JP2000150752A - Cooling device of electronic device - Google Patents

Cooling device of electronic device

Info

Publication number
JP2000150752A
JP2000150752A JP32166698A JP32166698A JP2000150752A JP 2000150752 A JP2000150752 A JP 2000150752A JP 32166698 A JP32166698 A JP 32166698A JP 32166698 A JP32166698 A JP 32166698A JP 2000150752 A JP2000150752 A JP 2000150752A
Authority
JP
Japan
Prior art keywords
cooling jacket
heat transfer
transfer medium
integrated circuit
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32166698A
Other languages
Japanese (ja)
Inventor
Rintaro Minamitani
林太郎 南谷
Akio Yasukawa
彰夫 保川
Akio Idei
昭男 出居
Sumimasa Ichikawa
純理 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32166698A priority Critical patent/JP2000150752A/en
Publication of JP2000150752A publication Critical patent/JP2000150752A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure corrosion resistance and mechanical strength over a long term by using aluminum nitride sintered body as a cooling jacket material and providing an ion-eliminating device for eliminating an ionization substance in a heat transfer medium in a heat transfer medium supply unit. SOLUTION: A plurality of integrated circuit units 2 are mounted on a substrate 1, and a cooling jacket 4 for cooling the integrated circuit units 2 by receiving the supply of a heat transfer medium 3 is provided on the integrated circuit units 2. In the cooling jacket 4, an aluminum nitride sintered body is used, high-temperature treatment is made in an oxidation atmosphere, and an oxide 41 with α-alumina as a main phase is formed on a water-contacting surface in the channel surface of the cooling jacket 4. Also, an ion-eliminating device 9 for eliminating the ionized substance of the heat transfer medium is provided in a heat transfer medium supply unit B with a tank 6, a pump 7, and a heat exchanger 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器の冷却装
置に係わり、特に集積回路ユニットを伝熱性媒体によっ
て冷却する電子機器の冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for an electronic device, and more particularly to a cooling device for an electronic device that cools an integrated circuit unit by using a heat conductive medium.

【0002】[0002]

【従来の技術】窒化アルミニウムは、半導体素子の高出
力化に伴う発熱量増大に伴い、高熱伝導率を有する性質
を利用して放熱材料として脚光を浴びている。かかる用
途において、窒化アルミニウム焼結体は、上記半導体素
子と接触する冷却面を有し、その内部に空洞を設けた冷
却ジャケットを形成して使用される。そして、該冷却ジ
ャケット内に伝熱性媒体を供給して冷却面の冷却が行わ
れる。上記伝熱性媒体としては、安全性やコストの面で
従来より一般に水が使用されている。
2. Description of the Related Art Aluminum nitride has been spotlighted as a heat-dissipating material by utilizing its property of having a high thermal conductivity with an increase in the amount of heat generated by increasing the output of semiconductor devices. In such an application, the aluminum nitride sintered body has a cooling surface in contact with the semiconductor element and is used by forming a cooling jacket having a cavity therein. Then, a heat conductive medium is supplied into the cooling jacket to cool the cooling surface. As the heat transfer medium, water has been generally used from the viewpoint of safety and cost.

【0003】ところが、窒化アルミニウム焼結体をかか
る冷却ジャケットの材料に使用し、これに伝熱性媒体と
して水を用いた場合、加水分解により窒化アルミニウム
焼結体の接水表面が水酸化アルミニウム等の生成によっ
て腐食し、その機械的強度が著しく低下するという問題
を有していた。
However, when an aluminum nitride sintered body is used as a material for such a cooling jacket, and water is used as a heat transfer medium, the water contact surface of the aluminum nitride sintered body is decomposed by hydrolysis. It has a problem that it is corroded by formation and its mechanical strength is significantly reduced.

【0004】こうした問題に対して、材料面からは、被
覆材として窒化アルミニウム焼結体の接水表面にα−ア
ルミナ等の被覆を形成する方法や、また伝熱性媒体の面
からは、水にグリセリン等を添加することにより窒化ア
ルミニウムの加水分解を抑える方法が採用されている。
またアルコール性水酸基を有する有機化合物とpH緩衝
液を添加することにより窒化アルミニウムの加水分解を
抑える方法が採用されている。
In order to solve such problems, a method of forming a coating such as α-alumina on a water-contacting surface of an aluminum nitride sintered body as a coating material, and a method of forming a coating on water from a heat conductive medium. A method has been adopted in which hydrolysis of aluminum nitride is suppressed by adding glycerin or the like.
In addition, a method of suppressing the hydrolysis of aluminum nitride by adding an organic compound having an alcoholic hydroxyl group and a pH buffer is employed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
窒化アルミニウム焼結体の接水表面にα−アルミナ等の
被覆を形成した場合は、皮膜に存在するポアやマイクロ
クラック等の欠陥のために耐食性が不十分である。また
グリセリン等を水に添加した場合では、少量添加の場
合、窒化アルミニウム表面の皮膜生成が不十分なために
防食効果が得られなかったり、また多量に添加した場
合、伝熱性媒体としての水の割合が減少し、熱伝導率の
低下や粘性係数が高くなるために伝熱性媒体としての伝
熱能力が低下し、添加前と同等の熱交換能力を発揮しよ
うとした場合にはより能力の大きい大型の熱交換器が必
要となる等の問題を有していた。またアルコール性水酸
基を有する有機化合物とpH緩衝液を添加した場合で
は、緩衝液により他の接水材料の耐食性が低下する恐れ
がある。さらに腐食に伴い、母材の機械的強度が著しく
低下する恐れもある。
However, when a coating such as α-alumina is formed on the water-contacting surface of the above aluminum nitride sintered body, the corrosion resistance due to defects such as pores and micro cracks present in the coating is high. Is inadequate. In addition, when glycerin or the like is added to water, if a small amount is added, the anticorrosion effect cannot be obtained due to insufficient formation of a film on the aluminum nitride surface, or if a large amount is added, water as a heat transfer medium The ratio decreases, the thermal conductivity decreases and the viscosity coefficient increases, so the heat transfer capacity as a heat transfer medium decreases.If the same heat exchange capacity as before the addition is attempted, the capacity is higher. There was a problem that a large heat exchanger was required. When an organic compound having an alcoholic hydroxyl group and a pH buffer are added, the buffer may lower the corrosion resistance of other wetted materials. Further, with the corrosion, the mechanical strength of the base material may be significantly reduced.

【0006】このように、上記従来技術を用いた場合、
窒化アルミニウムの伝熱性媒体中で耐食性及び機械的強
度を長期に渡り確保するに至っていない。
As described above, when the above conventional technique is used,
The corrosion resistance and mechanical strength in the heat conductive medium of aluminum nitride have not been ensured for a long time.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明者らは、窒化アルミニウム焼結体の接水表面
にα−アルミナ等の皮膜を形成した場合について検討
し、伝熱性媒体である水の水質を制御することにより、
α−アルミナ等の皮膜に存在するポアやマイクロクラッ
ク等の欠陥による下地窒化アルミニウムの耐食性の低下
を防ぐことができることを見い出した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors studied the case where a film such as α-alumina was formed on the water contact surface of an aluminum nitride sintered body, By controlling the quality of the water that is
It has been found that it is possible to prevent a decrease in the corrosion resistance of the underlying aluminum nitride due to defects such as pores and micro cracks existing in the film such as α-alumina.

【0008】即ち、本発明では、基板上に集積回路が実
装された集積回路ユニットと、該集積回路ユニットに熱
的に接触した冷却ジャケットと、該冷却ジャケットに伝
熱性媒体を供給するためのタンク,ポンプ,熱交換器と
からなる伝熱性媒体供給ユニットを備えた電子機器の冷
却装置において、前記冷却ジャケット材料としてα−ア
ルミナを主相とする酸化物を接水表面に形成した窒化ア
ルミニウム質焼結体を用い、また伝熱性媒体供給ユニッ
ト内に伝熱性媒体中のイオン化物を取り除くイオン除去
装置を設けることを特徴とする。
That is, according to the present invention, an integrated circuit unit having an integrated circuit mounted on a substrate, a cooling jacket in thermal contact with the integrated circuit unit, and a tank for supplying a heat conductive medium to the cooling jacket. In a cooling device for an electronic device provided with a heat-conducting medium supply unit comprising a heat transfer medium, a pump, and a heat exchanger, an aluminum nitride-based calcination material having an oxide having α-alumina as a main phase formed on a wetted surface is used as the cooling jacket material. The present invention is characterized in that an ion removing device for removing ionized substances in the heat transfer medium is provided in the heat transfer medium supply unit using the union.

【0009】[0009]

【発明の実施の形態】以下に本発明の実施例を図1に従
って説明する。本実施例はプロセッサユニットAと伝熱
性媒体供給ユニットBの2つのブロックからなる。プロ
セッサユニットAでは、基板1上には複数の集積回路ユ
ニット2が搭載されており、この集積回路ユニット2上
には、伝熱性媒体3(例えば水)の供給を受けて集積回
路ユニット2を冷却する冷却ジャケット4が設けられて
いる。集積回路ユニット2と冷却ジャケット4とは、熱
的に接触した構造となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. This embodiment includes two blocks, a processor unit A and a heat conductive medium supply unit B. In the processor unit A, a plurality of integrated circuit units 2 are mounted on a substrate 1, and the integrated circuit units 2 are cooled by receiving a supply of a heat conductive medium 3 (for example, water). A cooling jacket 4 is provided. The integrated circuit unit 2 and the cooling jacket 4 have a structure in which they are in thermal contact.

【0010】プロセッサユニットAと伝熱性媒体供給ユ
ニットBは配管5により接続されている。伝熱性媒体3
は、伝熱性媒体供給ユニットBにおいてタンク6から出
た後、ポンプ7で加圧され、プロセッサユニットAに送
られる。さらに伝熱性媒体3は、冷却ジャケット4にお
いて集積回路ユニット2を冷却した後に、伝熱性媒体供
給ユニットBに戻り、熱交換器8により再度冷却され
る。
[0010] The processor unit A and the heat conductive medium supply unit B are connected by a pipe 5. Heat transfer medium 3
Is discharged from the tank 6 in the heat conductive medium supply unit B, then pressurized by the pump 7 and sent to the processor unit A. Further, after cooling the integrated circuit unit 2 in the cooling jacket 4, the heat conductive medium 3 returns to the heat conductive medium supply unit B and is cooled again by the heat exchanger 8.

【0011】窒化アルミニウム質焼結体からなる冷却ジ
ャケット4は酸化雰囲気中で高温処理することにより、
冷却ジャケット4の流路面にα−アルミナを主相とする
酸化物41を接水表面に形成させる。窒化アルミニウム
質焼結体は1100℃付近から酸化が進行するため、高
温処理は1000℃以上で行うことが望ましく、酸化物
層の厚みを1μm程度とする場合は1150℃で1時間
実施すればよい。
The cooling jacket 4 made of aluminum nitride sintered body is subjected to high temperature treatment in an oxidizing atmosphere,
An oxide 41 having α-alumina as a main phase is formed on the water-contacting surface on the channel surface of the cooling jacket 4. Since the oxidation of the aluminum nitride-based sintered body proceeds from about 1100 ° C., the high-temperature treatment is desirably performed at 1000 ° C. or higher, and when the thickness of the oxide layer is about 1 μm, the heat treatment may be performed at 1150 ° C. for 1 hour. .

【0012】また、酸化物層の厚みが厚くなるに従い、
成膜時の残留応力で酸化物層にクラックが生じる。クラ
ックが生じると、さらに酸化が進行されることとなる。
このように製造上にα−アルミナにクラックが生じた場
合や、α−アルミナ皮膜が比較的薄い場合には、下地の
窒化アルミニウム質焼結体が水環境に曝され、式(1)の
反応を生じる。
Further, as the thickness of the oxide layer increases,
Cracks occur in the oxide layer due to residual stress during film formation. When cracks occur, oxidation proceeds further.
When cracks occur in the α-alumina during production or when the α-alumina film is relatively thin, the underlying aluminum nitride sintered body is exposed to a water environment and the reaction of the formula (1) is performed. Is generated.

【0013】[0013]

【化1】 AlN+3H2O ⇒ Al(OH)3+NH3 …(1) 式(1)に示すように、窒化アルミニウムは、水と反応
することにより水酸化アルミニウムを形成すると共に、
アンモニアを生成する。さらに以下の反応が進行する。
Embedded image AlN + 3H 2 O → Al (OH) 3 + NH 3 (1) As shown in the formula (1), aluminum nitride reacts with water to form aluminum hydroxide,
Generates ammonia. Further, the following reaction proceeds.

【0014】[0014]

【化2】 NH3+H2O ⇒ NH4 ++OH- …(2) 冷却水がアルカリ性となると、水酸化アルミニウム、お
よび接水表面のα−アルミナの溶解が促進される。
## STR2 ## NH 3 + H 2 O ⇒ NH 4 + + OH - ... (2) When the cooling water becomes alkaline, the dissolution of α- alumina aluminum hydroxide, and water contact surface is promoted.

【0015】本実施例の特徴は、タンク6,ポンプ7,
冷却ジャケット4,熱交換器8および配管路5からなる
伝熱性媒体供給ユニットB内に伝熱性媒体のイオン化物
を取り除くイオン除去装置9を設けたことにある。
This embodiment is characterized in that a tank 6, a pump 7,
An ion removing device 9 for removing ionized substances of the heat transfer medium is provided in the heat transfer medium supply unit B including the cooling jacket 4, the heat exchanger 8 and the pipe line 5.

【0016】純水器9で式(2)で生成したOH- イオ
ンを除去することにより、水酸化アルミニウム、および
接水表面のα−アルミナの溶解が抑制されるため、冷却
ジャケット4の耐食性が向上する。さらに耐食性の向上
により、腐食に伴い低下する母材の機械的強度を抑制で
きる。また、イオン除去装置9でアンモニウムイオンを
除去することにより、熱交換器9等で使用されている銅
系材料の耐食性(例えば耐応力腐食割れ性)が向上す
る。
By removing the OH - ions generated by the formula (2) in the pure water purifier 9, the dissolution of aluminum hydroxide and α-alumina on the surface in contact with water is suppressed, so that the corrosion resistance of the cooling jacket 4 is reduced. improves. Further, by improving the corrosion resistance, the mechanical strength of the base material, which decreases with corrosion, can be suppressed. Further, by removing ammonium ions by the ion removing device 9, the corrosion resistance (for example, stress corrosion cracking resistance) of the copper-based material used in the heat exchanger 9 and the like is improved.

【0017】イオン除去装置9は、例えばイオン交換樹
脂で構成されており、高圧損低流量のため伝熱性媒体供
給ユニットB内のバイパス配管に設置する場合が多い。
The ion removing device 9 is made of, for example, an ion exchange resin, and is often installed in a bypass pipe in the heat conductive medium supply unit B due to a high pressure loss and a low flow rate.

【0018】[0018]

【発明の効果】本発明によれば、前記冷却ジャケット材
料としてα−アルミナを主相とする酸化物を接水表面に
形成した窒化アルミニウム質焼結体を用い、また伝熱性
媒体供給ユニット内に伝熱性媒体中のイオン化物を取り
除くイオン除去装置を設けたことにより、冷却ジャケッ
ト接水表面のα−アルミナを主相とする酸化物及び熱交
換器等で使用されている銅系材料の耐食性が向上する。
これにより、長期に渡り安定した電子機器の冷却装置を
供給することができる。
According to the present invention, an aluminum nitride sintered body having an oxide containing α-alumina as a main phase formed on a water contact surface is used as the cooling jacket material, and the cooling jacket material is provided inside the heat conductive medium supply unit. By providing an ion removing device for removing ionized substances in the heat transfer medium, the corrosion resistance of the oxide material having α-alumina as the main phase on the water contact surface of the cooling jacket and the copper-based material used in the heat exchanger and the like are reduced. improves.
This makes it possible to supply a stable cooling device for electronic devices over a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である電子装置の冷却装置を
示す冷却系図。
FIG. 1 is a cooling system diagram showing a cooling device for an electronic device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…基板、2…集積回路ユニット、3…伝熱性媒体、4
…冷却ジャケット、5…配管、6…タンク、7…ポン
プ、8…熱交換器、9…イオン除去装置、41…α−ア
ルミナを主相とする酸化物。
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Integrated circuit unit, 3 ... Heat conductive medium, 4
... Cooling jacket, 5 ... Piping, 6 ... Tank, 7 ... Pump, 8 ... Heat exchanger, 9 ... Ion removal device, 41 ... Oxide whose main phase is α-alumina.

フロントページの続き (72)発明者 出居 昭男 神奈川県秦野市堀山下1番地 株式会社日 立製作所汎用コンピュータ事業部内 (72)発明者 市川 純理 神奈川県秦野市堀山下1番地 株式会社日 立製作所汎用コンピュータ事業部内 Fターム(参考) 5F036 AA01 BA10 BB21 BB41 BB46 BD13 Continued on the front page (72) Inventor Akio Ide 1 Horiyamashita, Hadano-shi, Kanagawa Prefecture Inside the General-purpose Computer Business Division, Hitachi, Ltd. (72) Inventor Junri Ichikawa 1-Horiyamashita, Hadano-shi, Kanagawa Prefecture, General F term in the computer division (reference) 5F036 AA01 BA10 BB21 BB41 BB46 BD13

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上に集積回路が実装された集積回路ユ
ニットと、該集積回路ユニットに熱的に接触した冷却ジ
ャケットと、該冷却ジャケットに伝熱性媒体を供給する
ためのタンク,ポンプ,熱交換器とからなる伝熱性媒体
供給ユニットを備えた電子機器の冷却装置において、 前記冷却ジャケット材料としてα−アルミナを主相とす
る酸化物を接水表面に形成した窒化アルミニウム質焼結
体を用い、また伝熱性媒体供給ユニット内に伝熱性媒体
中のイオン化物を取り除くイオン除去装置を設けたこと
を特徴とする電子機器の冷却装置。
An integrated circuit unit having an integrated circuit mounted on a substrate, a cooling jacket in thermal contact with the integrated circuit unit, a tank for supplying a heat conductive medium to the cooling jacket, a pump, and a heat pump. In a cooling device for an electronic device including a heat conductive medium supply unit including an exchanger, an aluminum nitride-based sintered body in which an oxide having α-alumina as a main phase is formed on a wetted surface is used as the cooling jacket material. A cooling device for an electronic device, further comprising an ion removing device for removing an ionized substance in the heat conductive medium in the heat conductive medium supply unit.
JP32166698A 1998-11-12 1998-11-12 Cooling device of electronic device Pending JP2000150752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32166698A JP2000150752A (en) 1998-11-12 1998-11-12 Cooling device of electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32166698A JP2000150752A (en) 1998-11-12 1998-11-12 Cooling device of electronic device

Publications (1)

Publication Number Publication Date
JP2000150752A true JP2000150752A (en) 2000-05-30

Family

ID=18135062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32166698A Pending JP2000150752A (en) 1998-11-12 1998-11-12 Cooling device of electronic device

Country Status (1)

Country Link
JP (1) JP2000150752A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423178B1 (en) * 1999-03-05 2002-07-23 Tokyo Electron Limited Apparatus for plasma process
WO2005070851A1 (en) * 2004-01-23 2005-08-04 Tokuyama Corporation Non oxide ceramic having oxide layer on the surface thereof, method for production thereof and use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423178B1 (en) * 1999-03-05 2002-07-23 Tokyo Electron Limited Apparatus for plasma process
WO2005070851A1 (en) * 2004-01-23 2005-08-04 Tokuyama Corporation Non oxide ceramic having oxide layer on the surface thereof, method for production thereof and use thereof
JPWO2005070851A1 (en) * 2004-01-23 2007-09-06 株式会社トクヤマ Non-oxide ceramics having an oxide layer on the surface, method for producing the same, and use thereof
KR100821607B1 (en) * 2004-01-23 2008-04-15 가부시끼가이샤 도꾸야마 Non oxide ceramic having oxide layer on the surface thereof, method for production thereof and use thereof
JP4772507B2 (en) * 2004-01-23 2011-09-14 株式会社トクヤマ Non-oxide ceramics having an oxide layer on the surface, method for producing the same, and use thereof

Similar Documents

Publication Publication Date Title
TW555840B (en) Polishing composition
TWI355030B (en)
WO2007063942A1 (en) Semiconductor surface treatment agent
CN101499406B (en) Method for producing silicide nano-structure on insulated underlay
JP4772507B2 (en) Non-oxide ceramics having an oxide layer on the surface, method for producing the same, and use thereof
CN114864413B (en) Etching process of ultrathin metal radiating fin
JP2000150752A (en) Cooling device of electronic device
TWI247795B (en) Silica particles for polishing and a polishing agent
CA2703093A1 (en) Diamond electrode, treatment device and method for manufacturing diamond electrode
TW579386B (en) Selective silicon oxide etchant formulation including fluoride salt, chelating agent, and glycol solvent
JP3959044B2 (en) Pretreatment method for plating aluminum and aluminum alloy
US20210384037A1 (en) NEED FOR Si3N4 SELECTIVE REMOVAL BY WET CHEMISTRY
CN115551214A (en) Chemical treatment method for sintered ceramic copper-clad plate
JPH07221055A (en) Method for forming wiring
TW200528550A (en) Polishing solution and method of polishing nonferrous metal materials
CN1103904C (en) Outdoor heat exchanger unit and air-conditioner using the unit
JP2000336345A (en) Polishing solution for metal and polishing method
CN112919432A (en) Aluminum nitride powder and modified preparation method thereof
US4775004A (en) Copper radiator for motor cars excellent in corrosion resistance and method of manufacturing
JP3939317B2 (en) Thermally conductive material and method for producing the same
JP2003309383A (en) Radiator
JPH0444085B2 (en)
JP2001085376A (en) Method for polishing substrate
JP4070572B2 (en) Abrasive silica particles and abrasive
CN115873599B (en) Selective etching solution for 3D NAND structure sheet of silicon nitride/silicon oxide