JP2000153239A - Device for discriminating glass bottles - Google Patents

Device for discriminating glass bottles

Info

Publication number
JP2000153239A
JP2000153239A JP10332259A JP33225998A JP2000153239A JP 2000153239 A JP2000153239 A JP 2000153239A JP 10332259 A JP10332259 A JP 10332259A JP 33225998 A JP33225998 A JP 33225998A JP 2000153239 A JP2000153239 A JP 2000153239A
Authority
JP
Japan
Prior art keywords
bottle
light
function
identification
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10332259A
Other languages
Japanese (ja)
Inventor
Masanori Satake
正規 佐竹
Hiroyasu Enomoto
博康 榎本
Katsumi Konaka
克己 小中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP10332259A priority Critical patent/JP2000153239A/en
Publication of JP2000153239A publication Critical patent/JP2000153239A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sorting Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device which an automatically sort smoke bottles from light transmissible bottles. SOLUTION: This sorting device is provided with a light source 3 for projecting light to bottles, a light receiving device 5 for receiving transmission light from the light source 3 through the bottles, and treating device 6 for discriminating the bottles by a signal from the light receiving device 5. The treating device 6 has a means for calculating light receiving strength and light receiving distribution of the light receiving device 5 and a means for judging the difference between the light transmissible bottles and the smoke bottles scattering light such as frosted glass bottles from the light receiving strength and light receiving distribution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみの中で、
特にリサイクル資源の対象となる廃ガラスびんを自動的
にびん識別する装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to
In particular, the present invention relates to an apparatus for automatically identifying waste glass bottles to be recycled.

【0002】[0002]

【従来の技術】現在、都市ごみの各ごみ処理の中でリサ
イクルの対象として、廃びんの回収が積極的に実施され
ているようになってきた。これらは主に色毎に分別し、
破砕してカレットとし、新しい同色のびんを製造する原
料として使用される。また、1部の自治体はリターナブ
ルびんとして回収する。
2. Description of the Related Art At present, collection of waste bottles has been actively carried out as an object of recycling in the treatment of municipal solid waste. These are mainly sorted by color,
Crushed into cullet, used as a raw material to produce new bottles of the same color. Some municipalities will collect them as returnable bottles.

【0003】カレットとしては、特に透明びんが有価価
値があり、この透明びんの選別純度を高めるために、ス
モークびんを分別除去することが重要な技術課題となっ
ているが、これらは全てびんの選別作業者の目に頼らね
ばならなかった。
As a cullet, a transparent bottle is particularly valuable, and it is an important technical problem to separate and remove a smoked bottle in order to increase the sorting purity of the transparent bottle. We had to rely on the eyes of the sorting workers.

【0004】ガラスびん選別の従来技術としては、特開
平8−108145号公報(「空きびん分別装置」)に
開示されているようにびん底をカメラで撮像し、淡彩色
のびん色はその画像のびん底周辺部(透過散乱光の選択
吸収の多い部分)で、濃色のびん色はびん底中央部(透
過散乱光の選択吸収の少ない部分)の領域の特定色相範
囲内にある画素数により色判定する方法がある。
[0004] As a prior art of glass bottle sorting, as disclosed in Japanese Patent Application Laid-Open No. 8-108145 ("empty bottle sorting apparatus"), the bottom of a bottle is imaged by a camera, and the light-colored bottle color is the image. In the periphery of the bottom of the bottle (the portion where the selective absorption of transmitted scattered light is large), the dark bottle color indicates the number of pixels within the specific hue range in the central portion of the bottle (the portion where the selective absorption of transmitted scattered light is small). There is a method of determining the color by using

【0005】また、ガラスびん選別の、その他の方法と
して特開平7−96254号公報(「ガラスびんの色分
別方法」)に開示されているように、光源に光分布を均
一にする光拡散板を備え、びん側面をカメラで撮像し、
画像処理装置で取得画像を多くの小領域に区分し、各領
域毎の輝度と光拡散板のR(赤),G(緑),B(青)
成分との違いから色判定を行う小領域を選定し、同領域
のR,G,B成分から色の判別を行っているものがあ
る。
Further, as another method for sorting glass bottles, as disclosed in Japanese Patent Application Laid-Open No. Hei 7-96254 ("Method for Color Separation of Glass Bottles"), a light diffusing plate for making a light source have a uniform light distribution. , And image the bottle side with a camera,
The acquired image is divided into many small areas by the image processing apparatus, and the luminance of each area and the R (red), G (green), and B (blue) of the light diffusion plate are determined.
In some cases, a small area to be subjected to color determination is selected based on the difference from the component, and the color is determined from the R, G, and B components of the same area.

【発明が解決しようとする課題】しかし、前記特許公報
記載の方法はびん色識別に限定された技術であり、以下
に述べるような問題があった。
However, the method described in the above-mentioned patent publication is a technique limited to bottle color identification, and has the following problems.

【0006】すなわち、びん色には主に透明、茶色、青
色、緑色、黒色があり、それぞれにスモークびんが存在
しており、前記自動色選別方法では、 (1)びん色計測を行う際、色測定領域の特定色相範囲
内の画素数をカウントしてびん色判定し、あるいは画像
を小領域に区分し、色測定領域を決定してその領域の色
を計測するといった判定方法を行っており、スモークび
んの除去については考慮されていなかった。 (2)色判定を任意の1小領域で行う方法をとってお
り、これもスモークびん除去については考慮されていな
かった。
That is, the bottle colors are mainly transparent, brown, blue, green, and black, and each has a smoked bottle. In the automatic color sorting method, (1) when the bottle color is measured, Judgment methods such as counting the number of pixels within a specific hue range of the color measurement area and judging the bottle color, or dividing the image into small areas, determining the color measurement area and measuring the color of that area are performed. The removal of smoked bottles was not considered. (2) A method in which color determination is performed in an arbitrary small area is adopted, and this method also does not consider removal of smoke bottles.

【0007】本発明の課題はスモークびんを透過びんか
ら自動的に選別することができる装置を提供することで
ある。
It is an object of the present invention to provide an apparatus which can automatically sort smoke bottles from transmission bottles.

【0008】[0008]

【課題を解決するための手段】本発明はびんに投光する
光源と、光源からびんを介した透過光を受光する受光装
置と、該受光装置からの信号よりびんを識別するびん識
別処理装置とを備えたガラスびん識別装置であって、上
記びん識別処理装置は、受光装置の受光強度及び受光分
布を計算する計算手段と、受光強度及び受光分布から光
を透過する透過びん、すりガラスのように光を散乱させ
るスモークびんを判定する判定手段とを有するガラスび
ん識別装置である。
SUMMARY OF THE INVENTION The present invention provides a light source for projecting light to a bottle, a light receiving device for receiving light transmitted through the bottle from the light source, and a bottle identification processing device for identifying the bottle based on a signal from the light receiving device. A bottle identification processing device comprising: a calculating means for calculating the light reception intensity and the light reception distribution of the light receiving device; and a transmission bottle that transmits light from the light reception intensity and the light reception distribution, such as a ground glass. And a judging means for judging a smoke bottle that scatters light to the glass bottle.

【0009】上記ガラスびん識別装置において、計算手
段は受光強度の差分処理機能と、該差分値より差分ピー
ク値を検出し、該ピーク値の絶対値を計算する機能と、
かつ差分ピーク値間の距離を計算する機能とを有し、判
定手段は前記差分ピーク値の絶対値及び差分ピーク値間
の距離を予め設定したしきい値と比較する機能と、該比
較結果よりびんの識別を行う機能を備えたものとするこ
とができる。
In the above-mentioned glass bottle identifying apparatus, the calculating means has a function of processing the difference of the received light intensity, a function of detecting a difference peak value from the difference value, and calculating an absolute value of the peak value;
And a function of calculating the distance between the difference peak values, wherein the determining means compares the absolute value of the difference peak value and the distance between the difference peak values with a preset threshold value, and It may be provided with a function for identifying bottles.

【0010】また、本発明は、びんに投光する光分布が
一様な面光源と、光源からびんを介した透過画像を撮像
する画像入力装置と、該画像入力装置からの映像信号よ
りびんを識別する画像処理装置とを備えたガラスびん識
別装置であって、上記画像処理装置は、面光源に識別バ
ーを備え、面光源の識別バーを抽出する機能と、識別バ
ー部分の面積を計算する機能と、明度と画素数の関係を
示すヒストグラムを計算する機能と、びん画像面積を計
算する機能と、前記識別バー抽出画像内のびん画像面積
の大きさにより透過びんとスモークびんを識別する機能
を有するガラスびん識別装置である。
The present invention also provides a surface light source having a uniform light distribution for projecting light onto a bottle, an image input device for capturing a transmitted image from the light source via the bottle, and a bottle based on a video signal from the image input device. A glass bottle identification device comprising: an image processing device for identifying a surface light source, wherein the image processing device includes an identification bar for a surface light source, a function of extracting the identification bar of the surface light source, and calculating an area of the identification bar portion. , A function for calculating a histogram indicating the relationship between brightness and the number of pixels, a function for calculating a bottle image area, and discriminating a transmission bottle and a smoke bottle based on the size of the bottle image area in the identification bar extraction image. It is a glass bottle identification device having a function.

【0011】上記本発明のガラスびん識別装置では、画
像処理装置は、びん映像範囲を選択する関心領域設定手
段を有し、関心領域内での面光源の識別バー部分を抽出
する機能と、関心領域内の識別バー部分の面積を計算す
る機能と、関心領域内のヒストグラムを計算する機能
と、関心領域内のびん画像面積を計算する機能とを備え
たものとすることができる。
In the above-described glass bottle identification apparatus of the present invention, the image processing apparatus has a region-of-interest setting means for selecting a bottle image range, and has a function of extracting an identification bar portion of a surface light source in the region of interest. It may have a function of calculating the area of the identification bar portion in the region, a function of calculating the histogram in the region of interest, and a function of calculating the area of the bottle image in the region of interest.

【0012】[0012]

【発明の実施の形態】本発明の実施の形について図面と
共に説明する。以下、本発明の実施の形態について図面
を用いて具体的に説明する。図1には本発明の実施の形
態のびん選別装置の全体構成を示す。図1において、暗
箱1内にはびんに投光するための直進性のよい光源3
と、光源3からの透過光をびんを介して受光する、搬送
路2に直列に配置された複数の受光センサ5があり、ま
たびんを1本ずつ搬送する搬送路2が暗箱1内の光源3
と受光センサ5の間を貫通するように配置されている。
Embodiments of the present invention will be described with reference to the drawings. Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 shows the overall configuration of a bottle sorting apparatus according to an embodiment of the present invention. In FIG. 1, a light source 3 having a good linearity for projecting light to a bottle is provided in a dark box 1.
And a plurality of light-receiving sensors 5 arranged in series with the transport path 2 for receiving the transmitted light from the light source 3 via the bottle, and the transport path 2 for transporting the bottles one by one is a light source in the dark box 1. 3
And the light receiving sensor 5.

【0013】搬送路2上を搬送中のびんが所定位置に到
着したことを検知するびん検知センサ4と該受光センサ
5からの受光信号よりびんを識別する処理装置6、該処
理装置6により識別されたびんを透過びん/スモークび
んに選別する選別ダンパ7、びん毎の回収ボックス8
a、8bがそれぞれ搬送路2に隣接して設けられてい
る。
A bottle detecting sensor 4 for detecting that a bottle being transported on the transport path 2 has arrived at a predetermined position, and a processing device 6 for identifying the bottle based on a light receiving signal from the light receiving sensor 5, Sorting damper 7 that sorts waste bottles into transparent bottles / smoke bottles, collection box 8 for each bottle
a and 8b are provided adjacent to the transport path 2 respectively.

【0014】また、図2にびん選別フローチャートを示
す。本フローチャートにおいて、暗箱1内の処理可能な
所定の位置にびんが到着したかどうかを検知して、びん
到着が検知されると、受光センサ5によりびんの透過光
を受光し、図1の処理装置6の処理として、各受光セン
サ5の受光強度信号と、予め分かっている各受光センサ
5の位置データにより受光強度分布を計算する計算処理
を行い、前記計算処理の結果より透過びんとスモークび
んの違いを判定処理し、前記判定処理の結果に基づい
て、図示しない選別ダンパの開閉を行うびん選別処理を
行う。
FIG. 2 is a flowchart for sorting bottles. In this flowchart, it is detected whether or not the bottle has arrived at a predetermined position in the dark box 1 which can be processed. When the arrival of the bottle is detected, the light transmitted through the bottle is received by the light receiving sensor 5 and the processing shown in FIG. As a process of the device 6, a calculation process of calculating a received light intensity distribution based on a received light intensity signal of each light receiving sensor 5 and position data of each light receiving sensor 5 known in advance is performed, and a transmission bottle and a smoke bottle are obtained based on the result of the calculation process. And a bottle sorting process for opening and closing a sorting damper (not shown) based on the result of the above-described determination process.

【0015】本実施の形態では、びん識別装置の上流側
の搬送路2にはびんを長手方向に整列させた後、1本ず
つ供給する図示しない整列装置がある。搬送路2上をび
んが搬送されてきて、受光センサ5より上流側の搬送路
2上に配設されているびん検知センサ4の前を通過して
びんを検知すると、所定の位置で受光センサ5がびんの
透過光を受光するためのびん到着信号を処理装置6へ出
力する。
In this embodiment, there is an alignment device (not shown) in the transport path 2 on the upstream side of the bottle identification device, which aligns the bottles in the longitudinal direction and supplies the bottles one by one. When a bottle is conveyed on the conveyance path 2 and passes through a bottle detection sensor 4 disposed on the conveyance path 2 upstream of the light receiving sensor 5 to detect the bottle, the light reception sensor is set at a predetermined position. 5 outputs a bottle arrival signal to the processing device 6 for receiving the transmitted light of the bottle.

【0016】該びん到着信号を受けた処理装置6は、受
光センサ5によりびん透過光の受光を行う。受光信号に
ついては、透過びんの場合、光源は直進性のよい光(レ
ーザ)であり、かつ反射も少ないため、図3(a)に示
すように透過光はほぼその強度のまま通過し、受光セン
サ5に受光される。処理装置6では、図3(a)に示す
ように透過光の強度分布を求める。
The processing device 6 receiving the bottle arrival signal receives light transmitted through the bottle by the light receiving sensor 5. Regarding the light receiving signal, in the case of a transmission bottle, the light source is light (laser) with good straightness and little reflection, so that the transmitted light passes with almost the same intensity as shown in FIG. The light is received by the sensor 5. The processing device 6 obtains the intensity distribution of the transmitted light as shown in FIG.

【0017】またスモークびんの場合、光源はびん表面
で反射され、透過光量は小さくなり図3(b)に示すよ
うに受光センサ5に受光される。図3(a)、図3
(b)に示すように受光強度分布は、透過びんの場合
は、光源投光部の位置だけが、受光強度が大きく、スモ
ークびんの場合は、光の反射が大きいため、光源投光部
の位置の光も暗くなり、全体にぼやけた光になる。した
がって、受光強度分布のピーク値は小さくなり、分布は
大きくなる。
In the case of a smoke bottle, the light source is reflected on the surface of the bottle and the amount of transmitted light is reduced, and is received by the light receiving sensor 5 as shown in FIG. FIG. 3 (a), FIG.
As shown in (b), in the case of a transmission bottle, only the position of the light source projecting portion has a large light receiving intensity in the case of a transmission bottle, and in the case of a smoke bottle, the reflection of light is large. The light at the position also becomes darker and becomes blurred as a whole. Therefore, the peak value of the received light intensity distribution becomes smaller and the distribution becomes larger.

【0018】次にびんの種類の判定方法を、図4を用い
て説明する。透過びんの受光強度分布は受光ピークが急
激に立ち上がっており、かつピーク値自身も高いレベル
となる。一方、スモークびんでは、受光ピークはなだら
かになり、ピーク値も低いレベルになる。上記の特性を
まとめると、表1のようになる。
Next, a method for determining the type of bottle will be described with reference to FIG. In the light reception intensity distribution of the transmission bottle, the light reception peak sharply rises, and the peak value itself is at a high level. On the other hand, in the smoke bottle, the light reception peak becomes gentle and the peak value also becomes a low level. Table 1 summarizes the above characteristics.

【0019】[0019]

【表1】 ================================== び ん ピーク値 受光分布 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 透過びん 高 ピーク値立上り急激(受光分布狭い) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− スモークびん 低 ピーク値立上りなだらか(受光分布広い) ==================================[Table 1] ================================= Bottle Peak Value Light Receiving Distribution −−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−− ------------------------ ====================

【0020】本発明の処理装置での識別を容易にするた
め、下記処理を行う。 (1)受光強度の差分処理を行う。 (2)差分ピーク値の絶対値をみる。 (3)差分ピーク値間の距離をみる。
The following processing is performed to facilitate identification by the processing apparatus of the present invention. (1) Perform difference processing of received light intensity. (2) Check the absolute value of the difference peak value. (3) Look at the distance between the difference peak values.

【0021】上記処理(2)の結果により、ピーク値の
高/低及びピーク値立上りの様子が把握でき、上記処理
(3)の処理の結果から、受光分布の様子がつかめる。
From the result of the above process (2), the state of the peak value high / low and the rise of the peak value can be grasped. From the result of the above process (3), the state of the light reception distribution can be grasped.

【0022】ここで、まず、上記処理(1)、(2)の
処理に付いて説明する。隣り合う受光センサ5の受光信
号の差分の絶対値をとると、差分のピーク値は2つでき
る。
First, the processing of the above-mentioned processing (1) and (2) will be described. If the absolute value of the difference between the light receiving signals of the adjacent light receiving sensors 5 is taken, two peak values of the difference can be obtained.

【0023】すなわち、複数の受光センサ出力を並べる
(このとき出力偏差のないよう補正はかけている)と受
光強度分布に一つのピーク値が得られる。ついで、隣り
合う受光センサ5の受光強度出力の差分ΔP(信号の微
分値と等価)、例えば ΔP=5−5i−1 を採り、(図4(c)、図4(g)参照)さらにその絶
対値(│ΔP│)を採るとピーク値は図4(d)、図4
(h)に示すように2つできる。
That is, when a plurality of outputs of the light receiving sensors are arranged (correction is performed so that there is no output deviation at this time), one peak value is obtained in the received light intensity distribution. Next, the difference ΔP (equivalent to the differential value of the signal) of the received light intensity output of the adjacent light receiving sensor 5, for example, ΔP i = 5 i −5 i−1 is taken (see FIGS. 4C and 4G). 4) When the absolute value (| ΔP |) is taken, the peak value is as shown in FIG.
There are two as shown in (h).

【0024】ここで受光強度のピーク値がPfである透
過びんについて考える。透過びんの差分受光強度のピー
ク値の絶対値|△P|を受光強度のピーク値Pfで除す
る事により正規化を行う。 d△Pf=i△Pf|/Pf
Here, a transmission bottle whose peak value of the received light intensity is Pf will be considered. The normalization is performed by dividing the absolute value | △ P | of the peak value of the differential received light intensity of the transmission bottle by the peak value Pf of the received light intensity. d △ Pf = i △ Pf | / Pf

【0025】また、受光強度のピーク値がPsであるス
モークビンについても透過びんと同様の正規化を行う。 d△Ps=i△Ps|/Ps 上記計算後、図5に示すように、例えば、透過びんの透
過光をセンサ5で受光する。その時、隣接するセンサ5
の4個で受光したとすると、 |△Pf|=1/2・Pf d△Pf=(1/2・Pf)/Pf=1/2=0.5 となる。
The same normalization as that for the transmission bottle is performed for the smoke bin having the peak received light intensity Ps. d △ Ps = i △ Ps | / Ps After the above calculation, as shown in FIG. 5, for example, the transmitted light of the transmission bottle is received by the sensor 5. At that time, the adjacent sensor 5
Assuming that four light beams are received, | △ Pf | = 1 / · Pf d △ Pf = (1 / · Pf) /Pf=1/=0.5

【0026】また、スモークびんの透過光をセンサ5で
受光した場合、透過びんより透過光が散乱するため、隣
接するセンサ5の6個で受光したとすると、 |△Ps|=1/3・Ps d△Ps=(1/3・Ps)/Ps=1/3=0.33
・・・となる。
When the transmitted light of the smoked bottle is received by the sensor 5, the transmitted light is scattered from the transmitted bottle. Therefore, assuming that the light is received by six adjacent sensors 5, | 5Ps | = 1/3 · Ps d △ Ps = (1/3 · Ps) /Ps=1/3=0.33
...

【0027】d△Pf≧0.50(つまり4つ以内の隣
接するセンサ5で透過光を受光する場合) d△Ps<0.34(つまり6個以上の隣接するセンサ
5で透過光を受光する場合) ここで、係数α(0<α<1)を例えば0.4(d△P
s<α<d△Pf)と決めd△Pf>αのとき、そのび
んは透過びんである可能性があり、また、d△Ps<α
のとき、そのびんは、スモークびんである可能性があ
る。よって、この場合は、びんを透過した受光センサ5
のピーク値がPであるとき、先に学習した係数α=0.
4と決め、正規化したd△Pがαより大きいか小さいか
により、透過びんかスモークびんか判定できるため、d
△Pf=0.5は透過びんであり、d△Ps=0.3は
スモークびんであると判断できる。
D △ Pf ≧ 0.50 (ie, when transmitted light is received by up to four adjacent sensors 5) d △ Ps <0.34 (ie, transmitted light is received by six or more adjacent sensors 5) Here, the coefficient α (0 <α <1) is set to, for example, 0.4 (d △ P
When s <α <d △ Pf) and d △ Pf> α, the bottle may be transparent, and d △ Ps <α
At that time, the bottle may be a smoked bottle. Therefore, in this case, the light receiving sensor 5 that has passed through the bottle
When the peak value of P is P, the coefficient α = 0.
4 and whether or not the normalized d △ P is larger or smaller than α can be determined as a transmission bottle or a smoke bottle.
ΔPf = 0.5 indicates a transmission bottle, and d △ Ps = 0.3 indicates a smoke bottle.

【0028】次に(3)の処理について説明する。前記
差分受光強度のピーク値の左側を第1ピーク値、右側を
第2ピーク値とし、この2つのピーク間の距離dが長い
と受光分布が広いと見なせるので、その場合はスモーク
びんであり、dが短いと受光分布が狭いとみなせるの
で、その場合は透過びんであると考えることができる。
Next, the process (3) will be described. The left side of the peak value of the differential received light intensity is the first peak value, and the right side is the second peak value. If the distance d between the two peaks is long, the light receiving distribution can be regarded as wide, and in that case, it is a smoke bottle. If d is short, the light reception distribution can be regarded as narrow, and in that case, it can be considered that the light is transmitted.

【0029】ここで、びんの大きさ及び受光センサ5の
解像度による距離のしきい値dtを設定する。ここでの
しきい値dtとは差分受光強度の絶対値|△P|の2つ
のピーク値間の距離に基づき、透過びんであるかスモー
クびんであるかを判別するためのしきい値であり、しき
い値dtは透過びんの絶対値の2つのピーク値間距離と
スモークびんの絶対値の2つのピーク値間距離dの境界
となる値である。
Here, a distance threshold value dt is set based on the size of the bottle and the resolution of the light receiving sensor 5. Here, the threshold value dt is a threshold value for determining whether there is a transmission bottle or a smoke bottle based on the distance between two peak values of the absolute value | △ P | , And the threshold value dt is a value that is a boundary between the distance between the two peak values of the absolute value of the transmission bottle and the distance d between the two peak values of the absolute value of the smoke bottle.

【0030】このように上記処理(2)の結果により、
ピーク値の高/低及びピーク値立上りの様子が把握で
き、上記処理(3)の処理の結果から、受光分布の様子
がつかめ、係数α(0<α<1)及び差分受光強度のピ
ーク値間距離しきい値dtを定めた時、表2のように透
過びんとスモークびんの識別が可能となる。
As described above, according to the result of the processing (2),
The state of the peak value high / low and the rise of the peak value can be grasped, and from the result of the processing (3), the state of the light reception distribution can be determined, and the coefficient α (0 <α <1) and the peak value of the difference light reception intensity When the distance threshold value dt is determined, the transmission bottle and the smoke bottle can be distinguished as shown in Table 2.

【0031】[0031]

【表2】 ================================ │ΔP│≧α・P │ΔP│<α・P −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− d≦dt 透過びん −*1) d>dt −*2) スモークびん ================================ *1)受光センサの解像度(一定範囲内の個数)によっては、透過びんと識別可 能 *2)受光センサの解像度によっては、スモークびんと識別可能 こうして、種類が判定されたびんは、選別ダンパ7により選別され、回収ボッ クス8にて回収される。[Table 2] ================================ │ΔP│ ≧ α ・ P │ΔP│ <α ・ P −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− d ≦ dt Transmission bottle − * 1) d> dt − * 2) Smoke bottle =============================== * 1) Depending on the resolution of the light receiving sensor (number within a certain range), transmission Can be distinguished from bottles * 2) Can be distinguished from smoked bottles depending on the resolution of the light-receiving sensor. Bottles whose type is determined in this way are sorted by the sorting damper 7 and collected by the collection box 8.

【0032】以上の実施の形態では光源として直進性の
よい光であるレーザとびん透過光を受光する受光センサ
という組み合わせによりびん識別を行ったが、これに代
えて光源3には光分布が一様な面光源に複数本の黒色の
識別バーを備え、受光部5には面光源からびんを介した
透過光を撮像するカラーカメラ(以後撮像部とする)を
使用する方法について図6などを用いて説明する。
In the above-described embodiment, bottle identification is performed by a combination of a laser, which is light having good linearity, as a light source, and a light-receiving sensor that receives the transmitted light of the bottle. FIG. 6 shows a method of using a color camera (hereinafter referred to as an image pickup unit) that includes a plurality of black identification bars in such a surface light source and that receives light transmitted through a bottle from the surface light source as the light receiving unit 5. It will be described using FIG.

【0033】図6には本実施の形態の全体構成を示す。
図6において、暗箱1内にはびんに投光するための面光
源13と、光源13からの透過光をびんを介して受光す
る、搬送路12に直列に配置された複数の受光カメラ1
5があり、またびんを1本ずつ搬送する搬送路12が暗
箱11内の光源13と受光センサ15の間を貫通するよ
うに配置されている。搬送路12上を搬送中のびんが所
定位置に到着したことを検知するびん検知センサ14と
該受光センサ14からの受光信号よりびんを識別する処
理装置16、該処理装置16により識別されたびんを透
過びん/スモークびんに選別する選別ダンパ17、びん
毎の回収ボックス18a、18bがそれぞれ搬送路2に
隣接して設けられている。
FIG. 6 shows the overall configuration of this embodiment.
6, in a dark box 1, a surface light source 13 for projecting light to a bottle, and a plurality of light receiving cameras 1 arranged in series on a transport path 12 for receiving transmitted light from the light source 13 via the bottle.
5, and a transport path 12 for transporting the bottles one by one is disposed so as to pass through between the light source 13 and the light receiving sensor 15 in the dark box 11. A bottle detection sensor 14 for detecting that a bottle being conveyed on the conveyance path 12 has reached a predetermined position, a processing device 16 for identifying the bottle based on a light reception signal from the light reception sensor 14, and a bottle identified by the processing device 16 And a collection box 18a, 18b for each bottle are provided adjacent to the transport path 2, respectively.

【0034】図7(a)のように透過びんの場合、光源
からの光は散乱/干渉の影響を受けないため撮像部では
バーの影として識別できる。図7(b)に示すようにス
モークびんの場合は光源からの光は散乱/干渉が大きい
ためびんの透過光量は小さくなり、ぼやけた光となって
しまうため撮像部では識別バーの影を識別できなくな
る。
In the case of a transmission bottle as shown in FIG. 7A, since the light from the light source is not affected by scattering / interference, it can be identified as a bar shadow in the imaging section. As shown in FIG. 7B, in the case of a smoke bottle, the light from the light source has a large scattering / interference, so that the amount of light transmitted through the bottle is small and the light becomes blurred. become unable.

【0035】上記の効果を利用した本実施の形態のびん
選別方法を図面により説明する。まず、透過びんとスモ
ークびんの判断するための前処理について説明する。図
8(a)は、マスク画像として、識別バーを備えた面光
源画像の識別バーの部分を「1」(明るい部分)、発光
部分を「0」(暗い部分)とした2値画像を予め作成し
たものである。これに透過びん及びスモークびんのそれ
ぞれの入力画像を画像の論理積演算を行う(図8
(b)、図8(c)参照)。
The bottle sorting method of the present embodiment utilizing the above effects will be described with reference to the drawings. First, a description will be given of preprocessing for determining whether a transmission bottle is a smoke bottle. FIG. 8A shows, as a mask image, a binary image in which the identification bar portion of the surface light source image having the identification bar is “1” (bright portion) and the light emitting portion is “0” (dark portion). It was created. Then, the input image of each of the transmission bottle and the smoke bottle is subjected to AND operation of the images (FIG. 8).
(B) and FIG. 8 (c)).

【0036】ここで、透明びんの場合理論的には図8
(b)に示すように暗い画像(識別バーのみ抽出された
画像)となり、スモークびんの場合、理論的には図8
(c)に示すように識別バー上のスモークびんの部分が
抽出される。
In the case of a transparent bottle, FIG.
As shown in FIG. 8B, a dark image (an image in which only the identification bar is extracted) is obtained. In the case of a smoke bottle, theoretically, FIG.
As shown in (c), the portion of the smoke bottle on the identification bar is extracted.

【0037】しかし、透明びんとスモークびんを判定す
るためには識別バー上にあるびん領域のみ注目すればよ
く、不要な画像情報を削除する必要がある。よって、上
記の処理画像(識別バー抽出画像:図8(b)、図8
(c))について、関心領域(長方形枠)を設定する。
下記に関心領域設定の手順を示す。ここで、関心領域と
は、画像処理を行うとき入力画像すべてではなく、必要
な部分のみを選択した画像範囲を言う。
However, in order to determine a transparent bottle and a smoke bottle, it is necessary to pay attention only to the bottle area on the identification bar, and it is necessary to delete unnecessary image information. Therefore, the processed image (identification bar extracted image: FIG. 8B, FIG.
For (c)), a region of interest (rectangular frame) is set.
The procedure for setting the region of interest is shown below. Here, the region of interest refers to an image range in which only necessary parts are selected, not all input images when performing image processing.

【0038】撮像部から図9(a)に示すような入力画
像を取得する。次にその入力画像から図9(b)に示す
ような明度と画素数の関係を示すヒストグラムを計算す
る。ヒストグラム横軸上の明度が暗い山(0に近いグル
ープ)は識別バー及びびんの影と判断できる。また、最
も明度が明るい山(255に近いグループ)は面光源か
ら直接受光した光としてびんの背景と判断できる。そし
て、横軸中央のグループをびんであると判断できる。こ
の判断からヒストグラム中のびん部を抽出できる。
An input image as shown in FIG. 9A is obtained from the imaging unit. Next, a histogram indicating the relationship between the brightness and the number of pixels as shown in FIG. 9B is calculated from the input image. Mountains with low brightness on the horizontal axis of the histogram (groups close to 0) can be determined to be shadows of identification bars and bottles. Also, the peak with the brightest brightness (group near 255) can be determined as light directly received from the surface light source and is the background of the bottle. Then, it can be determined that the group in the center of the horizontal axis is bottled. From this determination, the bottle portion in the histogram can be extracted.

【0039】ここで、びんであると判断した部分と、そ
うでない部分で2値化する。そしてこれを基に画像を再
描画し、びんと判断した部分の水平方向(X軸)の端点
位置(X、X)と垂直方向(Y軸)の端点位置(Y
、Y)を計算し、それぞれを結ぶ長方形枠を決定す
る。図8(c)において、びんを囲む長方形枠が画像処
理を行うための関心領域として設定するものとなる。
Here, binarization is performed between a portion determined to be a bottle and a portion not determined to be a bottle. The image is then redrawn based on this, and the horizontal (X-axis) end points (X 0 , X 1 ) and the vertical (Y-axis) end points (Y
0 , Y 1 ) to determine a rectangular frame connecting them. In FIG. 8C, a rectangular frame surrounding the bottle is set as a region of interest for performing image processing.

【0040】上記関心領域を先に処理した識別バー抽出
画像(図8(b)と図8(c))に設定する。これによ
り、不要な画像情報を削除でき、処理時間の短縮も図れ
る。
The above-mentioned region of interest is set in the identification bar extracted images (FIGS. 8 (b) and 8 (c)) processed earlier. As a result, unnecessary image information can be deleted, and the processing time can be reduced.

【0041】次に、関心領域内の画像について説明して
いく。ここで、透過びんとスモークびんの判定法につい
て、関心領域内のびんと見なせる明度を持つ画像情報の
量(面積)により判定できる。
Next, the image in the region of interest will be described. Here, the method for determining the transmission bottle and the smoke bottle can be determined based on the amount (area) of image information having brightness that can be regarded as a bottle in the region of interest.

【0042】つまり、図9(b)のヒストグラムにある
ように明度laから明度lbの間がびん画像情報となる
ので、識別バー抽出画像内にla〜lbの明度を持つ画
像がどれくらい存在するかにより透過びんとスモークび
んかが判断可能となる。
That is, as shown in the histogram of FIG. 9B, the range between lightness la and lightness lb is bottle image information, so how many images having lightness la to lb exist in the identification bar extracted image. This makes it possible to determine whether the transmission bottle is a smoke bottle or a smoke bottle.

【0043】具体的な手順として、 (1)関心領域の面積ARを計算する。 (2)関心領域内のマスク画像のマスク部面積AM(明
度「0」の範囲)は無効な画像情報であるため削除す
る。これは関心領域の面積ARからマスク部の面積AM
を引けば良い。この演算により残った関心領域内の面積
を有効画像面積AR’とする。有効画像面積AR’は関
心領域内のバー部分の面積となる。この関係を式に表す
と AR−AM=AR’ となる。 (3)ヒストグラム上のびん情報である明度la〜lb
間の面積(画素数)をABとすると、有効画像面積A
R’の内びんの画素(面積)がどれだけ占めているかの
割合Rにより、透過びんとスモークびんを識別すること
が出来る。
As a specific procedure, (1) the area AR of the region of interest is calculated. (2) The mask area AM (range of brightness “0”) of the mask image in the region of interest is deleted because it is invalid image information. This is based on the area AR of the region of interest and the area AM of the mask part.
You can just pull The area in the region of interest remaining after this calculation is defined as the effective image area AR ′. The effective image area AR ′ is the area of the bar portion in the region of interest. When this relationship is expressed by an equation, AR-AM = AR ′. (3) Lightness la to lb which is bottle information on the histogram
If the area between them (the number of pixels) is AB, the effective image area A
The transmission bottle and the smoke bottle can be distinguished by the ratio R of how much the pixel (area) of the inner bottle of R 'occupies.

【0044】この関係を式に表すとR=AB/AR’と
なる。このとき、透過びん面積Abfとおき、原理的に
見ると、Abf≒0であるが、実際のびんは湾曲部があ
るので、透過光は屈折してしまい識別バー上に背景部
(照明部)の漏れ込みが生じてしまい図10(a)に示
すように、透過びんでも透過びん面積Abf≠0で無い
わずかな白い部分が関心領域外に生じる。
When this relationship is expressed by an equation, R = AB / AR '. At this time, the transmission bottle area is set to Abf, and in principle, Abf ≒ 0. However, since the actual bottle has a curved portion, the transmitted light is refracted and the background portion (illumination portion) is placed on the identification bar. As shown in FIG. 10A, a slight white portion where the transmission bottle area Abf ≠ 0 is not generated even outside the region of interest as shown in FIG.

【0045】また、図10(b)に示すスモークびん面
積Absとすると、 Abf<Abs の関係が成り立つ。よって、識別条件は、 R≧C となる。ここでCはスモークびん識別しきい値:Abf
/AR’<C<Abs/AR’)となる。
Assuming that the area of the smoke bottle is Abs shown in FIG. 10B, the relationship of Abf <Abs holds. Therefore, the identification condition is R ≧ C. Here, C is a smoke bottle identification threshold: Abf
/ AR '<C <Abs / AR').

【0046】こうして、本発明の実施の形態によれば、
簡易な構成で、透過びん/スモークびんの精度良い識別
が可能になる。以上、本発明の実施の形態について説明
したが、本発明はこれに限定されることなく、本発明の
技術的思想に基づいて種々の変形が可能である。
Thus, according to the embodiment of the present invention,
With a simple configuration, it is possible to accurately identify transmission bottles / smoke bottles. Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications can be made based on the technical idea of the present invention.

【0047】[0047]

【発明の効果】本発明によれば、簡易な構成で、透過び
ん/スモークびんの精度良い識別が可能になり、 (1)作業者の負担が大きく軽減。 (2)長時間運転及び選別精度の確保。 (3)びん色識別装置とのシリーズ接続により、透明び
んの高精度選別の実現。といった効果がある。
According to the present invention, it is possible to identify transmission bottles / smoke bottles accurately with a simple configuration, and (1) the burden on the operator is greatly reduced. (2) Long-term operation and ensuring sorting accuracy. (3) Realization of high-precision sorting of transparent bottles by series connection with bottle color identification device. There is such an effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態の直進光(レーザ)を用
いたびん識別方法の全体の構成図である。
FIG. 1 is an overall configuration diagram of a bottle identification method using straight-ahead light (laser) according to an embodiment of the present invention.

【図2】 図1に示す実施の形態のびん識別のフローチ
ャートである。
FIG. 2 is a flowchart of bottle identification of the embodiment shown in FIG.

【図3】 図1に示す実施の形態の直進光(レーザ)を
用いたびん識別の原理を示す図である。
FIG. 3 is a diagram showing the principle of bottle identification using the straight traveling light (laser) of the embodiment shown in FIG.

【図4】 図1に示す実施の形態の受光信号によるびん
の判定原理を説明する図である。
FIG. 4 is a view for explaining the principle of judging a bottle based on a light receiving signal of the embodiment shown in FIG. 1;

【図5】 図1に示す実施の形態のびんの透過光の広が
り度合からびんの種類を判定する基準値の決定方法を説
明するための図である。
FIG. 5 is a diagram for explaining a method of determining a reference value for determining the type of the bottle from the degree of spread of transmitted light of the bottle according to the embodiment shown in FIG. 1;

【図6】 本発明の実施の形態の面光源を用いたびん識
別方法の全体の構成図である。
FIG. 6 is an overall configuration diagram of a bottle identification method using a surface light source according to an embodiment of the present invention.

【図7】 本発明の実施の形態の面光源を用いたびん識
別の原理を示す図である。
FIG. 7 is a diagram showing the principle of bottle identification using the surface light source according to the embodiment of the present invention.

【図8】 本発明の実施の形態の面光源を用いたびん識
別の原理を示す図である。
FIG. 8 is a diagram showing the principle of bottle identification using the surface light source according to the embodiment of the present invention.

【図9】 本発明の実施の形態の面光源を用いたびん識
別の原理を示す図である。
FIG. 9 is a diagram showing the principle of bottle identification using the surface light source according to the embodiment of the present invention.

【図10】 本発明の実施の形態の面光源を用いたびん
識別の原理を示す図である。
FIG. 10 is a diagram showing the principle of bottle identification using the surface light source according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、11 暗箱 2、12 搬送
路 3、13 直進性のよい光源 4、14 検知
センサ 5、15 受光センサ 6、16 処理
装置 7、17 選別ダンパ 8、18 回収
ボックス
DESCRIPTION OF SYMBOLS 1, 11 Dark box 2, 12 Conveying path 3, 13, Light source with good straightness 4, 14, Detection sensor 5, 15, Light receiving sensor 6, 16, Processing device 7, 17, Sorting damper 8, 18, Collection box

フロントページの続き (72)発明者 小中 克己 神奈川県横浜市磯子区磯子一丁目2番10号 バブコック日立株式会社横浜エンジニア リングセンタ内 Fターム(参考) 2G051 AA14 AB20 BA10 CA03 CA04 CB02 DA06 DA11 EA16 EB01 ED01 ED07 GC04 GC17 GD02 2G059 AA05 BB08 DD12 EE01 GG01 HH02 KK04 MM02 MM05 PP01 3F079 AD12 CA31 CB25 CB29 CB32 CB34 CC06 DA11 Continuation of the front page (72) Inventor Katsumi Konaka 1-2-10 Isogo, Isogo-ku, Yokohama-shi, Kanagawa Prefecture F-term in Yokohama Engineering Center Babcock Hitachi, Ltd. (Reference) 2G051 AA14 AB20 BA10 CA03 CA04 CB02 DA06 DA11 EA16 EB01 ED01 ED07 GC04 GC17 GD02 2G059 AA05 BB08 DD12 EE01 GG01 HH02 KK04 MM02 MM05 PP01 3F079 AD12 CA31 CB25 CB29 CB32 CB34 CC06 DA11

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 びんに投光する光源と、光源からびんを
介した透過光を受光する受光装置と、該受光装置からの
信号よりびんを識別するびん識別処理装置とを備えたガ
ラスびん識別装置であって、 上記びん識別処理装置は、受光装置の受光強度及び受光
分布を計算する計算手段と、受光強度及び受光分布から
光を透過する透過びん、光を散乱させるスモークびんを
判定する判定手段とを有することを特徴とするガラスび
ん識別装置。
1. A glass bottle identification comprising: a light source for projecting light onto a bottle; a light receiving device for receiving light transmitted through the bottle from the light source; and a bottle identification processing device for identifying the bottle based on a signal from the light receiving device. An apparatus, wherein the bottle identification processing device is configured to calculate a light receiving intensity and a light receiving distribution of the light receiving device, and determine a transmission bottle transmitting light and a smoke bottle scattering light from the light receiving intensity and the light receiving distribution. And a means for identifying a glass bottle.
【請求項2】 計算手段は受光強度の差分処理機能と、
該差分値より差分ピーク値を検出し、該ピーク値の絶対
値を計算する機能と、差分ピーク値間の距離を計算する
機能とを有し、判定手段は前記差分ピーク値の絶対値及
び差分ピーク値間の距離をそれぞれ予め設定したしきい
値と比較する機能と、該比較結果よりびんの識別を行う
機能を備えた請求項1記載のガラスびん識別装置。
2. The calculating means has a function of processing a difference in received light intensity.
A function of detecting a difference peak value from the difference value and calculating an absolute value of the peak value; and a function of calculating a distance between the difference peak values. 2. The glass bottle identification device according to claim 1, further comprising a function of comparing the distance between the peak values with a preset threshold value, and a function of identifying the bottle based on the comparison result.
【請求項3】 びんに投光する光分布が一様な面光源
と、光源からびんを介した透過画像を撮像する画像入力
装置と、該画像入力装置からの映像信号よりびんを識別
する画像処理装置とを備えたガラスびん識別装置であっ
て、 上記画像処理装置は、面光源に識別バーを備え、面光源
の識別バーを抽出する機能と、識別バー部分の面積を計
算する機能と、明度と画素数の関係を示すヒストグラム
を計算する機能と、びん画像面積を計算する機能と、前
記識別バー抽出画像内のびん画像面積の大きさにより透
過びんとスモークびんを識別する機能を有することを特
徴とするガラスびん識別装置。
3. A surface light source having a uniform light distribution projected on a bottle, an image input device for capturing a transmitted image from the light source through the bottle, and an image for identifying the bottle based on a video signal from the image input device. A glass bottle identification device including a processing device, wherein the image processing device includes an identification bar in the surface light source, a function of extracting the identification bar of the surface light source, and a function of calculating the area of the identification bar portion, It has a function of calculating a histogram indicating the relationship between brightness and the number of pixels, a function of calculating a bottle image area, and a function of distinguishing a transmitted bottle and a smoke bottle by the size of the bottle image area in the identification bar extraction image. A glass bottle identification device characterized by the above-mentioned.
【請求項4】 画像処理装置は、びん映像範囲を選択す
る関心領域設定手段を有し、関心領域内での面光源の識
別バー部分を抽出する機能と、関心領域内の識別バー部
分の面積を計算する機能と、関心領域内のヒストグラム
を計算する機能と、関心領域内のびん画像面積を計算す
る機能とを備えたことを特徴とする請求項3記載のガラ
スびん識別装置。
4. The image processing apparatus has a region of interest setting means for selecting a bottle image range, a function of extracting an identification bar portion of a surface light source in the region of interest, and an area of the identification bar portion in the region of interest. 4. The glass bottle identification apparatus according to claim 3, further comprising a function of calculating a histogram in the region of interest and a function of calculating a bottle image area in the region of interest.
JP10332259A 1998-11-24 1998-11-24 Device for discriminating glass bottles Pending JP2000153239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10332259A JP2000153239A (en) 1998-11-24 1998-11-24 Device for discriminating glass bottles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10332259A JP2000153239A (en) 1998-11-24 1998-11-24 Device for discriminating glass bottles

Publications (1)

Publication Number Publication Date
JP2000153239A true JP2000153239A (en) 2000-06-06

Family

ID=18252957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10332259A Pending JP2000153239A (en) 1998-11-24 1998-11-24 Device for discriminating glass bottles

Country Status (1)

Country Link
JP (1) JP2000153239A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167642A (en) * 2010-02-19 2011-09-01 Npo Hiroshima Junkangata Shakai Suishin Kiko Identification method of transparent container
CN103028556A (en) * 2012-12-19 2013-04-10 张涵 Winter jujube maturity degree identification and separation device constituted by photoelectric cell and electromagnets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167642A (en) * 2010-02-19 2011-09-01 Npo Hiroshima Junkangata Shakai Suishin Kiko Identification method of transparent container
CN103028556A (en) * 2012-12-19 2013-04-10 张涵 Winter jujube maturity degree identification and separation device constituted by photoelectric cell and electromagnets

Similar Documents

Publication Publication Date Title
US5443164A (en) Plastic container sorting system and method
JPH0321235B2 (en)
US20100165347A1 (en) Method and apparatus for detecting colored foreign particles in quartz powder material
US5586663A (en) Processing for the optical sorting of bulk material
JP2003024875A (en) Sorting device of material and sorting method thereof
JP2000153239A (en) Device for discriminating glass bottles
JP4580122B2 (en) Detecting foreign matter in liquid
US9347892B2 (en) Optical inspection apparatus and optical sorting apparatus
JP2003156451A (en) Defect detecting device
JPH08285789A (en) Method for determining binarization level in defect detection method
US20050017186A1 (en) Method and means for detecting internal larval infestation in granular material
JP3561988B2 (en) Bottle color identification method
JPH11281588A (en) Surface inspecting apparatus
JPH08247962A (en) Defect detection method and apparatus for color filter and defect detection method and apparatus for panel display
JP3323086B2 (en) Erroneous detection judgment method when detecting excessive particles
JP3473800B2 (en) Defect inspection method and device
JPH10160676A (en) Rice grain inspection device
JP4039984B2 (en) Embossed soot identification apparatus and method
JPH0612344B2 (en) Inspection device for scuffing bottles
JPH03229678A (en) Apparatus for classifying grade of shellfish
JPH0442611B2 (en)
JP3290021B2 (en) Bottle color recognition method
JPH0310150A (en) Coating surface inspecting apparatus for vehicle
JPH0929184A (en) Color identifying device for glass bottle
JP4083414B2 (en) Judgment method for existence of container accessories