrogen as main elements are chemically stable and are known to have good slidability. The inventors coated this ceramic thin film on the molding surface of the glass bottle molding base material to prevent seizure and adhesion to the glass, greatly eliminating the application of lubricant, which is a source of contamination of the factory environment of products, Research was conducted to reduce the manufacturing cost of glass bottles.

【0018】一般的に、ガラス瓶用の金型は寸法的に大
きく、かつ使用温度範囲が室温から1000℃以上にわたる
極めて広い範囲であるため、製造が容易でコストも安
く、熱歪の生じにくい鋳鉄製の型が使われている。従っ
て、まず安価に入手できる鋳鉄の金型に剥離を生じるこ
となく熱サイクルに耐える薄膜をコーティングする条件
の検討を行った。
In general, since the mold for glass bottles is large in size and the operating temperature range is extremely wide ranging from room temperature to 1000 ° C. or more, it is easy to manufacture, the cost is low, and cast iron is hard to generate heat distortion. Molds are used. Therefore, first, conditions for coating a thin film that can withstand thermal cycling without causing peeling in a cast iron mold that can be obtained at low cost were examined.

【0019】しかし、一般的に窒化クロムと言われるク
ロムと窒素の比率が各50%である材料は膨張係数が極め
て小さく、鉄系の基材に対し、500℃程度までのヒート
サイクルには何とか耐えるものの、1000℃前後の溶融ガ
ラスによる熱サイクルには耐えることができず剥離を生
じた。
However, a material having a ratio of chromium to nitrogen of 50%, which is generally referred to as chromium nitride, has an extremely low expansion coefficient. Although it could withstand, it could not withstand a thermal cycle with molten glass at around 1000 ° C., and peeling occurred.

【0020】金型の薄膜最表面では溶融ガラスが接触
し、最高温度1000℃前後にまで上昇したブロー成型後に
瓶を取り出すので、500℃程度まで急速に温度低下する
熱サイクルを受ける。そこで、クロムと窒素の組成比率
を変えたセラミック薄膜を作製し、比較検討した結果、
上記の熱サイクルに耐える条件を見出した。
Since the molten glass comes into contact with the outermost surface of the thin film of the mold and the bottle is taken out after blow molding at a maximum temperature of about 1000 ° C., the bottle undergoes a thermal cycle in which the temperature is rapidly lowered to about 500 ° C. Therefore, a ceramic thin film with a different composition ratio of chromium and nitrogen was manufactured and compared, and as a result,
A condition for withstanding the above thermal cycle was found.

【0021】窒素の比率を下げていくと、化合物の膨張
係数は増加し、Cr/Nが50/50のときの2.5×10-6deg-1
から70/30で9×10-6deg-1まで変化させることができる
が、クロムの比率が上がると、それに伴って硬さが急激
に低下してしまうことが判明した。
As the nitrogen ratio is decreased, the expansion coefficient of the compound increases, and 2.5 × 10 −6 deg −1 when the Cr / N ratio is 50/50.
From 70/30 to 9 × 10 -6 deg -1 , but it was found that as the chromium ratio increased, the hardness decreased rapidly.

【0022】また、鋳鉄はその構成元素としてフリーカ
ーボンを多分に含んでおり、成膜中および高温での長時
間の使用中に拡散を生じ、クロムを主体とする薄膜と反
応して化合物を作り、剥離を生じやすいことも判明し
た。
Also, cast iron contains a large amount of free carbon as a constituent element, and causes diffusion during film formation and during long-time use at a high temperature, and reacts with a thin film mainly composed of chromium to form a compound. It was also found that peeling easily occurred.

【0023】これらのテストを繰り返した結果、鋳鉄と
直接接触させる下層側としてはクロムの含有率を65〜75
モル%とし、上層側はそれよりクロム含有率の低い52〜
60モル%とすることにより、安定した寿命の金型が得ら
れることが判明した。
As a result of repeating these tests, the chromium content of the lower layer in direct contact with the cast iron was 65-75.
Mol%, and the upper layer has a lower chromium content
It has been found that a mold having a stable life can be obtained by setting the content to 60 mol%.

【0024】下層側のクロム含有量が規定上限値を超え
ると耐熱性が不足して熱サイクルに耐えられなくなり、
規定下限値未満では薄膜の密着性が安定しないことに加
え、膨張係数の不整合から熱サイクルでの剥離を生じ
る。
When the chromium content of the lower layer exceeds the specified upper limit, the heat resistance becomes insufficient and the heat cycling cannot withstand.
If the value is less than the specified lower limit, the adhesion of the thin film will not be stable, and peeling will occur in a thermal cycle due to the mismatch of expansion coefficients.

【0025】また、上層側のクロム含有量を規定下限値
未満にすると、膜の剥離は生じないが硬さが足りず、使
用中に摩耗を生じる。逆に規定上限値を超えると、膨張
係数の不整合から熱サイクルでの剥離を生じる。
When the chromium content of the upper layer is less than the specified lower limit, peeling of the film does not occur, but hardness is insufficient, and wear occurs during use. Conversely, if the value exceeds the specified upper limit, peeling due to thermal cycling occurs due to mismatch of expansion coefficients.

【0026】さらに、高温域での使用、ブロー成型時の
溶融流動ガラスとの耐摩耗性をクリアするためには5μ
以上、20μm以下の膜厚が必要となる。膜厚が規定上
限値を超えると、膨張のミスマッチにより膜内に亀裂を
生じる危険があり、下限値未満では表面の凹凸をカバー
できず、性能にばらつきが生じやすい。
Further, in order to clear the abrasion resistance with the molten glass at the time of use in a high temperature range and blow molding, 5 μm is required.
As described above, a film thickness of 20 μm or less is required. If the film thickness exceeds the specified upper limit, there is a risk of causing cracks in the film due to expansion mismatch, and if it is less than the lower limit, unevenness on the surface cannot be covered, and performance tends to vary.

【0027】特公平3-61616号公報などの単層CrN薄
膜を3μm形成させたガラス成型金型では、高温度域か
らの繰り返し熱サイクルを受けるため、熱膨張係数の違
う金型と薄膜では応力振幅を発生し、早期に膜剥離を生
じる。
In a glass mold having a single-layer CrN thin film formed in a thickness of 3 μm as disclosed in Japanese Patent Publication No. 3-61616, a repeated thermal cycle is performed from a high temperature range. Oscillation occurs, causing early film detachment.

【0028】一方、後述するように、本発明の規定範囲
の薄膜を形成した金型は、潤滑剤の塗布作業なしに10万
ショットの連続操業を行っても焼き付き現象が起こら
ず、極めて良好な製品が得られることが確認できた。
On the other hand, as will be described later, the mold having the thin film within the specified range of the present invention does not suffer from the seizure phenomenon even when the continuous operation of 100,000 shots is performed without the operation of applying the lubricant. It was confirmed that the product was obtained.

【0029】なお、この薄膜はガラスとの摺動性能を上
げるのみでなく、高温で組み立て、開放を繰り返す製造
工程での金型同士の焼き付き、かじりに対しても防止効
果が顕著である。従って、ガラス成型面のみでなく、金
型構成部品同士の接合面にも被覆を施すことにより、一
層の生産性向上が実現できる。
This thin film not only improves the sliding performance with glass, but also has a remarkable effect of preventing seizure and galling between molds in a manufacturing process in which assembly and opening are repeated at a high temperature. Therefore, by further coating not only the glass molding surface but also the joining surfaces of the mold components, further improvement in productivity can be realized.

【0030】[0030]

【発明の実施の態様】以下、本発明の実施の形態を説明
する。 <実施例1>鋳鉄基材の表面にアーク式イオンプレーテ
ィング装置を用いてクロムと窒素の組成が異なる各種の
セラミック薄膜を成膜し、硬さおよびガラスを相手とし
た摩耗試験を実施した。薄膜は単層で、その厚さは10μ
mである。熱膨張係数については、タングステンの薄膜
に厚膜コーティングを行い、加熱テストによるバイメタ
ル効果からその概略値を推定した。その結果を表1に示
す。表1において、窒素の含有量は100%から「Crモル
%」を減じた値にほぼ等しい(次の実施例2においても
同様)。また、「ガラスとの摩耗量」において、各々
「××」は基材に至るほどの激しい摩耗が認められたこ
とを、「×」は摩耗量が大きかったことを、「△」は摩
耗量が小さかったことを、「○」は摩耗がほとんど認め
られなかったことを表す。
Embodiments of the present invention will be described below. <Example 1> Various ceramic thin films having different compositions of chromium and nitrogen were formed on the surface of a cast iron substrate using an arc ion plating apparatus, and a wear test was performed on hardness and glass. The thin film is a single layer, its thickness is 10μ
m. Regarding the coefficient of thermal expansion, a rough value was estimated from a bimetal effect by a heating test after coating a thin film of tungsten with a thick film. Table 1 shows the results. In Table 1, the nitrogen content is substantially equal to 100% minus "Cr mol%" (the same applies to the following Example 2). In the "amount of wear with glass", "xx" indicates that severe abrasion to the base material was observed, "x" indicates that the amount of abrasion was large, and "△" indicates the amount of abrasion. Is small, and “○” indicates that almost no wear was observed.

【0031】[0031]

【表1】 [Table 1]

【0032】表1に示すように、熱膨張係数はクロム含
有量が高いほど鋳鉄に近い値となるが、硬さは低く実用
性能であるガラスとの摺動による摩耗量は、クロムの含
有量が低いほうが有利であることがわかった。
As shown in Table 1, the higher the chromium content, the closer the coefficient of thermal expansion to the value of cast iron. It was found that a lower value was more advantageous.

【0033】<実施例2>鋳鉄基材の上にクロムと窒素
の含有量が異なるセラミック薄膜を5μm積層し、コー
ティング後の密着性についてはダイヤモンド圧子の押し
込みテストにより評価を行った。ここでは薄膜の組成が
厚さ方向に連続的に変化するものも作製したが、これは
クロムと反応させる窒素ガスの導入量を連続的に増加す
ることで実現できる。また、これらのサンプルに室温〜
1000℃の熱サイクルを与え、剥離の有無を観察し、さら
に上記と同じ密着性の評価をして安定性の確認を行っ
た。その結果を表2に示す。表2中、「薄膜の密着
性」、「熱サイクルに対する安定性」において、各々
「×」は圧痕周辺にて全周の膜剥離が認められたこと
を、「△」は圧痕周辺にて数箇所の膜剥離が認められた
ことを、「○」は圧痕周辺にて一部に膜剥離が認められ
たことを、「◎」は膜剥離がないことを表す。
Example 2 Ceramic thin films having different contents of chromium and nitrogen were laminated on a cast iron base material to a thickness of 5 μm, and the adhesion after coating was evaluated by a diamond indentation indentation test. Although a thin film in which the composition of the thin film continuously changes in the thickness direction was manufactured here, this can be realized by continuously increasing the amount of nitrogen gas to be reacted with chromium. In addition, these samples should be
A heat cycle of 1000 ° C. was applied, the presence or absence of peeling was observed, and the same adhesion was evaluated as described above to confirm stability. Table 2 shows the results. In Table 2, in "Adhesion of thin film" and "Stability to thermal cycle", "x" indicates that film peeling was observed all around the indentation, and "△" indicates that the number was around the indentation. "O" means that film peeling was observed in a part around the indentation, and "◎" means that no film peeling was observed.

【0034】[0034]

【表2】 [Table 2]

【0035】表2からわかるように、最下層のクロム含
有量が65モル%以上である場合に好結果が得られてい
る。特に、薄膜の厚さ方向の組成を連続的に変化させた
ものは極めて優れた密着性を示している。
As can be seen from Table 2, good results were obtained when the chromium content of the lowermost layer was 65 mol% or more. In particular, those obtained by continuously changing the composition in the thickness direction of the thin film show extremely excellent adhesion.

【0036】<実施例3>鋳鉄製の金型基材の表面に2
層のセラミック薄膜を積層した。下層(基材側)の組成
はクロム70モル%、窒素30モル%で、上層のそれはクロ
ム55モル%、窒素45モル%である。また、これら2層の
合計厚さを10μmとした。そして、ガラス瓶の成型加工
を実施した。
<Example 3> The surface of a mold base made of cast iron
The layers of the ceramic thin film were laminated. The composition of the lower layer (substrate side) is 70 mol% of chromium and 30 mol% of nitrogen, and that of the upper layer is 55 mol% of chromium and 45 mol% of nitrogen. The total thickness of these two layers was 10 μm. Then, the glass bottle was molded.

【0037】その結果、潤滑剤の塗布作業なしで50000
〜80000ショットの連続操業を行ったときに最上層が摩
耗消滅し、ガラスの焼き付きが生じて金型自体の破損に
至った。なお、比較例としてセラミック薄膜のない金型
を用いて同様の試験を行ったところ、600ショット足ら
ずでガラスの焼き付きが生じて金型自体の破損に至っ
た。
As a result, 50,000 without any lubricant application work
When a continuous operation of up to 80,000 shots was performed, the uppermost layer was worn away, and the seizure of the glass occurred, resulting in damage to the mold itself. As a comparative example, when a similar test was performed using a mold having no ceramic thin film, the seizure of the glass occurred in less than 600 shots, and the mold itself was damaged.

【0038】<実施例4>鋳鉄製の金型基材の表面に2
層のセラミック薄膜を積層した。下層(基材側)の組成
はクロム60モル%、窒素40モル%のセラミック薄膜で、
上層のそれはクロム55モル%、窒素45モル%である。ま
た、これら2層の合計厚さを10μmとした。そして、ガ
ラス瓶の成型加工を実施した。
<Example 4> The surface of a mold base made of cast iron
The layers of the ceramic thin film were laminated. The composition of the lower layer (substrate side) is a ceramic thin film of chromium 60 mol% and nitrogen 40 mol%.
The upper layer is 55 mol% chromium and 45 mol% nitrogen. The total thickness of these two layers was 10 μm. Then, the glass bottle was molded.

【0039】その結果、潤滑剤の塗布作業なしで50000
ショットの連続操業を行ったときに上層に微細な割れを
生じ、部分的に膜剥離を生じていた。また、そのときで
きたガラス瓶も不良であった。
As a result, 50,000 without any lubricant application work
When the continuous operation of shots was performed, fine cracks were generated in the upper layer, and the film was partially peeled. The glass bottles made at that time were also defective.

【0040】<実施例5>鋳鉄製の金型の表面に3層の
セラミック薄膜を積層した。その構成断面図を図1に示
す。図示のように、基材1の上には順に最下層2、中間層
3、最上層4が形成され、各層のクロムと窒素の組成は次
の通りであった。
Example 5 A three-layer ceramic thin film was laminated on the surface of a mold made of cast iron. FIG. 1 shows a sectional view of the configuration. As shown, the lowermost layer 2, the intermediate layer
3. The uppermost layer 4 was formed, and the composition of chromium and nitrogen in each layer was as follows.

【0041】最下層2:クロム75モル%、窒素25モル
%、中間層3:クロム68モル%、窒素32モル%、最上層
4:クロム55モル%、窒素45モル%である。また、これ
ら3層の合計厚さを10μmとした。そして、ガラス瓶の
成型加工を実施した。
Lower layer 2: 75 mol% of chromium, 25 mol% of nitrogen, middle layer 3: 68 mol% of chromium, 32 mol% of nitrogen, uppermost layer
4: 55 mol% of chromium and 45 mol% of nitrogen. The total thickness of these three layers was 10 μm. Then, the glass bottle was molded.

【0042】その結果、潤滑剤の塗布作業なしで10万シ
ョットの連続操業が可能であった。また、できたガラス
瓶の表面状態は極めて綺麗であり、こすれ傷不良も大幅
に減少した。
As a result, continuous operation of 100,000 shots was possible without applying lubricant. In addition, the surface condition of the resulting glass bottle was extremely clean, and defective scratches were significantly reduced.

【0043】[0043]

【発明の効果】以上、説明したように、本発明金型を用
いれば、潤滑剤の塗布作業も不要で、工場の環境を清浄
に保てるだけでなく、金型や製品への残滓の焼き付き付
着も防止できるため、長時間にわたる連続操業が可能と
なり、製品の外観不良も減少できる。その結果、ガラス
瓶の製造コストを大幅に低減することができる。
As described above, the use of the mold of the present invention eliminates the need for a lubricant application operation, not only keeps the factory environment clean, but also causes sticking of residue to the mold and products. Therefore, continuous operation over a long period of time is possible, and the appearance defect of the product can be reduced. As a result, the manufacturing cost of the glass bottle can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】金型の成型面に形成されたセラミック薄膜の積
層構造を示す断面図である。
FIG. 1 is a sectional view showing a laminated structure of a ceramic thin film formed on a molding surface of a mold.

【符号の説明】[Explanation of symbols]

1 基材 2 最下層 3 中間層 4 最上層 1 base material 2 bottom layer 3 middle layer 4 top layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上田 幹夫 姫路市飾磨区今在家1351−1 株式会社ア サヒビールパックス内 (72)発明者 中西 哲夫 姫路市飾磨区今在家1351−1 株式会社ア サヒビールパックス内 (72)発明者 石井 孝也 京都市南区久世殿城町575番地 日本ア イ・ティ・エフ株式会社内 (72)発明者 浅儀 典生 京都市南区久世殿城町575番地 日本ア イ・ティ・エフ株式会社内 Fターム(参考) 4G015 HA01 4K029 AA02 AA26 BA58 BB02 BC02 BD05 CA01 CA03  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Mikio Ueda 1351-1 Imaiza, Himeji-shi Amahi Beer Pax Co., Ltd. (72) Inventor Nakanishi Tetsuo 1351-1 Imaiza, Himeji-shi Shima, Himeji Inside Beer Packs (72) Inventor Takaya Ishii 575 Kuzedonojo-cho, Minami-ku, Kyoto, Japan Inside IT F Co., Ltd. (72) Inventor Norio Asagi 575 Kuzedonojo-cho, Minami-ku, Kyoto, Japan F term in TF Corporation (reference) 4G015 HA01 4K029 AA02 AA26 BA58 BB02 BC02 BD05 CA01 CA03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金型基材のガラス成型面にセラミック薄
膜を被覆したガラス瓶成型金型であって、 前記セラミック薄膜におけるクロムおよび窒素の含有量
は、下層側でクロム:65〜75モル%、窒素:35〜25モル
%であり、上層側でクロム:52〜60モル%、窒素:48〜
40モル%であって、下層側ほどクロムの含有量が多く窒
素含有量が少ないことを特徴とするガラス瓶成型金型。
1. A glass bottle molding mold in which a glass molding surface of a mold substrate is coated with a ceramic thin film, wherein the content of chromium and nitrogen in the ceramic thin film is 65 to 75 mol% of chromium on the lower layer side. Nitrogen: 35 to 25 mol%, chromium on the upper layer side: 52 to 60 mol%, nitrogen: 48 to
A glass bottle molding die, characterized in that the lower layer has a higher chromium content and a lower nitrogen content.
【請求項2】 セラミック薄膜は最下層、中間層および
最上層からなる複数層に形成され、各層におけるクロム
および窒素の含有量が次のように段階的に構成されてい
ることを特徴とする請求項1記載のガラス瓶成型金型。 最下層:クロム:70〜75モル%、窒素:30〜25モル% 中間層:クロム:60〜70モル%、窒素:40〜30モル% 最上層:クロム:52〜60モル%、窒素:48〜40モル%
2. The method according to claim 1, wherein the ceramic thin film is formed in a plurality of layers including a lowermost layer, an intermediate layer, and an uppermost layer, and the contents of chromium and nitrogen in each layer are configured stepwise as follows. Item 7. The glass bottle molding die according to Item 1. Bottom layer: Chromium: 70-75 mol%, Nitrogen: 30-25 mol% Intermediate layer: Chromium: 60-70 mol%, Nitrogen: 40-30 mol% Top layer: Chromium: 52-60 mol%, Nitrogen: 48 ~ 40 mol%
【請求項3】 セラミック薄膜の厚さが5〜20μmであ
ることを特徴とする請求項1または2記載のガラス瓶成
型金型。
3. The glass bottle molding die according to claim 1, wherein the thickness of the ceramic thin film is 5 to 20 μm.
JP10326277A 1998-11-17 1998-11-17 Molding die of glass bottle Pending JP2000154026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10326277A JP2000154026A (en) 1998-11-17 1998-11-17 Molding die of glass bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10326277A JP2000154026A (en) 1998-11-17 1998-11-17 Molding die of glass bottle

Publications (1)

Publication Number Publication Date
JP2000154026A true JP2000154026A (en) 2000-06-06

Family

ID=18185976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10326277A Pending JP2000154026A (en) 1998-11-17 1998-11-17 Molding die of glass bottle

Country Status (1)

Country Link
JP (1) JP2000154026A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005047197A1 (en) * 2003-11-14 2005-05-26 Nihon Yamamura Glass Co., Ltd. Method of regulating temperature of bottle-forming mold and bottle-forming mold used for the method
JP2007077494A (en) * 2005-08-08 2007-03-29 Nanofilm Technologies Internatl Pte Ltd Metal coating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005047197A1 (en) * 2003-11-14 2005-05-26 Nihon Yamamura Glass Co., Ltd. Method of regulating temperature of bottle-forming mold and bottle-forming mold used for the method
EP1693347A1 (en) * 2003-11-14 2006-08-23 Nihon Yamamura Glass Co. Ltd. Method of regulating temperature of bottle-forming mold and bottle-forming mold used for the method
EP1693347A4 (en) * 2003-11-14 2007-03-28 Nihon Yamamura Glass Co Ltd Method of regulating temperature of bottle-forming mold and bottle-forming mold used for the method
JP2007077494A (en) * 2005-08-08 2007-03-29 Nanofilm Technologies Internatl Pte Ltd Metal coating

Similar Documents

Publication Publication Date Title
EP1626104B1 (en) Member with coating layers used for casting
EP2609044B1 (en) Glass-forming tools and methods
KR20070010024A (en) Metal material for foundry machine part, member for contact with molten aluminum, and process for producing the same
JP2015528531A (en) Arc PVD coating with enhanced friction and wear reduction properties
US5143541A (en) Process for producing powdered metal spray coating material
JP2000154026A (en) Molding die of glass bottle
JP4883400B2 (en) Casting parts
JP2003170262A (en) Method for manufacturing die cast machine member
WO2019039225A1 (en) Aluminum die-casting mold part
JPH0383824A (en) Complex mold for molding of optical member
US5194339A (en) Discontinuous casting mold
JPS61159247A (en) Quick cooling roll for producing high-silicon thin steel strip
JPH02129035A (en) Mold for molding optical element
JP2008114331A (en) High oxidation resistance hard film coated tool and hard film coating method
KR100435389B1 (en) Method of coating of synchronizer ring with large friction coefficient
JP2006138008A (en) Protective film for surface of die and protective film for surface of metal working tool
JPH0517305B2 (en)
JP7059731B2 (en) Parts for aluminum die casting dies
JPH09155521A (en) Hot chamber die casting machine for low aluminum zinc base alloy
JPH0492827A (en) Mold for molding optical element
JP2732863B2 (en) Mold for optical element molding
JP2000052018A (en) Thixotropy die of magnesium alloy
JPH0587476B2 (en)
JPH04246145A (en) Mold for forming optical element
JP2006075867A (en) Member for casting