JP2000146852A - Monitoring mehotd of laser welding and device therefor - Google Patents

Monitoring mehotd of laser welding and device therefor

Info

Publication number
JP2000146852A
JP2000146852A JP10318708A JP31870898A JP2000146852A JP 2000146852 A JP2000146852 A JP 2000146852A JP 10318708 A JP10318708 A JP 10318708A JP 31870898 A JP31870898 A JP 31870898A JP 2000146852 A JP2000146852 A JP 2000146852A
Authority
JP
Japan
Prior art keywords
light
groove
laser welding
depth
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10318708A
Other languages
Japanese (ja)
Other versions
JP3439138B2 (en
Inventor
Isamu Miyamoto
宮本  勇
Takashi Ishide
孝 石出
Risuke Nayama
理介 名山
Yoshio Hashimoto
義男 橋本
Tadashi Nagashima
是 長島
Takashi Akaha
崇 赤羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP31870898A priority Critical patent/JP3439138B2/en
Publication of JP2000146852A publication Critical patent/JP2000146852A/en
Application granted granted Critical
Publication of JP3439138B2 publication Critical patent/JP3439138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely estimate the generation of a welding defect including the presence of a porosity within a weld metal by fitting the focal point or image pickup position to a plurality of desired depths within the key hole of a groove during laser welding, reading the respective light quantities in the depths, and analyzing the light quantities. SOLUTION: A power beam is emitted to the groove 11 of a work 10. The power beam is formed by a first optical system consisting of a laser beam source 12 such as YAG laser, a total reflecting mirror 13 and a condenser lens 14. On the other hand, the focusing or imaging surface fitting of a monitoring fiber 17a is performed by a second optical system consisting of a partial reflecting mirror 15a and a lens 16a so as to have the light quantity in the depth directional position 1 of the groove 11. The focusing or imaging surface fitting of monitoring fibers 17b, 17c is also performed by second and third optical systems so as to have the light quantities in the depth directional positions 2 and 3 of the groove 11. Accordingly, noise can be reduced by the set of a pinhole 22, and the light quantity in a depth position can be judged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ溶接中に溶
接不具合を推定するレーザ溶接モニタリング方法及びそ
の装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser welding monitoring method and apparatus for estimating welding defects during laser welding.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】最近、技
術開発が盛んであるレーザ溶接技術にあっては、溶接欠
陥等溶接の不具合を検知し、その不具合の原因を無くす
ように条件の修正を加えたり適応制御を行ない、溶接品
質を更に向上させる必要に迫られている。従来では、溶
接の不具合や溶接の安定性は、レーザプルームの発光や
溶融池からの発光を検出して、その発光状態によりビー
ド外観の良否を判定するものであった。
2. Description of the Related Art Recently, laser welding technology, which has been actively developed, detects welding defects such as welding defects and corrects conditions so as to eliminate the cause of the defects. It is necessary to add welding or perform adaptive control to further improve the welding quality. Conventionally, welding defects and welding stability are determined by detecting light emission from a laser plume or light emission from a molten pool, and judging the bead appearance based on the light emission state.

【0003】しかしながら、レーザ溶接でのビード外観
に関する溶接不具合や溶接安定性、突合わせ溶接部のア
ンダ−カット、段差等は、ある程度推定あるいは検出で
きたとしても、溶接金属内部での溶接不具合の的確な検
出技術は今の所存在しない。他の溶接法にあっては、応
力集中の原因となる溶接欠陥として代表的なものにブロ
ーホールがあって問題視されるのであるが、溶接後のX
線透過を行なった状態では、レーザ溶接では他の溶接法
に比べ、厚板の溶接や非貫通溶接では、溶接金属内部に
気泡(ポロシティと称される)が発生し易く、溶接中で
の溶接金属内部状態を的確にモニタリングする必要があ
る。
[0003] However, even if the welding defects and the welding stability relating to the bead appearance in laser welding, the undercut of the butt weld, the step, and the like can be estimated or detected to some extent, the accuracy of the welding defects inside the weld metal is accurate. No detection technology currently exists. In other welding methods, a blow hole is a typical welding defect that causes stress concentration and is regarded as a problem.
In the state where line penetration has been performed, air bubbles (called porosity) are more likely to be generated in the weld metal in thick plate welding and non-penetrating welding than in other welding methods in laser welding. It is necessary to accurately monitor the internal state of the metal.

【0004】本発明は、上述の問題に鑑み、溶接金属内
部のポロシティの存在も含めた溶接欠陥の発生を的確に
推定できるレーザ溶接モニタリング方法及びその装置の
提供を目的とする。
[0004] In view of the above problems, an object of the present invention is to provide a laser welding monitoring method and apparatus capable of accurately estimating the occurrence of welding defects including the presence of porosity inside a weld metal.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成する本
発明は、次の発明特定事項を有する。
The present invention that achieves the above object has the following matters specifying the invention.

【0006】(1)レーザ溶接中開先のキーホール内所
望の複数深さに焦点又は撮像位置を合わせて、その深さ
それぞれの光量を取り出し、その光量を解析するように
した方法を特徴とする。
(1) The method is characterized in that, during laser welding, a focus or an imaging position is adjusted to a plurality of desired depths in a keyhole at a groove, a light amount at each depth is extracted, and the light amount is analyzed. I do.

【0007】(2)開先に対してパワービームを照射す
る第1光学系と、このパワービームによる上記開先のキ
ーホール内所望複数深さに焦点又は撮像位置を合わせる
複数光路からなる第2光学系と、この複数光路により得
られた光量を解析する手段と、を有することを特徴とす
る。
(2) A second optical system for irradiating a groove with a power beam and a plurality of optical paths for focusing or imaging at a plurality of desired depths in the keyhole of the groove with the power beam. It is characterized by having an optical system and means for analyzing the amount of light obtained by the plurality of optical paths.

【0008】(3)上記(2)にて、上記複数光路は、
異なる位置に部分反射鏡を備えて形成される光路、レン
ズを往復駆動して形成される光路、及び反射鏡を回動し
て形成される光路、のいずれかであることを特徴とす
る。
(3) In the above (2), the plurality of optical paths are:
The optical path is one of an optical path formed by providing a partial reflecting mirror at a different position, an optical path formed by reciprocating a lens, and an optical path formed by rotating the reflecting mirror.

【0009】(4)上記(2)にて、上記光量の解析
は、複数波長光を取り出して多変量解析等を行なうこと
を特徴とする。
(4) In the above (2), the analysis of the light quantity is characterized in that light of a plurality of wavelengths is taken out and multivariate analysis is performed.

【0010】本発明者らは、X線透過によるポロシティ
の存在と、レーザ溶接中での溶融池の挙動とを対比観察
しつつ考察した結果、新たな知見に至った。すなわち、
レーザ溶接によって生ずる溶融穴(キーホールと称す
る)内部の状態とポロシティの存在とが関連することを
見出した。そして、この関連性というのは、キーホール
が定常的に推移していく場合、例えば次第に大きくなる
とか次第に深くなる場合には問題ないのであるが、定常
的ではない場合、例えば溶接中キーホールが閉じたり先
端形状が変化したりする場合にはポロシティが生ずるこ
とが判明した。
The present inventors have made new findings as a result of studying the existence of porosity due to X-ray transmission and the behavior of the molten pool during laser welding while observing them in comparison. That is,
It has been found that the state of the inside of a molten hole (referred to as a keyhole) generated by laser welding is related to the presence of porosity. And this relevance is not a problem if the keyhole is constantly changing, for example, if it is gradually increasing or becoming deeper, but if it is not constant, for example, the keyhole during welding is It has been found that porosity occurs when closing or changing the shape of the tip.

【0011】次に、この新規な知見を見出したのである
が、キーホールが定常状態で推移しているか否かについ
ては、レーザプルームが高輝度発光であるため、漫然と
観察していたのでは見分けがつかない。したがって、キ
ーホールの定常状態でない様子をどのように検出するか
についても発明者らは考察し、そして、更に発明者ら
は、情報の解析による溶接モニタリングについても考察
し、試験結果を得た。
Next, the present inventors have found this new finding. However, whether or not the keyhole is in a steady state is indistinguishable from obscure observation because the laser plume emits high-luminance light. I can't get it. Therefore, the inventors considered how to detect the non-steady state of the keyhole, and also considered welding monitoring by analyzing information, and obtained test results.

【0012】[0012]

【発明の実施の形態】ここで、図1〜図6を参照して本
発明の実施の形態の一例を説明する。図1は、本発明装
置の一例であり、ワーク10の開先11に対して上方よ
りパワービームが照射される。パワービームは、YAG
レーザ等からなるレーザ光源12、全反射鏡13、及び
集光レンズ14からなる第1光学系によって作成され
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, an example of an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows an example of the apparatus of the present invention. A groove 11 of a work 10 is irradiated with a power beam from above. Power beam is YAG
It is created by a first optical system consisting of a laser light source 12, such as a laser, a total reflection mirror 13, and a condenser lens 14.

【0013】他方、部分反射鏡15a、レンズ16aに
よる第2光学系によりモニタ用ファイバ17aにて開先
11の深さ方向位置での光量を得るように焦点あるい
は、結像面合わせが行なわれる。同様に部分反射鏡15
b、レンズ16bによる第2光学系にてモニタ用ファイ
バ17bに開先11の深さ方向位置での光量を得る焦
点あるいは、結像面合せが行なわれる。また、レンズ1
6cによってもモニタ用ファイバ17cに深さ方向位置
での光量を得る焦点合わせが行なわれる。つまり、開
先のキーホール深さ,,に応じて焦点合わせがさ
れた第2光学系によって各モニタ用ファイバ17a,1
7b,17cに各深さ,,に当る光量が取り込ま
れる。
On the other hand, the second optical system including the partial reflecting mirror 15a and the lens 16a focuses or adjusts the image plane so as to obtain an amount of light at the position in the depth direction of the groove 11 by the monitor fiber 17a. Similarly, the partial reflecting mirror 15
b, a focus or an imaging plane for obtaining the light quantity at the depth direction position of the groove 11 is performed on the monitor fiber 17b by the second optical system by the lens 16b. Also, lens 1
Focusing is also performed by 6c to obtain the amount of light at the position in the depth direction on the monitor fiber 17c. That is, each monitor fiber 17a, 1 is controlled by the second optical system focused according to the keyhole depth of the groove.
The light amount corresponding to each depth is taken into 7b and 17c.

【0014】この場合、溶接によって開先11の表面に
高輝度のプルームが生じることとなるが、このプルーム
が発生していても、開先の深さ位置での光量は焦点合わ
せにより得られることが判明している。もちろん、プル
ーム等により不要な光もノイズとして発生するものの、
これ等ノイズを低減するためモニタ用ファイバの前面に
ピンホ−ル22を設置し入射光量を制限する。このた
め、深さ位置の光量の判別は可能となっている。
In this case, a high-luminance plume is generated on the surface of the groove 11 by welding. Even if this plume is generated, the amount of light at the depth of the groove can be obtained by focusing. Is known. Of course, unnecessary light is also generated as noise due to plumes,
In order to reduce such noise, a pinhole 22 is provided in front of the monitor fiber to limit the amount of incident light. Therefore, it is possible to determine the light amount at the depth position.

【0015】キーホールの深さ位置での光量を得る手段
として、図2では、開先11に対して接近及び離間する
よう往復駆動するレンズ16dを有しており、このレン
ズ16dの移動によってキーホールの深さの例えば,
,の焦点合わせを行ない、モニタ用ファイバ17d
に深さ,,の光量を取り込むようにしている。こ
の場合、レンズ16dの駆動系は図示省略するも、例え
ばモータの回転を直線運転に変えてレンズ16dを動か
したり、モータの回転に伴って回転しつつ前後進させる
構造等、例えばカメラのレンズ駆動手段を応用した種々
のものが適用できる。
As means for obtaining the amount of light at the depth of the keyhole, FIG. 2 shows a lens 16d which reciprocates so as to approach and separate from the groove 11, and the key 16 is moved by the movement of the lens 16d. For example, the depth of the hole
, And the monitor fiber 17d
The depth and the amount of light are taken in. In this case, although a drive system of the lens 16d is not shown, for example, a structure in which the rotation of the motor is changed to a linear operation to move the lens 16d, or a structure in which the lens 16d moves forward and backward while rotating with the rotation of the motor, for example, a lens drive of the camera Various types of means can be applied.

【0016】また、図3は、キーホールの深さ,,
,に応じた撮像位置の状態を反射鏡15dによる回
動によって、フォトセンサ18a,18b,18c,1
8dへ個別に反射させて、フォトセンサ18a,18
b,18c,18dにてキーホールの各撮像位置での光
量を取り込むようにしたものである。この場合も、反射
鏡15dの回動角を決め、所定のフォトセンサ18a,
18b,18c,18dに所望深さの光量が正確に入る
ようにする必要がある。
FIG. 3 shows the depth of the keyhole,
The rotation of the reflecting mirror 15d changes the state of the imaging position according to the photo sensors 18a, 18b, 18c, and 1
8d, and the photo sensors 18a, 18
In b, 18c and 18d, the amount of light at each imaging position of the keyhole is taken in. Also in this case, the rotation angle of the reflecting mirror 15d is determined, and a predetermined photo sensor 18a,
It is necessary to ensure that the light quantity of a desired depth accurately enters 18b, 18c, 18d.

【0017】このようにして、キーホールの深さ位置の
光量をレンズによる焦点合わせによりあるいは反射鏡の
回動角(撮像位置)合わせにより、モニタ用ファイバや
フォトセンサに取り込むことにより、プルーム等ノイズ
が存在するにしてもそれぞれの深さの光量を個別に取り
込むことができる。したがって、各モニタ用ファイバや
各フォトセンサの取り込んだ光量は、ノイズを含んだ該
当する深さ状態に当たる固有の光量となる。
In this manner, the amount of light at the depth of the keyhole is taken into the monitor fiber or the photosensor by focusing by a lens or by adjusting the rotation angle (imaging position) of the reflecting mirror, so that noise such as plume Is present, the light amount at each depth can be individually captured. Therefore, the amount of light captured by each monitor fiber and each photosensor is a unique amount of light corresponding to the corresponding depth state including noise.

【0018】さて、図4は、図1や図2にて示すモニタ
用ファイバから取り込んだ光量の処理装置の概要を図示
したものであり、図示の如くO/E(光/電気)変換器
20、コンピュータ21にて処理が行なわれる。ここ
で、モニタ用ファイバから取り込んだ光量はノイズとキ
−ホ−ルの所望の深さの光量とに分ける必要があり、本
例においては複数種類の波長光を取り出すことで少しで
もノイズを除いてS/Nを向上させ本来の深さの光量を
得ようとする。したがって、O/E変換器では例えば光
学フィルタを内蔵させて波長の弁別を行なう。なお、フ
ォトセンサの場合は電気出力でありO/E変換器でなく
フィルタも電気フィルタが備えられることになる。
FIG. 4 schematically shows an apparatus for processing the amount of light taken from the monitor fiber shown in FIGS. 1 and 2, and an O / E (optical / electric) converter 20 as shown in FIG. The processing is performed by the computer 21. Here, it is necessary to divide the amount of light taken in from the monitor fiber into noise and the amount of light at a desired depth of the keyhole. In this example, a small amount of noise is removed by extracting light of plural wavelengths. In this way, the S / N ratio is improved to obtain the light amount of the original depth. Therefore, in the O / E converter, for example, an optical filter is incorporated to perform wavelength discrimination. In the case of a photosensor, the output is an electric output, and the filter is not an O / E converter but an electric filter.

【0019】この複数種類の波長光は、試験結果により
得られたものであり、例えば三種類の波長光λ1
λ2 ,λ3 に着目したとき、レーザ照射による溶接時間
に対して光の相対強度は図5に示すような相対値と挙動
が得られた。因に、図5はキーホールが正常な場合にお
ける波長光の相対値と挙動を示している。
The plural kinds of wavelength lights are obtained by test results, and for example, three kinds of wavelength lights λ 1 ,
When attention was paid to λ 2 and λ 3 , the relative intensity and behavior of the light relative to the welding time by laser irradiation were obtained as shown in FIG. FIG. 5 shows the relative value and behavior of the wavelength light when the keyhole is normal.

【0020】このようにして、各モニタ用ファイバにて
取り込まれた光量を複数波長に分けてS/Nを向上さ
せ、しかもこの複数波長光の例えば相対強度からキーホ
ールの正常な状態と異常な状態(キーホールが閉じる状
態)とを判別してキーホールの所望の深さでの正常と異
常を判別する。
In this way, the S / N is improved by dividing the amount of light taken in by each monitor fiber into a plurality of wavelengths, and the normal state of the keyhole and the abnormal state are determined based on, for example, the relative intensity of the plurality of wavelengths. A state (a state in which the keyhole is closed) is determined to determine whether the keyhole is normal or abnormal at a desired depth.

【0021】図6は、コンピュータによる「正常」と
「異常」の判断手法と、異常の場合の処置を例示したも
のである。図6にて、溶接が開始されると、図1〜図3
のモニタ用ファイバやフォトセンサから得られる光量か
ら複数波長(例えば図5)のモニタリングデータを読み
込み、データの圧縮を行ない、「正常か」「異常か」の
判別を行なう多変量解析を行なう。この場合、予め正規
データを分析し学習することにより、マハラノビス(Mah
alanobis) 距離による正規分布の偏りやチェビシェフ(C
hebyshev) の不等式による多変数の平均化処理を用いて
適合度の検定を行ない多量のデータから相互に関連する
特徴を見出して「正常」「異常」を判定する多変量解析
を行なっている。また、「異常」原因の判断は異常デー
タの学習により神経回路網を構築して並列データ処理を
行なっている。そして、異常の結果は、例えばパワーダ
ウン、スパッタ付着、光システムの低下、速度変更等に
基づき補正あるいは修正を行なう処置が行なわれる。
FIG. 6 exemplifies a method of judging “normal” and “abnormal” by a computer, and a process in the case of an abnormality. In FIG. 6, when welding is started, FIGS.
The monitoring data of a plurality of wavelengths (for example, FIG. 5) is read from the amount of light obtained from the monitoring fiber and the photo sensor, and the data is compressed to perform a multivariate analysis for determining whether the data is normal or abnormal. In this case, Mahalanobis (Mah
alanobis) Normal distribution bias due to distance and Chebyshev (C
He uses multivariable averaging by the inequality of Hebyshev) to test the degree of goodness, finds interrelated features from a large amount of data, and performs multivariate analysis to determine “normal” or “abnormal”. In order to determine the cause of the "abnormality", a neural network is constructed by learning the abnormal data to perform parallel data processing. Then, the result of the abnormality is corrected or corrected based on, for example, power down, spatter adhesion, deterioration of the optical system, speed change, and the like.

【0022】図6に示す処理は、複数種類の波長光に内
包する多種多様なデータより特徴や要因を分析して「正
常」「異常」を判断するもので、レーザ溶接によるキー
ホール深さの解析によりポロシティなる溶接の代表的な
不具合をモニタすることが可能であり、結果的にレーザ
溶接の溶接品質の向上に寄与するものである。
The processing shown in FIG. 6 is to analyze the characteristics and factors from various data included in a plurality of wavelengths of light to determine “normal” or “abnormal”, and to determine the keyhole depth by laser welding. The analysis makes it possible to monitor typical defects of porosity welding, and consequently contributes to improvement of welding quality of laser welding.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、レ
ーザ溶接中の開先の所望の複数深さに合わせて、その深
さでの光量を取り出し、解析するようにしたことによ
り、今まで行なわれていなかったレーザ溶接での溶接金
属内部欠陥を的確にモニタすることが可能となり、レー
ザ溶接の溶接欠陥の発生防止や除去のために極めて有用
な基礎技術となり得る。また、開先に対してパワービー
ムを照射する第1光学系と、このパワービームによる上
記開先のキーホール内所望深さに焦点又は撮像位置を合
せる複数光路からなる第2光学系と、この複数光路によ
り得られた光量を解析する手段と、を有することによ
り、溶接金属内部欠陥を的確にモニタすることができ
る。この際、複数光路は異なる位置に部分反射鏡をそな
えたり、レンズを往復駆動したり、反射鏡を回転させた
りでき、また解析は、例えば多変量解析を行っている。
As described above, according to the present invention, the amount of light at the desired depth of a groove during laser welding is extracted and analyzed. It is possible to accurately monitor weld metal internal defects in laser welding, which have not been performed until now, and this can be a very useful basic technique for preventing or eliminating welding defects in laser welding. A first optical system that irradiates a groove with a power beam; a second optical system that includes a plurality of optical paths that focus or focus an imaging position to a desired depth in the keyhole of the groove with the power beam; And means for analyzing the amount of light obtained by the plurality of optical paths, so that a defect inside the weld metal can be accurately monitored. At this time, a plurality of optical paths can be provided with partial reflecting mirrors at different positions, a lens can be reciprocated, a reflecting mirror can be rotated, and the analysis is, for example, a multivariate analysis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実態の形態の一例の簡略構成図。FIG. 1 is a simplified configuration diagram of an example of an embodiment of the present invention.

【図2】他の例の簡略構成図。FIG. 2 is a simplified configuration diagram of another example.

【図3】その他の例の簡略構成図。FIG. 3 is a simplified configuration diagram of another example.

【図4】処理装置をも含めた簡略構成図。FIG. 4 is a simplified configuration diagram including a processing device.

【図5】三種類の波長光の特性図。FIG. 5 is a characteristic diagram of three types of wavelength light.

【図6】コンピュータによる一例の処理フローチャー
ト。
FIG. 6 is an exemplary processing flowchart by a computer.

【符号の説明】[Explanation of symbols]

11 開先 15a,15b,15d 反射鏡 16a,16b,16c,16d レンズ 17a,17b,17c,17d モニタ用ファイバ 18a,18b,18c,18d フォトセンサ 20 O/E変換器 21 コンピュータ 22 ピンホ−ル 11 groove 15a, 15b, 15d Reflector mirror 16a, 16b, 16c, 16d Lens 17a, 17b, 17c, 17d Monitoring fiber 18a, 18b, 18c, 18d Photosensor 20 O / E converter 21 Computer 22 Pinhole

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // G01N 21/89 G01N 21/89 610Z (72)発明者 名山 理介 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 橋本 義男 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 長島 是 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 赤羽 崇 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 Fターム(参考) 2G051 AA90 AB04 BA10 BA20 BB11 BC04 CA03 CA07 CC07 CC11 CC15 CC17 CD02 EA11 EA12 EA25 EC02 EC03 EC10 4E068 CA17 CB02 CC01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) // G01N 21/89 G01N 21/89 610Z (72) Inventor Risuke Nayama 2-chome, Araimachi, Araimachi, Takasago City, Hyogo Prefecture No. 1-1 Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Yoshio Hashimoto 2-1-1, Shinhama, Arai-machi, Takasago City, Hyogo Prefecture Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. 1-1-1 Wadazakicho Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (72) Inventor Takashi Akabane 1-1-1, Wadasakicho, Hyogo-ku, Kobe-shi, Hyogo F-term in Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (reference) 2G051 AA90 AB04 BA10 BA20 BB11 BC04 CA03 CA07 CC07 CC11 CC15 CC17 CD02 EA11 EA12 EA25 EC02 EC03 EC10 4E068 CA17 CB02 CC01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 レーザ溶接中開先のキーホール内所望の
複数深さに焦点又は撮像位置を合わせて、その深さそれ
ぞれの光量を取り出し、その光量を解析するようにした
レーザ溶接モニタリング方法。
1. A laser welding monitoring method in which a focal point or an imaging position is adjusted to a plurality of desired depths in a keyhole of a groove during laser welding, a light amount at each depth is extracted, and the light amount is analyzed.
【請求項2】 開先に対してパワービームを照射する第
1光学系と、このパワービームによる上記開先のキーホ
ール内所望複数深さに焦点又は撮像位置を合わせる複数
光路からなる第2光学系と、この複数光路により得られ
た光量を解析する手段と、を有するレーザ溶接モニタリ
ング装置。
2. A second optical system comprising: a first optical system for irradiating a groove with a power beam; and a plurality of optical paths for focusing or imaging at a plurality of desired depths in the keyhole of the groove with the power beam. A laser welding monitoring device comprising: a system; and means for analyzing light amounts obtained by the plurality of optical paths.
【請求項3】 上記複数光路は、異なる位置に部分反射
鏡を備えて形成される光路、レンズを往復駆動して形成
される光路、及び反射鏡を回動して形成される光路、の
いずれかである請求項2記載のレーザ溶接モニタリング
装置。
3. The optical path according to claim 1, wherein the plurality of optical paths include an optical path formed by providing a partial reflecting mirror at different positions, an optical path formed by reciprocating a lens, and an optical path formed by rotating the reflecting mirror. The laser welding monitoring device according to claim 2, wherein
【請求項4】 上記光量の解析は、複数波長光を取り出
して多変量解析等を行なう請求項2記載のレーザ溶接モ
ニタリング装置。
4. The laser welding monitoring apparatus according to claim 2, wherein the analysis of the light quantity is performed by extracting light of a plurality of wavelengths and performing a multivariate analysis or the like.
JP31870898A 1998-11-10 1998-11-10 Laser welding monitoring method and apparatus Expired - Fee Related JP3439138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31870898A JP3439138B2 (en) 1998-11-10 1998-11-10 Laser welding monitoring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31870898A JP3439138B2 (en) 1998-11-10 1998-11-10 Laser welding monitoring method and apparatus

Publications (2)

Publication Number Publication Date
JP2000146852A true JP2000146852A (en) 2000-05-26
JP3439138B2 JP3439138B2 (en) 2003-08-25

Family

ID=18102109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31870898A Expired - Fee Related JP3439138B2 (en) 1998-11-10 1998-11-10 Laser welding monitoring method and apparatus

Country Status (1)

Country Link
JP (1) JP3439138B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071340A (en) * 2010-09-29 2012-04-12 Mitsubishi Electric Corp Laser machining device
CN105772954A (en) * 2015-01-08 2016-07-20 通用电气公司 Method And System For Confined Laser Drilling
JP2017006955A (en) * 2015-06-23 2017-01-12 株式会社総合車両製作所 Laser welding method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159659A1 (en) * 2018-02-16 2019-08-22 パナソニックIpマネジメント株式会社 Laser welding device and laser welding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071340A (en) * 2010-09-29 2012-04-12 Mitsubishi Electric Corp Laser machining device
CN105772954A (en) * 2015-01-08 2016-07-20 通用电气公司 Method And System For Confined Laser Drilling
US11292081B2 (en) 2015-01-08 2022-04-05 General Electric Company Method and system for confined laser drilling
JP2017006955A (en) * 2015-06-23 2017-01-12 株式会社総合車両製作所 Laser welding method

Also Published As

Publication number Publication date
JP3439138B2 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
JP5172041B2 (en) Laser machining head and method for compensating for changes in the focal position of the laser machining head
US5869805A (en) Method and device for working materials using plasma-inducing laser radiation
US7706597B2 (en) Defect inspection apparatus and defect inspection method
CN112839765B (en) Method and processing machine for determining a characteristic variable of a processing operation
CN112326685B (en) Online detection device and detection method for laser-induced damage of optical element
CN111912835B (en) LIBS device and LIBS method with ablation measuring function
JP2000009991A (en) Device and method of automatic focusing
Kratzsch et al. Coaxial process control during laser beam welding of tailored blanks
JP2021058927A (en) Laser welding quality detecting method and laser welding quality detecting device
JP5393150B2 (en) Determination method of laser beam focus position
JP2000146852A (en) Monitoring mehotd of laser welding and device therefor
US6999170B2 (en) Optical analysis apparatus and particle counting method
US7589833B2 (en) Foreign matter inspection apparatus and foreign matter inspection method
JP2008076320A (en) Surface inspection device
Abels et al. Universal coaxial process control system for laser materials processing
CN110121629B (en) Determining an arrangement of sample objects by means of angularly selected illumination
JPWO2019083009A1 (en) Inspection system and inspection method
JP2003017536A (en) Pattern inspection method and inspection apparatus
JP3184962B2 (en) Laser welding detection method
JP7308966B2 (en) LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD
JP2008185462A (en) Method and apparatus for judging quality of screw
JP2024530685A (en) Method and system for analyzing a laser processing process based on a spectrogram - Patents.com
JP7396851B2 (en) Control device, control system, and program
JP2023064612A (en) System for determining laser welding quality and method for determining laser welding quality
KR20190008644A (en) Laser cleaning device having a function of checking cleaning quality and method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030506

LAPS Cancellation because of no payment of annual fees