JP2000144290A - Aluminum alloy sacrificial anode material for heat exchanger and high corrosion resistant aluminum alloy composite material using the same - Google Patents

Aluminum alloy sacrificial anode material for heat exchanger and high corrosion resistant aluminum alloy composite material using the same

Info

Publication number
JP2000144290A
JP2000144290A JP10317890A JP31789098A JP2000144290A JP 2000144290 A JP2000144290 A JP 2000144290A JP 10317890 A JP10317890 A JP 10317890A JP 31789098 A JP31789098 A JP 31789098A JP 2000144290 A JP2000144290 A JP 2000144290A
Authority
JP
Japan
Prior art keywords
aluminum alloy
sacrificial anode
content
anode material
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10317890A
Other languages
Japanese (ja)
Other versions
JP4002352B2 (en
Inventor
Tomonori Yamada
知礼 山田
Yoshiaki Ogiwara
吉章 荻原
Takenobu Doko
武宜 土公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP31789098A priority Critical patent/JP4002352B2/en
Publication of JP2000144290A publication Critical patent/JP2000144290A/en
Application granted granted Critical
Publication of JP4002352B2 publication Critical patent/JP4002352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy composite material for heat exchanger having excellent corrosion resistance even under any of an acidic and alkaline corrosive environment. SOLUTION: An aluminum alloy sacrificial anodic material consisting of 3.1-12.0 wt.% Zn, 0.05-0.3 wt.% Zr and the balance Al with inevitable impurities is clad on one surface of an aluminum alloy core material consisting of 0.005-1.2 wt.% Si, 0.005-0.8 wt.% Fe, 0.003-1.2 wt.% Cu, 0.5-2.0 wt.% Mn and the balance Al with inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はろう付により製造さ
れる自動車用熱交換器のチューブ管に好適な、酸性とア
ルカリ性の両冷媒に適用可能なアルミニウム合金複合材
及びこれに用いるアルミニウム合金犠牲陽極材に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy composite material applicable to both acidic and alkaline refrigerants, and an aluminum alloy sacrificial anode suitable for a tube tube of an automotive heat exchanger manufactured by brazing. It is about materials.

【0002】[0002]

【従来の技術】自動車用熱交換器のラジエーターは、例
えば図1(イ)(ロ)に示す構造のもので、冷媒を通す
チューブ管(1)の間にフィン(2)を配置し、該チュ
ーブ(1)の両端に夫々ヘッダープレート(3)を取付
けてコア(4)を組み立て、この組立体をろう付した後
ヘッダープレート(3)にパッキン(5)を介して樹脂
タンク(6)(7)を取付けて製造されるもので、この
チューブ管(1)に冷媒を通すことにより該冷媒を冷却
する構造である。なおコア(4)の側面はサイドプレー
ト(図示せず)により補強される。
2. Description of the Related Art A radiator of a heat exchanger for automobiles has, for example, a structure shown in FIGS. 1 (a) and 1 (b). A header plate (3) is attached to each end of the tube (1) to assemble a core (4), and after the assembly is brazed, a resin tank (6) is attached to the header plate (3) via a packing (5). 7) is attached, and has a structure in which the refrigerant is cooled by passing the refrigerant through the tube tube (1). The side surface of the core (4) is reinforced by a side plate (not shown).

【0003】ここで前記フィンにはJIS-3003合金(Al-
0.15wt%Cu-1.1wt%Mn)にZnを1.5wt%程度添加した
厚さ0.1mm程度の薄板が用いられている。また前記チ
ューブ管にはJIS-3003合金を芯材とし、その片面にろう
材を他の面にJIS-7072合金(Al-1.0wt%Zn)を孔食防止
用の犠牲陽極材としてクラッドした厚さ0.2〜0.4mmのア
ルミニウム合金複合材(ブレージングシート)を、前記
犠牲陽極材を内側(冷媒側)にして筒状に電縫加工した
ものが用いられる。さらにヘッダープレートには厚さ1.
0〜1.3mmのチューブ管と同じ材質のアルミニウム合金複
合材が用いられている。
Here, the fins are made of JIS-3003 alloy (Al-
A thin plate having a thickness of about 0.1 mm obtained by adding about 1.5 wt% of Zn to 0.15 wt% Cu-1.1 wt% Mn) is used. The tube tube has a core material of JIS-3003 alloy, a brazing material on one surface and a JIS-7072 alloy (Al-1.0wt% Zn) clad on another surface as a sacrificial anode material for preventing pitting corrosion. An aluminum alloy composite material (brazing sheet) having a thickness of 0.2 to 0.4 mm, which is subjected to electric resistance welding in a tubular shape with the sacrificial anode material inside (coolant side) is used. In addition, the header plate has a thickness of 1.
An aluminum alloy composite of the same material as the tube tube of 0 to 1.3 mm is used.

【0004】近年熱交換器の軽量化が求められている
が、熱交換器を軽量化するために部材を薄肉化した場
合、部材の耐食性を向上させる必要がある。耐食性につ
いては従来まで専ら酸性環境下での耐食性のみが考慮さ
れてきたが、最近はアルカリ性の冷媒が使用される場合
もあるため、酸性のみならずアルカリ性腐食環境下での
耐食性向上を目的として、犠牲陽極材にさらに添加元素
を加えたアルミニウム合金複合材が提案されている(特
開平9−176768号公報など)。
[0004] In recent years, the weight of the heat exchanger has been required to be reduced. However, when the thickness of the member is reduced in order to reduce the weight of the heat exchanger, it is necessary to improve the corrosion resistance of the member. Until now, only corrosion resistance in an acidic environment has been considered so far.However, recently, an alkaline refrigerant is sometimes used, so for the purpose of improving corrosion resistance not only in an acidic environment but also in an alkaline corrosive environment, An aluminum alloy composite material in which an additive element is further added to a sacrificial anode material has been proposed (Japanese Patent Application Laid-Open No. Hei 9-176768).

【0005】[0005]

【発明が解決しようとする課題】しかしながら前記従来
のアルミニウム合金複合材ではアルカリ性腐食環境下で
の耐食性が十分でないことが分かってきた。アルカリ性
腐食環境下でアルミニウム合金複合材の耐食性が低下す
る原因は以下の2点である。即ちその一つは、あるアル
カリ性環境下では犠牲陽極材表面に水酸化アルミニウム
の皮膜が生成するようになり、このような皮膜が存在す
る状態では犠牲陽極材の芯材に対する防食作用が消失し
てしまうことである。他の一つは、pH10を超えるアル
カリ性環境下においてAl-Mn系合金の自然電位が大きく
卑側に移行するため、従来のAl-Zn犠牲陽極材(Zn含
有量が1〜3wt%)では、Al-Mn系合金芯材と犠牲陽極
材の電位関係が逆転し、犠牲陽極材の防食作用が無くな
ってしまうことである。
However, it has been found that the conventional aluminum alloy composite material has insufficient corrosion resistance in an alkaline corrosion environment. The following two points cause the corrosion resistance of the aluminum alloy composite to decrease in an alkaline corrosive environment. That is, one is that under a certain alkaline environment, a film of aluminum hydroxide is formed on the surface of the sacrificial anode material, and in the presence of such a film, the sacrificial anode material loses its anticorrosion effect on the core material. Is to put it. The other is that, in an alkaline environment exceeding pH 10, the natural potential of the Al-Mn-based alloy largely shifts to the lower side, so that in the conventional Al-Zn sacrificial anode material (Zn content is 1 to 3 wt%), The potential relationship between the Al-Mn alloy core material and the sacrificial anode material is reversed, and the sacrificial anode material loses its anticorrosion action.

【0006】このようなことから、本発明者らは鋭意研
究を行い、犠牲陽極材の成分を検討することによって酸
性とアルカリ性の両環境下において優れた犠牲陽極効果
を有するアルミニウム合金犠牲陽極材を見出し、また該
犠牲陽極材と芯材成分を検討することにより、酸性とア
ルカリ性の両腐食環境下において優れた耐食性を示すア
ルミニウム合金複合材を実現し得ることを見出した。
Accordingly, the present inventors have conducted intensive studies and studied the components of the sacrificial anode material to obtain an aluminum alloy sacrificial anode material having an excellent sacrificial anode effect under both acidic and alkaline environments. The present inventors have also found that by examining the sacrificial anode material and the core material components, it is possible to realize an aluminum alloy composite material having excellent corrosion resistance under both acidic and alkaline corrosion environments.

【0007】即ち本発明の目的は、酸性及びアルカリ性
の両腐食環境下で十分な犠牲防食作用を有するアルミニ
ウム合金犠牲陽極材、及び優れた耐食性を有する熱交換
器用アルミニウム合金複合材を提供することにある。
That is, an object of the present invention is to provide an aluminum alloy sacrificial anode material having a sufficient sacrificial anticorrosive action under both acidic and alkaline corrosion environments, and an aluminum alloy composite material for a heat exchanger having excellent corrosion resistance. is there.

【0008】[0008]

【課題を解決するための手段】そこで本発明の熱交換器
用アルミニウム合金犠牲陽極材は、Zn3.1〜12.
0wt%、Zr0.05〜0.3wt%を含有し、又はさら
にMn0.5〜2.0wt%、In0.002〜0.3wt
%、Sn0.002〜0.3wt%の1種又は2種以上を
含有し、残部Alと不可避不純物からなることを特徴と
するものである。次に本発明の熱交換器用高耐食性アル
ミニウム合金複合材は、Si0.005〜1.2wt%、
Fe0.005〜0.8wt%、Cu0.003〜1.2
wt%、Mn0.5〜2.0wt%を含有し、又はさらにM
g0.03〜0.5wt%、Cr0.03〜0.3wt%、
Zr0.03〜0.3wt%、Ti0.03〜0.3wt
%、Ni0.05〜2.0wt%の1種又は2種以上を含
有し、残部Alと不可避不純物からなるアルミニウム合
金芯材の片面に、上記のアルミニウム合金犠牲陽極材を
クラッドしたことを特徴とするものである。
Accordingly, the aluminum alloy sacrificial anode material for a heat exchanger according to the present invention comprises Zn 3.1 to 12.
0 wt%, Zr 0.05-0.3 wt%, or further Mn 0.5-2.0 wt%, In 0.002-0.3 wt%
% Or 0.002 to 0.3 wt% of Sn, and the balance consists of Al and inevitable impurities. Next, the high corrosion-resistant aluminum alloy composite material for a heat exchanger of the present invention contains Si 0.005 to 1.2 wt%,
Fe 0.005 to 0.8 wt%, Cu 0.003 to 1.2
wt%, Mn 0.5-2.0 wt%, or M
g 0.03-0.5wt%, Cr 0.03-0.3wt%,
Zr 0.03-0.3wt%, Ti 0.03-0.3wt
%, Ni 0.05 to 2.0 wt%, and the above-mentioned aluminum alloy sacrificial anode material is clad on one side of an aluminum alloy core material containing the balance of Al and inevitable impurities. Is what you do.

【0009】以下に本発明のアルミニウム合金複合材の
合金成分について、その添加元素の意義と組成範囲の限
定理由を説明する。本発明のアルミニウム合金複合材の
おいて、酸性及びアルカリ性の両腐食環境下で十分な耐
食性を付与するための最も重要な成分は、犠牲陽極材中
のZn量、Mn量、In量、Sn量及びZr量である。
The significance of the additional elements and the reasons for limiting the composition range of the alloy components of the aluminum alloy composite of the present invention will be described below. In the aluminum alloy composite of the present invention, the most important components for imparting sufficient corrosion resistance under both acidic and alkaline corrosion environments are Zn content, Mn content, In content, and Sn content in the sacrificial anode material. And Zr amount.

【0010】pH10を超えるアルカリ性腐食環境下におい
ては、上述したようにAl-Mn合金の自然電位が大きく卑
側に移行する。このためpH10を超えるアルカリ性腐食環
境下でAl-Mn系合金芯材を防食するには、犠牲陽極材のZ
n含有量を3.1wt%以上に増し、さらにIn又はSnを添加す
ることで芯材に対して十分な犠牲防食作用を発揮させる
ことが可能であることを見出した。
[0010] In an alkaline corrosive environment exceeding pH 10, the natural potential of the Al-Mn alloy is largely shifted to the base side as described above. Therefore, in order to prevent the corrosion of Al-Mn alloy core materials in an alkaline corrosive environment exceeding pH 10, the sacrificial anode material Z
It has been found that by increasing the n content to 3.1 wt% or more and further adding In or Sn, it is possible to exert a sufficient sacrificial anticorrosion action on the core material.

【0011】また上記のように芯材と犠牲陽極材の電位
差を十分に確保した場合でも、アルカリ性環境下では
Al+OH+H2O→[Al(OH)4・2H2O]+3/2H2 のような
反応により犠牲陽極材表面に水酸化アルミニウムの皮膜
が生成するため、該皮膜の存在によって犠牲陽極材の防
食作用が働かなくなってしまう。しかしながら犠牲陽極
材にZrを0.05〜0.3wt%含有させることで上記反応式の
水素発生を抑制し、水酸化アルミニウム皮膜の生成を阻
害することが可能となり、防食作用を効果的に発揮させ
ることができる。
Even when the potential difference between the core material and the sacrificial anode material is sufficiently ensured as described above, even in an alkaline environment,
Al + OH - + H 2 O → [Al (OH) 4 · 2H 2 O] - + 3 / for coating of aluminum hydroxide sacrificial anode material surface by reactions such as 2H 2 generated, the sacrificial anode material by the presence of said coating The anticorrosive effect of the work stops working. However, by adding 0.05 to 0.3 wt% of Zr to the sacrificial anode material, it is possible to suppress the generation of hydrogen in the above reaction formula and to inhibit the formation of an aluminum hydroxide film, thereby effectively exhibiting an anticorrosion effect. it can.

【0012】以下、本発明に用いる犠牲陽極材の合金元
素について説明する。Znは酸性及びアルカリ性両腐食環
境において、犠牲防食効果によって芯材を防食する効果
がある。Znの含有量を3.1〜12.0wt%に規定する理由
は、3.1wt%未満ではその効果が十分ではなく、12.0wt
%を超えると合金の圧延性が低下し歩留まりが低下する
ためである。Znの望ましい含有量は6.1〜12.0wt%であ
る。アルカリ性腐食環境下では芯材の電位が中性環境よ
りも卑となるため、Znを6.1wt%以上とすることにより
アルカリ性腐食環境での耐食性を良好なものとすること
ができる。
Hereinafter, alloying elements of the sacrificial anode material used in the present invention will be described. Zn has a sacrificial anticorrosive effect in both acidic and alkaline corrosive environments to prevent corrosion of the core material. The reason for limiting the Zn content to 3.1 to 12.0 wt% is that if the content is less than 3.1 wt%, the effect is not sufficient, and 12.0 wt%
%, The rollability of the alloy is reduced and the yield is reduced. The desirable content of Zn is 6.1 to 12.0 wt%. Under an alkaline corrosive environment, the potential of the core material is lower than in a neutral environment. Therefore, by setting Zn to 6.1 wt% or more, corrosion resistance in an alkaline corrosive environment can be improved.

【0013】Zrは前記反応式のようなアルカリ性環境下
での水素の発生を抑制し、アルミニウム表面に水酸化ア
ルミニウムの皮膜が生成するのを阻害し、防食効果を上
げる働きがある。そのためにアルカリ性環境下での耐食
性を良好なものとすることができる。Zrの含有量を0.05
〜0.3wt%に規定する理由は、0.05wt%未満ではその効
果が十分でなく、0.3wt%を超えると鋳造割れが発生す
る恐れがある。Zrの望ましい含有量は0.08〜0.2wt%で
ある。
Zr has the function of suppressing the generation of hydrogen under an alkaline environment as in the above reaction formula, inhibiting the formation of an aluminum hydroxide film on the aluminum surface, and increasing the anticorrosion effect. Therefore, the corrosion resistance in an alkaline environment can be improved. Zr content 0.05
The reason for defining the content to be 0.3 wt% is that if the content is less than 0.05 wt%, the effect is not sufficient, and if it exceeds 0.3 wt%, casting cracks may occur. The desirable content of Zr is 0.08 to 0.2 wt%.

【0014】Sn、Inは酸性及びアルカリ性両腐食環境に
おいて、犠牲陽極材の自然電位を著しく卑にし、犠牲陽
極材の犠牲防食効果をより強固にする。Sn、Inの含有量
をいずれも0.002〜0.3wt%に規定する理由は、0.002wt
%未満ではその効果が十分ではなく、0.3wt%を超える
と合金の圧延性が低下して歩留まりが低下するためであ
る。Sn及びInの好ましい含有量は0.005〜0.1wt%であ
る。
Sn and In make the natural potential of the sacrificial anode material extremely low in both acidic and alkaline corrosion environments, and further enhance the sacrificial corrosion protection effect of the sacrificial anode material. The reason why the contents of Sn and In are both defined as 0.002 to 0.3 wt% is as follows.
If the content is less than 0.3% by weight, the rollability of the alloy is reduced and the yield is reduced. The preferred content of Sn and In is 0.005 to 0.1 wt%.

【0015】Mnは犠牲陽極材の強度を向上させる必要が
ある場合に添加する元素である。Mnは微細なAl-Mn系化
合物を合金中に分散させ、耐食性を低下させることなく
犠牲陽極材の強度を向上させる。Al-Mn系化合物はアル
カリ性腐食環境において皮膜の生成を阻害する働きがあ
り、また酸性腐食環境でも耐食性を損なうことがない。
Mnの含有量を0.5〜2.0wt%に規定する理由は、0.5wt%
未満ではその効果が十分得られず、2.0wt%を超えると
成形加工性が悪化し歩留まりが低下するためである。Mn
の好ましい含有量は0.8〜1.2wt%である。
Mn is an element added when it is necessary to improve the strength of the sacrificial anode material. Mn disperses a fine Al-Mn-based compound in the alloy and improves the strength of the sacrificial anode material without lowering the corrosion resistance. The Al-Mn compound has a function of inhibiting the formation of a film in an alkaline corrosive environment, and does not impair the corrosion resistance even in an acidic corrosive environment.
The reason for defining the content of Mn to be 0.5 to 2.0 wt% is 0.5 wt%
If the amount is less than 2.0%, the effect cannot be sufficiently obtained, and if the amount exceeds 2.0% by weight, the moldability deteriorates and the yield decreases. Mn
Is preferably 0.8 to 1.2% by weight.

【0016】以上が本発明で用いる犠牲陽極材の合金元
素とその添加理由であるが、不可避不純物としてSiは0.
5wt%までは含有可能であるも0.1wt%以下が望ましい。
またSi以外の元素もそれぞれ0.05wt%以下であれば不純
物元素として含有していても差し支えない。
The above is the alloy element of the sacrificial anode material used in the present invention and the reason for its addition.
Although it can be contained up to 5 wt%, 0.1 wt% or less is desirable.
Elements other than Si may be contained as impurity elements as long as they are each 0.05% by weight or less.

【0017】次に本発明で用いる芯材の合金元素につい
て説明する。Siはろう付後のマトリックス中に固溶して
強度向上に寄与する。Siの含有量を0.005〜1.2wt%に規
定する理由は、0.005wt%未満ではその効果が十分得ら
れず、1.2wt%を超えると単体Siが析出して芯材の自己
耐食性が低下してしまうためである。Siの望ましい含有
量は0.005〜0.8wt%である。
Next, the alloy elements of the core material used in the present invention will be described. Si contributes to the strength improvement by forming a solid solution in the matrix after brazing. The reason for limiting the Si content to 0.005 to 1.2 wt% is that if the content is less than 0.005 wt%, its effect cannot be sufficiently obtained, and if it exceeds 1.2 wt%, elemental Si is precipitated and the self-corrosion resistance of the core material is reduced. This is because Desirable content of Si is 0.005 to 0.8 wt%.

【0018】Feは粗大な金属間化合物を合金中に分布さ
せ、芯材の結晶粒を微細にし、成形加工時の割れを防止
する作用を有する。Feの含有量を0.005〜0.8wt%に規定
する理由は、0.005wt%未満ではその効果が十分得られ
ず、0.8wt%を超えると芯材の自己耐食性が低下してし
まうためである。Feの望ましい含有量は0.005〜0.3wt%
である。
Fe has the effect of distributing coarse intermetallic compounds in the alloy, making the crystal grains of the core material fine, and preventing cracking during forming. The reason for specifying the Fe content to be 0.005 to 0.8 wt% is that if the content is less than 0.005 wt%, the effect cannot be sufficiently obtained, and if the content exceeds 0.8 wt%, the self-corrosion resistance of the core material is reduced. Desirable Fe content is 0.005-0.3wt%
It is.

【0019】Cuは強度向上に寄与するが、その含有量が
増えると芯材の自己耐食性を低下させる。Cuの含有量を
0.003〜1.2wt%に規定する理由は、0.003wt%未満では
その効果が十分に得られず、1.2wt%を超えると芯材の
融点が低下してろう付時に溶融してしまう。またCuの含
有量が0.003〜0.01wt%では強度が低下するが、アルカ
リ性腐食環境下での芯材の自己耐食性を向上させること
ができる。特にアルカリ性腐食環境では芯材中にCuが含
まれている場合、芯材のCuが材料表面に再析出して強力
なカソードとなるため耐食性が低下する。そのため芯材
のCu含有量を0.01wt%未満に減ずることにより、アルカ
リ性腐食環境下で芯材の自己耐食性を向上させることが
できる。Cuの含有量が0.01〜1.2wt%では芯材の自己耐
食性を向上させることができる。
[0019] Cu contributes to the improvement of strength, but when its content increases, the self-corrosion resistance of the core material decreases. Cu content
The reason for defining the content to be 0.003 to 1.2 wt% is that if the content is less than 0.003 wt%, the effect cannot be sufficiently obtained, and if the content exceeds 1.2 wt%, the melting point of the core material is lowered and the core material is melted at the time of brazing. When the Cu content is 0.003 to 0.01 wt%, the strength decreases, but the self-corrosion resistance of the core material in an alkaline corrosive environment can be improved. Particularly in an alkaline corrosive environment, when Cu is contained in the core material, Cu of the core material is reprecipitated on the surface of the material to form a strong cathode, so that the corrosion resistance is reduced. Therefore, by reducing the Cu content of the core material to less than 0.01 wt%, the self-corrosion resistance of the core material in an alkaline corrosive environment can be improved. When the content of Cu is 0.01 to 1.2 wt%, the self-corrosion resistance of the core material can be improved.

【0020】Mnは微細な金属間化合物を合金中に分布さ
せて耐食性を低下させることなく強度を向上させる。Mn
の含有量を0.5〜2.0wt%に規定する理由は、0.5wt%未
満ではその効果が十分得られず、2.0wt%を超えると成
形加工性が悪化し歩留まりが低下するためである。Mnの
好ましい含有量は0.5〜1.5wt%である。
Mn distributes fine intermetallic compounds in the alloy and improves the strength without lowering the corrosion resistance. Mn
The reason for defining the content of 0.5 to 2.0 wt% is that if the content is less than 0.5 wt%, the effect cannot be sufficiently obtained, and if the content exceeds 2.0 wt%, the moldability deteriorates and the yield decreases. The preferred content of Mn is 0.5 to 1.5 wt%.

【0021】芯材に含有させる選択元素のCr、Zr、Tiは
いずれも微細な金属間化合物を形成して合金の強度と耐
食性に寄与する。Cr、Zr、Tiの含有量をいずれも0.03〜
0.3wt%に規定する理由は、それぞれ0.03wt%未満では
その効果が十分に得られず、0.3wt%を超えると鋳造割
れが発生するおそれがある。いずれも望ましい含有量は
0.08〜0.2wt%である。
The selected elements Cr, Zr, and Ti contained in the core material all form fine intermetallic compounds and contribute to the strength and corrosion resistance of the alloy. Cr, Zr, Ti content is 0.03 ~
The reason for specifying 0.3 wt% is that if the content is less than 0.03 wt%, the effect cannot be sufficiently obtained, and if it exceeds 0.3 wt%, casting cracks may occur. The desirable content of each is
0.08 to 0.2 wt%.

【0022】芯材に含有させる選択元素のNiは微細な金
属間化合物を合金中に分布させ、合金の強度を向上させ
る作用がある。Niの含有量を0.05〜2.0wt%に規定する
理由は、0.05wt%未満ではその効果が十分得られず、2.
0wt%を超えると鋳造割れが発生するおそれがある。Ni
の望ましい含有量は0.08〜1.0wt%である。
Ni, a selective element contained in the core material, has the effect of distributing fine intermetallic compounds in the alloy and improving the strength of the alloy. The reason for defining the Ni content to be 0.05 to 2.0 wt% is that if the content is less than 0.05 wt%, the effect cannot be sufficiently obtained.
If it exceeds 0 wt%, casting cracks may occur. Ni
Is 0.08 to 1.0 wt%.

【0023】芯材に含有させる選択元素のMgは芯材のSi
と共にMg2Si化合物を時効析出させて強度向上に寄与す
る。Mgの含有量を0.03〜0.5wt%に規定する理由は0.03w
t%未満ではその効果が十分に得られず、0.5wt%を超え
るとろう付の際に芯材の片面にろう材をクラッドしてあ
る場合、ろう材にMgが拡散してフラックスと反応してろ
う付性が低下するためである。
The selected element Mg contained in the core material is Si as the core material.
At the same time, the Mg 2 Si compound is age-precipitated to contribute to the improvement of the strength. The reason why the content of Mg is defined as 0.03 to 0.5 wt% is 0.03 w
If it is less than t%, the effect cannot be obtained sufficiently. If it exceeds 0.5 wt%, if brazing material is clad on one side of the core material during brazing, Mg diffuses into the brazing material and reacts with the flux. This is because the brazing property is reduced.

【0024】以上が本発明で用いる芯材の合金元素とそ
の添加理由であるが、鋳造組織の微細化のために添加す
るBやその他の不可避不純物元素はそれぞれ0.05wt%以
下であれば含有されていても差し支えない。
The above is the alloying element of the core material used in the present invention and the reason for its addition. B and other unavoidable impurity elements added for refining the cast structure are contained if each is 0.05 wt% or less. It does not matter.

【0025】本発明のアルミニウム合金複合材は、前記
組成のアルミニウム合金を芯材とし、その片面に前記組
成のアルミニウム合金犠牲陽極材をクラッドしたもので
ある。この際さらに必要に応じて該芯材の他の片面には
アルミニウム合金ろう材をクラッドしてもよい。このア
ルミニウム合金ろう材としては、Al-Si系のJIS-4343合
金(Al-7.5wt%Si)、JIS-4045合金(Al-10wt%Si)、JIS
-4004合金(Al-9.7wt%Si-1.5wt%Mg)等が使用できる。
本発明のアルミニウム合金複合材の用途は熱交換器のチ
ューブ材、ヘッダープレート材などである。そして本発
明のアルミニウム合金複合材をチューブ管として使用す
る場合、チューブ管の形成方法としては電縫加工により
管とする方法、又は折り曲げ加工後にろう付して管とす
る方法が好適に用いられる。
The aluminum alloy composite material of the present invention comprises an aluminum alloy having the above composition as a core material, and one surface of which is clad with an aluminum alloy sacrificial anode material having the above composition. At this time, an aluminum alloy brazing material may be clad on another side of the core material if necessary. This aluminum alloy brazing material includes Al-Si JIS-4343 alloy (Al-7.5wt% Si), JIS-4045 alloy (Al-10wt% Si), JIS
-4004 alloy (Al-9.7wt% Si-1.5wt% Mg) can be used.
Applications of the aluminum alloy composite material of the present invention are a tube material for a heat exchanger, a header plate material, and the like. When the aluminum alloy composite material of the present invention is used as a tube tube, a method of forming the tube by an electric resistance welding process or a method of forming a tube by brazing after bending is preferably used.

【0026】[0026]

【実施例】次に実施例により本発明をさらに説明する。
表1に示す組成の芯材、及び表2に示す組成の犠牲陽極
材のアルミニウム合金を各々金型に鋳造し、芯材は面削
で厚さ40mmに仕上げ、犠牲陽極材は面削後熱間圧延によ
り厚さ5mmに仕上げた。またろう材はJIS-4343合金を金
型鋳造し、面削後熱間圧延により厚さ5mmに仕上げた。
これらろう材、芯材、犠牲陽極材の3枚をこの順に重ね
て、500℃にて熱間圧延して厚さ5mmの3層クラッド材
を作製し、次いでこれを厚さ0.29mmに冷間圧延し、340
℃で2時間中間焼鈍した後、さらに冷間圧延して厚さ0.
25mmのH14材のブレージングシートを得た。このブレー
ジングシートの犠牲陽極材とろう材との複合材に占める
クラッド率は犠牲陽極材が10%、ろう材が10%である。
The present invention will be further described with reference to the following examples.
A core material having the composition shown in Table 1 and an aluminum alloy of a sacrificial anode material having the composition shown in Table 2 were cast into molds, and the core material was finished to a thickness of 40 mm by facing, and the sacrificial anode material was heated after facing. It was finished to a thickness of 5 mm by cold rolling. As the brazing material, a JIS-4343 alloy was die-cast, and the surface was finished to a thickness of 5 mm by hot rolling after being cut.
The brazing material, the core material, and the sacrificial anode material are laminated in this order, and hot-rolled at 500 ° C. to produce a 3-layer clad material having a thickness of 5 mm, and then cold-rolled to a thickness of 0.29 mm. Rolled, 340
After intermediate annealing at 2 ° C for 2 hours, it was further cold-rolled to a thickness of 0.
A 25 mm H14 brazing sheet was obtained. The cladding ratio of the brazing sheet in the composite material of the sacrificial anode material and the brazing material is 10% for the sacrificial anode material and 10% for the brazing material.

【0027】得られたそれぞれのブレージングシートに
ついて、以下のような方法により酸性環境下での耐食性
試験、及びアルカリ性環境下での耐食性試験を行った。
Each of the obtained brazing sheets was subjected to a corrosion resistance test in an acidic environment and a corrosion resistance test in an alkaline environment by the following methods.

【0028】[酸性環境下耐食性試験]それぞれのブレ
ージングシートを電縫加工してチューブ管(長さ500m
m、断面の幅16mm、断面の高さ2mm)とし、このチュー
ブ管と下記のフィン、ヘッダープレート、サイドプレー
トを用いて図1に示す構造の熱交換器を組み立てた。そ
の後この熱交換器のチューブ管に下記の条件の腐食液を
所定期間循環させ、循環終了後この熱交換器からチュー
ブ管をランダムに10本サンプリングした。そしてこれら
チューブ管内面の孔食深さを光学顕微鏡を用いた焦点深
度法により測定し、その測定値の最大のものを最大孔食
深さとして四捨五入して5μm単位で示した。上記フィ
ンにはAl-0.5wt%Si-1.0wt%Mn-2.0wt%Zn合金からなる
厚さ0.1mmの薄板材をコルゲート加工したものを用い、
ヘッダープレートとサイドプレートには、共にJIS-3003
合金にMgを0.15wt%添加した芯材の片面にJIS-4343合金
のろう材を、他の片面にAl-0.15wt%Zn合金の犠牲陽極
材をそれぞれクラッド率10%でクラッドした厚さ1.2mm
のアルミニウム合金複合材を用いた。上記腐食液として
は、Clイオン:195ppm、SO 2−イオン:60ppm、C
u イオン:1ppm、Fe3+:30ppmを含む水溶液(pH
3)を腐食液とし、これを88℃で8時間と室温で16時
間の2条件で交互に6ヶ月間循環させた。
[Corrosion resistance test in acidic environment] Each brazing sheet was subjected to electric resistance welding to form a tube tube (length 500 m).
m, the cross-section width was 16 mm, and the cross-section height was 2 mm), and a heat exchanger having the structure shown in FIG. 1 was assembled using this tube tube and the following fins, header plate, and side plate. Thereafter, a corrosive solution under the following conditions was circulated through the tube tubes of the heat exchanger for a predetermined period of time. After the circulation was completed, 10 tube tubes were randomly sampled from the heat exchanger. The pitting depth on the inner surface of these tube tubes was measured by the depth of focus method using an optical microscope, and the largest measured value was rounded off to the maximum pitting depth and indicated in units of 5 μm. For the above fins, a 0.1 mm thick thin plate made of Al-0.5wt% Si-1.0wt% Mn-2.0wt% Zn alloy is corrugated.
Both JIS-3003 for header plate and side plate
A JIS-4343 alloy brazing material is clad on one side of a core material containing 0.15 wt% of Mg added to the alloy, and a sacrificial anode material of Al-0.15 wt% Zn alloy is clad on one side, with a cladding rate of 10%, and the thickness is 1.2. mm
Was used. As the etchant, Cl - ion: 195ppm, SO 4 2- ions: 60 ppm, C
u 2 + ions: 1ppm, Fe 3+: aqueous solution containing 30 ppm (pH
3) was used as a corrosive liquid, which was alternately circulated for 6 months at 88 ° C. for 8 hours and at room temperature for 16 hours.

【0029】[アルカリ性環境下耐食性試験]前記酸性
環境下耐食性試験に使用した熱交換器と同じ構成の熱交
換器のチューブ管に、Clイオン:195ppm、SO 2−
オン:60ppm、Cu2+イオン:1ppm、Fe3+:30ppm
を含む水溶液(pH3)にNaOHを添加してpH11に調製した腐
食液を、88℃で8時間と室温で16時間の2条件で交互
に6ヶ月間循環させた。そして循環終了後、酸性環境下
耐食性試験と同様の方法でチューブ管の内面の孔食深さ
を測定し、最大孔食深さを求めた。
[0029] the tubes of the heat exchanger of the same configuration as the [alkaline environment corrosion resistance test] The heat exchanger used in the acidic environment corrosion resistance test, Cl - ion: 195ppm, SO 4 2- ions: 60 ppm, Cu 2+ Ion: 1 ppm, Fe 3+ : 30 ppm
A NaCl was added to an aqueous solution (pH 3) containing NaOH to adjust the pH to 11, and the etchant was alternately circulated for 6 months at 88 ° C. for 8 hours and at room temperature for 16 hours. After completion of the circulation, the pit depth on the inner surface of the tube was measured by the same method as in the corrosion resistance test under an acidic environment, and the maximum pit depth was determined.

【0030】酸性及びアルカリ性環境下耐食性試験の結
果を表2に併記する。いずれの耐食性試験結果において
も最大孔食深さが70μmを超えたものは×、最大孔食深
さが70μm以下のものは○で示した。なお特にアルカリ
性環境下耐食性試験において最大孔食深さが30μm以下
のものは◎で示した。
The results of the corrosion resistance test under acidic and alkaline environments are also shown in Table 2. In any of the corrosion resistance test results, those having a maximum pit depth exceeding 70 μm were indicated by x, and those having a maximum pit depth of 70 μm or less were indicated by ○. Particularly, those having a maximum pit depth of 30 μm or less in the corrosion resistance test under an alkaline environment are indicated by ◎.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】表2から明らかなように、本発明例No.1
〜22の複合材は酸性及びアルカリ性の両腐食環境下にお
いて、いずれも孔食深さが70μm以下であり優れた耐食
性を示した。さらに本発明例中芯材のCu含有量が0.003
〜0.01wt%未満のNo.5〜13はアルカリ性環境下耐食性
試験において特に優れた耐食性を示した。また本発明で
は犠牲陽極材の望ましいZn含有量は上記のように6.1〜1
2wt%であるが、この範囲を下回っている本発明例No.1
〜4はこの範囲内である本発明例No.5〜22に比べてア
ルカリ性環境下耐食性試験において若干耐食性が劣って
いた。
As is clear from Table 2, the present invention sample No. 1
In both acidic and alkaline corrosive environments, the pits had a pit depth of 70 μm or less and showed excellent corrosion resistance. Furthermore, the Cu content of the core material of the present invention example is 0.003.
Nos. 5 to 13 having a content of less than 0.01 wt% showed particularly excellent corrosion resistance in a corrosion resistance test under an alkaline environment. In the present invention, the desired Zn content of the sacrificial anode material is 6.1 to 1 as described above.
2% by weight, but less than this range.
Nos. 4 to 4 were slightly inferior in the corrosion resistance test in an alkaline environment as compared with Inventive Examples Nos. 5 to 22 in this range.

【0034】一方芯材又は犠牲陽極材の合金組成が本発
明の規定外の比較例No.23〜31及び従来例No.32は、酸性
又はアルカリ性腐食環境下のいずれかで耐食性が低下し
たか、又は熱交換器として製造できなかった。即ち比較
例No.23は犠牲陽極材のZr含有量が少ないため、アルカ
リ性腐食環境下では水酸化アルミニウム皮膜が強固に生
成してしまい耐食性が劣っていた。比較例No.24では犠
牲陽極材のIn含有量が多すぎ、及び比較例No.25では犠
牲陽極材のSn含有量が多すぎるため、圧延途中で割れて
しまいアルミニウム合金複合材を製造できなかった。さ
らに比較例No.26は犠牲陽極材のZn含有量が少ないた
め、アルカリ性腐食環境下では犠牲陽極材と芯材との電
位差がとれず耐食性が劣っていた。比較例No.27は犠牲
陽極材のZn含有量が多すぎるため、及び比較例No.28は
犠牲陽極材のZr含有量が多すぎるため圧延途中で割れて
しまいアルミニウム合金複合材を製造できなかった。比
較例No.29は芯材のMn含有量が多すぎるためチューブ管
として成形できなかった。比較例No.30は芯材のSi単体
が析出してしまい酸性及びアルカリ性両腐食環境下にお
いて芯材の自己耐食性が低下した。比較例No.31は芯材
のCu含有量が多すぎるためろう付加熱時にチューブが溶
融してしまった。また従来例No.32は犠牲陽極材のZn
含有量が1.0wt%と少ないため、アルカリ性腐食環境下で
は犠牲陽極材との電位差をとれず耐食性が劣っていた。
On the other hand, in Comparative Examples Nos. 23 to 31 and Conventional Example No. 32 in which the alloy composition of the core material or the sacrificial anode material was not specified in the present invention, the corrosion resistance was reduced under any of acidic or alkaline corrosive environment. , Or as a heat exchanger. That is, in Comparative Example No. 23, since the sacrificial anode material had a low Zr content, an aluminum hydroxide film was firmly formed in an alkaline corrosive environment, resulting in poor corrosion resistance. In Comparative Example No. 24, the In content of the sacrificial anode material was too large, and in Comparative Example No. 25, the Sn content of the sacrificial anode material was too large, so the aluminum alloy composite material could not be manufactured due to cracking during rolling. Was. Further, in Comparative Example No. 26, since the Zn content of the sacrificial anode material was small, the potential difference between the sacrificial anode material and the core material could not be obtained in an alkaline corrosive environment, and the corrosion resistance was poor. In Comparative Example No. 27, the Zn content of the sacrificial anode material was too large, and in Comparative Example No. 28, the Zr content of the sacrificial anode material was too large to break during rolling and aluminum alloy composites could not be manufactured. Was. In Comparative Example No. 29, the Mn content of the core material was too large to form a tube. In Comparative Example No. 30, Si alone as the core material was precipitated, and the self-corrosion resistance of the core material was reduced under both acidic and alkaline corrosion environments. In Comparative Example No. 31, since the Cu content of the core material was too large, the tube was melted at the time of brazing application heat. Also, the conventional example No. 32 is made of Zn as a sacrificial anode material.
Since the content was as low as 1.0 wt%, the potential difference from the sacrificial anode material could not be obtained in an alkaline corrosive environment, and the corrosion resistance was poor.

【0035】[0035]

【発明の効果】以上述べたように本発明によれば、酸性
及びアルカリ性の両腐食環境下において優れた耐食性を
有する熱交換器用アルミニウム合金複合材を得ることが
でき、工業上顕著な効果を奏するものである。
As described above, according to the present invention, it is possible to obtain an aluminum alloy composite material for a heat exchanger having excellent corrosion resistance under both acidic and alkaline corrosion environments, and has a remarkable industrial effect. Things.

【図面の簡単な説明】[Brief description of the drawings]

【図1】自動車用熱交換器(ラジエーター)を示すもの
で、(イ)は正面図、(ロ)は(イ)のA−A線断面図
である。
FIG. 1 shows a heat exchanger (radiator) for an automobile, in which (A) is a front view and (B) is a cross-sectional view taken along line AA of (A).

【符号の説明】[Explanation of symbols]

1 チューブ管 2 コルゲートフィン 3 ヘッダープレート 4 コア 5 パッキン 6,7 樹脂タンク DESCRIPTION OF SYMBOLS 1 Tube tube 2 Corrugated fin 3 Header plate 4 Core 5 Packing 6,7 Resin tank

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 20/00 360 B23K 20/00 360B 35/22 310 35/22 310E 35/28 310 35/28 310B // F28F 19/06 F28F 19/06 B B23K 101:14 (72)発明者 土公 武宜 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 Fターム(参考) 4E067 AA05 BB02 BD02 EB01 EB11Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) B23K 20/00 360 B23K 20/00 360B 35/22 310 35/22 310E 35/28 310 35/28 310B // F28F 19 / 06 F28F 19/06 B B23K 101: 14 (72) Inventor Takenori Tsunobu 2-6-1 Marunouchi, Chiyoda-ku, Tokyo F-term within Furukawa Electric Co., Ltd. 4E067 AA05 BB02 BD02 EB01 EB11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Zn3.1〜12.0wt%、Zr0.0
5〜0.3wt%を含有し、残部Alと不可避不純物から
なることを特徴とする熱交換器用アルミニウム合金犠牲
陽極材。
1. Zn 3.1-12.0 wt%, Zr 0.0
An aluminum alloy sacrificial anode material for a heat exchanger, comprising 5 to 0.3 wt% and the balance being Al and unavoidable impurities.
【請求項2】 Zn3.1〜12.0wt%、Zr0.0
5〜0.3wt%、Mn0.5〜2.0wt%を含有し、残
部Alと不可避不純物からなることを特徴とする熱交換
器用アルミニウム合金犠牲陽極材。
2. Zn 3.1 to 12.0 wt%, Zr 0.0
An aluminum alloy sacrificial anode material for a heat exchanger, comprising 5 to 0.3 wt% and Mn of 0.5 to 2.0 wt%, the balance being Al and unavoidable impurities.
【請求項3】 請求項1又は2記載のAl合金が、さら
にIn0.002〜0.3wt%、Sn0.002〜0.
3wt%の1種又は2種を含有したことを特徴とする熱交
換器用アルミニウム合金犠牲陽極材。
3. The Al alloy according to claim 1, further comprising 0.002 to 0.3% by weight of In and 0.002 to 0.3% of Sn.
An aluminum alloy sacrificial anode material for a heat exchanger, comprising one or two kinds of 3 wt%.
【請求項4】 Si0.005〜1.2wt%、Fe0.
005〜0.8wt%、Cu0.003〜1.2wt%、M
n0.5〜2.0wt%を含有し、残部Alと不可避不純
物からなるアルミニウム合金芯材の片面に、請求項1、
2又は3に記載のアルミニウム合金犠牲陽極材をクラッ
ドしたことを特徴とする熱交換器用高耐食性アルミニウ
ム合金複合材。
4. An alloy containing 0.005 to 1.2 wt% of Si, Fe.
005 to 0.8 wt%, Cu 0.003 to 1.2 wt%, M
n on a surface of an aluminum alloy core material containing 0.5 to 2.0 wt% and the balance being Al and unavoidable impurities,
A highly corrosion-resistant aluminum alloy composite for a heat exchanger, wherein the aluminum alloy sacrificial anode material according to 2 or 3 is clad.
【請求項5】 請求項4に記載のアルミニウム合金芯材
が、さらにMg0.03〜0.5wt%、Cr0.03〜
0.3wt%、Zr0.03〜0.3wt%、Ti0.03
〜0.3wt%、Ni0.05〜2.0wt%の1種又は2
種以上を含有したことを特徴とする熱交換器用高耐食性
アルミニウム合金複合材。
5. The aluminum alloy core material according to claim 4, further comprising: Mg 0.03 to 0.5 wt%, Cr 0.03 to 0.5 wt%.
0.3 wt%, Zr 0.03-0.3 wt%, Ti0.03
1 or 2 of Ni-0.3wt%, Ni0.05-2.0wt%
A highly corrosion-resistant aluminum alloy composite for heat exchangers, characterized by containing at least one kind.
JP31789098A 1998-11-09 1998-11-09 Aluminum alloy sacrificial anode material for heat exchanger and high corrosion resistance aluminum alloy composite material for heat exchanger using the same Expired - Fee Related JP4002352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31789098A JP4002352B2 (en) 1998-11-09 1998-11-09 Aluminum alloy sacrificial anode material for heat exchanger and high corrosion resistance aluminum alloy composite material for heat exchanger using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31789098A JP4002352B2 (en) 1998-11-09 1998-11-09 Aluminum alloy sacrificial anode material for heat exchanger and high corrosion resistance aluminum alloy composite material for heat exchanger using the same

Publications (2)

Publication Number Publication Date
JP2000144290A true JP2000144290A (en) 2000-05-26
JP4002352B2 JP4002352B2 (en) 2007-10-31

Family

ID=18093204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31789098A Expired - Fee Related JP4002352B2 (en) 1998-11-09 1998-11-09 Aluminum alloy sacrificial anode material for heat exchanger and high corrosion resistance aluminum alloy composite material for heat exchanger using the same

Country Status (1)

Country Link
JP (1) JP4002352B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044258A1 (en) * 2002-11-12 2004-05-27 Showa Denko K.K. Aluminum pipe and process for producing same
JP2004176178A (en) * 2002-11-12 2004-06-24 Showa Denko Kk Aluminum pipe and method for manufacturing the same
WO2008058708A1 (en) * 2006-11-14 2008-05-22 Aleris Aluminum Duffel Bvba Creep resistant aluminium alloy for multilayer tubes
JP2014125658A (en) * 2012-12-26 2014-07-07 Mitsubishi Alum Co Ltd Aluminum alloy clad material for heat exchanger and method for producing the same
JP2017538869A (en) * 2014-10-13 2017-12-28 アーコニック インコーポレイテッドArconic Inc. Brazing sheet
JP2018500461A (en) * 2014-11-27 2018-01-11 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツングHydro Aluminium Rolled Products GmbH Heat exchanger, use of aluminum alloy and aluminum strip, and method of manufacturing aluminum strip
US10293428B2 (en) 2013-06-26 2019-05-21 Arconic Inc. Resistance welding fastener, apparatus and methods
US10384296B2 (en) 2014-12-15 2019-08-20 Arconic Inc. Resistance welding fastener, apparatus and methods for joining similar and dissimilar materials
US10507514B2 (en) 2015-09-16 2019-12-17 Arconic Inc. Rivet feeding apparatus
US10593034B2 (en) 2016-03-25 2020-03-17 Arconic Inc. Resistance welding fasteners, apparatus and methods for joining dissimilar materials and assessing joints made thereby
US10903587B2 (en) 2014-02-03 2021-01-26 Howmet Aerospace Inc. Resistance welding fastener, apparatus and methods

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176178A (en) * 2002-11-12 2004-06-24 Showa Denko Kk Aluminum pipe and method for manufacturing the same
WO2004044258A1 (en) * 2002-11-12 2004-05-27 Showa Denko K.K. Aluminum pipe and process for producing same
WO2008058708A1 (en) * 2006-11-14 2008-05-22 Aleris Aluminum Duffel Bvba Creep resistant aluminium alloy for multilayer tubes
US8241719B2 (en) 2006-11-14 2012-08-14 Aleris Aluminum Duffell BVBA Creep resistant aluminium alloy for multilayer tubes
JP2014125658A (en) * 2012-12-26 2014-07-07 Mitsubishi Alum Co Ltd Aluminum alloy clad material for heat exchanger and method for producing the same
US10293428B2 (en) 2013-06-26 2019-05-21 Arconic Inc. Resistance welding fastener, apparatus and methods
US10903587B2 (en) 2014-02-03 2021-01-26 Howmet Aerospace Inc. Resistance welding fastener, apparatus and methods
US10532434B2 (en) 2014-10-13 2020-01-14 Arconic Inc. Brazing sheet
JP2017538869A (en) * 2014-10-13 2017-12-28 アーコニック インコーポレイテッドArconic Inc. Brazing sheet
JP2018500461A (en) * 2014-11-27 2018-01-11 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツングHydro Aluminium Rolled Products GmbH Heat exchanger, use of aluminum alloy and aluminum strip, and method of manufacturing aluminum strip
JP2020073721A (en) * 2014-11-27 2020-05-14 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツングHydro Aluminium Rolled Products GmbH Heat exchanger, use of aluminum alloy and aluminum strip, as well as manufacturing method of aluminum strip
JP7155100B2 (en) 2014-11-27 2022-10-18 スペイラ ゲゼルシャフト ミット ベシュレンクテル ハフツング Heat exchanger, use of aluminum alloy and aluminum strip, and method of manufacturing aluminum strip
US10384296B2 (en) 2014-12-15 2019-08-20 Arconic Inc. Resistance welding fastener, apparatus and methods for joining similar and dissimilar materials
US10507514B2 (en) 2015-09-16 2019-12-17 Arconic Inc. Rivet feeding apparatus
US10593034B2 (en) 2016-03-25 2020-03-17 Arconic Inc. Resistance welding fasteners, apparatus and methods for joining dissimilar materials and assessing joints made thereby

Also Published As

Publication number Publication date
JP4002352B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
US5125452A (en) Aluminum alloy clad material
JP2002059291A (en) Brazing sheet made of aluminum alloy for heat exchanger
EP1436438A1 (en) Aluminium alloy for making fin stock material
JPH0995749A (en) Heat exchanger made of aluminum alloy excellent in fatigue strength and corrosion resistance
JP2000144290A (en) Aluminum alloy sacrificial anode material for heat exchanger and high corrosion resistant aluminum alloy composite material using the same
JP3908847B2 (en) Aluminum alloy sacrificial anode material for heat exchanger and highly corrosion resistant aluminum alloy composite for heat exchanger
JPH11241136A (en) High corrosion resistant aluminum alloy, clad material thereof, and its production
JPH074678B2 (en) Brazing alloy for aluminum and brazing sheet for aluminum heat exchanger
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
JP4566729B2 (en) High strength aluminum alloy fin material and heat exchanger for heat exchanger with excellent erosion resistance
JPH08291353A (en) Aluminum alloy brazing sheet bar excellent in resistance weldability
JP3749089B2 (en) Sacrificial anticorrosion aluminum alloy plate and composite material thereof
JPH0790442A (en) Aluminum alloy brazing sheet for heat exchanger and manufacture of aluminum alloy-made heat exchanger
JPH07207393A (en) Manufacture of aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JPH0797651A (en) Production of aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JPH08260085A (en) Aluminum alloy composite material for vacuum brazing excellent in corrosion resistance
JPH11241133A (en) High corrosion resistant aluminum alloy clad material and its production
JP2691069B2 (en) Heat exchanger with excellent corrosion resistance and heat transfer
JPH11302760A (en) Aluminum alloy sacrificial anode material for heat exchanger and high corrosion-resistant aluminum alloy composite material for heat exchanger
JPH0788677A (en) Manufacture of aluminum alloy brazing sheet and heat exchanger made of aluminum alloy
JPH0790454A (en) Production of aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JPH11302761A (en) Aluminum alloy sacrificial anode material for heat exchanger and high corrosion-resistant aluminum alloy composite material for heat exchanger
JPH0790444A (en) Aluminum alloy fin material for heat exchanger
JPH11229064A (en) Aluminum alloy sacrificial anode material for heat exchanger and high corrosion resistance aluminum alloy composite material for heat exchanger
JP3858254B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees