JP2000146835A - Alkali concentration analyzing device - Google Patents

Alkali concentration analyzing device

Info

Publication number
JP2000146835A
JP2000146835A JP31909898A JP31909898A JP2000146835A JP 2000146835 A JP2000146835 A JP 2000146835A JP 31909898 A JP31909898 A JP 31909898A JP 31909898 A JP31909898 A JP 31909898A JP 2000146835 A JP2000146835 A JP 2000146835A
Authority
JP
Japan
Prior art keywords
liquor
alkali concentration
sample
alkali
concentration analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31909898A
Other languages
Japanese (ja)
Other versions
JP3620572B2 (en
Inventor
Masataka Watanabe
将隆 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP31909898A priority Critical patent/JP3620572B2/en
Publication of JP2000146835A publication Critical patent/JP2000146835A/en
Application granted granted Critical
Publication of JP3620572B2 publication Critical patent/JP3620572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Paper (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alkali concentration analyzing device improved in pulp quality and reduced in measurement man-hours. SOLUTION: This alkali concentration analyzing device is applied to a chemical recovery cycle in which black liquor produced in a chip dissolving process in a pulp manufacturing plant is incinerated by an incineration means 7, green liquor is produced by a green liquor producing means 8 from smelted substance produced by the incineration means 7, sodium carbonate in the green liquor is converted into caustic soda by a causticizing means 11, and white liquor obtained by the causticizing is inputted into a dissolving means 1 used in the dissolving process, and the alkali concentrations of a plurality of kinds of liquids including the while liquor are continuously analyzed of using a near-infrared spectroscopic analyzer. When an alkaline liquid is analyzed by the near-infrared spectroscopic analyzer, a sample liquid is heated to a fixed temperature and then analyzed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明はパルプ製造プラント
における薬品回収サイクルの中の白液や緑液のアルカリ
度を連続測定することにより、アルカリ度の濃度を制御
可能とし、パルプ品質の向上と測定工数の削減を図った
アルカリ濃度分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously measuring the alkalinity of a white liquor or a green liquor in a chemical recovery cycle in a pulp manufacturing plant, thereby enabling the alkalinity concentration to be controlled, and improving and measuring pulp quality. The present invention relates to an alkali concentration analyzer that reduces man-hours.

【0002】[0002]

【従来の技術】図8はパルプ製造プラントにおける薬品
回収サイクルの一般的な流れ図を示すものである。図に
おいて、溶解手段(連釜)1にチップ、白液が投入され
てチップが蒸解される。蒸解が終了すると蒸解パルプ及
び蒸解廃液は連釜1から排出される。
FIG. 8 shows a general flow chart of a chemical recovery cycle in a pulp manufacturing plant. In the figure, chips and white liquor are put into a dissolving means (separate kettle) 1 to digest the chips. When the cooking is completed, the cooking pulp and the cooking waste liquid are discharged from the continuous kettle 1.

【0003】このパルプ、廃液混合物はブロータンク2
を介してパルプ洗浄手段3へ送出され、パルプの精製が
なされると共に黒液が回収される。洗浄手段3で回収さ
れた黒液は稀黒液タンク4に送出される。この黒液には
最初に添加した白液にチップから溶出した有機物質が含
まれている。
The pulp and waste liquid mixture is supplied to a blow tank 2
To the pulp washing means 3 through which the pulp is purified and the black liquor is recovered. The black liquor collected by the washing means 3 is sent to the diluted black liquor tank 4. The black liquor contains organic substances eluted from the chip in the white liquor added first.

【0004】その黒液の一部は連釜1に戻されて苛性ソ
ーダ液の希釈等に使用されるが、大部分の黒液はエバボ
レータ(乾燥機)5で濃縮され濃黒液タンク6に送出さ
れる。この黒液には有機成分、Na2CO3、Na2S、
Na2SO4、NaOH等のアルカリ成分が含まれてい
る。
A part of the black liquor is returned to the continuous kettle 1 and used for diluting the caustic soda liquor. Most of the black liquor is concentrated by an evaporator (dryer) 5 and sent to a dark black liquor tank 6. Is done. The black liquor contains organic components, Na 2 CO 3 , Na 2 S,
It contains alkali components such as Na 2 SO 4 and NaOH.

【0005】次に濃縮黒液は回収ボイラー7で燃焼され
るが、その目的は ソーダ分の回収、 Na2SO4をNa2Sに還元、 蒸解により溶出した有機物を熱源として回収、 である。なお、回収ボイラー7では酸化、トライ、還元
作用等が行われる。上記無機物質は溶融状態で回収ボイ
ラー7の底部からスメルトとして取出される。
Next, the concentrated black liquor is burned in the recovery boiler 7 for the purpose of recovering soda, reducing Na 2 SO 4 to Na 2 S, and recovering organic substances eluted by digestion as a heat source. The recovery boiler 7 performs oxidation, trial, reduction, and the like. The inorganic substance is taken out as a smelt from the bottom of the recovery boiler 7 in a molten state.

【0006】回収ボイラー7から取出されたスメルトは
デゾルバ8に送出されて弱液で溶解され、緑液クラリフ
ァイア9に送られ不純物が取り除かれて清澄化される。
この清澄化された緑液は緑液タンク10に貯留される。
この緑液の成分は炭酸ソーダ及び硫化ソーダである。
[0006] The smelt taken out of the recovery boiler 7 is sent to a desolver 8 where it is dissolved with a weak liquid and sent to a green liquor clarifier 9 where impurities are removed and clarified.
The clarified green liquor is stored in the green liquor tank 10.
The components of this green liquor are sodium carbonate and sodium sulfide.

【0007】この緑液に対して苛性化手段11により苛
性化処理が行なわれる。苛性化は生石灰を用いて行われ
蒸解に必要な苛性ソーダが生成される。苛性化によって
生成された液は白液と呼ばれる。この白液には不溶性の
炭酸カルシウム(CaCO3)が含まれているので、白
液クラリファイア12で炭酸カルシウムを分離して清澄
化する。清澄化された白液は白液タンク13に貯留され
る。清澄化された白液にはNaOH、Na2CO3、Na
2S、Na2SO4などの成分が含まれている。
The green liquor is subjected to a causticizing treatment by causticizing means 11. Causticization is performed using quicklime to produce the caustic soda required for cooking. The liquor produced by causticization is called white liquor. Since this white liquor contains insoluble calcium carbonate (CaCO 3 ), calcium carbonate is separated and clarified by the white liquor clarifier 12. The clarified white liquor is stored in the white liquor tank 13. NaOH, Na 2 CO 3 , Na
Components such as 2 S and Na 2 SO 4 are contained.

【0008】[0008]

【発明が解決しようとする課題】ところで、はじめに述
べたように溶解手段1にチップ、白液(苛性ソーダ液)
を投入するに際しては白液や緑液のアルカリ量比が重要
な管理項目となる。従って従来は担当オペレータが、日
に1回又は2回、白液のサンブル液を採取してラボ室へ
運び滴定法等で分析し、その値に基づいて苛性化手段で
のCaOの投入量を制御して、白液や緑液のアルカリ量
比を調整していた。
By the way, as described above, the dissolving means 1 contains chips and white liquor (caustic soda liquid).
When charging the liquor, the alkali amount ratio of the white liquor and the green liquor is an important management item. Therefore, conventionally, an operator in charge collects a white liquor once or twice a day, transports it to a laboratory and analyzes it by a titration method or the like, and based on the value, determines the amount of CaO input in the causticizing means. By controlling, the alkali amount ratio of the white liquor and the green liquor was adjusted.

【0009】しかしながら、白液や緑液は高濃度のNa
OHなどを含む高アルカリ液の危険な物体であり、オペ
レータがこれを採取したり、手分析を行なう際にも危険
が伴うという間題があった。また、サンプルの監視が連
続的ではないので、木目細かな管理ができないという間
題があった。
However, the white liquor and the green liquor have a high concentration of Na.
It is a dangerous object of a highly alkaline solution containing OH and the like, and there is a problem that the operator is also at risk when collecting the sample or performing a manual analysis. In addition, since the monitoring of the sample is not continuous, there is a problem that detailed control of the grain cannot be performed.

【0010】本発明はこのような間題点を解決するため
になされたもので、白液や緑液の成分を近赤外分光分析
装置を用いて連続測定することにより、パルプ品質の向
上と測定工数の削減を図ったアルカリ濃度分析装置を提
供することを目的とする。
[0010] The present invention has been made to solve such problems, and by continuously measuring the components of white liquor and green liquor using a near-infrared spectroscopic analyzer, it is possible to improve pulp quality. An object of the present invention is to provide an alkali concentration analyzer that reduces the number of measurement steps.

【0011】[0011]

【謀題を解決するための手段】このような目的を達成す
るための本発明の構成は、請求項1においては、パルプ
製造プラントのチップ溶解工程で生成される黒液を燃焼
させる燃焼手段と、燃焼手段により生成されたスメルト
から緑液を生成する緑液生成手段と、緑液中の炭酸ソー
ダを苛性ソーダに変換させる苛性化手段と、この苛性化
された白液を前記溶解工程で用いられる溶解手段に投入
するようにした薬品回収サイクルに適用され、前記白液
を含む複数種の液体のアルカリ濃度を近赤外分光分析計
を用いて連続分析するアルカリ濃度分析装置であって、
前記近赤外分光分析計でのアルカリ液の分析に際して
は、サンプル液を所定温度に加熱した後分析するように
したことを特徴とする。
According to a first aspect of the present invention, there is provided a combustion apparatus for burning black liquor generated in a chip melting step of a pulp manufacturing plant. A green liquor generating means for generating green liquor from smelt generated by the combustion means, a causticizing means for converting sodium carbonate in the green liquor into caustic soda, and the causticized white liquor is used in the dissolving step. Applied to a chemical recovery cycle so as to be put into the dissolving means, an alkali concentration analyzer for continuously analyzing the alkali concentration of a plurality of liquids including the white liquor using a near infrared spectrometer,
In analyzing the alkaline liquid with the near-infrared spectrometer, the sample liquid is heated to a predetermined temperature and then analyzed.

【0012】請求項2においては、請求項1記載のアル
カリ濃度分析装置において、サンプル液の温度を65〜
70℃程度に制御したことを特徴とする。請求項3にお
いては、請求項1記載のアルカリ濃度分析装置におい
て、近赤外分光分析計の校正に際してはサンプル液を連
続して希釈する希釈手段を設けたことを特徴とする。
According to a second aspect of the present invention, in the alkali concentration analyzer according to the first aspect, the temperature of the sample solution is 65-65.
It is characterized by being controlled to about 70 ° C. According to a third aspect of the present invention, in the alkali concentration analyzer according to the first aspect, a dilution means for continuously diluting the sample liquid is provided when the near-infrared spectrometer is calibrated.

【0013】請求項4においては、請求項1記載のアル
カリ濃度分析装置において、サンプル液の流量をタンク
のヘッド差により制御するようにしたことを特徴とす
る。請求項5においては、請求項1記載のアルカリ濃度
分析装置において、サンプル液の流量を毎分200cc
程度としたことを特徴とする。請求項6においては、請
求項1記載のアルカリ濃度分析装置において、近赤外分
光分析計を構成する検出器の窓を所定時間毎に薬液で洗
浄する薬液洗浄手段を設けたことを特徴とする。
According to a fourth aspect of the present invention, in the alkali concentration analyzer according to the first aspect, the flow rate of the sample liquid is controlled by a head difference between tanks. According to a fifth aspect, in the alkali concentration analyzer according to the first aspect, the flow rate of the sample solution is set to 200 cc / min.
It is characterized by having a degree. According to a sixth aspect of the present invention, in the alkali concentration analyzer according to the first aspect, a chemical solution washing means for washing a window of a detector constituting the near-infrared spectrometer with a chemical solution every predetermined time is provided. .

【0014】[0014]

【発明の実施の形態】以下、図面を用いて本発明を詳し
く説明する。図1は本発明の実施の形態の1例を示す構
成図である。なお、この実施例においては図8に示す薬
品回収サイクル部分は省略するが、例えば白液タンク1
3からのサンプルがサンプリングされてサンプリング装
置20のサンプル入口21に導入されているものとす
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration diagram showing one example of an embodiment of the present invention. In this embodiment, the chemical recovery cycle shown in FIG. 8 is omitted.
It is assumed that the sample from Sample No. 3 has been sampled and introduced into the sample inlet 21 of the sampling device 20.

【0015】図1において、サンプル入口21から導入
されたサンプルは、バルブV1を介してサンプル液槽2
2内に流入する。流入したサンプルは液槽22内に配置
された中空の液位保持部材22aの上部に達する。その
後、液位保持部材22aの内側に落下して配管P1を経
てサンプル回収ライン24から回収される。
In FIG. 1, a sample introduced from a sample inlet 21 is supplied to a sample liquid tank 2 via a valve V1.
2 flows into. The sample that has flowed in reaches the upper part of the hollow liquid level holding member 22a arranged in the liquid tank 22. After that, it falls inside the liquid level holding member 22a and is collected from the sample collection line 24 via the pipe P1.

【0016】一方サンプルはサンプル液槽22の中程に
接続された配管P2からバルブV2を経て恒温槽25に
導かれる。この恒温槽25は容器26、温度設定器2
7、レベル設定器28、ヒータ(図示せず)等で構成さ
れており、容器26には洗浄水入口30から配管P3、
バルブV3を介して所定のレベルまで洗浄水が満たされ
ると共にヒータと温度設定器27により65〜70℃程
度に加熱されている。
On the other hand, the sample is introduced from a pipe P2 connected in the middle of the sample liquid tank 22 to a thermostat 25 via a valve V2. The thermostatic chamber 25 includes a container 26 and a temperature setting device 2.
7, a level setter 28, a heater (not shown), and the like.
The cleaning water is filled to a predetermined level via the valve V3, and is heated to about 65 to 70 ° C. by the heater and the temperature setting device 27.

【0017】サンプルは実測定時は例えば65℃程度に
加熱するが、この温度はサンプリング装置20が真夏に
大気に暴露されて上昇するサンプルの温度の上限を設定
したものであり、この温度に設定しておくことにより年
間を通してサンプルの温度を一定に保つことができ、安
定した測定が可能となる。
The sample is heated to, for example, about 65 ° C. at the time of actual measurement. This temperature is set at the upper limit of the temperature of the sample which rises when the sampling device 20 is exposed to the atmosphere in the middle of summer, and is set to this temperature. By doing so, the temperature of the sample can be kept constant throughout the year, and stable measurement can be performed.

【0018】恒温槽25で加熱されたサンプルは配管P
4により近赤外分光分析計を構成する検出器31に導か
れる。なお、図では省略するが検出器31にはサンプル
が流通する透明部材が設けられており、その透明部材の
一方の側に設けた第1光ファイバの一端から光を出射
し、対向する側に設けた第2光ファイバで受光するよう
になっている。
The sample heated in the thermostat 25 is connected to a pipe P
The light is guided to a detector 31 constituting a near infrared spectrometer by 4. Although not shown in the figure, the detector 31 is provided with a transparent member through which the sample flows, and emits light from one end of a first optical fiber provided on one side of the transparent member, and on the opposite side. The light is received by the provided second optical fiber.

【0019】第1光ファイバから出射した光はサンプル
中を通過することにより測定成分に含まれるアルカリ量
により特定の波長が吸収される。検出器31を通ったサ
ンプルはオーバフロー槽32に流入し、この槽に配置さ
れた液位保持部材22bの先端からオーバフローする。
なお、サンプル液槽22の液位保持部材22aとこの液
位保持部材22bの液位hと透明部材の内径は流量が毎
分200cc程度になるように調整されている。
The light emitted from the first optical fiber passes through the sample, so that a specific wavelength is absorbed by the amount of alkali contained in the measurement component. The sample passing through the detector 31 flows into the overflow tank 32, and overflows from the tip of the liquid level holding member 22b arranged in this tank.
The liquid level holding member 22a of the sample liquid tank 22 and the liquid level h of the liquid level holding member 22b and the inner diameter of the transparent member are adjusted so that the flow rate is about 200 cc / min.

【0020】サンプルの流量を毎分200cc程度とす
るのはヒータのパワーとサンプルの成分に対する応答性
との関連によるもので、流量が多くなればヒータパワー
の大きなものが必要となり、流量が少なすぎると応答性
が遅くなる。
The reason why the flow rate of the sample is set to about 200 cc per minute is due to the relation between the power of the heater and the response to the components of the sample. If the flow rate is large, a large heater power is required, and the flow rate is too small. And the response becomes slow.

【0021】オーバフロー槽32でオーバフローしたサ
ンプルは配管P5を介して落下しサンプル回収ライン2
4で回収される。オーバフロー槽32の上部に設けた空
気ライン33の一端は大気開放とされ、槽内の気圧を安
定させて液位hを維持する。この空気ライン33に侵入
したサンプルは廃液皿34を介して排液ライン35から
排出される。
The sample overflowing in the overflow tank 32 falls through the pipe P5 and falls into the sample collection line 2
Collected at 4. One end of an air line 33 provided above the overflow tank 32 is open to the atmosphere to stabilize the pressure in the tank and maintain the liquid level h. The sample that has entered the air line 33 is discharged from a drain line 35 via a waste liquid tray 34.

【0022】薬液タンク36には図示しない制御装置を
介して、所定のタイミングで空気入口37から空気が供
給されるように構成されている。そして、清掃モードに
なると空気の供給により計量タンク38で計量された薬
液が配管P6により搬送されて逆止弁39を介して検出
器31の透明部材の内壁に付着した汚れを清掃するよう
になっている。
The chemical liquid tank 36 is configured to be supplied with air from an air inlet 37 at a predetermined timing via a control device (not shown). Then, in the cleaning mode, the chemical solution measured in the measuring tank 38 by the supply of air is conveyed by the pipe P6 to clean dirt attached to the inner wall of the transparent member of the detector 31 via the check valve 39. ing.

【0023】ところで、製紙プラントではアルカリ濃度
を最適な値に保ちながら操業しているのでサンプル入口
からはほぼ均一のサンプルが連続して流通している。そ
のため、メンテナンス後の校正作業に必要なラボ値は一
点しか得ることができず、異なるもう一点を得るために
は、従来はサンプル液槽22の蓋を開け、ここに水やア
ルカリ塩等を投入し、成分値を強制的に変化させてい
た。
By the way, since a papermaking plant operates while keeping the alkali concentration at an optimum value, a substantially uniform sample continuously flows from the sample inlet. Therefore, only one lab value required for the calibration work after maintenance can be obtained, and in order to obtain another different point, conventionally, the lid of the sample liquid tank 22 is opened, and water, an alkali salt, or the like is charged here. Then, the component values were forcibly changed.

【0024】しかし、サンプルは連続してサンプル液槽
に流入してくるので、サンプル濃度を変更しても所定時
間アルカリ濃度を一定に維持するのは難しく、校正作業
を行っても指示値が安定しないという問題があった。ま
た、サンプルはpH14程度の強アルカリ水溶液である
ため、サンプルが流通している状態で蓋を開けることは
作業者にとって危険が伴うという問題があった。
However, since the sample continuously flows into the sample liquid tank, it is difficult to keep the alkali concentration constant for a predetermined time even if the sample concentration is changed, and the indicated value is stable even when the calibration operation is performed. There was a problem not to do. In addition, since the sample is a strong alkaline aqueous solution having a pH of about 14, there is a problem that opening the lid while the sample is flowing is dangerous for an operator.

【0025】そこで本発明では校正作業に際してはサン
プル液槽22の上部にサンプル液を連続して希釈する希
釈手段を設ける。即ち、校正ライン40の流入口(イ)
には洗浄水入口30の(イ)が接続されており、バルブ
V4,流量計41及びバルブV5を介して洗浄水を流入
させる。このように構成して一定量の水を連続して希釈
することにより複数点のラボ値を得ることができる。な
お、洗浄水は必要に応じて洗浄ライン42にも供給さ
れ、バルブV6,V7を介してサンプル液槽内の清掃が
行われる。
Therefore, in the present invention, a diluting means for continuously diluting the sample liquid is provided above the sample liquid tank 22 during the calibration operation. That is, the inlet (a) of the calibration line 40
Is connected to the washing water inlet 30 (a), and the washing water flows through the valve V4, the flow meter 41 and the valve V5. By continuously diluting a certain amount of water with such a configuration, a plurality of laboratory values can be obtained. The washing water is also supplied to the washing line 42 as necessary, and the inside of the sample liquid tank is cleaned via the valves V6 and V7.

【0026】次に、赤外線分光分析計を用いた近赤外苛
性化率分析の実験例を示す。ここではNaOH、Na2S、Na2C
O3の異なる成分からなる3種類の水溶液を作成した。そ
して、各アルカリ濃度が異なる水溶液を数点作成し、近
赤外スペクトルを測定した。図2はこのとき得られた近
赤外スペクトルである。
Next, an experimental example of near-infrared causticization analysis using an infrared spectrometer will be described. Where NaOH, Na 2 S, Na 2 C
Three aqueous solutions composed of different components of O 3 were prepared. Then, several aqueous solutions having different alkali concentrations were prepared, and near-infrared spectra were measured. FIG. 2 shows a near-infrared spectrum obtained at this time.

【0027】図2より各アルカリ濃度の違いによってス
ペクトルの形状が異なることは明らかであるが、近赤外
領域では各アルカリ成分毎に明確なピークの分離は出来
ない。この波数領域を使用してPLS回帰法により近赤
外スペクトルと各アルカリ成分濃度との相関を求めた。
NaOHの相関を図3に、Na2Sの相関を図4に、Na2CO3の相
関を図5に示す。
Although it is clear from FIG. 2 that the shape of the spectrum differs depending on the difference in each alkali concentration, a clear peak cannot be separated for each alkali component in the near infrared region. The correlation between the near-infrared spectrum and the concentration of each alkali component was determined by PLS regression using this wave number region.
FIG. 3 shows the correlation of NaOH, FIG. 4 shows the correlation of Na 2 S, and FIG. 5 shows the correlation of Na 2 CO 3 .

【0028】各成分とも予測誤差(1σ)=1g/l以下で
の定量分析が可能であった。ここで各波数における回帰
係数をプロットしたものを図6に示す。このプロットは
絶対値が大きい波数領域でラボ値と強い相関を持つこと
を意味する。このプロットより3成分はそれぞれ異なる
波数領域にラボ値と相関を持つことが確認された。この
ような解析手法により大きな近赤外のピークの斜面、頂
点より各成分の帰属を探ることが可能である。
For each component, quantitative analysis was possible with a prediction error (1σ) of 1 g / l or less. FIG. 6 shows a plot of the regression coefficient at each wave number. This plot implies that the absolute value has a strong correlation with the lab value in the wave number region. From this plot, it was confirmed that each of the three components had a correlation with the laboratory value in a different wave number region. By such an analysis method, it is possible to search for the assignment of each component from the slope and apex of a large near-infrared peak.

【0029】図7に本出願人が実験したプロセスでの連
続測定時の出力を示す。図中分析値トレンドが大きく下
がっている箇所はサンプルを水で薄め強制的に各アルカ
リ濃度を下げているためである。指示値の追従性もよ
く、近赤外分光分析法によるアルカリ濃度分析が十分利
用可能であることが分かる。
FIG. 7 shows the output at the time of continuous measurement in the process conducted by the present applicant. In the figure, the part where the trend of the analysis value is greatly decreased is that the sample is diluted with water and the alkali concentration is forcibly reduced. It can be seen that the followability of the indicated value is good, and that the alkali concentration analysis by the near-infrared spectroscopy can be sufficiently used.

【0030】本発明の以上の説明は、説明および例示を
目的として特定の好適な実施例を示したに過ぎない。し
たがって本発明はその本質から逸脱せずに多くの変更、
変形をなし得ることは当業者に明らかである。例えば、
各装置の配置は必ずしも図1に示す通りでなくともよく
要は必要とする機能が満たされればよい。特許請求の範
囲の欄の記載により定義される本発明の範囲は、その範
囲内の変更、変形を包含するものとする。
The foregoing description of the present invention has been presented by way of illustration and example only of particular preferred embodiments. Accordingly, the present invention is subject to many modifications, without departing from its essence,
It will be apparent to those skilled in the art that variations can be made. For example,
The arrangement of each device does not necessarily have to be as shown in FIG. 1, and it is sufficient that the required functions are satisfied. The scope of the present invention, which is defined by the description in the appended claims, is intended to cover alterations and modifications within the scope.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
近赤外分光分析計でのアルカリ液の分析に際しては、サ
ンプル液を所定温度に加熱した後分析するようにし、サ
ンプル液の温度を65〜70℃程度に制御したので、外
部環境の温度に影響されること安定した測定が可能とな
る。
As described above, according to the present invention,
When analyzing an alkaline solution with a near-infrared spectrometer, the sample solution was heated to a predetermined temperature and then analyzed, and the temperature of the sample solution was controlled at about 65 to 70 ° C., which affected the temperature of the external environment. Measurement can be performed stably.

【0032】また、近赤外分光分析計の校正に際しては
サンプル液を連続して希釈する希釈手段を設けたので、
安全性を維持した状態で複数点のラボ値を得ることが可
能となる。更にサンプル液の流量をタンクのヘッド差に
より制御するようにしたので構成を簡単にすることがで
きる。また、サンプル液の流量を毎分200cc程度と
したのでヒータの電力消費を増大させることなく所望の
応答性の確保が可能となる。また、検出器の窓を所定時
間毎に薬液で洗浄する薬液洗浄手段を設けたので、測定
の信頼度を向上させることが可能である。
In the calibration of the near-infrared spectrometer, a dilution means for continuously diluting the sample liquid is provided.
It is possible to obtain a plurality of laboratory values while maintaining safety. Further, since the flow rate of the sample liquid is controlled by the head difference of the tank, the configuration can be simplified. In addition, since the flow rate of the sample liquid is set to about 200 cc / min, desired responsiveness can be secured without increasing the power consumption of the heater. Further, since the chemical cleaning means for cleaning the window of the detector with the chemical at predetermined time intervals is provided, it is possible to improve the reliability of the measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアルカリ濃度分析装置の実施の形態の
1例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of an embodiment of an alkali concentration analyzer of the present invention.

【図2】アルカリ水溶液の近赤外スペクトルを示す図で
ある。
FIG. 2 is a diagram showing a near-infrared spectrum of an aqueous alkaline solution.

【図3】NaOHの従来分析値と近赤外分析値の相関を示す
図である。
FIG. 3 is a diagram showing a correlation between a conventional analysis value of NaOH and a near-infrared analysis value.

【図4】Na2Sの従来分析値と近赤外分析値の相関を示す
図である。
FIG. 4 is a diagram showing a correlation between a conventional analysis value of Na2S and a near-infrared analysis value.

【図5】Na2CO3の従来分析値と近赤外分析値の相関を示
す図である。
FIG. 5 is a diagram showing a correlation between a conventional analysis value of Na2CO3 and a near-infrared analysis value.

【図6】各検量線の帰属波数を示す図である。FIG. 6 is a diagram showing the assigned wave numbers of each calibration curve.

【図7】各アルカリ成分の連続測定結果を示す図であ
る。
FIG. 7 is a diagram showing the results of continuous measurement of each alkali component.

【図8】パルプ製造プラントにおける薬品回収サイクル
の一般的な流れを示す図である。
FIG. 8 is a diagram showing a general flow of a chemical recovery cycle in a pulp manufacturing plant.

【符号の説明】[Explanation of symbols]

1 溶解手段 3 パルプ洗浄手段 5 乾燥手段(エバポレータ) 7 燃焼手段(回収ボイラ) 8 緑液生成手段(デゾルバ) 11 苛性化手段 12 分離手段(白液クラリファイア) 13 白液タンク 20 サンプリング装置 21 サンプル入口 22 サンプル液槽 22a,22b 液位保持部材 24 サンプル回収ライン 25 恒温槽 26 容器 27 温度設定器 28 レベル設定器 31 検出器 32 オーバフロー槽 33 空気ライン 34 廃液皿 35 排液ライン 36 薬液タンク 37 空気入口 38 計量タンク 39 逆止弁 40 校正ライン 41 流量計 42 洗浄ライン P1〜P6 パイプ V1〜V7 バルブ REFERENCE SIGNS LIST 1 dissolving means 3 pulp washing means 5 drying means (evaporator) 7 burning means (recovery boiler) 8 green liquor generating means (desolver) 11 causticizing means 12 separating means (white liquor clarifier) 13 white liquor tank 20 sampling device 21 sample Inlet 22 Sample liquid tanks 22a, 22b Liquid level holding member 24 Sample collection line 25 Constant temperature bath 26 Container 27 Temperature setting unit 28 Level setting unit 31 Detector 32 Overflow tank 33 Air line 34 Waste liquid tray 35 Drain line 36 Chemical liquid tank 37 Air Inlet 38 Measuring tank 39 Check valve 40 Calibration line 41 Flow meter 42 Wash line P1-P6 Pipe V1-V7 Valve

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】パルプ製造プラントのチップ溶解工程で生
成される黒液を燃焼させる燃焼手段と、燃焼手段により
生成されたスメルトから緑液を生成する緑液生成手段
と、緑液中の炭酸ソーダを苛性ソーダに変換させる苛性
化手段と、この苛性化された白液を前記溶解工程で用い
られる溶解手段に投入するようにした薬品回収サイクル
に適用され、前記白液を含む複数種の液体のアルカリ濃
度を近赤外分光分析計を用いて連続分析するアルカリ濃
度分析装置であって、前記近赤外分光分析計でのアルカ
リ液の分析に際しては、サンプル液を所定温度に加熱し
た後分析するようにしたことをする特徴とするアルカリ
濃度分析装置。
1. A burning means for burning black liquor generated in a chip melting step of a pulp manufacturing plant, a green liquor generating means for producing green liquor from smelt generated by the burning means, and a sodium carbonate in the green liquor. A causticizing means for converting the caustic soda into caustic soda and a chemical recovery cycle in which the causticized white liquor is applied to the dissolving means used in the dissolving step, wherein the alkalis of a plurality of liquids including the white liquor are An alkali concentration analyzer for continuously analyzing the concentration using a near-infrared spectrometer.When analyzing the alkali solution with the near-infrared spectrometer, the alkali solution is analyzed after heating the sample solution to a predetermined temperature. An alkali concentration analyzer characterized by the following.
【請求項2】サンプル液の温度を65〜70℃程度に制
御したことを特徴とする請求項1記載のアルカリ濃度分
析装置。
2. The alkali concentration analyzer according to claim 1, wherein the temperature of the sample solution is controlled at about 65 to 70 ° C.
【請求項3】近赤外分光分析計の校正に際してはサンプ
ル液を連続して希釈する希釈手段を設けたことを特徴と
する請求項1記載のアルカリ濃度分析装置。
3. The alkali concentration analyzer according to claim 1, wherein a dilution means for continuously diluting the sample liquid is provided when calibrating the near infrared spectrometer.
【請求項4】サンプル液の流量をタンクのヘッド差によ
り制御するようにしたことを特徴とする請求項1記載の
アルカリ濃度分析装置。
4. The alkali concentration analyzer according to claim 1, wherein the flow rate of the sample liquid is controlled by the head difference of the tank.
【請求項5】サンプル液の流量を毎分200cc程度と
したことを特徴とする請求項1記載のアルカリ濃度分析
装置。
5. The alkali concentration analyzer according to claim 1, wherein the flow rate of the sample liquid is set to about 200 cc / min.
【請求項6】近赤外分光分析計を構成する検出器の窓を
所定時間毎に薬液で洗浄する薬液洗浄手段を設けたこと
を特徴とする請求項1記載のアルカリ濃度分析装置。
6. The alkali concentration analyzer according to claim 1, further comprising a chemical cleaning means for cleaning a window of a detector constituting the near-infrared spectrometer with a chemical at predetermined time intervals.
JP31909898A 1998-11-10 1998-11-10 Alkaline concentration analyzer Expired - Fee Related JP3620572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31909898A JP3620572B2 (en) 1998-11-10 1998-11-10 Alkaline concentration analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31909898A JP3620572B2 (en) 1998-11-10 1998-11-10 Alkaline concentration analyzer

Publications (2)

Publication Number Publication Date
JP2000146835A true JP2000146835A (en) 2000-05-26
JP3620572B2 JP3620572B2 (en) 2005-02-16

Family

ID=18106460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31909898A Expired - Fee Related JP3620572B2 (en) 1998-11-10 1998-11-10 Alkaline concentration analyzer

Country Status (1)

Country Link
JP (1) JP3620572B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662634B2 (en) 2003-05-19 2010-02-16 Bayer Materialscience Ag Method and device for determining the isomer composition in isocyanate production processes
CN103351068A (en) * 2013-07-24 2013-10-16 宜宾海丝特纤维有限责任公司 Pre-treatment technology of ultrafiltration for electrodialytic alkali recovery of black liquor in pulp manufacturing
EP3711852A1 (en) 2019-03-21 2020-09-23 Covestro Deutschland AG Method and apparatus for quantitative monitoring of the composition of a oligomer/monomer mixture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103362010B (en) * 2013-07-24 2016-01-20 宜宾海丝特纤维有限责任公司 The diffusion dialysis pretreating process of Black Liquor by Electrodialysis alkali collection during pulp manufactures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662634B2 (en) 2003-05-19 2010-02-16 Bayer Materialscience Ag Method and device for determining the isomer composition in isocyanate production processes
CN103351068A (en) * 2013-07-24 2013-10-16 宜宾海丝特纤维有限责任公司 Pre-treatment technology of ultrafiltration for electrodialytic alkali recovery of black liquor in pulp manufacturing
EP3711852A1 (en) 2019-03-21 2020-09-23 Covestro Deutschland AG Method and apparatus for quantitative monitoring of the composition of a oligomer/monomer mixture
WO2020188116A1 (en) 2019-03-21 2020-09-24 Covestro Intellectual Property Gmbh & Co. Kg Process and apparatus for quantitative monitoring of the composition of an oligomer/monomer mixture

Also Published As

Publication number Publication date
JP3620572B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
EP0850415B1 (en) Determination of sodium sulfide and sulfidity in green liquors and smelt solutions
US5582684A (en) Method of determining degree of reduction in a sulfate liquor using IR and UV spectroscopy
FI108476B (en) Procedure for the determination and control of effective alkali in slopes in a process for the production of kraft pulp
JP5006806B2 (en) Process for controlling the efficiency of the causticization process
US4311666A (en) Apparatus for controlling the degree of causticization in the preparation of white liquor from the chemicals recovered from black liquor
JP2000146835A (en) Alkali concentration analyzing device
FI76137B (en) FOERFARANDE FOER STYRNING AV EGENSKAPERNA HOS VITLUT.
US6339222B1 (en) Determination of ionic species concentration by near infrared spectroscopy
EP0947625B1 (en) Process and apparatus for controlling and optimizing the process of chemical recovery during cellulose production
EP1031023B1 (en) Determination of anionic species concentration by near infrared spectroscopy
US20020053640A1 (en) Determination of ionic species concentration by near infrared spectroscopy
CA2271221C (en) Determination of ionic species concentration by near infrared spectroscopy
CA2074347C (en) Method for controlling the sodium carbonate concentration of green liquor in the dissolving tank
CN1344925A (en) General titration and colorimetry reactor
CN115436151A (en) Heavy metal concentration analysis system
US6052177A (en) Apparatus used in determining the degree of completion of a processed medium
US4895618A (en) Method of controlling alkaline pulping process
JP3610570B2 (en) Near infrared alkali concentration analyzer
JPH11350368A (en) Device for continuously measuring white liquid
CA2305201C (en) Determination of anionic species concentration by near infrared spectroscopy
CN2553373Y (en) Universal titration, colorimetric reaction device
JPS61119791A (en) Control of alkali pulp method by rapid analyser for measuring organic or inorganic digestion liquor component
LIQUORS LeClerc et a1.
JP2023180657A (en) White liquor processing method, and white liquor oxidation monitoring system
SE529420C2 (en) Process for controlling a cooking process based on the levels of easily soluble carbohydrates and lignin in the pulp fibers

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041109

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees