JP2000146805A - Sample table driving device for atomic force microscope - Google Patents
Sample table driving device for atomic force microscopeInfo
- Publication number
- JP2000146805A JP2000146805A JP10318258A JP31825898A JP2000146805A JP 2000146805 A JP2000146805 A JP 2000146805A JP 10318258 A JP10318258 A JP 10318258A JP 31825898 A JP31825898 A JP 31825898A JP 2000146805 A JP2000146805 A JP 2000146805A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- spring member
- electric motor
- sample stage
- driving device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、試料の表面力
(引力、斥力及び接着力)を測定するのに適した原子間
力顕微鏡(以下、AFMという)の試料台駆動装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for driving a sample stage of an atomic force microscope (AFM) suitable for measuring the surface force (attraction, repulsion and adhesion) of a sample.
【0002】[0002]
【発明が解決しようとする課題】試料の表面情報分布を
得るのに使用するAFMは、微粒子の分散特性等、生体
高分子の生体機能解析等、表面及び界面の解析等を行う
のに必要な試料の表面力(ファンデンワールス力、静電
力、磁気力)を測定する用途にも使用されている。The AFM used to obtain the surface information distribution of a sample is necessary for analyzing the dispersion characteristics of fine particles, analyzing the biological functions of biological macromolecules, analyzing the surface and interface, and the like. It is also used for measuring the surface force (Vandenwaals force, electrostatic force, magnetic force) of a sample.
【0003】従来、試料を三次元方向(X−Y−Z軸)
へ移動する試料台駆動装置のZ軸駆動機構として印加さ
れる電圧値に応じた量で変形する電歪効果を有した圧電
素子を使用し、印加される電圧値に基づいてZ軸方向に
対する試料台を移動量をナノ・メータ単位で測定し、試
料表面に近接して弾性変形するカンチレバーの変形量に
基づいて試料の表面力を測定している。Conventionally, a sample is moved in a three-dimensional direction (XYZ axes).
Using a piezoelectric element having an electrostrictive effect that is deformed by an amount corresponding to the applied voltage value as a Z-axis driving mechanism of the sample stage driving device that moves to the sample stage driving device, the sample in the Z-axis direction is determined based on the applied voltage value. The amount of movement of the table is measured in nanometer units, and the surface force of the sample is measured based on the amount of deformation of the cantilever that elastically deforms close to the sample surface.
【0004】しかしながら、圧電素子自体、電圧−変形
量の関係がおおよそ直線的ではあるが、全くの比例関係
ではないため、電圧値に基づいて移動量を高い信頼性で
測定できなかった。又、圧電素子自体、ヒステリシスが
あるため、カンチレバーの探針に試料を近づける場合
と、離間させる場合とでは移動量に誤差が生じ、測定結
果に信頼性がなかった。更に、表面力の測定時にZ軸方
向に対する試料の移動速度を変化させたり、一時停止さ
せて緩和測定する測定態様においては、圧電素子自体、
ある程度のドリフト幅があるため、例えば電圧の引加を
中断した際にあっても変形して移動させる結果、測定結
果に対して信頼性がなかった。[0004] However, although the relationship between the voltage and the amount of deformation of the piezoelectric element itself is approximately linear, but not completely proportional, the amount of movement cannot be measured with high reliability based on the voltage value. In addition, since the piezoelectric element itself has hysteresis, an error occurs in the amount of movement between the case where the sample approaches the probe of the cantilever and the case where the sample is separated from the probe, and the measurement result is not reliable. Furthermore, in the measurement mode in which the moving speed of the sample in the Z-axis direction is changed or the measurement is temporarily stopped and the relaxation measurement is performed, the piezoelectric element itself includes:
Since there is a certain drift width, for example, even when the application of the voltage is interrupted, it is deformed and moved, so that the measurement result is not reliable.
【0005】このため、Z軸駆動機構として圧電素子を
使用した試料台駆動装置では、試料の表面力を高精度
(高分解能)で、かつ高い信頼性で測定できなかった。For this reason, in a sample stage driving device using a piezoelectric element as the Z-axis driving mechanism, the surface force of the sample cannot be measured with high accuracy (high resolution) and with high reliability.
【0006】本発明は、上記した従来の欠点を解決する
ために発明されたものであり、その課題とする処は、高
い信頼性及び再現性にて試料台を移動制御して試料の表
面力を高精度及び高分解能で測定することができる原子
間力顕微鏡の試料台駆動装置を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned conventional drawbacks. An object of the present invention is to control the movement of a sample table with high reliability and reproducibility to control the surface force of a sample. To provide a sample stage driving device of an atomic force microscope capable of measuring the sample with high precision and high resolution.
【0007】[0007]
【問題点を解決するための手段】このため本発明は、試
料台上に載置された試料表面とカンチレバー先端に設け
られた探針とを近接させて両者間の原子間力によるカン
チレバーの弾性変形に基づいて試料の表面情報を得る原
子間力顕微鏡において、試料台をZ軸へ移動制御するZ
軸駆動機構は高分解能の駆動パルスで回転駆動する電動
モータと、電動モータの駆動に伴って回転して噛み合う
ナットを所要のリードで移動する送りねじと、移動する
ナットにより押圧されて弾性変形する第1ばね部材及び
該第1ばね部材に対して高いばね常数で、第1ばね部材
の弾性変形に伴ってばね常数に応じて弾性変形する第2
ばね部材からなる差動ばね手段とからなることを特徴と
する。SUMMARY OF THE INVENTION Therefore, the present invention is directed to a method in which the surface of a sample placed on a sample stage and a probe provided at the tip of the cantilever are brought close to each other, and the elasticity of the cantilever due to an atomic force between the two. In an atomic force microscope that obtains surface information of a sample based on deformation, Z is used to control the movement of the sample stage to the Z axis.
The shaft drive mechanism is driven by a high-resolution drive pulse, an electric motor is rotated, the nut is rotated by the drive of the electric motor, a feed screw is used to move a meshing nut with a required lead, and is pressed by the moving nut to be elastically deformed. A first spring member and a second spring that has a higher spring constant with respect to the first spring member and that elastically deforms in accordance with the spring constant with the elastic deformation of the first spring member.
And a differential spring means comprising a spring member.
【0008】[0008]
【発明の実施の形態】以下、本発明の実施形態を図に従
って説明する。図1は試料台駆動装置におけるZ軸駆動
機構を示す斜視図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a Z-axis driving mechanism in the sample stage driving device.
【0009】AFM1の試料台駆動装置3は、X軸及び
Y軸駆動機構5とZ軸駆動機構7とから構成され、X軸
及びY軸駆動機構5は印加される電圧値に対応してX軸
方向及びY軸方向へそれぞれ所定量で変形する電歪特性
を有した圧電素子5a・5bからなる。尚、上記した試
料台駆動装置3は防震部材(図示せず)上に載置され
る。The sample stage driving device 3 of the AFM 1 comprises an X-axis and Y-axis driving mechanism 5 and a Z-axis driving mechanism 7, and the X-axis and Y-axis driving mechanisms 5 correspond to X and Y axes corresponding to applied voltage values. It comprises piezoelectric elements 5a and 5b having an electrostrictive characteristic of being deformed by a predetermined amount in the axial direction and the Y-axis direction, respectively. The sample stage driving device 3 is mounted on an anti-vibration member (not shown).
【0010】X軸及びY軸駆動機構5にはZ軸駆動機構
7が取付けられる、該Z軸駆動機構7のケース9内には
第2ばね部材11の固定枠11aが上下方向(Z軸方
向)を向くように固定されている。該第2ばね部材11
は、例えば均一剛性を有するように加工されたアルミ材
からなり、ケース9内に固定される固定枠11aと、該
固定枠11aに対して所要の間隔をおいて相対する可動
枠11bと、固定枠11a及び可動枠11bの上下端部
を夫々連結する連結枠11c・11dとからなる四角枠
形に形成される。そして第2ばね部材11は可動枠11
bの下端に当接する第1ばね部材17の押圧に伴って平
行四辺形移動して可動枠11bを上下方向(Z軸方向)
へ移動させる。A Z-axis drive mechanism 7 is attached to the X-axis and Y-axis drive mechanisms 5. A fixed frame 11a of a second spring member 11 is provided in a case 9 of the Z-axis drive mechanism 7 in the vertical direction (Z-axis direction). ) Is fixed. The second spring member 11
Is made of, for example, an aluminum material processed so as to have uniform rigidity, and has a fixed frame 11a fixed in the case 9, a movable frame 11b opposed to the fixed frame 11a at a required interval, and fixed. It is formed in a rectangular frame shape including connecting frames 11c and 11d connecting the upper and lower ends of the frame 11a and the movable frame 11b, respectively. And the second spring member 11 is movable frame 11
The movable frame 11b moves in the vertical direction (Z-axis direction) by moving in a parallelogram with the pressing of the first spring member 17 abutting on the lower end of the movable frame 11b.
Move to
【0011】可動枠11bの上端面には試料13が載置
される試料台15が取付けられている。又、可動枠11
bの下端面側には第1ばね部材17を介して押圧手段1
9が設けられている。該第1ばね部材17は第2ばね部
材11に対して低いばね定数からなる圧縮ばねにより構
成されている。そして該第1及び第2ばね部材11.1
7により差動ばね手段を構成している。A sample table 15 on which the sample 13 is placed is mounted on the upper end surface of the movable frame 11b. Also, the movable frame 11
b on the lower end surface side of the pressing means 1 via a first spring member 17.
9 are provided. The first spring member 17 is constituted by a compression spring having a lower spring constant than the second spring member 11. The first and second spring members 11.1
7 constitute differential spring means.
【0012】又、押圧手段19は数値制御可能な電動モ
ータ21と、該電動モータ21の回転軸に連結された送
りねじ23及びこれに噛合い、ケース9に対して回り止
めされると共に上下方向へ摺動可能に支持されて第1ば
ね部材17の下部に当接するナット25とから構成され
る。The pressing means 19 includes an electric motor 21 which can be numerically controlled, a feed screw 23 connected to a rotating shaft of the electric motor 21 and meshes with the feed screw 23. And a nut 25 that is slidably supported and abuts against the lower portion of the first spring member 17.
【0013】電動モータ21は、例えば5励磁相構造
で、500パルスで1回転するステップモータからな
る。該電動モータ21としてはその励磁相数、1回転当
りのパルス数が限定されるものではないが、高分解能化
の必要から少なくとも上記構造以上のものが望ましい。The electric motor 21 is, for example, a stepping motor having a five-excitation phase structure and making one rotation at 500 pulses. The electric motor 21 is not limited in the number of excitation phases and the number of pulses per rotation, but preferably has at least the above structure in order to achieve high resolution.
【0014】そして該電動モータ21は分割駆動装置2
9から出力される分割パルスにより駆動制御される。該
分割駆動装置29は電動モータ21の駆動パルスを、予
め設定された分割数で階段状に変化させて分割した分割
パルスを発生するものであり、例えば商品名「CSD5
807VN」又は「CSD5814VN」(何れもオリ
エンタルモータ株式会社製)が適している。そして該分
割駆動装置29は要求される試料台15の移動分解能に
応じて1駆動パルスを1〜250分割した分割パルスを
出力する。The electric motor 21 is connected to the split driving device 2.
The driving is controlled by the divided pulse output from the reference numeral 9. The split driving device 29 generates a split pulse obtained by changing the drive pulse of the electric motor 21 in a stepwise manner by a preset number of divisions, and generates, for example, a product name “CSD5”.
807VN "or" CSD5814VN "(all manufactured by Oriental Motor Co., Ltd.). The divided driving device 29 outputs divided pulses obtained by dividing one driving pulse into 1 to 250 according to the required moving resolution of the sample table 15.
【0015】具体的には、電動モータ21が5励磁相構
造で、500puls/rの場合、1駆動パルス当りの
ステップ角は0.72゜であるが、上記分割駆動装置2
9の分割数が250のとき、電動モータ21は1250
00分割パルスで1回転される。これにより分割駆動装
置29は電動モータ21のステップ角を1分割パルス当
たり、0.00288〜0.72゜の範囲で可変する。More specifically, when the electric motor 21 has a five-excitation phase structure and is 500 pulse / r, the step angle per drive pulse is 0.72 °.
When the division number of 9 is 250, the electric motor 21 is 1250
One rotation is made by the 00 division pulse. As a result, the division drive device 29 varies the step angle of the electric motor 21 within the range of 0.00288 to 0.72 ° per division pulse.
【0016】試料台駆動装置3に取付けられた試料台1
5の上方にはばね定数がほぼ一定な金箔や金属箔のカン
チレバー41の基端部が固定されている。該カンチレバ
ー41の先端部下面にはダイヤモンドやタングステン線
の探針41aが、その先端を試料台15に載置された試
料13表面に相対して取付けられている。The sample stage 1 attached to the sample stage driving device 3
Above 5, the base end of a cantilever 41 of gold or metal foil having a substantially constant spring constant is fixed. A probe 41a of diamond or tungsten wire is attached to the lower surface of the tip of the cantilever 41 with its tip facing the surface of the sample 13 placed on the sample table 15.
【0017】カンチレバー41の延出方向中間部上方に
は所定径に集光されたレーザ光等の光をカンチレバー4
1の上面に所定の入射角で照射する光源43が設けられ
ると共にカンチレバー41上面からの反射光路上には、
例えば3分割フォトダイオード等の受光装置45が配置
されている。Above the intermediate portion of the cantilever 41 in the extending direction, light such as laser light condensed to a predetermined diameter is applied to the cantilever 4.
A light source 43 for irradiating an upper surface of the cantilever 41 at a predetermined incident angle is provided on the upper surface of the cantilever 41, and on a light path reflected from the upper surface of the cantilever 41,
For example, a light receiving device 45 such as a three-division photodiode is arranged.
【0018】そして上記Z軸駆動機構7は以下の作用に
より試料台15をZ軸方向(上下方向)へ微小移動させ
る。The Z-axis drive mechanism 7 moves the sample table 15 minutely in the Z-axis direction (up-down direction) by the following operation.
【0019】図2は表面力の測定状態を示す説明図であ
る。分割駆動装置29からの分割パルスにより電動モー
タ21を回転駆動して送りねじ23を所定方向へ回転
し、ナット25を上方へ移動して第1ばね部材17を弾
性変形させると、該第1ばね部材17はその弾性力によ
り第2ばね部材11を弾性変形させて可動枠11bを上
方へ移動させる。FIG. 2 is an explanatory diagram showing the measurement state of the surface force. When the electric motor 21 is rotationally driven by the divided pulse from the divided driving device 29 to rotate the feed screw 23 in a predetermined direction and move the nut 25 upward to elastically deform the first spring member 17, the first spring The member 17 elastically deforms the second spring member 11 by the elastic force to move the movable frame 11b upward.
【0020】今、上記したように電動モータ21が5相
励磁相構造で、500puls/r、分割駆動装置29
の分割数が250、送りねじ23の1回転当りの送り量
が1mm/r、第1ばね部材17と第2ばね部材11の
ばね定数比が1:500のとき、1分割パルス当りの送
りねじ23の送り量が0.008μm(80オングスト
ローム)になり、上下方向に対する可動枠11bの移動
分解能は1分割パルス当り、0.16オングストローム
になる。Now, as described above, the electric motor 21 has a five-phase excitation phase structure, 500 pulse / r,
Is 250, the feed amount per rotation of the feed screw 23 is 1 mm / r, and the spring constant ratio between the first spring member 17 and the second spring member 11 is 1: 500. The feed amount of the movable frame 11 becomes 0.008 μm (80 angstroms), and the moving resolution of the movable frame 11b in the vertical direction becomes 0.16 angstroms per divided pulse.
【0021】又、電動モータ21が5相励磁構造で、5
00puls/r、分割駆動装置29の分割数が20
0、送りねじ23の1回転当りの送り量が1mm/r、
第2ばね部材17と第1ばね部材11のばね定数比が
1:1000のとき、1分割パルス当りの送りねじ23
の送り量が0.001μm(10オングストローム)に
なり、上下方向に対する可動枠11bの分解能は1分割
パルス当り、0.01オングストロームになる。The electric motor 21 has a five-phase excitation structure,
00 pulse / r, the number of divisions of the division driving device 29 is 20
0, the feed amount per rotation of the feed screw 23 is 1 mm / r,
When the ratio of the spring constant between the second spring member 17 and the first spring member 11 is 1: 1000, the feed screw 23 per divided pulse is used.
Is 0.001 μm (10 Å), and the resolution of the movable frame 11b in the vertical direction is 0.01 Å per divided pulse.
【0022】そして電動モータ21に印加される分割駆
動装置29からの分割パルス数に基づいてZ軸方向に対
する可動枠11b、従ってZ軸方向に対する試料台15
の移動量をナノ・メータ単位で移動制御する。The movable frame 11b in the Z-axis direction, and thus the sample stage 15 in the Z-axis direction, is based on the number of divided pulses from the divided drive device 29 applied to the electric motor 21.
Is controlled in nanometer units.
【0023】次に、上記した試料台駆動装置3を使用し
たAFM1による試料13の表面力測定作用を説明す
る。図3は試料の移動距離と表面力との関係を示すチャ
ートである。図4は分割パルス数とカンチレバーのたわ
み量との関係を示すチャートである。Next, the action of measuring the surface force of the sample 13 by the AFM 1 using the sample stage driving device 3 will be described. FIG. 3 is a chart showing the relationship between the moving distance of the sample and the surface force. FIG. 4 is a chart showing the relationship between the number of divided pulses and the amount of deflection of the cantilever.
【0024】探針41aの先端から所定の間隔(例えば
500nm)をおいた位置に待機した試料台15上に試
料13を載置した後、圧電素子5a・5bに測定位置の
二次元位置データに対応する所定値の電圧を夫々印加し
て試料13表面の測定位置を探針41aに相対させる。After the sample 13 is placed on the sample table 15 waiting at a predetermined interval (for example, 500 nm) from the tip of the probe 41a, the two-dimensional position data of the measurement position is stored in the piezoelectric elements 5a and 5b. Corresponding predetermined voltage values are applied to make the measurement position on the surface of the sample 13 relative to the probe 41a.
【0025】そして上記状態にて分割駆動装置29に駆
動パルスを引加して所定の分割数で分割された分割パル
スにより電動モータ21を回転駆動して試料台15を上
方へ移動して試料13表面を探針41aに近接させる
と、例えば図3に示すように試料13の引力によりカン
チレバー41を下方へ弾性変形させた後、斥力によりカ
ンチレバー41を上方へ弾性変形させる。そして上記試
料台15の移動に伴って試料13の表面に当接するカン
チレバー41を試料台15の移動量に応じて弾性変形さ
せる。尚、試料13によっては引力を生じないものがあ
り、この場合は図3に示す場合とは異なり、試料13の
斥力によりカンチレバー41が直接上方へ弾性変形する
チャートになる。In the above state, a driving pulse is applied to the division driving device 29, and the electric motor 21 is rotationally driven by the division pulses divided by a predetermined division number to move the sample table 15 upward to move the sample 13 When the surface is brought close to the probe 41a, the cantilever 41 is elastically deformed downward by the attraction of the sample 13 as shown in FIG. 3, for example, and then elastically deformed upward by the repulsive force. Then, the cantilever 41 abutting on the surface of the sample 13 is elastically deformed in accordance with the amount of movement of the sample table 15 as the sample table 15 moves. It should be noted that some samples 13 do not generate an attractive force. In this case, unlike the case shown in FIG. 3, a chart in which the cantilever 41 is directly elastically deformed upward by the repulsive force of the sample 13 is obtained.
【0026】このとき、試料台15(試料13)の移動
量は電動モータ21に引加される分割パルス数と1分割
パルス当たりの分解能により求めることができる。ま
た、引力及び斥力によるカンチレバー41の弾性変形量
及び弾性変形方向は光源43から照射されてカンチレバ
ー41上面から反射されて受光装置45における各セル
に入射される光量の変化量に基づく電流値により求める
ことができる。そしてカンチレバー41のばね定数はあ
らかじめ所定の値からなるため、カンチレバー41の変
位量とばね定数と引力及び斥力を求めることができる。At this time, the amount of movement of the sample table 15 (sample 13) can be obtained from the number of divided pulses applied to the electric motor 21 and the resolution per divided pulse. Further, the amount of elastic deformation and the direction of elastic deformation of the cantilever 41 due to the attractive force and the repulsive force are obtained by a current value based on the amount of change in the amount of light emitted from the light source 43 and reflected from the upper surface of the cantilever 41 and incident on each cell in the light receiving device 45. be able to. Since the spring constant of the cantilever 41 has a predetermined value in advance, the displacement, the spring constant, the attractive force and the repulsive force of the cantilever 41 can be obtained.
【0027】そして測定された試料13の表面力に基づ
いてコロイド微粒子の分散特性、生体高分子の立体構造
解析、分子認識、生体機能解析、界面活性剤集合体間の
相互作用評価、界面活性剤への吸着現象の評価、表面及
び界面現象の解析等を行うことができる。Based on the measured surface force of the sample 13, the dispersion characteristics of colloidal fine particles, three-dimensional structure analysis of biopolymer, molecular recognition, biological function analysis, interaction evaluation between surfactant aggregates, surfactant Evaluation of adsorption phenomena on the surface, analysis of surface and interface phenomena, and the like can be performed.
【0028】上記説明において第2ばね部材11を相対
する固定枠11aと可動枠11b及びこれらの上部と下
部にて連結して四辺形状にする連結枠11c・11dに
より構成したが、該第2ばね部材11にあっては固定枠
11aと可動枠11bの境界部に位置する連結枠11c
・11dの各端部に肉薄部を形成し、該第2ばね部材1
1のばね常数を変更可能にしてもよい。In the above description, the second spring member 11 is constituted by the opposed fixed frame 11a and movable frame 11b and the connection frames 11c and 11d which are connected at the upper and lower portions to form a quadrilateral. In the member 11, a connection frame 11c located at a boundary between the fixed frame 11a and the movable frame 11b
Forming a thin portion at each end of the second spring member 1d;
The spring constant of 1 may be changeable.
【0029】[0029]
【発明の効果】このため本発明は、高い信頼性及び再現
性にて試料台を移動制御して試料の表面力を高精度及び
高分解能で測定することができる。According to the present invention, the surface force of the sample can be measured with high precision and high resolution by controlling the movement of the sample table with high reliability and reproducibility.
【図1】試料台駆動装置におけるZ軸駆動機構を示す斜
視図である。FIG. 1 is a perspective view showing a Z-axis driving mechanism in a sample stage driving device.
【図2】表面力の測定状態を示す説明図である。FIG. 2 is an explanatory diagram showing a measurement state of a surface force.
【図3】試料の移動距離と表面力との関係を示すチャー
トである。FIG. 3 is a chart showing a relationship between a moving distance of a sample and a surface force.
【図4】分割パルス数とカンチレバーのたわみ量との関
係を示すチャートである。FIG. 4 is a chart showing the relationship between the number of divided pulses and the amount of deflection of a cantilever.
1−AFM、7−Z軸駆動機構、11−第2ばね部材、
13−試料、15−試料台、17−第1ばね部材、21
−電動モータ、23−送りねじ、29−分割駆動装置、
41−カンチレバー、41a−探針1-AFM, 7-Z axis drive mechanism, 11-second spring member,
13-sample, 15-sample stage, 17-first spring member, 21
Electric motors, 23 feed screws, 29-split drives,
41-cantilever, 41a-tip
Claims (4)
バー先端に設けられた探針とを近接させて両者間の原子
間力によるカンチレバーの弾性変形に基づいて試料の表
面情報を得る原子間力顕微鏡において、試料台をZ軸へ
移動制御するZ軸駆動機構は高分解能の駆動パルスで回
転駆動する電動モータと、電動モータの駆動に伴って回
転して噛み合うナットを所要のリードで移動する送りね
じと、移動するナットにより押圧されて弾性変形する第
1ばね部材及び該第1ばね部材に対して高いばね常数
で、第1ばね部材の弾性変形に伴ってばね常数に応じて
弾性変形する第2ばね部材からなる差動ばね手段とから
なることを特徴とする試料台駆動装置。An atom for obtaining surface information of a sample based on the elastic deformation of the cantilever caused by an atomic force between the surface of the sample placed on the sample stage and a probe provided at the tip of the cantilever. In an atomic force microscope, a Z-axis drive mechanism that controls the movement of the sample stage to the Z-axis moves an electric motor that rotates and drives with a high-resolution drive pulse, and moves a nut that rotates and meshes with the drive of the electric motor with a required lead. A first spring member that is elastically deformed by being pressed by a moving screw and a moving nut, and has a high spring constant with respect to the first spring member, and is elastically deformed in accordance with the spring constant with the elastic deformation of the first spring member. And a differential spring means comprising a second spring member.
る駆動パルスは分割駆動装置により所望の分解能に応じ
た所定数の分割パルスに分割され、該分割パルスに基づ
いて電動モータを駆動すると共に分割パルス数に基づい
てZ軸方向に対する試料台の移動量を制御可能にした試
料台駆動装置。2. A driving device according to claim 1, wherein the driving pulse output to the electric motor is divided into a predetermined number of divided pulses corresponding to a desired resolution by a divided driving device, and the electric motor is driven based on the divided pulses. A sample stage drive device capable of controlling the amount of movement of the sample stage in the Z-axis direction based on the number of divided pulses.
相対する固定枠及び可動枠と、これら固定枠及び可動枠
の両端部を所定の間隔をおいて連結する連結枠の四角枠
形状からなり、可動枠の一部に試料台を設けた試料台駆
動装置。3. The square frame of a fixed frame and a movable frame facing each other and a connecting frame connecting both ends of the fixed frame and the movable frame at predetermined intervals. A sample stage drive device in which a sample stage is provided on a part of the movable frame.
び可動枠との境界部に肉薄部を設けて弾性変形可能にし
た試料台駆動装置。4. The sample stage driving device according to claim 3, wherein each connecting frame is provided with a thin portion at a boundary between the fixed frame and the movable frame so as to be elastically deformable.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10318258A JP2000146805A (en) | 1998-11-10 | 1998-11-10 | Sample table driving device for atomic force microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10318258A JP2000146805A (en) | 1998-11-10 | 1998-11-10 | Sample table driving device for atomic force microscope |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000146805A true JP2000146805A (en) | 2000-05-26 |
JP2000146805A5 JP2000146805A5 (en) | 2005-08-04 |
Family
ID=18097204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10318258A Pending JP2000146805A (en) | 1998-11-10 | 1998-11-10 | Sample table driving device for atomic force microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000146805A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111272724A (en) * | 2020-04-02 | 2020-06-12 | 深圳华因康基因科技有限公司 | Fluorescence detection optical system |
-
1998
- 1998-11-10 JP JP10318258A patent/JP2000146805A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111272724A (en) * | 2020-04-02 | 2020-06-12 | 深圳华因康基因科技有限公司 | Fluorescence detection optical system |
CN111272724B (en) * | 2020-04-02 | 2023-09-05 | 深圳华因康基因科技有限公司 | Fluorescence detection optical system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0903606B1 (en) | Micromechanical XYZ stage for use with optical elements | |
US6323483B1 (en) | High bandwidth recoiless microactuator | |
USRE33387E (en) | Atomic force microscope and method for imaging surfaces with atomic resolution | |
US7219538B2 (en) | Balanced momentum probe holder | |
US20060097163A1 (en) | Scanning probe microscope using a surface drive actuator to position the scanning tip | |
JPS62130302A (en) | Method and device for forming image of surface of sample | |
JP4314328B2 (en) | Compliance measurement microscope | |
US5861954A (en) | Instrument for measuring static and dynamic forces between surfaces in three dimensions | |
EP0517270A1 (en) | Scanning probe microscope | |
JP2001514733A (en) | Integrated silicon profile meter and AFM head | |
Bergander et al. | Micropositioners for microscopy applications based on the stick-slip effect | |
JP2000146805A (en) | Sample table driving device for atomic force microscope | |
JP4714820B2 (en) | Fine processing equipment | |
GB2419952A (en) | Atomic force microscope (AFM) lateral force calibration | |
EP0843151A1 (en) | Probe scanning apparatus for probe microscope | |
JPH08136552A (en) | Interatomic force microscope and similar scanning probe microscope | |
JP2000146805A5 (en) | ||
JPH11202214A (en) | Microdriving device | |
JP2002014023A (en) | Probe-rotating mechanism and scanning probe microscope having the same | |
WO2021044934A1 (en) | Scanning probe microscope and driving control device for scanning probe microscope | |
JPH09264897A (en) | Scanning probe microscope | |
JP2004069445A (en) | Scanning type probe microscope | |
RU2653190C1 (en) | Scanning probe microscope combined with sample surface modification device | |
JP3512259B2 (en) | Scanning probe microscope | |
KR20050021853A (en) | Automic force microscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040210 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050106 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060626 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061017 |