JP2000147075A - Apparatus for calculating remaining capacity of cell - Google Patents
Apparatus for calculating remaining capacity of cellInfo
- Publication number
- JP2000147075A JP2000147075A JP10313644A JP31364498A JP2000147075A JP 2000147075 A JP2000147075 A JP 2000147075A JP 10313644 A JP10313644 A JP 10313644A JP 31364498 A JP31364498 A JP 31364498A JP 2000147075 A JP2000147075 A JP 2000147075A
- Authority
- JP
- Japan
- Prior art keywords
- internal resistance
- discharge
- remaining capacity
- characteristic
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003446 memory effect Effects 0.000 claims abstract description 33
- 238000004364 calculation method Methods 0.000 claims abstract description 25
- 230000006870 function Effects 0.000 claims description 12
- 230000006835 compression Effects 0.000 claims description 6
- 238000007906 compression Methods 0.000 claims description 6
- 230000006866 deterioration Effects 0.000 abstract description 24
- 238000000034 method Methods 0.000 description 29
- 230000008569 process Effects 0.000 description 17
- 230000008859 change Effects 0.000 description 16
- 230000007423 decrease Effects 0.000 description 16
- 238000007599 discharging Methods 0.000 description 15
- 238000012937 correction Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000002457 bidirectional effect Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000012887 quadratic function Methods 0.000 description 2
- 102100033029 Carbonic anhydrase-related protein 11 Human genes 0.000 description 1
- 101000867841 Homo sapiens Carbonic anhydrase-related protein 11 Proteins 0.000 description 1
- 101001075218 Homo sapiens Gastrokine-1 Proteins 0.000 description 1
- 101001125854 Homo sapiens Peptidase inhibitor 16 Proteins 0.000 description 1
- 229910018095 Ni-MH Inorganic materials 0.000 description 1
- 229910018477 Ni—MH Inorganic materials 0.000 description 1
- 101000831272 Oryza sativa subsp. japonica Cysteine proteinase inhibitor 5 Proteins 0.000 description 1
- 102100029324 Peptidase inhibitor 16 Human genes 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/389—Measuring internal impedance, internal conductance or related variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/005—Testing of electric installations on transport means
- G01R31/006—Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3835—Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control Of Electrical Variables (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、たとえば電気自動
車に搭載する電池の残存容量または劣化度を演算する電
池の残存容量演算装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery remaining capacity calculator for calculating the remaining capacity or the degree of deterioration of a battery mounted on an electric vehicle, for example.
【0002】[0002]
【従来の技術】電気自動車に用いる二次電池は充放電を
繰り返すことにより、劣化により放電可能な容量が徐々
に低下していくので、電池劣化を加味した残存容量(本
明細書では放電可能電力量(ワット)又は放電量(アン
ペアアワー)を言うものとする)を正確に知ることが要
望されている。このため、放電電圧Vと残存容量との関
係をマップに記憶しておき、検出した放電電圧Vをこの
マップに代入して残存容量を求める手法が従来より採用
されている。なお、この方式では、上記関係が電池のメ
モリ効果の影響により変動するので、メモリ効果発生時
の放電電圧Vと残存容量との関係を学習するようにして
いる。2. Description of the Related Art A rechargeable battery used in an electric vehicle is repeatedly charged and discharged, so that the dischargeable capacity gradually decreases due to deterioration. The amount (watts) or the amount of discharge (ampere hours) must be known exactly. For this reason, a method of storing the relationship between the discharge voltage V and the remaining capacity in a map and substituting the detected discharge voltage V into this map to determine the remaining capacity has conventionally been employed. In this method, since the above relationship fluctuates due to the effect of the memory effect of the battery, the relationship between the discharge voltage V and the remaining capacity when the memory effect occurs is learned.
【0003】特開平7−55903号公報は、電流積算
によって求めた放電量Ahを、あらかじめ記憶する満充
電容量(満充電状態から所定の放電終止条件までの放電
で得られる放電量)から差し引いて、残存容量を求める
ことを提案している。特開平8−278352号公報
は、計測した放電電圧及び放電電流とから、所定基準電
流値における放電電圧に対応する残存容量を算出すると
ともに、計測した放電電圧及び放電電流とからなるデー
タがいままで収集したデータに比較して特異的な場合に
は残存容量算出を中止することを提案している。Japanese Patent Application Laid-Open No. 7-55903 discloses that the discharge amount Ah obtained by current integration is subtracted from a previously stored full charge capacity (a discharge amount obtained from a full charge state to a predetermined discharge termination condition). , It is proposed to determine the remaining capacity. Japanese Patent Application Laid-Open No. 8-278352 discloses that a remaining capacity corresponding to a discharge voltage at a predetermined reference current value is calculated from a measured discharge voltage and a discharge current, and data comprising the measured discharge voltage and the discharge current has been used. It has been proposed that the calculation of the remaining capacity be stopped if it is specific compared to the collected data.
【0004】ところが、これら従来の残存容量演算方式
では、放電特性の劣化が電池劣化により生じたのかメモ
リ効果により生じたのかを区別できないため、正確に残
存容量を演算することが困難であり、誤差が大きいとい
う問題があった。そこで、本出願人の出願になる特開平
10−246760号は、放電電圧Vと放電量Ahとの
関係を示す初期特性マップをメモリ効果及び電池劣化に
基づいてそれぞれ別々に修正して現在の放電電圧Vと放
電量Ahとの関係を示す放電特性を形成し、この放電特
性により決定される放電領域の面積を積分して残存放電
可能電力量を求め、この残存放電可能電力量を残存容量
として推定する方式(残存放電可能電力量推定式残存容
量演算方式)を提案した。However, in these conventional methods for calculating the remaining capacity, it is difficult to distinguish whether the deterioration of the discharge characteristics is caused by the deterioration of the battery or the memory effect, and it is difficult to calculate the remaining capacity accurately. There was a problem that was large. Therefore, Japanese Patent Application Laid-Open No. Hei 10-246760 filed by the present applicant discloses that the initial characteristic map indicating the relationship between the discharge voltage V and the discharge amount Ah is separately corrected based on the memory effect and the battery deterioration, respectively. A discharge characteristic indicating the relationship between the voltage V and the discharge amount Ah is formed, the area of the discharge region determined by the discharge characteristic is integrated to obtain a remaining dischargeable power amount, and the remaining dischargeable power amount is defined as a remaining capacity. An estimation method (remaining dischargeable power amount estimation expression remaining capacity calculation method) was proposed.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上述し
た残存放電可能電力量推定方式においても、充放電を繰
り返すうちに放電特性の形状、特に放電電圧の変化が顕
著となる放電終期における放電特性の形状が、初期放電
特性の形状からずれた残存容量演算誤差が大きくなると
いう問題があった。However, even in the method of estimating the residual dischargeable electric energy described above, the shape of the discharge characteristics, particularly the shape of the discharge characteristics at the end of discharge, in which the change of the discharge voltage becomes remarkable during repeated charging / discharging. However, there is a problem that a remaining capacity calculation error deviating from the shape of the initial discharge characteristics becomes large.
【0006】本発明は上記問題点に鑑み、残存容量を正
確に演算可能な電池の残存容量演算装置を提供すること
をその目的としている。SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an apparatus for calculating the remaining capacity of a battery, which can accurately calculate the remaining capacity.
【0007】[0007]
【課題を解決するための手段】上記課題の解決のために
なされた請求項1記載の電池の残存容量演算装置によれ
ば、電池の内部抵抗と放電量との過去の関係を示す内部
抵抗特性、電池の開放電圧と放電量との過去の関係を示
す開放電圧特性、内部抵抗の今回値及び開放電圧の今回
値に基づいて残存容量を演算する。すなわち、本構成で
は、残存容量を内部抵抗と放電量との関係、及び、開放
電圧と放電量との関係に基づいて推定する。According to a first aspect of the present invention, there is provided an apparatus for calculating a remaining capacity of a battery, the internal resistance characteristic indicating a past relationship between an internal resistance of the battery and a discharge amount. The remaining capacity is calculated based on the open voltage characteristics indicating the past relationship between the open voltage of the battery and the discharge amount, the current value of the internal resistance, and the current value of the open voltage. That is, in this configuration, the remaining capacity is estimated based on the relationship between the internal resistance and the discharge amount and the relationship between the open-circuit voltage and the discharge amount.
【0008】このようにすれば、次に詳細に説明する理
由により、メモリ効果を有する電池の残存容量を従来よ
り格段に正確に推定することができる。請求項2記載の
構成によれば請求項1記載の電池の残存容量演算装置に
おいて更に、開放電圧の今回値を変数とする所定の関数
で過去の開放電圧特性を変形して今回の前記開放電圧特
性を形成し、内部抵抗の今回値を変数とする所定の関数
で過去の内部抵抗特性を変形して今回の前記内部抵抗特
性を形成し、これら両今回の特性に基づいて残存容量を
演算する。このようにすれば、メモリ効果を有する電池
の残存容量を従来より格段に正確に推定することができ
る。In this manner, the remaining capacity of a battery having a memory effect can be estimated much more accurately than in the past for the reason described in detail below. According to the second aspect of the present invention, in the battery remaining capacity computing device according to the first aspect, the open-circuit voltage characteristic of the past is modified by modifying a past open-circuit voltage characteristic with a predetermined function having a current value of the open-circuit voltage as a variable. The characteristic is formed, the past internal resistance characteristic is deformed by a predetermined function having the current value of the internal resistance as a variable to form the current internal resistance characteristic, and the remaining capacity is calculated based on both of these characteristics. . In this way, the remaining capacity of the battery having the memory effect can be estimated much more accurately than before.
【0009】すなわち、請求項1又は2記載の残存容量
演算方式の特徴は、内部抵抗特性(内部抵抗と放電量と
の関係)及び開放電圧特性(開放電圧と放電量との関
係)を用いることにより、残存容量を演算する。このよ
うにすれば、電池の容量減少に対する電池劣化の影響
と、メモリ効果の影響を正確に分別することができるの
で、正確に残存容量を演算することができる。言い換え
れば、本構成では、電池劣化に起因する容量低下を推定
した内部抵抗特性に基づいて推定し、メモリ効果に起因
する容量低下を推定した開放電圧特性に基づいて推定す
るので、両電池容量低下原因を明瞭に分別して正確に残
存容量を推定することができる。That is, a feature of the remaining capacity calculation method according to the first or second aspect is that an internal resistance characteristic (a relation between an internal resistance and a discharge amount) and an open voltage characteristic (a relation between an open voltage and a discharge amount) are used. To calculate the remaining capacity. With this configuration, the influence of the battery deterioration on the decrease in the battery capacity and the influence of the memory effect can be accurately distinguished, so that the remaining capacity can be calculated accurately. In other words, in this configuration, the capacity reduction due to the battery degradation is estimated based on the estimated internal resistance characteristic, and the capacity reduction due to the memory effect is estimated based on the estimated open-circuit voltage characteristic. The cause can be clearly distinguished and the remaining capacity can be accurately estimated.
【0010】更に説明すれば、電池は、等価回路的に、
内部抵抗がない所定の開放電圧をもつ理想電池と、その
内部抵抗に等しい抵抗素子とを直列接続した等価回路で
表すことができる。この等価回路において、メモリ効果
は電池の開放電圧の低下をもたらし、電池劣化は電池の
内部抵抗の増大をもたらす。このことは、本出願人によ
り出願された特開平10−246760号によって明ら
かである。[0010] More specifically, the battery is equivalent to
It can be represented by an equivalent circuit in which an ideal battery having a predetermined open voltage with no internal resistance and a resistance element equal to the internal resistance are connected in series. In this equivalent circuit, the memory effect causes a decrease in the open-circuit voltage of the battery, and the battery deterioration causes an increase in the internal resistance of the battery. This is clear from Japanese Patent Application Laid-Open No. Hei 10-246760 filed by the present applicant.
【0011】したがって、メモリ効果による電池特性変
化を開放電圧の変化として抽出し、電池劣化によるそれ
を内部抵抗の変化として抽出し、これら二つの容量低下
要因を区別することが容易であるので、正確に残存容量
の演算を行うことができる。なお、内部抵抗特性及び開
放電圧特性に基づいて残存容量を演算するには、たとえ
ば請求項3に記載するように、今回の内部抵抗特性及び
今回の開放電圧特性に基づいて求めた放電電圧と放電量
との関係を示す放電特性を求め、この放電特性を現在の
放電量値から所定の放電終了放電量値まで積分して残存
容量を演算することができる。Therefore, it is easy to extract a change in battery characteristics due to the memory effect as a change in open-circuit voltage and a change due to battery deterioration as a change in internal resistance. The remaining capacity can be calculated. To calculate the remaining capacity based on the internal resistance characteristic and the open-circuit voltage characteristic, for example, as described in claim 3, the discharge voltage and the discharge voltage obtained based on the current internal resistance characteristic and the present open-circuit voltage characteristic are calculated. The remaining capacity can be calculated by calculating a discharge characteristic indicating a relationship with the discharge amount and integrating the discharge characteristic from the current discharge amount value to a predetermined discharge end discharge amount value.
【0012】結局、今回すなわち現時点の内部抵抗特性
及び開放電圧特性が各放電量の値ごとに正確に推定でき
れば、それらに基づいて放電電圧と放電量との関係を容
易に求めることができ、その積分により残存容量を正確
に推定することができる。ちなみに、開放電圧をOC
V、内部抵抗をrとすれば、放電電圧V=OCV+A・
rである。After all, if the internal resistance characteristic and the open-circuit voltage characteristic at this time, that is, at the present time, can be accurately estimated for each value of the discharge amount, the relationship between the discharge voltage and the discharge amount can be easily obtained based on them. The remaining capacity can be accurately estimated by integration. By the way, the open circuit voltage is OC
V, and the internal resistance is r, the discharge voltage V = OCV + A ·
r.
【0013】図2にこの状態を模式的に示す。C1は基
準とする過去の放電特性、C2は更に劣化した電池の現
在の放電特性である。所定放電量値AH0における両者
の電圧差ΔVは、メモリ効果による開放電圧の差ΔVo
と、電池劣化により内部抵抗rがΔrだけ増大したこと
に起因する電圧差ΔVr=A・Δrとの合計である。こ
こで重要なことは、放電量変化に伴う開放電圧の変化
(すなわち、両者の間の関数関係)が、放電量変化に伴
う内部抵抗の変化(すなわち、両者の間の関数関係)と
まったく異なることである。両者がまったく同じであれ
ば、放電量変化に伴う開放電圧の変化と放電量変化に伴
う内部抵抗の変化とを区別する必要は存在しない。FIG. 2 schematically shows this state. C1 is a reference past discharge characteristic, and C2 is a current discharge characteristic of a further deteriorated battery. The voltage difference ΔV between the two at the predetermined discharge amount value AH0 is the difference ΔVo between the open voltages due to the memory effect.
And the voltage difference ΔVr = A · Δr resulting from the internal resistance r increasing by Δr due to battery deterioration. What is important here is that the change in the open-circuit voltage (ie, the functional relationship between the two) with the change in the discharge amount is completely different from the change in the internal resistance (ie, the functional relationship between the two) with the change in the discharge amount. That is. If the two are exactly the same, there is no need to distinguish between the change in the open voltage due to the change in the discharge amount and the change in the internal resistance due to the change in the discharge amount.
【0014】メモリ効果による開放電圧の変化(低下)
は、同じメモリ効果が生じている放電量範囲では同じで
あり、したがって、過去の開放電圧特性が確定していれ
ば、ある放電量値でこの過去の開放電圧特性上での開放
電圧値と今回(実測)の開放電圧値が分かれば両者の差
だけ、過去の開放電圧特性をスライド(レベルダウン)
させることにより今回の開放電圧特性を正確に推定する
ことができる。Change (decrease) in open-circuit voltage due to memory effect
Is the same in the discharge amount range where the same memory effect occurs, and therefore, if the past open-circuit voltage characteristics have been determined, the open-circuit voltage value on this past open-circuit voltage If the open-circuit voltage value of (actual measurement) is known, the past open-circuit voltage characteristics are slid by the difference between them (level down).
By doing so, the current open-circuit voltage characteristics can be accurately estimated.
【0015】すなわち、請求項4に記載するように、過
去の開放電圧特性上で放電量の今回値に対応する仮想の
開放電圧値と開放電圧の今回値との間の電圧差をメモリ
効果の量が異なる放電量範囲ごとにそれぞれ記憶し、放
電量範囲ごとにこの電圧差だけ過去の開放電圧特性をス
ライドして今回の開放電圧特性とすればよい。なお、メ
モリ効果による開放電圧の低下は、充電開始点から充電
終了点までの放電量範囲において、この充電によりほぼ
解消されるとみなすことができる。したがって、満充電
状態と完全放電状態との間にて、それぞれ充電開始点や
充電終了点が異なる複数の部分放電を実施した後では、
各放電量範囲で開放電圧がそれぞれ異なることがわか
る。したがって、それぞれ充放電履歴が異なる放電量範
囲ごとに等放電量値に対応する過去の基準とする開放電
圧の値と今回の開放電圧の値との間の電圧差をそれぞれ
メモリし、このメモリ値により過去の基準とする開放電
圧特性のスライド量を変更すればよいことがわかる。That is, the voltage difference between the virtual open voltage value corresponding to the current value of the discharge amount and the current value of the open voltage on the past open voltage characteristics is determined by the memory effect. What is necessary is to store the discharge amount ranges having different amounts, respectively, and to slide the past open-circuit voltage characteristics by this voltage difference for each discharge amount range to obtain the present open-circuit voltage characteristics. It should be noted that the decrease in the open-circuit voltage due to the memory effect can be considered to be substantially eliminated by this charging in the discharge amount range from the charging start point to the charging end point. Therefore, after performing a plurality of partial discharges having different charge start points and charge end points between the fully charged state and the completely discharged state,
It can be seen that the open circuit voltage is different in each discharge amount range. Therefore, a voltage difference between a past reference open-circuit voltage value and a current open-circuit voltage value corresponding to an equal discharge amount value for each discharge amount range having different charge / discharge histories is stored in memory. Thus, it can be seen that the slide amount of the open-circuit voltage characteristic as a reference in the past should be changed.
【0016】その例を図3に模式的に示す。この図で
は、C3は初期開放電圧特性であり、C4は、最初、放
電量値Ah1まで放電後、満充電がなされ、その後、放
電量値Ah2まで放電後、満充電がなされ、その後の放
電における開放電圧を示す。ΔV1は放電量値Ah1〜
Ah2の放電量範囲でのメモリ効果による開放電圧低下
を示し、ΔV2は放電量値Ah2以降の放電量範囲での
メモリ効果による開放電圧低下を示す。An example is schematically shown in FIG. In this figure, C3 is the initial open-circuit voltage characteristic, and C4 is first fully charged after discharging to the discharge amount value Ah1, then fully charged after discharging to the discharge amount value Ah2, Indicates open circuit voltage. ΔV1 is the discharge amount value Ah1
The open circuit voltage drop due to the memory effect in the discharge amount range of Ah2 is shown, and ΔV2 shows the open circuit voltage drop due to the memory effect in the discharge amount range after the discharge amount value Ah2.
【0017】これに対し、電池劣化による内部抵抗の変
化(増加)は、放電が深くなるにつれて(放電量の増大
につれて)増大する傾向をもつ。したがって、今回の内
部抵抗特性を過去の内部抵抗特性から推定するには、こ
のような傾向を良好に示す関数で上記過去の内部抵抗特
性を処理して今回の内部抵抗特性とする必要がある。そ
こで、本明細書では、請求項5、6に記載するように、
以下に説明する二つの方法で、過去の基準とする内部抵
抗特性の変形を行っている。On the other hand, the change (increase) in the internal resistance due to battery deterioration tends to increase as the discharge becomes deeper (as the discharge amount increases). Therefore, in order to estimate the current internal resistance characteristic from the past internal resistance characteristic, it is necessary to process the past internal resistance characteristic with a function that shows such a tendency well and make it the current internal resistance characteristic. Therefore, in this specification, as described in claims 5 and 6,
In the following two methods, the internal resistance characteristic as a reference in the past is modified.
【0018】まず、請求項5記載の方法では、過去の内
部抵抗特性上で放電量の今回値に対応する仮想の内部抵
抗値と、内部抵抗の今回値との間の抵抗比を求め、過去
の内部抵抗特性の内部抵抗軸をこの抵抗比だけ伸長して
今回の内部抵抗特性とする。このようにすれば、放電が
進行して過去の内部抵抗特性上の内部抵抗値が増大する
に応じて今回の内部抵抗特性上の内部抵抗値も増大する
ので上記傾向に対応することができるため、今回の内部
抵抗特性と今回の真の内部抵抗特性との間の誤差を良好
に減らすことができることが明らかである。First, in the method according to the fifth aspect, a resistance ratio between a virtual internal resistance value corresponding to the current value of the discharge amount on the past internal resistance characteristic and the current value of the internal resistance is determined. The internal resistance axis of this internal resistance characteristic is extended by this resistance ratio to obtain the current internal resistance characteristic. This makes it possible to cope with the above tendency because the internal resistance value in the current internal resistance characteristic increases as the discharge proceeds and the internal resistance value in the past internal resistance characteristic increases. It is apparent that the error between the current internal resistance characteristic and the current true internal resistance characteristic can be reduced well.
【0019】次に、請求項6記載の方法では、過去の内
部抵抗特性上で内部抵抗の今回値に対応する仮想の放電
量値と、放電量の今回値との間の放電量比を求め、過去
の内部抵抗特性の放電量軸をこの放電量比だけ圧縮して
今回の内部抵抗特性とする。このようにすれば、放電が
進行して過去の内部抵抗特性上の内部抵抗値が増大する
に応じて今回の内部抵抗特性上の内部抵抗値も増大する
ので上記傾向に対応することができるため、今回の内部
抵抗特性と今回の真の内部抵抗特性との間の誤差を良好
に減らすことができることが明らかである。Next, in the method according to the sixth aspect, a discharge amount ratio between a virtual discharge amount value corresponding to the current value of the internal resistance on the past internal resistance characteristic and the current value of the discharge amount is determined. Then, the discharge amount axis of the past internal resistance characteristic is compressed by this discharge amount ratio to obtain the current internal resistance characteristic. This makes it possible to cope with the above tendency because the internal resistance value in the current internal resistance characteristic increases as the discharge proceeds and the internal resistance value in the past internal resistance characteristic increases. It is apparent that the error between the current internal resistance characteristic and the current true internal resistance characteristic can be reduced well.
【0020】なお、電池は劣化が進行するほど深放電状
態において放電量の増大に応じた内部抵抗が特異的に増
大することがわかっている。放電終期において電池劣化
進行にしたがって、放電量増大よる内部抵抗の増大の様
子を図4に模式的に示す。C5は初期内部抵抗特性であ
り、C6は電池劣化が進んだ内部抵抗特性である。した
がって、この放電終期における電池劣化時の内部抵抗の
特異的な増大に対応した内部抵抗算出用関数と、その他
の放電量範囲における内部抵抗算出用関数(放電終期特
異的内部抵抗増加表現関数という)とを切り替えて、今
回の内部抵抗特性を過去の基準となる内部抵抗特性から
演算することができる。上述した請求項6記載の内部抵
抗算出方式は、この放電終期における電池劣化時の内部
抵抗の特異的な増大(他の放電量範囲よりも急激に内部
抵抗が増大する現象)を良好に示すことができる。It is known that as the battery deteriorates, the internal resistance specifically increases in accordance with the increase in the amount of discharge in a deep discharge state. FIG. 4 schematically shows how the internal resistance increases due to an increase in the amount of discharge as the battery deteriorates at the end of discharge. C5 is an initial internal resistance characteristic, and C6 is an internal resistance characteristic in which battery deterioration has advanced. Therefore, a function for calculating the internal resistance corresponding to a specific increase in the internal resistance at the end of discharge when the battery is deteriorated, and a function for calculating the internal resistance in the other discharge amount range (referred to as a function for expressing the specific internal resistance at the end of discharge). , The current internal resistance characteristic can be calculated from the past internal resistance characteristic. The above-described internal resistance calculating method according to claim 6 shows a favorable increase in the internal resistance at the time of battery deterioration at the end of discharge (a phenomenon in which the internal resistance increases more rapidly than other discharge amount ranges). Can be.
【0021】特に、放電終期特異的内部抵抗増加表現関
数は、内部抵抗特性が徐々に変化していくことに鑑み、
過去の基準とする内部抵抗特性をできるだけ直前の内部
抵抗特性、好ましくは前回放電時の内部抵抗特性とする
ことが好適である。なお、上記請求項1〜7記載の発明
において、残存容量演算に用いる今回の開放電圧特性及
び今回の内部抵抗特性を演算するための過去の開放電圧
特性及び過去の内部抵抗特性は、直前の充電前の前回の
放電において演算した前回の開放電圧特性及び前回の内
部抵抗特性とすることができ、これは内部抵抗が不可逆
的に徐々に変化する内部抵抗特性演算に特に好適であ
る。In particular, the expression function for increasing the internal resistance specific to the end of discharge is considered in view of the fact that the internal resistance characteristics gradually change.
It is preferable that the internal resistance characteristic used as a reference in the past is the internal resistance characteristic as short as possible, preferably the internal resistance characteristic at the time of the previous discharge. In the first to seventh aspects of the present invention, the past open-circuit voltage characteristic and the past internal resistance characteristic for calculating the current open-circuit voltage characteristic and the current internal resistance characteristic used for the remaining capacity calculation are calculated based on the immediately preceding charging characteristic. The previous open-circuit voltage characteristics and the previous internal resistance characteristics calculated in the previous previous discharge can be used. This is particularly suitable for the internal resistance characteristic calculation in which the internal resistance gradually changes irreversibly.
【0022】また、上記過去の開放電圧特性及び過去の
内部抵抗特性は、初期(電池供用初期)時の初期開放電
圧特性及び初期内部抵抗特性とすることができ、これは
開放電圧が充電により可逆的に回復する開放電圧特性演
算に特に好適である。更に、電池使用時に満充電または
所定の放電量値から完全放電まで放電される場合があっ
た場合、この時の開放電圧特性及び内部抵抗特性を記憶
し、その後はこれを基準に今回の開放電圧特性及び内部
抵抗特性を上記方法で演算することも、誤差を減らす好
適な方法である。The past open-circuit voltage characteristics and the past internal resistance characteristics can be an initial open-circuit voltage characteristic and an initial internal resistance characteristic at the initial stage (initial operation of the battery). It is particularly suitable for the open-circuit voltage characteristic calculation which recovers in a timely manner. Furthermore, if the battery is fully charged or discharged from a predetermined discharge value to a complete discharge when the battery is used, the open-circuit voltage characteristics and the internal resistance characteristics at this time are stored. Calculating the characteristics and the internal resistance characteristics by the above method is also a preferable method for reducing errors.
【0023】[0023]
【発明の実施の形態】本発明の電池の残存容量演算装置
の好適な実施形態を図面に沿って以下に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a battery remaining capacity calculating device according to the present invention will be described below with reference to the drawings.
【0024】[0024]
【実施例】(装置構成)図1は、本発明に係るハイブリ
ッド車用の残存容量演算装置の一例を示すブロック図で
ある。1は電池、2はハイブリッド車の回転電機を含む
動力伝達手段であって、エンジン及び車両駆動軸に連結
されてそれらと電池との間で電力の形態でエネルギー授
受を行う。3は、電池1に対して入出力する直流電力
と、動力伝達手段2に対して入出力する交流電力との変
換を行う双方向電力変換装置である。これら動力伝達手
段2や双方向電力変換装置3の構成は周知であり、か
つ、本発明の要旨でもないので更に詳しい説明は省略す
る。なお、この実施例の電池の残存容量演算手段は、ハ
イブリッド車ではなく、内燃機関を搭載せず電池のみで
走行する形式の電気自動車にも適用できることはもちろ
んである。FIG. 1 is a block diagram showing an example of a remaining capacity calculating device for a hybrid vehicle according to the present invention. Reference numeral 1 denotes a battery, and 2 denotes power transmission means including a rotating electric machine of a hybrid vehicle. The power transmission means is connected to an engine and a drive shaft of the vehicle and exchanges energy between them and the battery in the form of electric power. Reference numeral 3 denotes a bidirectional power converter that converts between DC power input / output to / from the battery 1 and AC power input / output to / from the power transmission means 2. Since the configurations of the power transmission means 2 and the bidirectional power converter 3 are well known and are not the gist of the present invention, further detailed description will be omitted. Note that the battery remaining capacity calculation means of this embodiment can be applied not only to a hybrid vehicle but also to an electric vehicle that runs on only a battery without an internal combustion engine.
【0025】電池1は、多数のNiーMH電池を直列接
続してなる組み電池からなり、電流センサ5はその充放
電電流を検出し、温度センサ6はその温度を検出し、こ
れら電流、温度は電池1の出力電圧とともに電池劣化度
を算出して表示するマイコン構成のコントローラ4に入
力される。 (残存容量算出ルーチン1)以下、図5に示すフローチ
ャートを参照して、この実施例の残存容量算出プロセス
の一例を説明する。The battery 1 is an assembled battery in which a number of Ni-MH batteries are connected in series, a current sensor 5 detects the charging / discharging current, a temperature sensor 6 detects the temperature, and the current, temperature, Is input to a controller 4 having a microcomputer configuration for calculating and displaying the battery deterioration degree together with the output voltage of the battery 1. (Remaining Capacity Calculation Routine 1) An example of the remaining capacity calculation process of this embodiment will be described below with reference to the flowchart shown in FIG.
【0026】まず、現在放電中かどうかを調べ(S1
0)、放電中であればS12へ進み、放電中でなければ
S26へ進む。S12では、実測した放電電圧V、放電
電流Aの各今回値から実測内部抵抗(内部抵抗の今回
値)Rm及び実測開放電圧(開放電圧の今回値)OCV
mを算出し、更に放電の最初から現在までの放電電流A
を累算して放電量の今回値Ahmを求める。First, it is checked whether or not the battery is currently discharging (S1).
0), if it is discharging, proceed to S12; if it is not discharging, proceed to S26. In S12, the measured internal resistance (current value of the internal resistance) Rm and the measured open-circuit voltage (current value of the open-circuit voltage) OCV are calculated from the measured current values of the discharge voltage V and the discharge current A.
m, and discharge current A from the beginning of discharge to the present.
Is accumulated to determine the current value Ahm of the discharge amount.
【0027】なお、実測内部抵抗Rmは、最近検出した
放電電圧Vと放電電流Aとのペアで規定される点を多
数、V−A二次元平面にプロットしてその一次近似直線
を決定し、その傾斜率(ΔV/ΔA)により求める。次
に、検出した放電電流Aと実測内部抵抗Rmを掛けてそ
の電圧降下を求め、この電圧降下を上記放電電圧Vの今
回値に加算して実測開放電圧OCVmを求める。The measured internal resistance Rm is obtained by plotting a number of points defined by recently detected pairs of the discharge voltage V and the discharge current A on a VA two-dimensional plane to determine a first-order approximate straight line. It is determined from the inclination rate (ΔV / ΔA). Next, the detected discharge current A is multiplied by the actually measured internal resistance Rm to determine the voltage drop, and this voltage drop is added to the current value of the discharge voltage V to obtain the actually measured open voltage OCVm.
【0028】次に、今回放電における内部抵抗特性を示
すRamマップを作成する(S16)。なお、この実施
例では、このRamマップは、直前の充電前の前回の放
電時に作成した前回Ramマップを修正して作成するも
のとする。また、最初に作成するRamマップはあらか
じめ記憶する初期内部抵抗特性を示す初期Ramマップ
を修正して作成することはもちろんである。Next, a Ram map showing the internal resistance characteristics in the current discharge is created (S16). In this embodiment, it is assumed that this Ram map is created by modifying the previous Ram map created at the time of the previous discharge before the immediately preceding charge. In addition, it is a matter of course that the initial Ram map is created by modifying the initial Ram map indicating the initial internal resistance characteristic stored in advance.
【0029】まず、前回Ramマップに実測内部抵抗R
mを代入して、この前回Ramマップ上で実測内部抵抗
Rmに対応する仮想的な放電量の値Ahxを求める。次
に、放電量Ahの今回値Ahmと仮想値Ahxとの比を
求め、この比で、前回Ramマップを示す二次元平面の
放電量を示す軸(放電量軸という)を比例圧縮する操作
(容量減少操作)を行って今回のRamマップとする。First, the actually measured internal resistance R is shown in the previous Ram map.
m, the value Ahx of the virtual discharge amount corresponding to the actually measured internal resistance Rm is obtained on the previous Ram map. Next, an operation of calculating the ratio between the current value Ahm of the discharge amount Ah and the virtual value Ahx, and proportionally compressing an axis indicating the discharge amount on the two-dimensional plane indicating the previous Ram map (referred to as a discharge amount axis) with this ratio ( Capacity reduction operation) to obtain the current Ram map.
【0030】なお、今回のRamマップをどのように作
成するかには種々の方法が考えられるが、過去の所定放
電回めのRamマップの各内部抵抗値にそれぞれ所定の
変換関数を示すマップの各変換係数値を掛けて求めるこ
ともできる。更に、この変換関数を示すマップを放電回
数の累積ととともに書き換えることもできる。次に、あ
らかじめ記憶する開放電圧マップOCVamと上記Ra
mマップとから基準放電電力値での放電特性マップを作
成する(S18)。なお、ここでいう基準放電電力値で
の放電特性とは、所定の基準放電電力(ここでは2k
W)を放電する場合の電池の出力電圧(放電電圧)Vと
放電量Ahとの関係を示す特性である。Various methods can be considered for creating the current Ram map. The internal resistance values of the Ram map in the past predetermined discharge cycle can be obtained by various methods. It can also be obtained by multiplying each conversion coefficient value. Further, the map indicating the conversion function can be rewritten together with the accumulation of the number of discharges. Next, the open voltage map OCVam stored in advance and the above Ra
A discharge characteristic map at the reference discharge power value is created from the m map (S18). Here, the discharge characteristic at the reference discharge power value is a predetermined reference discharge power (here, 2 k
This is a characteristic showing the relationship between the output voltage (discharge voltage) V of the battery and the amount of discharge Ah when W) is discharged.
【0031】更に説明すると、任意の放電量Ahの値に
対応する放電電圧Vは、この放電量Ahの値に対応して
補正開放電圧特性から求めた開放電圧値OCV’と、こ
の放電量Ahの値に対応して補正内部抵抗特性から求め
た内部抵抗値R’から次の二次関数式により算出され
る。ただし、Wは基準放電電力値、Aはこの放電量Ah
における放電電流値である。More specifically, the discharge voltage V corresponding to an arbitrary value of the discharge amount Ah includes an open-circuit voltage value OCV ′ obtained from the corrected open-circuit voltage characteristic corresponding to the value of the discharge amount Ah, and the discharge amount Ah. Is calculated from the internal resistance value R ′ obtained from the corrected internal resistance characteristic in accordance with the following quadratic function equation. Here, W is the reference discharge power value, and A is this discharge amount Ah
Is the discharge current value at.
【0032】 V=OCV’−R’・A=OCV’−R’・W/V 次に、S18で求めた放電特性から残存容量の演算を行
う(S20)。すなわち、上記放電特性を、放電量Ah
の今回値Ahmから電池がもはや所定の基準放電電力で
放電できない放電量まで積分して、基準放電電力放電可
能な残存容量を求める。V = OCV′−R ′ · A = OCV′−R ′ · W / V Next, the remaining capacity is calculated from the discharge characteristics obtained in S18 (S20). That is, the discharge characteristic is changed to the discharge amount Ah
From the current value Ahm to the discharge amount at which the battery can no longer be discharged with the predetermined reference discharge power, to obtain a remaining capacity at which the reference discharge power can be discharged.
【0033】次に、放電が終了して充電開始したかどう
かを調べ(S22)、そうでない場合にはS26へジャ
ンプし、そうである場合にはこの充電開始直前の放電量
値Ahxを記憶する(S24)。これは、メモリ効果に
よる開放電圧低下が、次回の放電においてこの放電量値
Ahxから始まるからである。次に、放電が直前の充電
動作開始時点の放電量値Ahxにまで達したかどうかを
調べる(S26)。達していなければS28における開
放電圧マップOCVamの書き換えは行わずにメインル
ーチンにリターンし、達していれば、記憶する開放電圧
マップOCVam上でのこの時点の放電量Ahの今回値
Ahxに対応する前回の開放電圧値OCVxと、放電量
Ahの今回値Ahxに対応する今回の実測開放電圧OC
Vmとの差ΔVを求め、記憶する開放電圧マップOCV
amのこの放電量Ahの今回値Ahmより大きい放電量
範囲において、開放電圧をΔVだけ下方にスライドさせ
る(S28)。これにより直前のメモリ効果による開放
電圧低下を開放電圧マップOCVamに書き込むことが
できる。もちろん、最初の充電の後での開放電圧マップ
OCVamの修正は、あらかじめ記憶する初期開放電圧
特性を示す初期Ramマップを用いて行う。Next, it is checked whether or not the discharging is completed and the charging is started (S22). If not, the process jumps to S26, and if so, the discharge amount value Ahx immediately before the start of the charging is stored. (S24). This is because the decrease in the open-circuit voltage due to the memory effect starts from this discharge amount value Ahx in the next discharge. Next, it is checked whether or not the discharge has reached the discharge amount value Ahx at the time when the charging operation started immediately before (S26). If it has not reached, the process returns to the main routine without rewriting the open-circuit voltage map OCVam in S28, and if it has reached, the last time corresponding to the current value Ahx of the current discharge amount Ah on the open-circuit voltage map OCVam to be stored. Open-circuit voltage value OCVx and the actual measured open-circuit voltage OC corresponding to the current value Ahx of the discharge amount Ah
Open voltage map OCV for obtaining and storing the difference ΔV from Vm
The open-circuit voltage is slid downward by ΔV in a discharge amount range that is greater than the current value Ahm of the discharge amount Ah (S28). Thus, the open-circuit voltage drop due to the immediately preceding memory effect can be written to the open-circuit voltage map OCVam. Of course, the correction of the open-circuit voltage map OCVam after the first charging is performed using the initial Ram map indicating the initial open-circuit voltage characteristic stored in advance.
【0034】次に、S10にて、放電中でなければ、充
電が終了したかどうかを調べ(S30)、そうでないな
らメインルーチンにリターンし、充電が終了したら、記
憶する開放電圧マップOCVam中のこの充電動作がな
された充電量範囲の開放電圧の値をあらかじめ記憶する
初期開放電圧特性(すなわち初期開放電圧OCVマッ
プ)の値に回復させる。これにより、メモリ効果による
開放電圧低下分の充電動作による回復作用を開放電圧マ
ップOCVamに反映させることができる。 (残存容量算出ルーチン2)以下、図6〜図7に示すフ
ローチャートを参照して、この実施例の残存容量算出プ
ロセスを説明する。Next, in S10, if it is not discharging, it is checked whether or not the charging is completed (S30). If not, the process returns to the main routine, and if the charging is completed, the open voltage map OCVam in the stored open voltage map OCVam is stored. The value of the open-circuit voltage in the charge amount range where the charging operation has been performed is restored to the value of the initial open-circuit voltage characteristic (that is, the initial open-circuit voltage OCV map) stored in advance. This makes it possible to reflect the recovery effect of the charging operation corresponding to the decrease in the open-circuit voltage due to the memory effect on the open-circuit voltage map OCVam. (Remaining Capacity Calculation Routine 2) Hereinafter, the remaining capacity calculation process of this embodiment will be described with reference to flowcharts shown in FIGS.
【0035】・実測パラメータ算出(ステップS10
0)、 まず、実測した放電電圧V、放電電流Aの各今回値から
実測内部抵抗Rm及び実測開放電圧OCVmを算出し、
更に放電の最初から現在までの放電電流Aを累算して放
電量の今回値Ahmを求める。なお、実測内部抵抗Rm
は、最近検出した放電電圧Vと放電電流Aとのペアで規
定される点を多数、V−A二次元平面にプロットしてそ
の一次近似直線を決定し、その傾斜率(ΔV/ΔA)に
より求める。次に、検出した放電電流Aと実測内部抵抗
Rmを掛けてその電圧降下を求め、この電圧降下を上記
放電電圧Vの今回値に加算して実測開放電圧OCVmを
求める。Calculation of measured parameters (step S10)
0) First, the actually measured internal resistance Rm and the actually measured open circuit voltage OCVm are calculated from the current values of the actually measured discharge voltage V and discharge current A, respectively.
Further, the current value Ahm of the discharge amount is obtained by accumulating the discharge current A from the beginning of the discharge to the present. The measured internal resistance Rm
Plots a number of points defined by a pair of a recently detected discharge voltage V and a discharge current A on a VA two-dimensional plane to determine a first-order approximation straight line, and calculates a gradient thereof (ΔV / ΔA). Ask. Next, the detected discharge current A is multiplied by the actually measured internal resistance Rm to determine the voltage drop, and this voltage drop is added to the current value of the discharge voltage V to obtain the actually measured open voltage OCVm.
【0036】・関連する初期パラメータ算出(ステップ
S102) 次に、電池の運用初期時における初期内部抵抗Rini
と放電量との関係を示す初期内部抵抗特性(あらかじめ
初期内部抵抗マップとして記憶)に上記した放電量の今
回値Ahmの値を代入して、放電量の今回値Ahmに対
応する初期内部抵抗特性上の初期内部抵抗Riniの今
回値を求め、更に、この初期内部抵抗Riniの今回値
と、検出した放電電圧Vの今回値及び放電電流Aの今回
値とから上記初期内部抵抗Riniの今回値に対応する
初期開放電圧OCViniの今回値(=Rini・A+
V)を算出する。Calculation of Related Initial Parameters (Step S102) Next, the initial internal resistance Rini in the initial operation of the battery.
The initial internal resistance characteristic corresponding to the current value Ahm of the discharge amount is substituted by substituting the value of the current value Ahm of the above discharge amount into the initial internal resistance characteristic (stored in advance as an initial internal resistance map) indicating the relationship between the current value Ahm and the discharge amount. The current value of the initial internal resistance Rini is obtained, and the current value of the initial internal resistance Rini is further determined from the current value of the initial internal resistance Rini and the current value of the detected discharge voltage V and the current value of the discharge current A. The current value of the corresponding initial open circuit voltage OCVini (= Rini · A +
V) is calculated.
【0037】・放電終期判断(ステップS106) 次に、放電終期における内部抵抗の補正のために、現
在、放電終期(又は放電後半期)かどうかの判断材料と
して現時点における初期特性上の残存容量の今回値Qr
iniを算出する。この初期特性上の残存容量の今回値
Qriniは、あらかじめ記憶する初期時満充電容量Q
rfull(Ah)から上記した放電量の今回値Ahm
(Ah)を差し引いた値である。Determination of End of Discharge (Step S106) Next, in order to correct the internal resistance at the end of discharge, the remaining capacity of the initial characteristic at the present time is used as a material for determining whether or not it is at the end of discharge (or the latter half of discharge). This time Qr
Ini is calculated. The current value Qrini of the remaining capacity on the initial characteristics is the initial full charge capacity Q stored in advance.
The current value Ahm of the discharge amount described above is obtained from rfull (Ah).
(Ah) is subtracted.
【0038】次に、初期特性上の残存容量の今回値Qr
iniが初期時満充電容量Qinifullに所定の定
数xを掛けて求めた所定のしきい値未満かどうかを調べ
る。そして、未満であれば、放電終期又は放電後半期で
あって電池の内部抵抗の特異的な増大が生じる可能性が
あると判断して次のS110へ進み、以上であれば上記
放電終期における特異的な内部抵抗の増大現象が生じる
可能性はなく、S114で行うその補正は不必要として
S122へジャンプする。つまり、この判断ステップ
は、上記放電終期における特異的な内部抵抗Rの増大現
象が生じるはずがない浅い放電量領域において、S11
4で行う内部抵抗補正操作を誤って実施することがない
ようにするためのものである。たとえば、定数xは1未
満の定数であり、たとえば0.5に設定される。Next, the present value Qr of the remaining capacity on the initial characteristics
It is checked whether or not ini is less than a predetermined threshold value obtained by multiplying the initial full charge capacity Qinifull by a predetermined constant x. If it is less than the above, it is determined that there is a possibility that a specific increase in the internal resistance of the battery occurs at the end of the discharge or the latter half of the discharge, and the process proceeds to the next step S110. There is no possibility that a significant internal resistance increase phenomenon will occur, and the correction performed in S114 is unnecessary, and the process jumps to S122. That is, this determination step is performed in a shallow discharge amount region where a specific increase phenomenon of the internal resistance R at the end of the discharge should not occur.
This is to prevent the internal resistance correction operation performed in step 4 from being erroneously performed. For example, the constant x is a constant less than 1, and is set to, for example, 0.5.
【0039】なお、S106では、初期特性上の残存容
量の今回値Qriniと初期時満充電容量Qinifu
llとの比較により、放電終期または放電後半期かどう
かを判定したが、前回求めた満充電容量Ahと現在の放
電量Ahとの同様の比較によりそれを求めてもよく、初
期時における所定放電電力での放電による満充電容量
と、今までの上記所定放電電力での放電による放電容量
との同様の比較によりそれを求めてもよい。In step S106, the current value Qini of the remaining capacity on the initial characteristics and the initial full charge capacity Qinifu
Although it was determined whether the end of discharge or the latter half of discharge by comparing with the full charge capacity Ah, it may be obtained by the same comparison between the previously obtained full charge capacity Ah and the current discharge amount Ah. It may be obtained by the same comparison between the full charge capacity by discharging with electric power and the discharging capacity by discharging with the predetermined discharging power.
【0040】・放電終期における内部抵抗増大判定(ス
テップS110) 次に、前回求めた補正内部抵抗特性(補正内部抵抗Ra
mendと放電量Ahとの関係を示す特性、前回Ram
マップともいう)に上記した放電量Ahの今回値Ahm
の値を代入して、この放電量Ahの今回値Ahmに対応
する前回Ramマップ上における補正内部抵抗Rame
ndの値(前回値という)Rambeforeを求め
る。Determination of Increase in Internal Resistance at End of Discharge (Step S110) Next, the previously determined corrected internal resistance characteristic (corrected internal resistance Ra
characteristics indicating the relationship between the Mend and the discharge amount Ah,
Current value Ahm of the discharge amount Ah
Is substituted for the corrected internal resistance Ram on the previous Ram map corresponding to the current value Ahm of the discharge amount Ah.
The value of nd (called the previous value) Rambefore is obtained.
【0041】次に、実測内部抵抗Rmが、このRamb
eforeに所定の定数yを掛けて求めた所定のしきい
値を超えるかどうかを調べ、超えれば上記放電終期にお
ける特異的な内部抵抗の増大現象が生じているものと判
断してS112へ進み、以下であれば上記増大現象は生
じておらず、それを補償するS114における補正は不
要であると判断してS116へ進む。たとえば定数yは
1を超える定数である。Next, the measured internal resistance Rm is calculated as Ramb
It is determined whether or not a predetermined threshold value obtained by multiplying “efore” by a predetermined constant y is exceeded. If it exceeds, it is determined that the specific internal resistance increase phenomenon at the end of the discharge has occurred, and the process proceeds to S112. If it is equal to or less than the above, the increase phenomenon has not occurred, and it is determined that the correction in S114 for compensating for the increase phenomenon is unnecessary, and the process proceeds to S116. For example, the constant y is a constant exceeding 1.
【0042】なお、S110では、上記した放電量Ah
の今回値Ahmに対応する前回Ramマップ上の内部抵
抗値Rambeforeと実測内部抵抗Rmとの比較に
より放電終期における内部抵抗急増現象の発生の有無を
判定したが、放電量Ahの今回値Ahmに対応する初期
内部抵抗特性上の補正内部抵抗Riniの前回値Rin
ibeforeと実測内部抵抗Rmとの比較により放電
終期における内部抵抗急増現象の発生の有無を判定して
もよい。In S110, the discharge amount Ah
Of the internal resistance value Rambefore on the previous Ram map corresponding to the current value Ahm and the measured internal resistance Rm, it was determined whether or not the internal resistance sudden increase phenomenon occurred at the end of discharge. Value Rin of the corrected internal resistance Rini on the initial internal resistance characteristic
The presence or absence of a sudden increase in the internal resistance at the end of discharge may be determined by comparing ivefore with the measured internal resistance Rm.
【0043】・放電終期の内部抵抗急増現象の補正1
(ステップS112) 次に、直前の充電前の前回放電時に求めた補正内部抵抗
特性(前回Ramマップ)に実測内部抵抗Rmを代入し
て、この前回Ramマップ上で実測内部抵抗Rmに対応
する放電量の値Ahxを求める。なお、S112では、
直前の充電前の前回放電時に求めた補正内部抵抗特性
(前回Ramマップ)に実測内部抵抗Rmを代入して、
この前回Ramマップ上で実測内部抵抗Rmに対応する
放電量の値Ahxを求めたが、初期内部抵抗特性(初期
Ramマップ)に実測内部抵抗Rmを代入して、この初
期Ramマップ上で実測内部抵抗Rmに対応する放電量
の値Ahxを求めてもよい。Correction of internal resistance sudden increase phenomenon at the end of discharge 1
(Step S112) Next, the measured internal resistance Rm is substituted for the corrected internal resistance characteristic (previous Ram map) obtained at the time of the previous discharge before the immediately preceding charge, and the discharge corresponding to the measured internal resistance Rm on the previous Ram map is performed. The value Ahx of the quantity is determined. In S112,
Substituting the actually measured internal resistance Rm into the corrected internal resistance characteristic (previous Ram map) obtained at the time of the previous discharge before the immediately preceding charge,
Although the value Ahx of the discharge amount corresponding to the actually measured internal resistance Rm was obtained on the previous Ram map, the actually measured internal resistance Rm was substituted into the initial internal resistance characteristic (the initial Ram map), and the actually measured internal resistance Rm was obtained on the initial Ram map. The value Ahx of the discharge amount corresponding to the resistance Rm may be obtained.
【0044】・放電終期の内部抵抗急増現象の補正2
(ステップS114) 次に、放電量Ahの今回値Ahmと上記前回Ramマッ
プ上の放電量の値Ahxとの比を求め、この比で、前回
Ramマップを示す二次元平面の放電量を示す軸線(放
電量軸という)を比例圧縮する操作(容量減少操作)を
行って今回の補正内部抵抗特性(今回Ramマップ)を
求める。Correction of internal resistance sudden increase phenomenon at the end of discharge 2
(Step S114) Next, the ratio between the current value Ahm of the discharge amount Ah and the value Ahx of the discharge amount on the previous Ram map is obtained, and the ratio indicates the axis indicating the discharge amount on the two-dimensional plane indicating the previous Ram map. An operation (capacity reduction operation) for proportionally compressing the discharge amount axis (referred to as a discharge amount axis) is performed to obtain a current corrected internal resistance characteristic (current Ram map).
【0045】なお、S114では、放電量Ahの今回値
Ahmと上記前回Ramマップ上の放電量の値Ahxと
の比で前回Ramマップの放電量軸を比例圧縮したが、
その代わりに、放電量Ahの今回値Ahmと初期Ram
マップ上の放電量の値Ahxiniとの比で初期Ram
マップの放電量軸を比例圧縮してもよい。なお、この放
電終期の内部抵抗急増現象は、放電終期に出現する現象
であるので、上記放電量軸の圧縮操作による前回内部抵
抗特性(前回Ramマップ)の修正は、S110で内部
抵抗急増を検出した時点の放電量値より大きい放電量の
範囲でのみ実施され、この時点以前の放電量範囲ではこ
の放電量軸の圧縮操作は実施しない。In S114, the discharge amount axis of the previous Ram map was proportionally compressed by the ratio of the current value Ahm of the discharge amount Ah to the value Ahx of the discharge amount on the previous Ram map.
Instead, the current value Ahm of the discharge amount Ah and the initial Ram
Initial Ram from the ratio to the value of discharge amount Ahxini on the map
The discharge amount axis of the map may be proportionally compressed. Since the internal resistance sudden increase phenomenon at the end of discharge is a phenomenon appearing at the end of discharge, the correction of the previous internal resistance characteristic (previous Ram map) by the compression operation of the discharge amount axis is performed by detecting the internal resistance sudden increase in S110. The compression operation of the discharge amount axis is not performed in the discharge amount range larger than the discharge amount value at the time point.
【0046】これにより、放電終期における内部抵抗急
増現象を補正内部抵抗Ramendと放電量Ahとの関
係を示す前回補正内部抵抗特性(前回Ramマップ)に
反映させて、今回補正内部抵抗特性(今回Ramマッ
プ)を求めることができる。 ・電池劣化による内部抵抗増大に対する補正1(ステッ
プS116) 次に、S106、S110の判定で、放電が浅い放電量
範囲であると判定した場合、若しくは、内部抵抗急増が
生じていないと判定した場合には、前回Ramマップ上
において放電量Ahの今回値Ahmに対応する補正内部
抵抗Ramendの値(前回値という)Rambefo
reと、実測内部抵抗Rmとを比較し、実測内部抵抗R
mが、この前回Ramマップ上の等価的な内部抵抗の値
Rambeforexに所定の定数zを掛けたしきい値
より大きいかどうかを調べ、大きい場合には、電池劣化
による内部抵抗増加が前回の補正内部抵抗特性(前回R
amマップ)の修正を必要となほど進行したと判定して
次のS120へ進み、以下であれば電池劣化による内部
抵抗増加が前回の補正内部抵抗特性(前回Ramマッ
プ)の修正を必要とするほど進行していないと判定して
S122へジャンプする。 ・電池劣化による内部抵抗増大に対する補正2(ステッ
プS120) 次に、前回Ramマップが表示される二次元平面の内部
抵抗を示す軸(内部抵抗軸)を、実測内部抵抗Rmと、
放電量Ahの今回値Ahmに対応する前回Ramマップ
上の内部抵抗の値Rambeforeとの比率で伸長
(抵抗値増大)して今回の補正内部抵抗特性(今回Ra
mマップ)とする。すなわち、ある放電量の値Ah0に
対する今回Ramマップ上の補正内部抵抗値Ram0
は、この放電量の値Ah0にそれぞれ対する実測内部抵
抗値Rm0と前回内部抵抗値Rambefore0との
比(Rm0/Rambefore0)と、この放電量値
Ah0に対する前回Ramマップ上の補正内部抵抗値R
am0とを掛けたものとなる。Thus, the sudden increase in the internal resistance at the end of the discharge is reflected in the previous corrected internal resistance characteristic (previous Ram map) indicating the relationship between the corrected internal resistance Ramend and the discharge amount Ah, and the current corrected internal resistance characteristic (the current Ram map) is reflected. Map). Correction 1 for Increase in Internal Resistance Due to Battery Deterioration (Step S116) Next, in the determinations in S106 and S110, when it is determined that the discharge is in a shallow discharge amount range, or when it is determined that the internal resistance has not increased sharply. Is the value of the corrected internal resistance Ramend (referred to as the previous value) Rambefo corresponding to the current value Ahm of the discharge amount Ah on the previous Ram map.
re is compared with the measured internal resistance Rm.
It is checked whether or not m is larger than a threshold value obtained by multiplying the equivalent internal resistance value Rambeforex on the previous Ram map by a predetermined constant z. If it is larger, the internal resistance increase due to battery deterioration is corrected by the previous correction. Internal resistance characteristics (previous R
It is determined that the correction has progressed to the extent that the am map (am map) needs to be modified, and the process proceeds to the next step S120. In the following case, an increase in internal resistance due to battery deterioration requires modification of the previous corrected internal resistance characteristic (previous Ram map). It is determined that it has not progressed so much, and the process jumps to S122. Correction 2 for Increase in Internal Resistance Due to Battery Deterioration (Step S120) Next, the axis (internal resistance axis) indicating the internal resistance of the two-dimensional plane on which the previous Ram map is displayed is the measured internal resistance Rm
The current value of the corrected internal resistance (current Ra) is expanded at a ratio of the internal resistance value Rambefore on the previous Ram map corresponding to the current value Ahm of the discharge amount Ah (resistance value is increased).
m map). In other words, the corrected internal resistance value Ram0 on the current Ram map for a certain discharge amount value Ah0
Is the ratio (Rm0 / Rambefore0) between the measured internal resistance value Rm0 and the previous internal resistance value Rambefore0 for the discharge amount value Ah0, respectively, and the corrected internal resistance value R on the previous Ram map for the discharge amount value Ah0.
am0.
【0047】これにより、電池の劣化に起因する内部抵
抗の増大を加味した今回の補正内部抵抗特性(Ramマ
ップ)を得ることができる。この結果、通常の電池劣化
による内部抵抗の増加はS120の内部抵抗軸の伸長で
求め、放電終期における特異的な内部抵抗の増大はS1
14における放電量軸の圧縮で求めることができる。As a result, it is possible to obtain the current corrected internal resistance characteristic (Ram map) taking into account the increase in the internal resistance due to the deterioration of the battery. As a result, an increase in internal resistance due to normal battery deterioration is obtained by elongation of the internal resistance axis in S120, and a specific increase in internal resistance at the end of discharge is S1.
14 and can be obtained by compression of the discharge amount axis.
【0048】・メモリ効果による開放電圧低下の補正1
(ステップS122、S124) 次のS122では、放電が直前の充電動作開始時点の放
電量値Ahxにまで達したかどうかを調べ、達していな
ければS126へ進み、達していれば、現在の放電量A
hの今回値Ahxにおける開放電圧OCVの値(放電終
了時点の開放電圧OCVm)と初期開放電圧特性上の現
在の放電量Ahの今回値Ahxに対応する値との電圧差
ΔVを、現在の放電量Ahの今回値Ahxとペアで記憶
し(S124)、S126へ進む。これは、次回の放電
時に、この放電量Ahx以降の放電に対してメモリ効果
による開放電圧OCVがΔVだけ低下することを記憶す
るためである。Correction of open-circuit voltage drop due to memory effect 1
(Steps S122, S124) In the next S122, it is checked whether or not the discharge has reached the discharge amount value Ahx at the start of the immediately preceding charging operation, and if not, the process proceeds to S126. A
The voltage difference ΔV between the value of the open circuit voltage OCV at the current value Ahx of h (the open circuit voltage OCVm at the end of the discharge) and the value corresponding to the current value Ahx of the current discharge amount Ah on the initial open circuit voltage characteristic is calculated as the current discharge The amount Ah is stored in pairs with the current value Ahx (S124), and the process proceeds to S126. This is to store that the open circuit voltage OCV due to the memory effect decreases by ΔV with respect to the discharge after the discharge amount Ahx at the next discharge.
【0049】・メモリ効果による開放電圧低下の補正2
(ステップS126) このステップでは、開放電圧特性の補正を行う。この開
放電圧の補正は次のように行う。まず、直前の充電動作
で充電がなされた放電量範囲においては、メモリ効果に
よる開放電圧OCVの低下が解消されたと考えて、初期
開放電圧特性を今回の開放電圧特性とするとともに、こ
の放電量範囲において、いままでのS124で記憶した
1乃至複数の上記ペアを消す。Correction of open-circuit voltage drop due to memory effect 2
(Step S126) In this step, the open-circuit voltage characteristics are corrected. The correction of the open-circuit voltage is performed as follows. First, in the discharge amount range charged in the immediately preceding charging operation, it is considered that the decrease in the open-circuit voltage OCV due to the memory effect has been eliminated, and the initial open-circuit voltage characteristic is used as the current open-circuit voltage characteristic. In step 1, one or a plurality of the pairs stored in step S124 are deleted.
【0050】次に、直前の充電動作で充電がなされなか
った放電量範囲においては、メモリ効果による開放電圧
OCVの低下が残留していると考えて、この放電量範囲
においていままでのS124で記憶した放電終了時点の
放電量値と電圧差ΔVとの1乃至複数のペアに基づい
て、初期開放電圧特性(OCViniマップ)上の開放
電圧OCVを示す軸線(開放電圧軸)を電圧減少方向に
上記電圧差ΔVだけスライドさせて、補正開放電圧特性
とする操作を行う。これにより、メモリ効果による起電
圧の劣化を補正開放電圧特性に表すことができる。Next, in the discharge amount range in which charging was not performed in the immediately preceding charging operation, it is considered that the decrease in the open circuit voltage OCV due to the memory effect remains, and this discharge amount range is stored in S124 up to now. Based on one or a plurality of pairs of the discharge amount value at the end of the discharge and the voltage difference ΔV, the axis (open voltage axis) indicating the open circuit voltage OCV on the initial open circuit voltage characteristic (OCVini map) is moved in the voltage decreasing direction. An operation is performed by sliding by the voltage difference ΔV to obtain the corrected open-circuit voltage characteristic. Thereby, the deterioration of the electromotive voltage due to the memory effect can be represented in the corrected open-circuit voltage characteristic.
【0051】なお、上記スライド操作は複数回実施され
ることが有り得る。たとえば、最初に満充電から放電量
値100Ahまで放電し、その後、満充電してから放電
量値70Ahまで放電し、次に満充電してから放電量値
50Ahまで放電した時点を考える。この時点では、放
電量0Ahから70Ahまではほぼ開放電圧OCVは初
期開放電圧に回復しているが、放電量値70Ahで電圧
差ΔV1だけ初期開放電圧からの開放電圧OCVの低下
が生じており、放電量値100Ahで電圧差ΔV2だけ
初期開放電圧からの開放電圧OCVの低下が生じてい
る。Note that the slide operation may be performed a plurality of times. For example, let us consider a point in time when the battery is first discharged from a full charge to a discharge amount value of 100 Ah, then discharged to a discharge amount value of 70 Ah after being fully charged, and then discharged to a discharge amount value of 50 Ah after the full charge. At this time, the open circuit voltage OCV has almost recovered to the initial open circuit voltage from the discharge amount of 0 Ah to 70 Ah, but the open circuit voltage OCV from the initial open circuit voltage has decreased by the voltage difference ΔV1 at the discharge amount value of 70 Ah, At the discharge amount value of 100 Ah, the open circuit voltage OCV decreases from the initial open circuit voltage by the voltage difference ΔV2.
【0052】したがって、この放電量値70Ahで電圧
差ΔV1だけ初期開放電圧をレベルシフトさせ、更に放
電量値100Ahで電圧差ΔV2だけ初期開放電圧をレ
ベルシフトさせることにより今回の開放電圧特性を決定
することができる。 ・基準放電電力値での放電特性の演算(S128) 次に、S114又はS120で求めた今回の補正内部抵
抗特性及びS126で求めた今回の補正開放電圧特性を
用いて基準放電電力値での放電特性の演算を行う。な
お、ここでいう基準放電電力値での放電特性とは、所定
の基準放電電力(ここでは2kW)を放電する場合の電
池の出力電圧(放電電圧)Vと放電量Ahとの関係を示
す特性である。Therefore, the current open-circuit voltage characteristic is determined by shifting the level of the initial open-circuit voltage by the voltage difference ΔV1 at the discharge amount value of 70 Ah, and further shifting the level of the initial open-circuit voltage by the voltage difference ΔV2 at the discharge amount value of 100 Ah. be able to. Calculation of Discharge Characteristics at Reference Discharge Power Value (S128) Next, discharge at the reference discharge power value is performed using the current corrected internal resistance characteristics obtained at S114 or S120 and the current corrected open-circuit characteristics obtained at S126. Calculate the characteristics. Here, the discharge characteristic at the reference discharge power value is a characteristic indicating the relationship between the output voltage (discharge voltage) V of the battery and the discharge amount Ah when discharging a predetermined reference discharge power (here, 2 kW). It is.
【0053】更に説明すると、任意の放電量Ahの値に
対応する放電電圧Vは、この放電量Ahの値に対応して
補正開放電圧特性から求めた開放電圧値OCV’と、こ
の放電量Ahの値に対応して補正内部抵抗特性から求め
た内部抵抗値R’から次の二次関数式により算出され
る。ただし、Wは基準放電電力値、Aはこの放電量Ah
における放電電流値である。More specifically, the discharge voltage V corresponding to an arbitrary value of the discharge amount Ah includes an open-circuit voltage value OCV ′ obtained from the corrected open-circuit voltage characteristic corresponding to the value of the discharge amount Ah, and a discharge amount Ah Is calculated from the internal resistance value R ′ obtained from the corrected internal resistance characteristic in accordance with the following quadratic function equation. Here, W is the reference discharge power value, and A is this discharge amount Ah
Is the discharge current value at.
【0054】 V=OCV’−R’・A=OCV’−R’・W/V ・残存容量の演算(S130) このステップでは、S128で求めた所定の基準放電電
力(ここでは2kW)での放電特性を、放電量Ahの今
回値Ahmから電池がもはや所定の基準放電電力で放電
できない放電量まで積分して、基準放電電力放電可能な
残存容量を求め、メインルーチンにリターンする。 (実施例の効果)上記説明したこの実施例では、内部抵
抗特性と開放電圧特性とに基づいて求めた放電特性から
残存容量を求めるので、従来より正確に残存容量を算出
することができる。V = OCV′−R ′ · A = OCV′−R ′ · W / V · Calculation of Remaining Capacity (S130) In this step, the predetermined discharge power (2 kW in this case) obtained in S128 is used. The discharge characteristics are integrated from the current value Ahm of the discharge amount Ah to a discharge amount at which the battery can no longer be discharged at a predetermined reference discharge power, a remaining capacity at which the reference discharge power can be discharged is obtained, and the process returns to the main routine. (Effects of Embodiment) In this embodiment described above, since the remaining capacity is obtained from the discharge characteristics obtained based on the internal resistance characteristics and the open-circuit voltage characteristics, it is possible to calculate the remaining capacity more accurately than before.
【0055】すなわち、メモリ効果を有する電池では、
メモリ効果による残存容量の減少は内部抵抗の増大では
なく開放電圧の低下で表現でき、電池劣化による残存容
量の減少は開放電圧の低下ではなく内部抵抗の増大で表
現できることが、前述した本出願人出願の従来技術で示
されている。ここで重要なことは、内部抵抗が放電量又
は残存容量に応じて、更に正確に言えば、満充電量に対
する放電量又は残存容量に応じてある関数で変化する値
であり、この関数変化を補償するには、この関数によっ
て放電電圧−放電容量を示す放電特性の放電量軸の圧縮
を行うことが要求される。一方、メモリ効果による開放
電圧の低下は各放電量の値に対して一定であり、この一
定の開放電圧低下を補償するには、この放電電圧に占め
る開放電圧低下量だけ、放電電圧−放電容量を示す放電
特性の放電量軸のレベルダウンを行う必要がある。That is, in a battery having a memory effect,
The applicant of the present invention stated that the decrease in the remaining capacity due to the memory effect can be expressed not as an increase in the internal resistance but as a decrease in the open-circuit voltage, and the decrease in the remaining capacity due to the deterioration of the battery can be expressed as an increase in the internal resistance rather than a decrease in the open-circuit voltage. This is shown in the prior art of the application. What is important here is a value at which the internal resistance changes according to a discharge amount or a remaining capacity, or more precisely, a function according to a discharge amount or a remaining capacity with respect to a full charge amount. In order to compensate, it is required to compress the discharge amount axis of the discharge characteristic indicating the discharge voltage-discharge capacity by this function. On the other hand, the decrease in open-circuit voltage due to the memory effect is constant with respect to the value of each discharge amount. It is necessary to lower the level of the discharge amount axis in the discharge characteristics indicating the following.
【0056】しかし、前述した本出願人出願の従来技術
では、ある放電量で生じた直前の充電前の放電における
放電電圧と、同一の放電量で生じた今回計測した放電電
圧との電圧差のうち、メモリ効果に起因する成分(レベ
ルシフトすべき電圧成分)と、電池劣化に起因する成分
(放電量軸圧縮で補償するべき電圧成分)との割合が不
明であり、正確に上記レベルシフト補償と、容量軸圧縮
補償とを実施できず、それが残存容量演算誤差となるこ
とである。However, in the above-described prior art of the present applicant, the voltage difference between the discharge voltage in the discharge before charging immediately before the occurrence of a certain discharge amount and the discharge voltage measured this time in the same discharge amount is measured. Of these, the ratio of the component caused by the memory effect (the voltage component to be level-shifted) and the component caused by the battery degradation (the voltage component to be compensated by the compression of the discharge amount axis) is unknown, and the level shift compensation is accurately performed. And capacity axis compression compensation cannot be performed, which results in a remaining capacity calculation error.
【0057】これに対し、この実施例では、内部抵抗特
性と開放電圧OCV特性とを用いることにより、電池劣
化による内部抵抗増大を、放電量軸の圧縮又は内部抵抗
軸の伸長で正確に対応し、かつ、メモリ効果による開放
電圧低下を、開放電圧軸のスライドで正確に対応するの
で、現時点以降の残存容量を、初期開放電圧特性と初期
内部抵抗特性のペア、又は、前回開放電圧特性と前回内
部抵抗特性のペアと、実測した開放電圧値及び内部抵抗
値に基づいて、正確に求めることができる。On the other hand, in this embodiment, by using the internal resistance characteristic and the open-circuit voltage OCV characteristic, the increase in the internal resistance due to the deterioration of the battery can be accurately handled by compressing the discharge amount axis or extending the internal resistance axis. In addition, since the open-circuit voltage drop due to the memory effect can be accurately dealt with by sliding the open-circuit voltage axis, the remaining capacity after the present time can be calculated by pairing the initial open-circuit voltage characteristic and the initial internal resistance characteristic, or the previous open-circuit voltage characteristic and the previous open-circuit voltage characteristic. It can be accurately obtained based on the pair of the internal resistance characteristics and the actually measured open-circuit voltage value and internal resistance value.
【0058】更に、電池の劣化が進行すると、電池の放
電終期において内部抵抗が急激に増大する現象に対して
はそれを判別して対処しているので、一層正確に残存容
量を演算することができる。Further, as the deterioration of the battery progresses, the phenomenon that the internal resistance sharply increases at the end of discharging of the battery is discriminated and dealt with, so that the remaining capacity can be calculated more accurately. it can.
【図1】本発明の電池の残存容量演算装置の一実施例を
示すブロック図である。FIG. 1 is a block diagram showing an embodiment of a battery remaining capacity calculating device according to the present invention.
【図2】放電量Ahと放電電圧Vとの関係を示す模式特
性図である。FIG. 2 is a schematic characteristic diagram showing a relationship between a discharge amount Ah and a discharge voltage V.
【図3】放電量Ahと内部抵抗rとの関係を示す模式特
性図である。FIG. 3 is a schematic characteristic diagram showing a relationship between a discharge amount Ah and an internal resistance r.
【図4】放電量Ahと開放電圧マップOCVとの関係を
示す模式特性図である。FIG. 4 is a schematic characteristic diagram showing a relationship between a discharge amount Ah and an open-circuit voltage map OCV.
【図5】残存容量演算処理1を示すフローチャートであ
る。FIG. 5 is a flowchart illustrating a remaining capacity calculation process 1;
【図6】残存容量演算処理2を示すフローチャートであ
る。FIG. 6 is a flowchart showing a remaining capacity calculation process 2;
【図7】残存容量演算処理2を示すフローチャートであ
る。FIG. 7 is a flowchart illustrating a remaining capacity calculation process 2;
1は電池、4はコントローラ、5は電流センサ 1 is a battery, 4 is a controller, 5 is a current sensor
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G016 CA03 CB06 CB11 CB12 CB13 CB21 CB22 CC01 CC03 CC04 CC27 5G003 CA01 CA11 CB01 CB07 EA05 EA09 GC04 GC05 5H030 AA08 AS08 FF42 FF44 5H115 PA14 PG04 PI16 PU21 QN03 TI02 TI05 TI06 TO05 5H420 CC03 DD03 EB26 EB39 FF04 FF14 FF22 LL10 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G016 CA03 CB06 CB11 CB12 CB13 CB21 CB22 CC01 CC03 CC04 CC27 5G003 CA01 CA11 CB01 CB07 EA05 EA09 GC04 GC05 5H030 AA08 AS08 FF42 FF44 5H115 PA14 PG04 PI16 PU05 QN03 TI05 TI05 DD03 EB26 EB39 FF04 FF14 FF22 LL10
Claims (7)
を検出する検出手段、 前記放電電流Aに基づいて放電量の今回値を算出する放
電量算出手段、 前記放電電圧及び放電電流に基づいて電池の内部抵抗の
今回値及び開放電圧の今回値を算出する開放電圧算出手
段、 前記電池の内部抵抗と放電量との過去の関係を示す内部
抵抗特性、及び、前記電池の開放電圧と放電量との過去
の関係を示す開放電圧特性を記憶する放電特性記憶手
段、 前記内部抵抗の今回値及び開放電圧の今回値並びに前記
内部抵抗特性及び開放電圧特性に基づいて残存容量を演
算する残存容量演算手段、 を備えることを特徴とする電池の残存容量演算装置。1. A detecting means for detecting a discharge voltage and a discharge current of a chargeable / dischargeable battery; a discharge amount calculating means for calculating a current value of a discharge amount based on the discharge current A; Open voltage calculation means for calculating the current value of the internal resistance of the battery and the current value of the open voltage, an internal resistance characteristic indicating a past relationship between the internal resistance of the battery and the discharge amount, and an open voltage and a discharge of the battery. Discharge characteristic storage means for storing an open voltage characteristic indicating a past relationship with the amount, a remaining capacity for calculating a remaining capacity based on the current value of the internal resistance and the current value of the open voltage, and the internal resistance characteristic and the open voltage characteristic A battery remaining capacity calculation device, comprising: calculation means.
おいて、 前記残存容量演算手段は、 前記開放電圧の今回値を変数とする所定の関数で過去の
前記開放電圧特性を変形して前記残存容量演算用の今回
の前記開放電圧特性を形成し、 前記内部抵抗の今回値を変数とする所定の関数で過去の
前記内部抵抗特性を変形して前記残存容量演算用の今回
の前記内部抵抗特性を形成し、 前記今回の内部抵抗特性及び前記今回の開放電圧特性に
基づいて残存容量を演算することを特徴とする電池の残
存容量演算装置。2. The battery remaining capacity calculating device according to claim 1, wherein the remaining capacity calculating means deforms the past open-circuit voltage characteristic by a predetermined function having a current value of the open-circuit voltage as a variable. Forming the current open-circuit voltage characteristic for calculating the remaining capacity; deforming the internal resistance characteristic in the past with a predetermined function using the current value of the internal resistance as a variable; A battery remaining capacity calculating device for forming a characteristic, and calculating a remaining capacity based on the current internal resistance characteristic and the current open voltage characteristic.
おいて、 前記残存容量演算手段は、 前記今回の内部抵抗特性及び前記今回の開放電圧特性に
基づいて求めた前記放電電圧と前記放電量との関係を示
す放電特性を、現在の放電量値から所定の放電終了放電
量値まで積分して残存容量を演算することを特徴とする
電池の残存容量演算装置。3. The battery remaining capacity calculating device according to claim 2, wherein the remaining capacity calculating means includes: the discharge voltage and the discharge amount obtained based on the current internal resistance characteristic and the current open voltage characteristic. And calculating a remaining capacity by integrating a discharge characteristic indicating a relationship from the current discharge amount value to a predetermined discharge end discharge amount value to calculate a remaining capacity.
おいて、 前記残存容量演算手段は、 前記過去の開放電圧特性上で前記放電量の今回値に対応
する仮想の開放電圧値と前記開放電圧の今回値との間の
電圧差を、前記メモリ効果の量が異なる放電量範囲ごと
にそれぞれ記憶し、 前記放電量範囲ごとに前記電圧差だけ前記過去の開放電
圧特性をスライドして前記今回の開放電圧特性を形成す
ることを特徴とする電池の残存容量演算装置。4. The battery remaining capacity calculating device according to claim 2, wherein the remaining capacity calculating means includes: a virtual open voltage value corresponding to a current value of the discharge amount on the past open voltage characteristics; The voltage difference between the current value and the current value is stored for each discharge amount range in which the amount of the memory effect is different, and the past open voltage characteristics are slid by the voltage difference for each discharge amount range, and A battery remaining capacity calculating device characterized by forming the open-circuit voltage characteristic of the battery.
おいて、 前記残存容量演算手段は、 前記過去の内部抵抗特性上で前記放電量の今回値に対応
する仮想の内部抵抗値と前記内部抵抗の今回値との間の
抵抗比を求め、前記過去の内部抵抗特性を前記抵抗比だ
け伸長して前記今回の内部抵抗特性を形成することを特
徴とする電池の残存容量演算装置。5. The battery remaining capacity calculating device according to claim 2, wherein said remaining capacity calculating means includes: a virtual internal resistance value corresponding to a current value of said discharge amount on said past internal resistance characteristic; A remaining capacity calculation device for a battery, wherein a resistance ratio between a current resistance value and a current value is obtained, and the past internal resistance characteristic is extended by the resistance ratio to form the current internal resistance characteristic.
おいて、 前記残存容量演算手段は、 前記過去の内部抵抗特性上で前記内部抵抗の今回値に対
応する仮想の放電量値と前記放電量の今回値との間の放
電量比を求め、前記過去の内部抵抗特性を前記放電量比
だけ圧縮して前記今回の内部抵抗特性を形成することを
特徴とする電池の残存容量演算装置。6. The battery remaining capacity calculating device according to claim 2, wherein said remaining capacity calculating means includes: a virtual discharge amount value corresponding to a current value of said internal resistance on said past internal resistance characteristic; A remaining capacity calculating device for a battery, wherein a discharge amount ratio between the current amount and a current value is obtained, and the past internal resistance characteristic is compressed by the discharge amount ratio to form the current internal resistance characteristic.
おいて、 前記残存容量演算手段は、 前記放電が深く、かつ、前記内部抵抗の今回値が所定値
より大きい場合に、前記放電量比に基づく前記圧縮によ
り前記今回の内部抵抗特性を求めることを特徴とする電
池の残存容量演算装置。7. The battery remaining capacity calculating device according to claim 6, wherein the remaining capacity calculating means is configured to determine the discharge amount ratio when the discharge is deep and the current value of the internal resistance is greater than a predetermined value. A remaining capacity calculating device for a battery, wherein the current internal resistance characteristic is obtained by the compression based on the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31364498A JP4110639B2 (en) | 1998-11-04 | 1998-11-04 | Battery remaining capacity calculation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31364498A JP4110639B2 (en) | 1998-11-04 | 1998-11-04 | Battery remaining capacity calculation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000147075A true JP2000147075A (en) | 2000-05-26 |
JP4110639B2 JP4110639B2 (en) | 2008-07-02 |
Family
ID=18043798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31364498A Expired - Fee Related JP4110639B2 (en) | 1998-11-04 | 1998-11-04 | Battery remaining capacity calculation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4110639B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003096040A1 (en) * | 2002-05-14 | 2003-11-20 | Sony Corporation | Battery capacity calculation method |
WO2004046742A1 (en) * | 2002-11-15 | 2004-06-03 | Sony Corporation | Battery capacity calculating method, battery capacity calculating apparatus, and battery capacity calculating program |
WO2004088340A1 (en) * | 2003-03-31 | 2004-10-14 | Yazaki Corporation | Battery state monitoring device and its method, and dischargeable capacity detecting method |
WO2006080067A1 (en) * | 2005-01-27 | 2006-08-03 | Panasonic Ev Energy Co., Ltd. | Secondary cell charge/discharge electricity amount estimation method and device, secondary cell polarization voltage estimation method and device, and secondary cell remaining capacity estimation method and device |
JP2007015622A (en) * | 2005-07-08 | 2007-01-25 | Hoshizaki Electric Co Ltd | Auxiliary motor driven type serving cart |
JP2008096442A (en) * | 2002-10-28 | 2008-04-24 | Matsushita Electric Ind Co Ltd | Battery management system, battery pack, and charging state measurement method therefor |
JP2009052925A (en) * | 2007-08-24 | 2009-03-12 | Panasonic Ev Energy Co Ltd | State-of-charge estimation device and program of secondary battery |
US7554296B2 (en) | 2005-02-14 | 2009-06-30 | Denso Corporation | Method and apparatus for detecting charged state of secondary battery based on neural network calculation |
CN104035034A (en) * | 2013-03-06 | 2014-09-10 | 宏达国际电子股份有限公司 | Electronic device and battery electric quantity detection method |
CN105301513A (en) * | 2015-12-03 | 2016-02-03 | 北京航空航天大学 | Accurate measurement method for lithium battery capacity |
TWI569030B (en) * | 2013-03-06 | 2017-02-01 | 宏達國際電子股份有限公司 | Electronic device and method for detecting the amount of charge of a battery |
WO2017046870A1 (en) * | 2015-09-15 | 2017-03-23 | 株式会社 東芝 | Storage battery control device, control method, program, power storage system, electric power system |
JP2018087784A (en) * | 2016-11-30 | 2018-06-07 | トヨタ自動車株式会社 | Battery system |
JP2018087785A (en) * | 2016-11-30 | 2018-06-07 | トヨタ自動車株式会社 | Battery system |
WO2019159584A1 (en) * | 2018-02-14 | 2019-08-22 | 株式会社デンソー | Device for determining abnormality in secondary battery |
WO2023139921A1 (en) * | 2022-01-21 | 2023-07-27 | 日本碍子株式会社 | Battery control device and battery control method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018115284A1 (en) * | 2018-06-26 | 2020-01-02 | Johnson Controls Autobatterie Gmbh & Co. Kgaa | METHOD FOR ESTIMATING A STATE OF AN ELECTRICAL ENERGY STORAGE SYSTEM, AND SYSTEM FOR DETERMINING A REMAINING CAPACITY OF AN ELECTRICAL ENERGY STORAGE SYSTEM |
-
1998
- 1998-11-04 JP JP31364498A patent/JP4110639B2/en not_active Expired - Fee Related
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7091698B2 (en) | 2002-05-14 | 2006-08-15 | Sony Corporation | Battery capacity calculating method |
WO2003096040A1 (en) * | 2002-05-14 | 2003-11-20 | Sony Corporation | Battery capacity calculation method |
CN100343686C (en) * | 2002-05-14 | 2007-10-17 | 索尼株式会社 | Battery capacity calculating method |
JP2011169907A (en) * | 2002-10-28 | 2011-09-01 | Panasonic Corp | Battery management system, battery pack, and method of measuring state of charge |
JP2008096442A (en) * | 2002-10-28 | 2008-04-24 | Matsushita Electric Ind Co Ltd | Battery management system, battery pack, and charging state measurement method therefor |
KR101056826B1 (en) * | 2002-11-15 | 2011-08-16 | 소니 가부시키가이샤 | Computer-readable recording medium recording battery capacity calculating method, battery capacity calculating device and battery capacity calculating program |
US7078907B2 (en) | 2002-11-15 | 2006-07-18 | Sony Corporation | Battery capacity calculating method, battery capacity calculating apparatus and battery capacity calculating program |
CN100437135C (en) * | 2002-11-15 | 2008-11-26 | 索尼株式会社 | Battery capacity calculating method, battery capacity calculating apparatus, and battery capacity calculating program |
WO2004046742A1 (en) * | 2002-11-15 | 2004-06-03 | Sony Corporation | Battery capacity calculating method, battery capacity calculating apparatus, and battery capacity calculating program |
WO2004088340A1 (en) * | 2003-03-31 | 2004-10-14 | Yazaki Corporation | Battery state monitoring device and its method, and dischargeable capacity detecting method |
WO2006080067A1 (en) * | 2005-01-27 | 2006-08-03 | Panasonic Ev Energy Co., Ltd. | Secondary cell charge/discharge electricity amount estimation method and device, secondary cell polarization voltage estimation method and device, and secondary cell remaining capacity estimation method and device |
US7630842B2 (en) | 2005-01-27 | 2009-12-08 | Panasonic Ev Energy Co., Ltd. | Secondary battery charge/discharge electricity amount estimation method and device, secondary battery polarization voltage estimation method and device and secondary battery remaining capacity estimation method and device |
KR100956172B1 (en) * | 2005-01-27 | 2010-05-06 | 파나소닉쿠 이브이에나지 가부시키가이샤 | Secondary cell charge/discharge electricity amount estimation method and device, secondary cell polarization voltage estimation method and device, and secondary cell remaining capacity estimation method and device |
US7554296B2 (en) | 2005-02-14 | 2009-06-30 | Denso Corporation | Method and apparatus for detecting charged state of secondary battery based on neural network calculation |
JP2007015622A (en) * | 2005-07-08 | 2007-01-25 | Hoshizaki Electric Co Ltd | Auxiliary motor driven type serving cart |
JP2009052925A (en) * | 2007-08-24 | 2009-03-12 | Panasonic Ev Energy Co Ltd | State-of-charge estimation device and program of secondary battery |
CN104035034A (en) * | 2013-03-06 | 2014-09-10 | 宏达国际电子股份有限公司 | Electronic device and battery electric quantity detection method |
TWI569030B (en) * | 2013-03-06 | 2017-02-01 | 宏達國際電子股份有限公司 | Electronic device and method for detecting the amount of charge of a battery |
WO2017046870A1 (en) * | 2015-09-15 | 2017-03-23 | 株式会社 東芝 | Storage battery control device, control method, program, power storage system, electric power system |
CN107431255A (en) * | 2015-09-15 | 2017-12-01 | 株式会社东芝 | Accumulator control device, control method, program, accumulating system, power system |
JPWO2017046870A1 (en) * | 2015-09-15 | 2017-12-07 | 株式会社東芝 | Storage battery control device, control method, program, power storage system, power system |
US10644359B2 (en) | 2015-09-15 | 2020-05-05 | Kabushiki Kaisha Toshiba | Storage battery controlling device, controlling method, non-transitory computer readable medium, power storage system, and power system |
CN105301513A (en) * | 2015-12-03 | 2016-02-03 | 北京航空航天大学 | Accurate measurement method for lithium battery capacity |
CN105301513B (en) * | 2015-12-03 | 2018-07-17 | 北京航空航天大学 | A kind of lithium battery capacity accurately measures method |
JP2018087784A (en) * | 2016-11-30 | 2018-06-07 | トヨタ自動車株式会社 | Battery system |
JP2018087785A (en) * | 2016-11-30 | 2018-06-07 | トヨタ自動車株式会社 | Battery system |
WO2019159584A1 (en) * | 2018-02-14 | 2019-08-22 | 株式会社デンソー | Device for determining abnormality in secondary battery |
JP2019138852A (en) * | 2018-02-14 | 2019-08-22 | 株式会社デンソー | Abnormality determination device of secondary battery |
WO2023139921A1 (en) * | 2022-01-21 | 2023-07-27 | 日本碍子株式会社 | Battery control device and battery control method |
Also Published As
Publication number | Publication date |
---|---|
JP4110639B2 (en) | 2008-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7676334B2 (en) | Battery condition monitor | |
JP2000147075A (en) | Apparatus for calculating remaining capacity of cell | |
EP3438683B1 (en) | Secondary battery deterioration estimation device and secondary battery deterioration estimation method | |
US5606243A (en) | Battery state judging apparatus | |
EP1701175B1 (en) | Power supply with status detector and initial characteristic determination means | |
EP1923711B1 (en) | Battery capacity measuring and remaining capacity calculating system | |
KR100606876B1 (en) | Method and device for estimating remaining capacity of secondary cell, battery pack system, and electric vehicle | |
EP1801604A2 (en) | Method for compensating state of charge of battery and battery management system using the same | |
JP3006298B2 (en) | Battery remaining capacity meter | |
CN110780207B (en) | Method for monitoring the state of a battery, monitoring device and motor vehicle | |
EP2439550B1 (en) | Battery state of charge calculation device | |
CN108196199B (en) | Lithium battery capacity estimation method, system and device in vehicle state | |
JP4907519B2 (en) | Battery status monitoring device | |
US9400313B2 (en) | Method and device for determining the actual capacity of a battery | |
EP3438684B1 (en) | Device for estimating degradation of secondary cell, and method for estimating degradation of secondary cell | |
JP2002051470A (en) | Remaining capacity detector of accumulator | |
US20090248334A1 (en) | Method for estimating the charge of a motor vehicle battery | |
CN113009346B (en) | Battery system and SOC value correction method thereof | |
JP2003035755A (en) | Method for detecting stored power in battery | |
JP2000306613A (en) | Battery state monitoring device | |
KR101065591B1 (en) | battery management system for estimating battery state of charge and method thereof | |
JP4647509B2 (en) | Battery state management device and management method | |
JP3551767B2 (en) | Battery discharge meter | |
JP3432463B2 (en) | Battery capacity measurement device | |
JPH0755903A (en) | Residual capacity monitor for battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070316 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080318 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080331 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140418 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |