JP2000146326A - Vapor compressing refrigerating machine - Google Patents

Vapor compressing refrigerating machine

Info

Publication number
JP2000146326A
JP2000146326A JP10317825A JP31782598A JP2000146326A JP 2000146326 A JP2000146326 A JP 2000146326A JP 10317825 A JP10317825 A JP 10317825A JP 31782598 A JP31782598 A JP 31782598A JP 2000146326 A JP2000146326 A JP 2000146326A
Authority
JP
Japan
Prior art keywords
refrigerant
stage compressor
secondary fluid
condenser
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10317825A
Other languages
Japanese (ja)
Inventor
Katsunori Ito
勝規 伊藤
Akira Akiyoshi
亮 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP10317825A priority Critical patent/JP2000146326A/en
Publication of JP2000146326A publication Critical patent/JP2000146326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vapor compressing refrigerating machine employing water as refrigerant. SOLUTION: A vapor compressing refrigerating machine is provided with a multi-stage compressor 11 for compressing refrigerant R sequentially, a condenser 4 for cooling the refrigerant R, sent from the multi-stage compressor 11, by secondary fluid X, an expansion valve 7 for expanding the refrigerant R, sent from the condenser 4, through adiabatic expansion, an evaporator 8, for cooling another secondary fluid Y by the refrigerant R sent from the expansion valve 7 and sending the refrigerant R to the multi-stage compressor 11, and heat exchangers 17, 18 for cooling the refrigerant R, compressed sequentially by the multi-stage compressor 11, by the secondary fluid X. The heat of the refrigerant R is transferred to the secondary fluid X during respective stages compression processes of the multi-stage compressor 11 to restrain the rise of discharging temperature of the refrigerant R for the multi-stage compressor 11 and improve the performance coefficient of the refrigerating machine employing water as the refrigerant R.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は蒸気圧縮冷凍機に関
するものである。
The present invention relates to a vapor compression refrigerator.

【0002】[0002]

【従来の技術】冷凍機はかなり熟成した研究開発分野
で、基本理論は確立されているが、更なる高性能化を図
るために、様々な機器や冷凍サイクルについての研究が
継続して行われている。
2. Description of the Related Art Refrigerators are quite matured research and development fields, and the basic theory has been established. However, in order to further improve the performance, research on various equipment and refrigeration cycles is continuously performed. ing.

【0003】図8は蒸気圧縮サイクルで作動する冷凍機
(蒸気圧縮冷凍機)の一例を示すもので、この蒸気圧縮
冷凍機は、モータ1から減速機2を介して伝達される回
転力により冷媒Rを圧縮して吐出する単段圧縮機3と、
2次流路4aを流通する2次流体Xにより前記の単段圧
縮機3から管路5を経て送給される冷媒Rを冷却する凝
縮器4と、該凝縮器4から管路6を経て送給される冷媒
Rを断熱膨張させる膨張弁7と、2次流路8aを流通す
る2次流体Yにより前記の膨張弁7から管路9を経て送
給される冷媒Rから冷熱を奪取して蒸発させ且つ冷媒R
を管路10を介して前記の単段圧縮機3へ送給する蒸発
器8とを備えている。
FIG. 8 shows an example of a refrigerator (vapor compression refrigerator) operating in a vapor compression cycle. This vapor compression refrigerator uses a rotating force transmitted from a motor 1 via a speed reducer 2 to a refrigerant. A single-stage compressor 3 for compressing and discharging R;
The condenser 4 cools the refrigerant R sent from the single-stage compressor 3 via the pipe 5 by the secondary fluid X flowing through the secondary flow path 4a, and from the condenser 4 via the pipe 6 The expansion valve 7 for adiabatically expanding the supplied refrigerant R and the secondary fluid Y flowing through the secondary flow path 8a take cold energy from the refrigerant R supplied from the expansion valve 7 through the pipe 9. To evaporate and the refrigerant R
And an evaporator 8 that feeds the oil to the single-stage compressor 3 via a pipe 10.

【0004】すなわち、蒸発器8で2次流体Yから熱を
吸収して乾き飽和蒸気となった冷媒Rは、単段圧縮機3
で等エントロピ圧縮されて過熱蒸気となり、この過熱蒸
気となった冷媒Rは、凝縮器4で2次流体Xへ熱を放出
して飽和液となる。
That is, the refrigerant R, which has absorbed heat from the secondary fluid Y in the evaporator 8 and has become dry saturated vapor, is supplied to the single-stage compressor 3.
Then, the refrigerant R which is isentropically compressed into superheated vapor is released into the secondary fluid X in the condenser 4 to become a saturated liquid.

【0005】更に、飽和液となった冷媒Rは、膨張弁7
を通る際に減圧・等エンタルピ膨張することにより、湿
り飽和蒸気となって蒸発器8に入り、2次流体Yから熱
を吸収して乾き飽和蒸気となる。
Further, the refrigerant R which has become a saturated liquid is supplied to the expansion valve 7.
When the air passes through the evaporator 8, it is decompressed and isenthalpy-expanded to become wet saturated steam, enters the evaporator 8, absorbs heat from the secondary fluid Y, and becomes dry saturated steam.

【0006】凝縮器4の2次流体Xには、一般的に水を
用いており、凝縮器4で冷媒Rから放出される熱を得る
ことにより温められた2次流体Xは、クーリングタワー
などの熱交換手段で冷やされた後、再び2次流路4aへ
送給される。
Generally, water is used for the secondary fluid X of the condenser 4, and the secondary fluid X heated by obtaining heat released from the refrigerant R in the condenser 4 is supplied to a cooling tower or the like. After being cooled by the heat exchange means, it is again supplied to the secondary flow path 4a.

【0007】また、蒸発器8の2次流体Yにも、水を用
いることが多いが、冷却対象が0℃以下である場合に
は、凍結を防止するために、不凍液を混合した水や、エ
チレングリコールなどの凍結温度が0℃以下の流体を2
次流体Yに用いている。
Water is often used also for the secondary fluid Y of the evaporator 8, but when the object to be cooled is 0 ° C. or less, in order to prevent freezing, water mixed with antifreeze, Fluid with a freezing temperature of 0 ° C or less such as ethylene glycol
Used for the next fluid Y.

【0008】この蒸発器8で冷媒Rに熱を吸収させるこ
とにより冷やされた2次流体Yは、冷却管などの熱交換
手段で温められた後、再び2次流路8aへ送給される。
[0008] The secondary fluid Y cooled by absorbing heat in the refrigerant R in the evaporator 8 is heated by a heat exchange means such as a cooling pipe, and then sent to the secondary flow path 8a again. .

【0009】図9は上述した蒸気圧縮冷凍機の圧力エン
タルピ線図(P−h線図)であり、A3は単段圧縮機3
の入口、B3は単段圧縮機3の出口、A7は膨張弁7の入
口、B7は膨張弁7の出口を表している。
FIG. 9 is a pressure enthalpy diagram (Ph diagram) of the above-mentioned vapor compression refrigerator.
, B3 denotes an outlet of the single-stage compressor 3, A7 denotes an inlet of the expansion valve 7, and B7 denotes an outlet of the expansion valve 7.

【0010】蒸発器8における冷媒Rの1kgあたりの
吸収熱量q8、凝縮器4における冷媒Rの1kgあたり
の放出熱量q4、及び単段圧縮機3での圧縮仕事wは、
冷媒Rのエンタルピ(熱力学的状態量)によって、下記
のように表される。
The amount of heat q8 absorbed by the refrigerant R in the evaporator 8 per kg, the amount of heat q4 released by the refrigerant R in the condenser 4 per kg, and the compression work w in the single-stage compressor 3 are:
The enthalpy (thermodynamic state quantity) of the refrigerant R is represented as follows.

【0011】[0011]

【数1】q4=h1−h2[Equation 1] q4 = h1-h2

【0012】[0012]

【数2】q8=h4−h3=h4−h2## EQU2 ## q8 = h4-h3 = h4-h2

【0013】[0013]

【数3】w =h2−h1 h1:過熱蒸気となった冷媒Rのエンタルピ h2:飽和液となった冷媒Rのエンタルピ h3:湿り飽和蒸気となった冷媒Rのエンタルピ h4:乾き飽和蒸気となった冷媒RのエンタルピW = h2-h1 h1: enthalpy of refrigerant R as superheated vapor h2: enthalpy of refrigerant R as saturated liquid h3: enthalpy of refrigerant R as wet saturated vapor h4: dry enthalpy of refrigerant R Enthalpy of refrigerant R

【0014】また、蒸気圧縮冷凍機の能力は、下記のよ
うな成績係数εで評価されることが多い。
The capacity of a vapor compression refrigerator is often evaluated by the following coefficient of performance ε.

【0015】[0015]

【数4】ε=(h4−h3)/(h2−h1)Ε = (h4−h3) / (h2−h1)

【0016】すなわち、蒸発器8の2次流体Yから熱
を、単段圧縮機3による仕事の何倍奪うことができたか
が、蒸気圧縮冷凍機の能力を決定する。
That is, the capacity of the vapor compression refrigerator is determined by how many times the heat from the secondary fluid Y of the evaporator 8 can be removed from the work by the single-stage compressor 3.

【0017】また、凝縮器4において冷媒Rを飽和温度
以下まで冷却(過冷却)すると、冷媒Rの圧力及びエン
タルピは、図9に二点鎖線で示すような経路で変化し、
これにより、蒸発器8の吸収熱量q8(冷凍能力)が増
大し、成績係数εが改善されることはよく知られてい
る。
When the refrigerant R is cooled (supercooled) to a temperature not higher than the saturation temperature in the condenser 4, the pressure and enthalpy of the refrigerant R change along a path shown by a two-dot chain line in FIG.
As a result, it is well known that the amount of absorbed heat q8 (refrigeration capacity) of the evaporator 8 is increased and the coefficient of performance ε is improved.

【0018】上述したような蒸気圧縮冷凍機の冷媒Rに
は、一般的に下記の条件を満たすものを用いることが望
ましい。 1)化学的に安定して、分解・変質しない。 2)冷凍機の構成材料と化学反応を呈さない。 3)燃焼・爆発の危険性がない。 4)人畜無害である。 5)漏洩検知が容易である。 6)必要以上に高圧・低圧での相変化を呈さない。 7)比熱が小さく、熱伝導率が大きい。 8)地球温暖化に関与せず、オゾン層を破壊しない。
As the refrigerant R of the above-mentioned vapor compression refrigerator, it is generally desirable to use a refrigerant satisfying the following conditions. 1) It is chemically stable and does not decompose or deteriorate. 2) No chemical reaction with constituent materials of the refrigerator. 3) There is no danger of burning or explosion. 4) Harmless to humans and animals. 5) Leak detection is easy. 6) It does not exhibit a phase change at high pressure and low pressure more than necessary. 7) Low specific heat and high thermal conductivity. 8) Does not contribute to global warming and does not destroy the ozone layer.

【0019】[0019]

【発明が解決しようとする課題】しかしながら、従来の
蒸気圧縮冷凍機に冷媒Rとして用いられているアンモニ
ア、フレオン系冷媒(R12、R22、R123、R1
34a、並びにこれらの混合体など)、炭化水素系冷媒
(プロパン、イソブタン、メタン、並びにこれらの混合
体など)は、前述した条件のすべてを満たしていない。
However, the ammonia and freon-based refrigerants (R12, R22, R123, R1) used as the refrigerant R in the conventional vapor compression refrigerators.
34a, and mixtures thereof), and hydrocarbon-based refrigerants (such as propane, isobutane, methane, and mixtures thereof) do not satisfy all of the aforementioned conditions.

【0020】すなわち、アンモニアは、熱力学的には優
れた特性を備えているものの、毒性が強く、これに加え
て、熱伝導性がよい銅材料を腐蝕させてしまう。
That is, although ammonia has excellent thermodynamic properties, it is highly toxic and, in addition, corrodes a copper material having good thermal conductivity.

【0021】フレオン系冷媒は、化学的に安定し、燃焼
・爆発の危険性はないが、近年、地球温暖化、並びにオ
ゾン層破壊を抑制するために、使用が規制されつつあ
る。
The freon-based refrigerant is chemically stable and has no danger of combustion or explosion. However, in recent years, its use has been regulated in order to suppress global warming and ozone layer depletion.

【0022】炭化水素系冷媒は、燃焼・爆発しやすい特
性を有しており、厳重な管理が必要になる。
Hydrocarbon-based refrigerants have a characteristic of easily burning and exploding, and require strict management.

【0023】本発明は上述した実情に鑑みてなしたもの
で、化学的に安定で地球環境に影響を与えない水を冷媒
とした蒸気圧縮冷凍機を提供することを目的としてい
る。
The present invention has been made in view of the above circumstances, and has as its object to provide a vapor compression refrigerator using water as a refrigerant which is chemically stable and does not affect the global environment.

【0024】[0024]

【課題を解決するための手段】この目的を達成するため
に、本発明の請求項1に記載の蒸気圧縮冷凍機では、冷
媒を順次圧縮する多段圧縮機と、該多段圧縮機から送給
される冷媒を2次流体により冷却する凝縮器と、該凝縮
器から送給される冷媒を断熱膨張させる膨張弁と、該膨
張弁から送給される冷媒により2次流体を冷却し且つ冷
媒を多段圧縮機へ送給する蒸発器と、多段圧縮機によっ
て順次圧縮される冷媒を2次流体により冷却する熱交換
器とを備え、冷媒に水を用いている。
In order to achieve this object, in a vapor compression refrigerator according to the first aspect of the present invention, a multi-stage compressor for sequentially compressing refrigerant, and a refrigerant supplied from the multi-stage compressor. A condenser that cools the refrigerant with a secondary fluid, an expansion valve that adiabatically expands the refrigerant sent from the condenser, a multistage cooling of the secondary fluid with the refrigerant sent from the expansion valve, and multi-stage cooling. An evaporator for feeding the compressor and a heat exchanger for cooling the refrigerant sequentially compressed by the multistage compressor with a secondary fluid are provided, and water is used as the refrigerant.

【0025】また、本発明の請求項2に記載の蒸気圧縮
冷凍機では、冷媒を順次圧縮する多段圧縮機と、該多段
圧縮機から送給される冷媒を2次流体により冷却する凝
縮器と、該凝縮器から送給される冷媒を断熱膨張させる
膨張弁と、該膨張弁から送給される冷媒により2次流体
を冷却し且つ冷媒を多段圧縮機へ送給する蒸発器と、凝
縮器から膨張弁へ送給される冷媒と多段圧縮機によって
順次圧縮される冷媒とを接触させる冷媒槽とを備え、冷
媒に水を用いている。
According to a second aspect of the present invention, there is provided a vapor compression refrigerator comprising a multi-stage compressor for sequentially compressing refrigerant, and a condenser for cooling the refrigerant supplied from the multi-stage compressor by a secondary fluid. An expansion valve for adiabatically expanding a refrigerant supplied from the condenser, an evaporator for cooling a secondary fluid by the refrigerant supplied from the expansion valve, and supplying the refrigerant to a multi-stage compressor; And a refrigerant tank for bringing the refrigerant supplied from the compressor into the expansion valve into contact with the refrigerant sequentially compressed by the multi-stage compressor, and uses water as the refrigerant.

【0026】更に、本発明の請求項3に記載の蒸気圧縮
冷凍機では、冷媒を順次圧縮する多段圧縮機と、該多段
圧縮機から送給される冷媒を2次流体により冷却する凝
縮器と、該凝縮器から送給される冷媒を断熱膨張させる
膨張弁と、該膨張弁から送給される冷媒により2次流体
を冷却し且つ冷媒を多段圧縮機へ送給する蒸発器と、多
段圧縮機によって順次圧縮される冷媒を2次流体により
冷却する熱交換器と、凝縮器から膨張弁へ送給される冷
媒と多段圧縮機によって順次圧縮される冷媒とを接触さ
せる冷媒槽とを備え、冷媒に水を用いている。
Further, in the vapor compression refrigerator according to a third aspect of the present invention, a multi-stage compressor for sequentially compressing the refrigerant, and a condenser for cooling the refrigerant sent from the multi-stage compressor with a secondary fluid. An expansion valve for adiabatically expanding a refrigerant supplied from the condenser, an evaporator for cooling a secondary fluid by the refrigerant supplied from the expansion valve and supplying the refrigerant to a multi-stage compressor, A heat exchanger that cools the refrigerant sequentially compressed by the compressor with the secondary fluid, and a refrigerant tank that makes contact with the refrigerant fed from the condenser to the expansion valve and the refrigerant sequentially compressed by the multi-stage compressor, Water is used as the refrigerant.

【0027】更にまた、本発明の請求項4に記載の蒸気
圧縮冷凍機では、冷媒を圧縮する単段圧縮機と、該単段
圧縮機から送給される冷媒を2次流体により冷却する凝
縮器と、該凝縮器から送給される冷媒を断熱膨張させる
膨張弁と、該膨張弁から送給される冷媒により2次流体
を冷却し且つ冷媒を単段圧縮機へ送給する蒸発器と、単
段圧縮機の冷媒圧縮過程部分を2次流体によって冷却す
る冷却器とを備え、冷媒に水を用いている。
Further, in the vapor compression refrigerator according to a fourth aspect of the present invention, a single-stage compressor for compressing the refrigerant, and a condensate for cooling the refrigerant sent from the single-stage compressor with a secondary fluid. A condenser, an expansion valve for adiabatically expanding the refrigerant supplied from the condenser, and an evaporator for cooling the secondary fluid by the refrigerant supplied from the expansion valve and supplying the refrigerant to the single-stage compressor. And a cooler for cooling the refrigerant compression process portion of the single-stage compressor with a secondary fluid, and uses water as the refrigerant.

【0028】本発明の請求項1に記載の蒸気圧縮冷凍機
においては、多段圧縮機で順次圧縮される冷媒の熱を、
熱交換器により2次流体に伝達して、多段圧縮機の冷媒
の吐出温度の上昇を抑制し、冷凍機の成績係数の向上を
図る。
In the vapor compression refrigerator according to the first aspect of the present invention, the heat of the refrigerant sequentially compressed by the multi-stage compressor is
The refrigerant is transmitted to the secondary fluid by the heat exchanger, thereby suppressing an increase in the discharge temperature of the refrigerant of the multi-stage compressor, thereby improving the coefficient of performance of the refrigerator.

【0029】また、本発明の請求項2に記載の蒸気圧縮
冷凍機においては、多段圧縮機で順次圧縮される冷媒
を、冷媒槽により凝縮器から膨張弁へ送給される冷媒と
接触させて、多段圧縮機の冷媒の吐出温度の上昇を抑制
し、冷凍機の成績係数の向上を図る。
In the vapor compression refrigerator according to the second aspect of the present invention, the refrigerant sequentially compressed by the multistage compressor is brought into contact with the refrigerant supplied from the condenser to the expansion valve by the refrigerant tank. In addition, an increase in the discharge temperature of the refrigerant of the multi-stage compressor is suppressed, and the coefficient of performance of the refrigerator is improved.

【0030】更に、本発明の請求項3に記載の蒸気圧縮
冷凍機においては、多段圧縮機で順次圧縮される冷媒の
熱を、熱交換器により2次流体に伝達するとともに、多
段圧縮機で順次圧縮される冷媒を、冷媒槽により凝縮器
から膨張弁へ送給される冷媒と接触させて、多段圧縮機
の冷媒の吐出温度の上昇を抑制し、冷凍機の成績係数の
向上を図る。
Further, in the vapor compression refrigerator according to the third aspect of the present invention, the heat of the refrigerant sequentially compressed by the multi-stage compressor is transmitted to the secondary fluid by the heat exchanger, and the heat is transferred to the secondary fluid by the multi-stage compressor. The refrigerant that is sequentially compressed is brought into contact with the refrigerant supplied from the condenser to the expansion valve by the refrigerant tank, thereby suppressing an increase in the refrigerant discharge temperature of the multi-stage compressor, and improving the coefficient of performance of the refrigerator.

【0031】更にまた、本発明の請求項4に記載の蒸気
圧縮冷凍機においては、単段圧縮機の冷却過程部分の熱
を、冷却器により2次流体に伝達して、単段圧縮機の冷
媒の吐出温度の上昇を抑制し、冷凍機の成績係数の向上
を図る。
Further, in the vapor compression refrigerator according to claim 4 of the present invention, the heat of the cooling process part of the single-stage compressor is transmitted to the secondary fluid by the cooler, and the heat of the single-stage compressor is reduced. A rise in the refrigerant discharge temperature is suppressed, and the coefficient of performance of the refrigerator is improved.

【0032】[0032]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0033】なお、図1乃至図7において、図8及び図
9と同一の符号を付した部分は同一物を表している。
In FIGS. 1 to 7, the same reference numerals as in FIGS. 8 and 9 denote the same parts.

【0034】図1は本発明の蒸気圧縮冷凍機の実施の形
態の第1の例であり、この蒸気圧縮冷凍機は、モータ1
から減速機2を介して伝達される回転力により冷媒Rを
順次圧縮して吐出する多段圧縮機11と、2次流路4a
を流通する2次流体Xにより前記の多段圧縮機11から
管路12を経て送給される冷媒Rを冷却する凝縮器4
と、該凝縮器4から管路6を経て送給される冷媒Rを断
熱膨張させる膨張弁7と、2次流路8aを流通する2次
流体Yにより前記の膨張弁7から管路9を経て送給され
る冷媒Rから冷熱を奪取して蒸発させ且つ冷媒Rを管路
13を介して前記の多段圧縮機11へ送給する蒸発器8
とを備え、冷媒Rに水を用いている。
FIG. 1 shows a first embodiment of a vapor compression refrigerator according to the present invention.
Compressor 11 that sequentially compresses and discharges the refrigerant R by the rotational force transmitted from the speed reducer 2 through the secondary flow path 4a
That cools the refrigerant R sent from the multi-stage compressor 11 via the pipe 12 by the secondary fluid X flowing through the condenser 4
And an expansion valve 7 for adiabatically expanding the refrigerant R supplied from the condenser 4 through the pipe 6 and a pipe 9 from the expansion valve 7 by the secondary fluid Y flowing through the secondary flow path 8a. An evaporator 8 which takes cold energy from the refrigerant R sent through the evaporator 8 to evaporate the refrigerant R and supplies the refrigerant R to the multi-stage compressor 11 via the pipe 13
And water is used as the refrigerant R.

【0035】多段圧縮機11は、3つの圧縮過程部分
(スクロール及びディフューザが形成されたケーシン
グ、該ケーシングに内装されたインペラなど)14,1
5,16を有しており、第1段圧縮過程部分14と第2
段圧縮過程部分15との間、並びに第2段圧縮過程部分
15と第3段圧縮過程部分16との間における冷媒Rの
流通経路には、2次流路17a,18aを有する熱交換
器17,18が設けられている。
The multi-stage compressor 11 includes three compression parts (a casing in which a scroll and a diffuser are formed, an impeller mounted in the casing, etc.)
5 and 16, the first stage compression process portion 14 and the second stage
A heat exchanger 17 having secondary flow paths 17a, 18a is provided in the flow path of the refrigerant R between the stage compression process portion 15 and the second stage compression process portion 15 and the third stage compression process portion 16. , 18 are provided.

【0036】熱交換器17,18の2次流路17a,1
8aの入口は、管路17b,18bを介して凝縮器4の
2次流路4aへ2次流体Xを供給するための管路4bに
連通し、2次流路17a,18aの出口は、管路17
c,18cを介して凝縮器4の2次流路4aから2次流
体Xを排出するための管路4cに連通している。
The secondary passages 17a, 1 of the heat exchangers 17, 18
The inlet of 8a communicates with the pipe 4b for supplying the secondary fluid X to the secondary flow path 4a of the condenser 4 via the pipes 17b and 18b, and the outlets of the secondary flow paths 17a and 18a are: Line 17
The secondary fluid X is connected to a conduit 4c for discharging the secondary fluid X from the secondary flow path 4a of the condenser 4 through the pipes c and 18c.

【0037】図2は上述した蒸気圧縮冷凍機の圧力エン
タルピ線図(P−h線図)であり、A14は第1段圧縮過
程部分14の入口、B14は第1段圧縮過程部分14の出
口(熱交換器17の入口)、A15は第2段圧縮過程部分
15の入口(熱交換器17の出口)、B15は第2段圧縮
過程部分15の出口(熱交換器18の入口)、A16は第
3段圧縮過程部分16の入口(熱交換器18の出口)、
B16は第3段圧縮過程部分16の出口、A7は膨張弁7
の入口、B7は膨張弁7の出口を表している。
FIG. 2 is a pressure enthalpy diagram (Ph diagram) of the above-mentioned vapor compression refrigerator, wherein A14 is an inlet of the first stage compression process portion 14, and B14 is an outlet of the first stage compression process portion 14. (The inlet of the heat exchanger 17), A15 is the inlet of the second stage compression process part 15 (the outlet of the heat exchanger 17), B15 is the outlet of the second stage compression process part 15 (the inlet of the heat exchanger 18), A16 Is the inlet of the third stage compression stage 16 (the outlet of the heat exchanger 18);
B16 is the outlet of the third stage compression section 16; A7 is the expansion valve 7
, B7 represents the outlet of the expansion valve 7.

【0038】上述した蒸気圧縮冷凍機では、多段圧縮機
11の第1段圧縮過程部分14から吐出される冷媒R
を、熱交換器17の2次流路17aを流通する2次流体
Xにより冷却し、第2段圧縮過程部分15から吐出され
る冷媒Rを、熱交換器18の2次流路18aを流通する
2次流体Xにより冷却するので、多段圧縮機11の冷媒
Rの吐出温度の上昇が抑制される。
In the above-described vapor compression refrigerator, the refrigerant R discharged from the first stage compression stage portion 14 of the multistage compressor 11
Is cooled by the secondary fluid X flowing through the secondary flow path 17a of the heat exchanger 17, and the refrigerant R discharged from the second stage compression process portion 15 flows through the secondary flow path 18a of the heat exchanger 18. Since the cooling is performed by the secondary fluid X, an increase in the discharge temperature of the refrigerant R of the multi-stage compressor 11 is suppressed.

【0039】よって、第3段圧縮過程部分16の出口B
16でのエンタルピを、図2に二点鎖線で示す冷媒Rの冷
却を実施しない場合に比べて低減させることができる。
Therefore, the outlet B of the third stage compression process section 16
The enthalpy at 16 can be reduced as compared with the case where the cooling of the refrigerant R shown by the two-dot chain line in FIG. 2 is not performed.

【0040】これにより、比体積がアンモニアの100
倍以上もある水を冷媒Rに用いても、蒸気圧縮冷凍機の
能力を評価する成績係数εの向上を図ることが可能にな
る。
Thus, the specific volume of ammonia is 100
Even if water having twice or more times is used as the refrigerant R, it is possible to improve the coefficient of performance ε for evaluating the performance of the vapor compression refrigerator.

【0041】更に、化学的に安定で毒性のない水を冷媒
Rとしているので、当該冷媒Rが地球温暖化やオゾン層
破壊に関与せず、万一、冷媒Rが漏洩しても燃焼・爆発
の危険がなく、安全である。
Further, since water that is chemically stable and non-toxic is used as the refrigerant R, the refrigerant R does not contribute to global warming and ozone layer destruction. Even if the refrigerant R leaks, it burns and explodes. There is no danger of being safe.

【0042】図3は本発明の蒸気圧縮冷凍機の実施の形
態の第2の例であり、この蒸気圧縮冷凍機では、図1に
おける管路17b,18b及び管路17c、18cに替
えて、熱交換器17,18の2次流路17a,18aの
入口に、該2次流路17a,18aへ2次流体Xを供給
するための独立した管路17d,18dを接続し、2次
流路17a,18aの出口に、該2次流路17a,18
aから2次流体Xを排出するための独立した管路17
e,18eを接続している。
FIG. 3 shows a second embodiment of the vapor compression refrigerator according to the present invention. In this vapor compression refrigerator, pipes 17b and 18b and pipes 17c and 18c in FIG. At the inlets of the secondary flow paths 17a, 18a of the heat exchangers 17, 18, independent pipe lines 17d, 18d for supplying the secondary fluid X to the secondary flow paths 17a, 18a are connected. The outlets of the passages 17a, 18a are connected to the secondary passages 17a, 18a.
a separate line 17 for discharging secondary fluid X from a
e, 18e are connected.

【0043】上述した蒸気圧縮冷凍機においても、多段
圧縮機11の圧縮過程部分14,15から吐出される冷
媒Rを、熱交換器17,18の2次流路17a,18a
を流通する2次流体Xにより冷却するので、図1に示す
蒸気圧縮冷凍機と同等の作用効果を得ることができる。
Also in the above-mentioned vapor compression refrigerator, the refrigerant R discharged from the compression process parts 14 and 15 of the multi-stage compressor 11 is transferred to the secondary passages 17 a and 18 a of the heat exchangers 17 and 18.
Is cooled by the secondary fluid X flowing therethrough, so that the same operational effects as those of the vapor compression refrigerator shown in FIG. 1 can be obtained.

【0044】図4は本発明の蒸気圧縮冷凍機の実施の形
態の第3の例であり、この蒸気圧縮冷凍機は、モータ1
から減速機2を介して伝達される回転力により冷媒Rを
順次圧縮して吐出する多段圧縮機19、凝縮器4、膨張
弁7、蒸発器8、及び気密構造の冷媒槽20を備え、冷
媒Rに水を用いている。
FIG. 4 shows a third embodiment of the vapor compression refrigerator according to the present invention.
Compressor 19 for sequentially compressing and discharging the refrigerant R by the rotational force transmitted from the speed reducer 2 through the reducer 2, the condenser 4, the expansion valve 7, the evaporator 8, and a refrigerant tank 20 having an airtight structure. Water is used for R.

【0045】多段圧縮機19は、2つの圧縮過程部分2
1,22を有しており、第1段圧縮過程部分21の入口
には、蒸発器8の出口に連通する管路23が接続され、
第2段圧縮過程部分22の出口には、凝縮器4の入口に
連通する管路24が接続されている。
The multi-stage compressor 19 includes two compression process parts 2
A conduit 23 communicating with an outlet of the evaporator 8 is connected to an inlet of the first stage compression process part 21,
The outlet of the second stage compression section 22 is connected to a line 24 communicating with the inlet of the condenser 4.

【0046】第1段圧縮過程部分21の出口、並びに第
2段圧縮過程部分22の入口は、管路25,26を介し
て冷媒槽20に接続されている。
The outlet of the first stage compression section 21 and the inlet of the second stage compression section 22 are connected to the refrigerant tank 20 via lines 25 and 26.

【0047】更に、凝縮器4の出口、並びに膨張弁7の
入口は、管路27,28を介して冷媒槽20に接続さ
れ、また、膨張弁7の出口は、管路9を介して蒸発器8
の入口に接続されている。
Further, the outlet of the condenser 4 and the inlet of the expansion valve 7 are connected to the refrigerant tank 20 via lines 27 and 28, and the outlet of the expansion valve 7 is evaporated via the line 9. Table 8
Connected to the entrance.

【0048】図5は上述した蒸気圧縮冷凍機の圧力エン
タルピ線図(P−h線図)であり、A21は第1段圧縮過
程部分21の入口、B21は第1段圧縮過程部分21の出
口、A22は第2段圧縮過程部分22の入口、B22は第2
段圧縮過程部分22の出口、C27は管路27の冷媒槽2
0への接続端(管路28の冷媒槽20への接続端)、A
7は膨張弁7の入口、B7は膨張弁7の出口を表してい
る。
FIG. 5 is a pressure enthalpy diagram (Ph diagram) of the above-mentioned vapor compression refrigerator, where A21 is an inlet of the first stage compression process portion 21, and B21 is an outlet of the first stage compression process portion 21. , A22 is the inlet of the second stage compression process part 22, and B22 is the second stage.
The outlet of the stage compression process part 22, C 27 is the refrigerant tank 2 of the line 27.
0 (connection end of the pipe 28 to the refrigerant tank 20), A
Reference numeral 7 denotes an inlet of the expansion valve 7, and B7 denotes an outlet of the expansion valve 7.

【0049】上述した蒸気圧縮冷凍機では、冷媒槽20
において、多段圧縮機19の第1段圧縮過程部分21か
ら第2段圧縮過程部分22へ送給される冷媒R(過熱蒸
気)と、凝縮器4から膨張弁7へ送給される冷媒R(飽
和液)との間で熱交換を行なうので、多段圧縮機19の
冷媒Rの吐出温度の上昇が抑制される。
In the above-described vapor compression refrigerator, the refrigerant tank 20
, The refrigerant R (superheated steam) supplied from the first stage compression process portion 21 to the second stage compression process portion 22 of the multi-stage compressor 19 and the refrigerant R (supplied from the condenser 4 to the expansion valve 7) Since the heat exchange is performed with the saturated liquid), the rise in the discharge temperature of the refrigerant R of the multi-stage compressor 19 is suppressed.

【0050】よって、第2段圧縮過程部分22の出口B
22のエンタルピを、低減させることができる。
Therefore, the outlet B of the second stage compression process part 22
22 enthalpies can be reduced.

【0051】これにより、水を冷媒Rに用いても、蒸気
圧縮冷凍機の能力を評価する成績係数εの向上を図るこ
とが可能になる。
Thus, even when water is used as the refrigerant R, the coefficient of performance ε for evaluating the performance of the vapor compression refrigerator can be improved.

【0052】更に、化学的に安定で毒性のない水を冷媒
Rとしているので、当該冷媒Rが地球温暖化やオゾン層
破壊に関与せず、万一、冷媒Rが漏洩しても燃焼・爆発
の危険がなく、安全である。
Further, since water that is chemically stable and non-toxic is used as the refrigerant R, the refrigerant R does not contribute to global warming or ozone layer destruction. Even if the refrigerant R leaks, it burns and explodes. There is no danger of being safe.

【0053】図6は本発明の蒸気圧縮冷凍機の実施の形
態の第4の例であり、この蒸気圧縮冷凍機は、モータ1
から減速機2を介して伝達される回転力により冷媒Rを
圧縮して吐出する単段圧縮機3、凝縮器4、膨張弁7、
蒸発器8、及び単段圧縮機3の冷却過程部分を取り囲む
冷却用ジャケット29を備え、冷媒Rに水を用いてい
る。
FIG. 6 shows a fourth embodiment of the vapor compression refrigerator according to the present invention.
Single-stage compressor 3, a condenser 4, an expansion valve 7, which compresses and discharges the refrigerant R by the rotational force transmitted from the
A cooling jacket 29 surrounding the evaporator 8 and the cooling process part of the single-stage compressor 3 is provided, and water is used as the refrigerant R.

【0054】冷却用ジャケット29の入口には、管路4
bに連通する管路29bが接続され、また、冷却用ジャ
ケット29の出口には、管路4cに連通する管路29c
が接続されている。
At the inlet of the cooling jacket 29, a pipe 4
The pipe 29b communicating with the pipe 4c is connected to a pipe 29b communicating with the pipe 4c.
Is connected.

【0055】上述した蒸気圧縮冷凍機では、管路4b,
29bを経て冷却用ジャケット29に流入し且つ該冷却
用ジャケット29から管路29c,4cを経て流出する
2次流体Xにより単段圧縮機3の圧縮過程部分を冷却す
るので、単段圧縮機3の冷媒Rの吐出温度の上昇が抑制
される。
In the above-described vapor compression refrigerator, the pipeline 4b,
Since the secondary fluid X flowing into the cooling jacket 29 via the pipe 29b and flowing out from the cooling jacket 29 via the pipes 29c and 4c cools the compression process part of the single-stage compressor 3, the single-stage compressor 3 is cooled. The rise in the discharge temperature of the refrigerant R is suppressed.

【0056】よって、単段圧縮機3の出口でのエンタル
ピを、低減させることができる。
Therefore, the enthalpy at the outlet of the single-stage compressor 3 can be reduced.

【0057】これにより、水を冷媒Rに用いても、蒸気
圧縮冷凍機の能力を評価する成績係数εの向上を図るこ
とができる。
Thus, even when water is used as the refrigerant R, the coefficient of performance ε for evaluating the performance of the vapor compression refrigerator can be improved.

【0058】また、単段圧縮機3において、冷媒Rが等
温で圧縮されるため、圧縮機入口と出口とでのエンタル
ピ差が、エントロピ圧縮よりも小さくなり、単段圧縮機
3を駆動するモータ1の負荷を軽減することができる。
Further, in the single-stage compressor 3, since the refrigerant R is compressed at an isothermal temperature, the enthalpy difference between the inlet and the outlet of the compressor becomes smaller than the entropy compression, and the motor for driving the single-stage compressor 3 1 can be reduced.

【0059】更に、化学的に安定で毒性のない水を冷媒
Rとしているので、当該冷媒Rが地球温暖化やオゾン層
破壊に関与せず、万一、冷媒Rが漏洩しても燃焼・爆発
の危険がなく、安全である。
Further, since water that is chemically stable and non-toxic is used as the refrigerant R, the refrigerant R does not contribute to global warming or ozone layer destruction. There is no danger of being safe.

【0060】図7は本発明の蒸気圧縮冷凍機の実施の形
態の第5の例であり、この蒸気圧縮冷凍機では、図6に
おける管路29b及び管路29cに替えて、冷却用ジャ
ケット29の入口に、該冷却用ジャケット29へ2次流
体Xを供給するための独立した管路29dを接続し、冷
却用ジャケット29の出口に、該冷却用ジャケット29
から2次流体Xを排出するための独立した管路29eを
接続している。
FIG. 7 shows a fifth embodiment of the vapor compression refrigerator according to the present invention. In this vapor compression refrigerator, a cooling jacket 29 is used instead of the pipes 29b and 29c in FIG. An independent conduit 29 d for supplying the secondary fluid X to the cooling jacket 29 is connected to the inlet of the cooling jacket 29, and the cooling jacket 29 is connected to the outlet of the cooling jacket 29.
An independent pipe line 29e for discharging the secondary fluid X from is connected.

【0061】上述した蒸気圧縮冷凍機においても、管路
29dを経て冷却用ジャケット29に流入し且つ該冷却
用ジャケット29から管路29dを経て流出する2次流
体Xにより単段圧縮機3の圧縮過程部分を冷却するの
で、図6に示す蒸気圧縮冷凍機と同等の作用効果を得る
ことができる。
In the above-described vapor compression refrigerator, the secondary fluid X flowing into the cooling jacket 29 via the pipe 29d and flowing out from the cooling jacket 29 via the pipe 29d is used to compress the single-stage compressor 3 by the secondary fluid X. Since the process part is cooled, the same operation and effect as those of the vapor compression refrigerator shown in FIG. 6 can be obtained.

【0062】なお、本発明の蒸気圧縮冷凍機は、上述し
た実施の形態のみに限定されるものではなく、たとえ
ば、図4に示す蒸気圧縮冷凍機に図1,図3に示すよう
な熱交換器を付加して、多段圧縮機で順次圧縮される冷
媒を2次流体によって冷却するようににしてもよく、そ
の他、本発明の要旨を逸脱しない範囲において変更を加
え得ることは勿論である。
The steam compression refrigerator of the present invention is not limited to the above-described embodiment. For example, the steam compression refrigerator shown in FIG. A compressor may be added to cool the refrigerant sequentially compressed by the multi-stage compressor with the secondary fluid. Of course, other changes may be made without departing from the spirit of the present invention.

【0063】[0063]

【発明の効果】以上述べたように本発明の蒸気圧縮冷凍
機によれば、下記のような種々の優れた効果を奏し得
る。
As described above, according to the vapor compression refrigerator of the present invention, the following various excellent effects can be obtained.

【0064】(1)本発明の請求項1に記載の蒸気圧縮
冷凍機においては、多段圧縮機で順次圧縮される冷媒の
熱を、熱交換器により2次流体に伝達して、多段圧縮機
の冷媒の吐出温度の上昇を抑制するので、水を冷媒に用
いても、冷凍機の成績係数の向上を図ることが可能にな
る。
(1) In the vapor compression refrigerator according to the first aspect of the present invention, the heat of the refrigerant sequentially compressed by the multi-stage compressor is transmitted to the secondary fluid by the heat exchanger, so that the multi-stage compressor is provided. Therefore, even if water is used as the refrigerant, the coefficient of performance of the refrigerator can be improved.

【0065】(2)本発明の請求項2に記載の蒸気圧縮
冷凍機においては、多段圧縮機で順次圧縮される冷媒
を、冷媒槽により凝縮器から膨張弁へ送給される冷媒と
接触させて、多段圧縮機の冷媒の吐出温度の上昇を抑制
するので、水を冷媒に用いても、冷凍機の成績係数の向
上を図ることが可能になる。
(2) In the vapor compression refrigerator according to the second aspect of the present invention, the refrigerant sequentially compressed by the multistage compressor is brought into contact with the refrigerant supplied from the condenser to the expansion valve by the refrigerant tank. Thus, the rise in the discharge temperature of the refrigerant of the multi-stage compressor is suppressed, so that even if water is used as the refrigerant, the coefficient of performance of the refrigerator can be improved.

【0066】(3)本発明の請求項3に記載の蒸気圧縮
冷凍機においては、多段圧縮機で順次圧縮される冷媒の
熱を、熱交換器により2次流体に伝達するとともに、多
段圧縮機で順次圧縮される冷媒を、冷媒槽により凝縮器
から膨張弁へ送給される冷媒と接触させて、多段圧縮機
の冷媒の吐出温度の上昇を抑制するので、水を冷媒に用
いても、冷凍機の成績係数の向上を図ることが可能にな
る。
(3) In the vapor compression refrigerator according to the third aspect of the present invention, the heat of the refrigerant sequentially compressed by the multi-stage compressor is transmitted to the secondary fluid by the heat exchanger, and the multi-stage compressor is also provided. The refrigerant that is sequentially compressed by the refrigerant tank is brought into contact with the refrigerant that is sent from the condenser to the expansion valve by the refrigerant tank, thereby suppressing an increase in the discharge temperature of the refrigerant of the multi-stage compressor. It is possible to improve the coefficient of performance of the refrigerator.

【0067】(4)本発明の請求項4に記載の蒸気圧縮
冷凍機においては、単段圧縮機の冷却過程部分の熱を、
冷却器により2次流体に伝達して、単段圧縮機の冷媒の
吐出温度の上昇を抑制するので、水を冷媒に用いても、
冷凍機の成績係数の向上を図ることが可能なり、また、
単段圧縮機を駆動する原動機の負荷を軽減することがで
きる。
(4) In the vapor compression refrigerator according to the fourth aspect of the present invention, the heat of the cooling process portion of the single-stage compressor is
Since it is transmitted to the secondary fluid by the cooler and suppresses a rise in the discharge temperature of the refrigerant of the single-stage compressor, even if water is used as the refrigerant,
It is possible to improve the coefficient of performance of the refrigerator,
The load on the prime mover that drives the single-stage compressor can be reduced.

【0068】(5)更に、本発明の請求項1乃至請求項
4に記載の蒸気圧縮冷凍機のいずれにおいても、化学的
に安定で毒性のない水を冷媒としているので、当該冷媒
が地球温暖化やオゾン層破壊に関与せず、万一、冷媒が
漏洩しても燃焼・爆発の危険がなく、安全である。
(5) Further, in any of the vapor compression refrigerators according to the first to fourth aspects of the present invention, since chemically stable and non-toxic water is used as the refrigerant, the refrigerant can be used for global warming. It is safe from accidents and ozone depletion, and has no danger of combustion or explosion even if refrigerant leaks.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の蒸気圧縮冷凍機の実施の形態の第1の
例を示す概念図である。
FIG. 1 is a conceptual diagram showing a first example of an embodiment of a vapor compression refrigerator of the present invention.

【図2】図1に示す蒸気圧縮冷凍機の圧力エンタルピ線
図である。
FIG. 2 is a pressure enthalpy diagram of the vapor compression refrigerator shown in FIG.

【図3】本発明の蒸気圧縮冷凍機の実施の形態の第2の
例を示す概念図である。
FIG. 3 is a conceptual diagram showing a second example of the embodiment of the vapor compression refrigerator of the present invention.

【図4】本発明の蒸気圧縮冷凍機の実施の形態の第3の
例を示す概念図である。
FIG. 4 is a conceptual diagram showing a third example of the embodiment of the vapor compression refrigerator of the present invention.

【図5】図4に示す蒸気圧縮冷凍機の圧力エンタルピ線
図である。
FIG. 5 is a pressure enthalpy diagram of the vapor compression refrigerator shown in FIG.

【図6】本発明の蒸気圧縮冷凍機の実施の形態の第4の
例を示す概念図である。
FIG. 6 is a conceptual diagram showing a fourth example of the embodiment of the vapor compression refrigerator of the present invention.

【図7】本発明の蒸気圧縮冷凍機の実施の形態の第5の
例を示す概念図である。
FIG. 7 is a conceptual diagram showing a fifth example of the embodiment of the vapor compression refrigerator of the present invention.

【図8】従来の蒸気圧縮冷凍機の一例を示す概念図であ
る。
FIG. 8 is a conceptual diagram showing an example of a conventional vapor compression refrigerator.

【図9】図8に示す蒸気圧縮冷凍機の圧力エンタルピ線
図である。
FIG. 9 is a pressure enthalpy diagram of the vapor compression refrigerator shown in FIG.

【符号の説明】[Explanation of symbols]

3 単段圧縮機 4 凝縮器 7 膨張弁 8 蒸発器 11 多段圧縮機 17 熱交換器 18 熱交換器 19 多段圧縮機 20 冷媒槽 29 冷却用ジャケット(冷却器) R 冷媒 X 2次流体 Y 2次流体 Reference Signs List 3 single-stage compressor 4 condenser 7 expansion valve 8 evaporator 11 multi-stage compressor 17 heat exchanger 18 heat exchanger 19 multi-stage compressor 20 refrigerant tank 29 cooling jacket (cooler) R refrigerant X secondary fluid Y secondary fluid

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を順次圧縮する多段圧縮機と、該多
段圧縮機から送給される冷媒を2次流体により冷却する
凝縮器と、該凝縮器から送給される冷媒を断熱膨張させ
る膨張弁と、該膨張弁から送給される冷媒により2次流
体を冷却し且つ冷媒を多段圧縮機へ送給する蒸発器と、
多段圧縮機によって順次圧縮される冷媒を2次流体によ
り冷却する熱交換器とを備え、冷媒に水を用いることを
特徴とする蒸気圧縮冷凍機。
1. A multi-stage compressor for sequentially compressing a refrigerant, a condenser for cooling the refrigerant sent from the multi-stage compressor by a secondary fluid, and an expansion for adiabatically expanding the refrigerant sent from the condenser. A valve, an evaporator that cools the secondary fluid with the refrigerant supplied from the expansion valve and supplies the refrigerant to the multi-stage compressor,
A heat exchanger for cooling a refrigerant sequentially compressed by the multi-stage compressor with a secondary fluid, wherein water is used as the refrigerant.
【請求項2】 冷媒を順次圧縮する多段圧縮機と、該多
段圧縮機から送給される冷媒を2次流体により冷却する
凝縮器と、該凝縮器から送給される冷媒を断熱膨張させ
る膨張弁と、該膨張弁から送給される冷媒により2次流
体を冷却し且つ冷媒を多段圧縮機へ送給する蒸発器と、
凝縮器から膨張弁へ送給される冷媒と多段圧縮機によっ
て順次圧縮される冷媒とを接触させる冷媒槽とを備え、
冷媒に水を用いることを特徴とする蒸気圧縮冷凍機。
2. A multi-stage compressor for sequentially compressing a refrigerant, a condenser for cooling the refrigerant sent from the multi-stage compressor with a secondary fluid, and an expansion for adiabatically expanding the refrigerant sent from the condenser. A valve, an evaporator that cools the secondary fluid with the refrigerant supplied from the expansion valve and supplies the refrigerant to the multi-stage compressor,
A refrigerant tank that makes contact with the refrigerant fed from the condenser to the expansion valve and the refrigerant sequentially compressed by the multi-stage compressor,
A vapor compression refrigerator characterized by using water as a refrigerant.
【請求項3】 冷媒を順次圧縮する多段圧縮機と、該多
段圧縮機から送給される冷媒を2次流体により冷却する
凝縮器と、該凝縮器から送給される冷媒を断熱膨張させ
る膨張弁と、該膨張弁から送給される冷媒により2次流
体を冷却し且つ冷媒を多段圧縮機へ送給する蒸発器と、
多段圧縮機によって順次圧縮される冷媒を2次流体によ
り冷却する熱交換器と、凝縮器から膨張弁へ送給される
冷媒と多段圧縮機によって順次圧縮される冷媒とを接触
させる冷媒槽とを備え、冷媒に水を用いることを特徴と
する蒸気圧縮冷凍機。
3. A multi-stage compressor for sequentially compressing the refrigerant, a condenser for cooling the refrigerant sent from the multi-stage compressor with a secondary fluid, and an expansion for adiabatically expanding the refrigerant sent from the condenser. A valve, an evaporator that cools the secondary fluid with the refrigerant supplied from the expansion valve and supplies the refrigerant to the multi-stage compressor,
A heat exchanger for cooling the refrigerant sequentially compressed by the multistage compressor with a secondary fluid, and a refrigerant tank for bringing the refrigerant supplied from the condenser to the expansion valve into contact with the refrigerant sequentially compressed by the multistage compressor. A vapor compression refrigerator comprising: water as a refrigerant.
【請求項4】 冷媒を圧縮する単段圧縮機と、該単段圧
縮機から送給される冷媒を2次流体により冷却する凝縮
器と、該凝縮器から送給される冷媒を断熱膨張させる膨
張弁と、該膨張弁から送給される冷媒により2次流体を
冷却し且つ冷媒を単段圧縮機へ送給する蒸発器と、単段
圧縮機の冷媒圧縮過程部分を2次流体によって冷却する
冷却器とを備え、冷媒に水を用いることを特徴とする蒸
気圧縮冷凍機。
4. A single-stage compressor for compressing a refrigerant, a condenser for cooling the refrigerant sent from the single-stage compressor with a secondary fluid, and adiabatically expanding the refrigerant sent from the condenser. An expansion valve, an evaporator for cooling the secondary fluid by the refrigerant supplied from the expansion valve and supplying the refrigerant to the single-stage compressor, and cooling the refrigerant compression process portion of the single-stage compressor by the secondary fluid A vapor compression refrigerator comprising: a water cooler; and a water cooler.
JP10317825A 1998-11-09 1998-11-09 Vapor compressing refrigerating machine Pending JP2000146326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10317825A JP2000146326A (en) 1998-11-09 1998-11-09 Vapor compressing refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10317825A JP2000146326A (en) 1998-11-09 1998-11-09 Vapor compressing refrigerating machine

Publications (1)

Publication Number Publication Date
JP2000146326A true JP2000146326A (en) 2000-05-26

Family

ID=18092481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10317825A Pending JP2000146326A (en) 1998-11-09 1998-11-09 Vapor compressing refrigerating machine

Country Status (1)

Country Link
JP (1) JP2000146326A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207835A (en) * 2002-10-24 2006-08-10 Showa Denko Kk Refrigerating system, compressing and heat-radiating apparatus and heat radiator
JP2007255748A (en) * 2006-03-22 2007-10-04 Hitachi Ltd Heat pump system, shaft sealing method of heat pump system, and modification method for heat pump system
JP2009115426A (en) * 2007-11-09 2009-05-28 Tokyo Electric Power Co Inc:The Hot water supply system and hot water supply method
US7690217B2 (en) 2002-10-24 2010-04-06 Showa Denko K.K. Refrigeration system, compressing and heat-releasing apparatus and heat-releasing device
EP2251622A1 (en) * 2008-01-30 2010-11-17 Daikin Industries, Ltd. Refrigeration device
WO2012027063A1 (en) * 2010-08-23 2012-03-01 Dresser-Rand Company Process for throttling a compressed gas for evaporative cooling
US8585464B2 (en) 2009-10-07 2013-11-19 Dresser-Rand Company Lapping system and method for lapping a valve face
JPWO2013108636A1 (en) * 2012-01-18 2015-05-11 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
CN104764293A (en) * 2015-02-06 2015-07-08 宁波高新区零零七工业设计有限公司 Steam generating method for preparing liquid air
JP5914845B2 (en) * 2011-04-28 2016-05-11 パナソニックIpマネジメント株式会社 Refrigeration equipment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207835A (en) * 2002-10-24 2006-08-10 Showa Denko Kk Refrigerating system, compressing and heat-radiating apparatus and heat radiator
US7690217B2 (en) 2002-10-24 2010-04-06 Showa Denko K.K. Refrigeration system, compressing and heat-releasing apparatus and heat-releasing device
JP2007255748A (en) * 2006-03-22 2007-10-04 Hitachi Ltd Heat pump system, shaft sealing method of heat pump system, and modification method for heat pump system
JP2009115426A (en) * 2007-11-09 2009-05-28 Tokyo Electric Power Co Inc:The Hot water supply system and hot water supply method
EP2251622A1 (en) * 2008-01-30 2010-11-17 Daikin Industries, Ltd. Refrigeration device
EP2251622A4 (en) * 2008-01-30 2017-03-29 Daikin Industries, Ltd. Refrigeration device
US8585464B2 (en) 2009-10-07 2013-11-19 Dresser-Rand Company Lapping system and method for lapping a valve face
WO2012027063A1 (en) * 2010-08-23 2012-03-01 Dresser-Rand Company Process for throttling a compressed gas for evaporative cooling
JP5914845B2 (en) * 2011-04-28 2016-05-11 パナソニックIpマネジメント株式会社 Refrigeration equipment
JPWO2013108636A1 (en) * 2012-01-18 2015-05-11 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
CN104764293A (en) * 2015-02-06 2015-07-08 宁波高新区零零七工业设计有限公司 Steam generating method for preparing liquid air

Similar Documents

Publication Publication Date Title
US11255579B2 (en) Control method of transcritical carbon dioxide composite heat pump system
JPH03164664A (en) Refrigeration system
CN103339449B (en) Use water as cold-producing medium and perform the system of Vapor Compression Refrigeration Cycle
JP2007178072A (en) Air conditioner for vehicle
JP2000146326A (en) Vapor compressing refrigerating machine
JP2007278666A (en) Binary refrigerating device
JP3218289B2 (en) Air conditioner and condenser used for it
Morawetz Sorption‐compression heat pumps
JP2835325B2 (en) Refrigeration system and heat exchanger for condensation
JP2005214550A (en) Air conditioner
CN101275790A (en) Low-temperature refrigerating method using carbon dioxide as circulating working substance and heat pump system thereof
JP2004286289A (en) Refrigerant cycle device
JP5270523B2 (en) Freezer refrigerator
JPH03125863A (en) Refrigerating cycle unit with two stage compression
US6089039A (en) Air conditioner and condenser used therefor
JPH11351680A (en) Cooling equipment
JPH0532664B2 (en)
Victorin et al. Parametric study of NH3/CO2 cascade refrigeration cycles for hot climates
Dudar et al. Exergy analysis of operation of two-phase ejector in compression refrigeration systems
KR101129722B1 (en) Refrigerating and cooling system provided with overheat protection heat exchanger using carbon dioxide refrigerant
Ouadha et al. Performance comparison of cascade and two-stage refrigeration cycles using natural refrigerants
CN211823240U (en) Overlapping refrigerating system of liquid cooling motor
KR100436935B1 (en) One Body Type Evaporator Havng The Sub-Cooling Condensor
JP2005226927A (en) Refrigerant cycle device
KR100193437B1 (en) Refrigeration cycle of air conditioner with intermediate cooler attached to dryer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924