JP2000144281A - Production of metal matrix composite material - Google Patents

Production of metal matrix composite material

Info

Publication number
JP2000144281A
JP2000144281A JP11168608A JP16860899A JP2000144281A JP 2000144281 A JP2000144281 A JP 2000144281A JP 11168608 A JP11168608 A JP 11168608A JP 16860899 A JP16860899 A JP 16860899A JP 2000144281 A JP2000144281 A JP 2000144281A
Authority
JP
Japan
Prior art keywords
metal
powder
particles
reaction
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11168608A
Other languages
Japanese (ja)
Other versions
JP3777878B2 (en
Inventor
Kazuaki Sato
和明 佐藤
Yukio Okochi
幸男 大河内
Hiroyuki Shamoto
裕幸 社本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP16860899A priority Critical patent/JP3777878B2/en
Publication of JP2000144281A publication Critical patent/JP2000144281A/en
Application granted granted Critical
Publication of JP3777878B2 publication Critical patent/JP3777878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the method for producing a metal matrix composite material with high productivity in such a manner that, at the time of impregnating a compacted body with molten metal and thereafter executing heating to produce compd. grains for dispersion strengthening, heating at a high temp. for a long time is not needed, and, also, the size of the applicable compacted body is expanded. SOLUTION: In this method for producing a metal matrix composite material in which compd. grains consisting of 1st and 2nd componential elements are dispersed into a metallic matrix, the compact consisting of the powder of the 1st componential elements, each powder of the 2nd componential elements or the compd. thereof and metal powder is impregnated with the molten metal of the metal, and then the whole of the compact is rapidly heated in an inert atmosphere to bring into chemical reaction of the 1st components and the metal as exothermic reaction in the compact, and the temp. of the compact is automatically, rapidly raised by the heat generation in the chemical reaction, then the producing reaction of the compd. grains is generated in the compact.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物粒子を多量
に含む金属基複合材料の製造方法に関し、更に、上記の
複合材料を母材(化合物粒子添加媒体)として用いる金
属基複合材料の製造方法に関する。
The present invention relates to a method for producing a metal-based composite material containing a large amount of compound particles, and further relates to a method for producing a metal-based composite material using the above-mentioned composite material as a base material (compound for adding compound particles). About.

【0002】[0002]

【従来の技術】分散強化型金属基複合材料の製造方法と
して、特開昭63−83239号公報に記載されている
方法を用いて、例えばTi粉末粒子とC(黒鉛)粉末粒
子とAlまたはAl合金粉末粒子とから成る成形体を不
活性雰囲気中にて加熱することによりAlまたはAl合
金から成る金属マトリクス中にTiC粒子が多量に分散
した金属基複合材料を母材(分散粒子添加媒体)として
製造し、この母材をAlまたはAl合金の溶湯中に溶解
した後、凝固させる方法が知られている。この方法によ
れば、溶湯中への母材の溶解量により最終的な複合材料
中のTiC粒子(分散強化粒子)の含有量を所望値に制
御することができる。
2. Description of the Related Art As a method for producing a dispersion-strengthened metal matrix composite material, for example, Ti powder particles, C (graphite) powder particles, Al or Al A metal-based composite material in which a large amount of TiC particles are dispersed in a metal matrix composed of Al or an Al alloy by heating a compact formed of alloy powder particles in an inert atmosphere is used as a base material (dispersion particle addition medium). There is known a method of manufacturing, dissolving this base material in a molten metal of Al or Al alloy, and then solidifying it. According to this method, the content of the TiC particles (dispersion-strengthened particles) in the final composite material can be controlled to a desired value by the amount of the base material dissolved in the molten metal.

【0003】しかし、本出願人が上記方法に従ってTi
C粒子分散強化型Al基複合材料を実際に製造したとこ
ろ、上記の方法には下記の問題があることが判明した。 (1) 母材が多孔質で比重が小さいため溶湯表面に浮いて
しまい、溶湯に完全に溶解させ難い。(2) 母材が多孔質
で熱伝導が悪いため母材全体が溶湯温度に到達して溶解
するのに長時間を要する。(3) 溶湯が表面張力と粘性の
ため多孔質の母材中に浸透し難い。(4) 成形体中でTi
粒子とC粒子とが直接接触し易く、TiC粒子が過度に
成長して粗大化し易い。(5) 成形体の加熱時に成形体中
に残存する酸素や窒素とAlが反応してAl粒子の表面
にAl23 やAlNが生成し、溶湯中への母材の溶解
を妨げる。
[0003] However, the present applicant has proposed that
When a C particle dispersion strengthened Al-based composite material was actually manufactured, it was found that the above method had the following problems. (1) Since the base material is porous and has a low specific gravity, it floats on the surface of the molten metal and is difficult to completely dissolve in the molten metal. (2) Since the base material is porous and has poor heat conduction, it takes a long time for the entire base material to reach the melting temperature and melt. (3) It is difficult for the molten metal to penetrate into the porous base material due to surface tension and viscosity. (4) Ti in the compact
Particles and C particles are likely to come into direct contact, and TiC particles are likely to grow excessively and become coarse. (5) Oxygen or nitrogen remaining in the molded body reacts with Al when the molded body is heated, and Al 2 O 3 or AlN is generated on the surface of the Al particles, thereby preventing dissolution of the base material in the molten metal.

【0004】そこで本出願人は、上記問題を解消した方
法として、日本特許第2734891号に開示したよう
に、Ti粉末もしくはZr粉末とC粉末とAl粉末また
はAl合金粉末とから成る成形体を形成し、前記成形体
中にAlまたはAl合金の溶湯を含浸させ、前記成形体
を不活性雰囲気中にて1000〜1800℃に加熱して
前記成形体中にTiC粒子もしくはZrC粒子を生成さ
せ、しかる後前記成形体をAlまたはAl合金の溶湯中
に溶解する方法を開発した。
[0004] In order to solve the above-mentioned problem, the present applicant has formed a compact formed of Ti powder or Zr powder, C powder, Al powder or Al alloy powder as disclosed in Japanese Patent No. 2734891. Then, the molded body is impregnated with a molten metal of Al or an Al alloy, and the molded body is heated to 1000 to 1800 ° C. in an inert atmosphere to generate TiC particles or ZrC particles in the molded body. Later, a method for dissolving the compact in a molten Al or Al alloy was developed.

【0005】この方法によれば、粉末成形体中へ溶湯を
含浸する際に、TiあるいはZrが空隙内に残存する酸
素や窒素を吸着するゲッターとして作用して空隙の内圧
を低下させるので、溶湯は空隙内へ吸引されるため、特
に加圧も必要とせず良好に含浸を行うことができる。上
記ゲッター作用により更に、Al23 やAlNの生成
が防止されるので、それらの生成による溶解性の低下が
起きない。
[0005] According to this method, when impregnating the molten metal into the powder compact, Ti or Zr acts as a getter for adsorbing oxygen and nitrogen remaining in the voids and lowers the internal pressure of the voids. Is sucked into the gap, so that the impregnation can be performed well without requiring any special pressurization. The getter function further prevents the formation of Al 2 O 3 and AlN, so that the formation of Al 2 O 3 and AlN does not lower the solubility.

【0006】これにより得られた成形体は空隙がAlま
たはAl合金で充填された中実状態なので、比重がAl
またはAl合金溶湯と同等となり且つ熱伝導性も高いた
め、溶湯表面に浮かぶことがなく且つ成形体全体が短時
間で溶湯温度に達して容易に溶湯中に溶解する。このよ
うに本出願人により開発された上記日本特許第2734
891号の方法は、前記特開昭63−83239号公報
の方法に不可避であった前記の諸問題を解消することが
でき、溶湯中への溶解性(分散性)が極めて高い成形体
を得ることができ、それによってAlまたはAl合金マ
トリクス中に微細なTiC粒子が均一に分散した複合材
料を容易に且つ能率良く製造することができる優れた方
法である。
[0006] The molded body thus obtained is in a solid state in which the voids are filled with Al or an Al alloy.
Or, since it is equivalent to the molten aluminum alloy and has high thermal conductivity, it does not float on the surface of the molten metal and the entire molded body reaches the molten metal temperature in a short time and is easily dissolved in the molten metal. The Japanese Patent No. 2734 thus developed by the present applicant.
The method of No. 891 can solve the above-mentioned problems inevitably in the method of JP-A-63-83239, and obtains a molded article having extremely high solubility (dispersibility) in a molten metal. This is an excellent method that can easily and efficiently produce a composite material in which fine TiC particles are uniformly dispersed in an Al or Al alloy matrix.

【0007】ただ上記の方法は、1000〜1800℃
という高温で、通常3時間以上の加熱を必要とする上、
適用できる成形体のサイズも重力偏析防止等の必要から
必然的に制限され、20〜30g程度が限界であるた
め、生産性の観点から更に改良が望まれていた。
[0007] However, the above method is performed at 1000 to 1800 ° C.
It usually requires heating for 3 hours or more,
The size of the molded body that can be applied is necessarily limited due to the necessity of preventing gravity segregation and the like, and the limit is about 20 to 30 g. Therefore, further improvement has been desired from the viewpoint of productivity.

【0008】[0008]

【発明が解決しようとする課題】本発明は、粉末成形体
に溶湯を含浸した後に加熱して成形体中に化合物粒子を
生成させる方法を改良し、高温・長時間の加熱を必要と
せず且つ適用できる成形体のサイズを拡大して、金属基
複合材料を高い生産性で製造する方法を提供することを
目的とする。
DISCLOSURE OF THE INVENTION The present invention has improved a method of forming a compound particle in a compact by heating after impregnating a powder compact with a molten metal. It is an object of the present invention to provide a method for producing a metal-based composite material with high productivity by increasing the size of an applicable molded body.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本願第1発明による金属基複合材料の製造方法
は、金属または金属の合金から成る金属マトリクス中に
第1元素と第2元素との化合物粒子が分散している金属
基複合材料の製造方法において、下記の工程:該第1元
素の粉末と、該第2元素または該第2元素の化合物の粉
末と、該金属または金属の合金の粉末とから成る成形体
を形成する工程、該成形体中に該金属または金属の合金
の溶湯を含浸させる工程、および該含浸済の成形体の全
体を不活性雰囲気中にて急速加熱することにより該成形
体中で発熱反応である該第1元素と該金属との化合反応
を生じさせ、この化合反応の発熱により該成形体を自動
的に急速昇温させて該成形体中で前記化合物粒子の生成
反応を生じさせる工程であって、該急速加熱の加熱速度
は、該第1元素と該金属との化合反応で発生する熱から
外部への放散および生じ得る吸熱反応による熱損失を差
し引いた残余の熱により該成形体全体が前記化合物粒子
の生成反応の生じる温度にまで自動的に昇温できるよう
に十分な短時間で該第1元素と該金属との化合反応を進
行させる加熱速度であり、該急速加熱による加熱到達温
度は該第1元素と該金属との化合反応の生じ得る下限温
度から前記化合物粒子の生成反応の生じ得る上限温度ま
での範囲内である工程、を含むことを特徴とする。
In order to achieve the above object, a method for producing a metal-based composite material according to the first aspect of the present invention comprises a method of manufacturing a metal matrix comprising a metal or an alloy of metals. In the method for producing a metal-based composite material in which compound particles of the above are dispersed, the following steps: a powder of the first element, a powder of the second element or a compound of the second element, Forming a compact comprising an alloy powder; impregnating the compact with a melt of the metal or metal alloy; and rapidly heating the entire impregnated compact in an inert atmosphere. As a result, a compounding reaction between the first element and the metal, which is an exothermic reaction, occurs in the molded body, and the molded body is automatically heated rapidly by the heat generated by the compounding reaction, so that the above-mentioned metal is formed in the molded body. A process for generating a compound particle formation reaction The heating rate of the rapid heating is determined by the residual heat obtained by subtracting the heat loss due to the heat generated by the chemical reaction between the first element and the metal to the outside and the heat loss due to the possible endothermic reaction. The heating rate is such that the compounding reaction between the first element and the metal proceeds in a sufficiently short time so that the whole can be automatically heated to a temperature at which the formation reaction of the compound particles occurs. A step in which the attained temperature is in a range from a lower limit temperature at which a compounding reaction between the first element and the metal can occur to an upper limit temperature at which a formation reaction of the compound particles can occur.

【0010】第1発明の方法により製造される金属基複
合材料は、金属マトリクス中に極めて多量の化合物粒子
を含有した形で得ることができるので、もちろん耐磨耗
摺動部材のような特殊な用途で最終的な粒子分散型金属
基複合材料として直接用いることもできるし、あるいは
最終的な粒子分散型金属基複合材料を製造するために、
そのマトリクスを構成する金属または合金の溶湯中へ化
合物粒子(典型的には分散強化粒子)を円滑に導入する
ための粒子添加材(典型的には分散強化粒子導入媒体)
として用いることもできる。
Since the metal matrix composite material produced by the method of the first invention can be obtained in a form containing a very large amount of compound particles in a metal matrix, it is needless to say that a special material such as a wear-resistant sliding member is used. It can be used directly as the final particle-dispersed metal matrix composite in the application, or to produce the final particle-dispersed metal matrix composite,
A particle additive (typically a dispersion-strengthened particle introduction medium) for smoothly introducing compound particles (typically, dispersion-strengthened particles) into a molten metal or alloy constituting the matrix.
Can also be used.

【0011】すなわち、第2発明によれば、第1発明の
方法により生成した前記化合物粒子を含む金属基複合材
料を粒子添加材として金属または金属の合金の溶湯中に
導入し、該金属基複合材料の金属マトリクスを該溶湯中
に溶解させると共に該化合物粒子を該溶湯中に分散させ
た後、該溶湯を凝固させることを特徴とする金属基複合
材料の製造方法が提供される。
That is, according to the second invention, the metal-based composite material containing the compound particles produced by the method of the first invention is introduced into a metal or metal alloy melt as a particle additive, and the metal-based composite material is introduced. A method for producing a metal-based composite material is provided, comprising dissolving a metal matrix of a material in the molten metal, dispersing the compound particles in the molten metal, and solidifying the molten metal.

【0012】第1発明または第2発明により製造される
典型的な金属基複合材料は、種々の用途に適用される粒
子分散型金属基複合材料であり、代表的なものは分散強
化型金属基複合材料である。一般に、第1発明による金
属基複合材料を粒子添加材として第2発明において溶湯
中に導入する場合、この溶湯は第1発明において成形体
に含浸させたものと同種の金属または合金の溶湯を用い
る。ただし、粒子添加材を含浸金属または含浸合金とは
異種の金属または合金の溶湯中へ導入してもよい。この
場合、溶湯の組成に含浸金属または含浸合金の成分が合
金成分として添加された組成が最終的な金属基複合材料
の金属マトリクスの組成となる。
A typical metal-based composite material manufactured according to the first or second invention is a particle-dispersed metal-based composite material applicable to various uses. It is a composite material. Generally, when the metal-based composite material according to the first invention is introduced into the molten metal in the second invention as a particle additive, the molten metal is a molten metal of the same kind of metal or alloy as that impregnated in the molded body in the first invention. . However, the particle additive may be introduced into a molten metal of a metal or alloy different from the impregnated metal or alloy. In this case, the composition in which the component of the impregnated metal or the impregnated alloy is added as an alloy component to the composition of the molten metal becomes the final composition of the metal matrix of the metal-based composite material.

【0013】第1発明の第1態様によれば、Alまたは
Al合金から成る金属マトリクス中にTiC粒子が分散
している金属基複合材料の製造方法が提供される。すな
わち、第1発明の第1態様による金属基複合材料の製造
方法は、AlまたはAl合金から成る金属マトリクス中
にTiC粒子が分散している金属基複合材料の製造方法
において、下記の工程:Ti粉末とC粉末(黒鉛粉末)
とAlまたはAl合金粉末とから成る成形体を形成する
工程、該成形体中にAlまたはAl合金の溶湯を含浸さ
せる工程、および該含浸済の成形体の全体を不活性雰囲
気中にて急速加熱することにより該成形体中で該Alま
たはAl合金の融点直近で起きるTiAl3 生成反応を
生じさせ、該TiAl3 生成反応の発熱により該成形体
を自動的に急速昇温させて該成形体中でTiC粒子生成
反応を生じさせる工程であって、該急速加熱の加熱速度
は、該TiAl3 生成反応で発生する熱から外部への放
散および生じうる吸熱反応による熱損失を差し引いた残
余の熱により該成形体全体が該TiC粒子生成反応の生
じる温度にまで自動的に昇温できるように十分な短時間
で該TiAl3 生成反応を進行させる加熱速度であり、
該急速加熱による加熱到達温度は該TiAl 3 生成反応
の生じ得る下限温度から該TiC粒子生成反応の生じ得
る上限温度までの範囲内である工程、を含むことを特徴
とする。
According to the first aspect of the first invention, Al or
TiC particles dispersed in metal matrix composed of Al alloy
A method is provided for producing a metal-based composite material. sand
That is, production of the metal matrix composite material according to the first aspect of the first invention.
The method is performed in a metal matrix composed of Al or an Al alloy.
For producing metal matrix composite material having TiC particles dispersed therein
In the following steps: Ti powder and C powder (graphite powder)
To form a compact comprising aluminum and Al or Al alloy powder
Step, impregnating the molten body of Al or Al alloy in the compact
And the whole of the impregnated molded body is kept in an inert atmosphere.
By rapid heating in the air, the Al
Or TiAl occurring near the melting point of Al alloyThree Generation reaction
The TiAlThree Due to the heat generated by the formation reaction,
Automatically raises the temperature automatically to form TiC particles in the compact
A step of causing a reaction, the heating rate of said rapid heating
Is the TiAlThree Release from heat generated in the formation reaction to the outside
Residue minus heat loss due to heat dissipation and possible endothermic reactions
Excess heat causes the entire compact to generate the TiC particle formation reaction.
Short enough to automatically raise the temperature
And the TiAlThree Is the heating rate at which the formation reaction proceeds,
The ultimate temperature of heating by the rapid heating is TiAl Three Generation reaction
From the lower limit temperature at which the TiC particle formation reaction may occur.
A process within a range up to an upper limit temperature.
And

【0014】第1発明の第1態様においては、前記急速
加熱の加熱速度は、一般に20℃/分以上とすることが
望ましい。また、前記急速加熱の加熱到達温度は、典型
的には、固体Alと固体Tiとの化合によるTiAl3
生成反応の生じうる下限温度617℃から、固体TiA
3 と固体Cとの反応による固体TiC粒子生成反応の
生じうる上限温度992℃までの範囲内の温度である。
このような急速加熱は誘導加熱により容易に実現でき
る。
In the first aspect of the first invention, the heating rate of the rapid heating is generally desirably 20 ° C./min or more. Further, the heating ultimate temperature of the rapid heating is typically TiAl 3 due to the combination of solid Al and solid Ti.
From the lower limit temperature of 617 ° C. where the formation reaction can occur, the solid TiA
This is a temperature within a range up to an upper limit temperature of 992 ° C. at which a reaction of forming solid TiC particles by a reaction between l 3 and solid C can occur.
Such rapid heating can be easily realized by induction heating.

【0015】また、第1発明の第1態様においては、成
形体を形成するためにC粉末に代えてSiC粉末を用い
ることができる。更に、第1発明の第2、第3、第4、
第5態様によれば、AlまたはAl合金から成る金属マ
トリクス中にZrC粒子、Hf粒子、NbC粒子、Ti
2 粒子のいずれかが分散している金属基複合材料の製
造方法が提供される。
In the first aspect of the first invention, SiC powder can be used in place of C powder to form a molded body. Furthermore, the second, third, fourth,
According to the fifth aspect, ZrC particles, Hf particles, NbC particles, Ti
Method for producing a metal matrix composite material in which any of B 2 particles are dispersed is provided.

【0016】第1発明の第2態様による金属基複合材料
の製造方法は、AlまたはAlの合金から成る前記金属
マトリクス中にZrCから成る前記化合物粒子が分散し
ている金属基複合材料の製造方法であって、前記第1元
素がZr、前記第2元素がCであり、前記成形体を形成
する工程においてZr粉末とC粉末とAlまたはAl合
金粉末とから成る成形体を形成することを特徴とする。
According to a second aspect of the present invention, there is provided a method of manufacturing a metal-based composite material, wherein the compound particles of ZrC are dispersed in the metal matrix of Al or an alloy of Al. Wherein the first element is Zr and the second element is C, and in the step of forming the compact, a compact comprising Zr powder, C powder and Al or Al alloy powder is formed. And

【0017】第1発明の第3態様による金属基複合材料
の製造方法は、AlまたはAlの合金から成る前記金属
マトリクス中にHfCから成る前記化合物粒子が分散し
ている金属基複合材料の製造方法であって、前記第1元
素がHf、前記第2元素がCであり、前記成形体を形成
する工程においてHf粉末とC粉末とAlまたはAl合
金粉末とから成る成形体を形成することを特徴とする。
According to a third aspect of the present invention, there is provided a method of manufacturing a metal-based composite material, wherein the compound particles of HfC are dispersed in the metal matrix of Al or an alloy of Al. Wherein the first element is Hf and the second element is C, and wherein in the step of forming the compact, a compact comprising Hf powder, C powder and Al or Al alloy powder is formed. And

【0018】第1発明の第4態様による金属基複合材料
の製造方法は、AlまたはAlの合金から成る前記金属
マトリクス中にNbCから成る前記化合物粒子が分散し
ている金属基複合材料の製造方法であって、前記第1元
素がNb、前記第2元素がCであり、前記成形体を形成
する工程においてNb粉末とC粉末とAlまたはAl合
金粉末とから成る成形体を形成することを特徴とする。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a metal-based composite material, wherein the compound particles of NbC are dispersed in the metal matrix of Al or an alloy of Al. Wherein the first element is Nb and the second element is C, and wherein in the step of forming the compact, a compact comprising Nb powder, C powder and Al or Al alloy powder is formed. And

【0019】第1発明の第5態様による金属基複合材料
の製造方法は、AlまたはAlの合金から成る前記金属
マトリクス中にTiB2 から成る前記化合物粒子が分散
している金属基複合材料の製造方法であって、前記第1
元素がTi、前記第2元素がBであり、前記成形体を形
成する工程においてTi粉末とAlB2 またはAlB 12
粉末とAlまたはAl合金粉末とから成る成形体を形成
することを特徴とする。
The metal matrix composite according to the fifth aspect of the first invention
The method for producing the metal comprises:
TiB in matrixTwoWherein said compound particles comprising
A method for producing a metal matrix composite material, comprising:
The element is Ti and the second element is B, and the compact is formed.
In the forming process, Ti powder and AlBTwoOr AlB 12
Forming a compact consisting of powder and Al or Al alloy powder
It is characterized by doing.

【0020】第1発明の第2、第3、第4、第5態様に
おいては、前記急速加熱の加熱速度は、一般に20℃/
分以上とすることが望ましい。このような急速加熱は誘
導加熱により容易に実現できる。第2発明の第1、第
2、第3、第4、第5態様によれば、それぞれ第1発明
の第1、第2、第3、第4、第5態様の方法により生成
したTiC粒子、ZrC粒子、HfC粒子、NbC粒
子、TiB2 粒子を含む成形体を、Al、Al合金、M
g、またはMg合金の溶湯中に導入し、該成形体の金属
マトリクスを該溶湯中に溶解させると共にそれぞれ該T
iC粒子、該ZrC粒子、該HfC粒子、該NbC粒
子、該TiB2 粒子を該溶湯中に分散させた後、該溶湯
を凝固させることを特徴とする粒子分散強化型の金属基
複合材料の製造方法が提供される。MgまたはMg合金
の溶湯を用いた場合、成形体に含浸されているAlまた
はAl合金は、第2発明により製造される金属基複合材
料のMg基金属マトリクスの合金成分の一部を成す。
In the second, third, fourth and fifth aspects of the first invention, the heating rate of the rapid heating is generally 20 ° C. /
Minutes or more. Such rapid heating can be easily realized by induction heating. According to the first, second, third, fourth and fifth aspects of the second invention, TiC particles produced by the methods of the first, second, third, fourth and fifth aspects of the first invention, respectively. , ZrC particles, HfC particles, NbC particles, TiB 2 particles, Al, Al alloy, M
g or Mg alloy, the metal matrix of the compact is dissolved in the molten metal, and the T
Production of a particle-dispersion-strengthened metal matrix composite material comprising dispersing iC particles, the ZrC particles, the HfC particles, the NbC particles, and the TiB 2 particles in the melt, and then solidifying the melt. A method is provided. When a molten metal of Mg or Mg alloy is used, Al or Al alloy impregnated in the compact forms a part of the alloy component of the Mg-based metal matrix of the metal-based composite material manufactured according to the second invention.

【0021】[0021]

【発明の実施の形態】本発明による化合物粒子の生成原
理を、Al基マトリクス中にTiC粒子を生成させる場
合を典型例として以下に説明する。Ti粉末と黒鉛粉末
とAlまたはAl合金粉末とから成る成形体を形成し、
この成形体中にAlまたはAl合金の溶湯を含浸させ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The principle of producing compound particles according to the present invention will be described below by taking as an example a case where TiC particles are produced in an Al-based matrix. Forming a compact consisting of Ti powder, graphite powder and Al or Al alloy powder,
The molded body is impregnated with a molten metal of Al or an Al alloy.

【0022】次いで、該成形体を加熱すると、昇温過程
でTi、Al、Cの間で下記化学反応 (1)〜(5) が起き
る。 Ti(s) +3Al(s)→TiAl3 (s) 890K (617 ℃) (1) Al(s) →Al(l) 930K (657 ℃) (2) Ti(s) +3Al(l)→TiAl3 (s) 940K (667 ℃) (3) 3TiAl3(s) +Al4C3(s)→3TiC(s) +13Al(l) 1150K (877℃) (4) TiAl3(s)+C(s)→TiC(s)+3Al(l) 1155K-1265K (5) (882-992℃) 図1に、上記の各反応をDTA(differential thermal
analysis:示差熱分析)で観測した一例を示す。同図
は、各反応を明確に分離して検出できるように、5℃/
min 程度の遅い昇温速度で観測した結果である。
Next, when the compact is heated, the following chemical reactions (1) to (5) occur between Ti, Al, and C in the course of raising the temperature. Ti (s) + 3Al (s ) → TiAl 3 (s) 890K (617 ℃) (1) Al (s) → Al (l) 930K (657 ℃) (2) Ti (s) + 3Al (l) → TiAl 3 (s) 940K (667 ° C) (3) 3TiAl 3 (s) + Al 4 C 3 (s) → 3TiC (s) + 13Al (l) 1150K (877 ° C) (4) TiAl 3 (s) + C (s) → TiC (s) + 3Al (l) 1155K-1265K (5) (882-992 ° C) Figure 1 shows the above reactions as DTA (differential thermal).
analysis: Differential thermal analysis). The figure shows 5 ° C /
This is the result of observation at a slow heating rate of about min.

【0023】図中の左寄り(低温寄り)に、上向きの大
きな2つの発熱ピークと、その間に挟まれて下向きの大
きな一つの吸熱ピークが生じている。これらのピーク
は、低温側から順に、(1) 固体Tiと固体Alとが化合
して固体TiAl3 が生成する反応の発熱ピーク(61
7℃で開始)、(2) Alが溶融する吸熱ピーク(657
℃で開始)、(3) 液体Alと固体Tiとが化合して固体
TiAl3 が生成する反応の発熱ピーク(667℃で開
始し747℃で終了)である。
Two large upward heat generation peaks and one large downward heat absorption peak sandwiched between the two heat generation peaks are generated on the left side (low temperature side) in the drawing. These peaks are, in order from the low temperature side, (1) an exothermic peak (61) of a reaction in which solid Ti and solid Al are combined to form solid TiAl 3.
(2) Endothermic peak at which Al melts (657).
C.) and (3) an exothermic peak (starting at 667 ° C. and ending at 747 ° C.) of the reaction in which liquid Al and solid Ti combine to form solid TiAl 3 .

【0024】更に温度上昇に伴い、(4) および(5) の反
応により固体TiAl3 と固体Al 43 または固体C
とが化合して固体TiCが生成する発熱ピークと中間生
成物の生成・分解による発熱および吸熱ピークが882
℃〜992℃の温度領域に観察される。本発明において
は、成形体を不活性雰囲気中にて急速加熱することによ
り、成形体中でAlまたはAl合金の融点(反応(2) )
直近で起きるTiAl3 生成反応(反応(1) 、反応(3)
)を生じさせ、このTiAl3 生成反応(1) (3) の発
熱により成形体を自動的に急速昇温させて成形体中でT
iC粒子生成反応(反応(4) 、反応(5) )を生じさせ
る。
Further, as the temperature rises, the reaction of (4) and (5)
Solid TiAlThree And solid Al Four CThree Or solid C
Exothermic peak and intermediate produced by the formation of solid TiC
Exothermic and endothermic peaks due to formation and decomposition of the product
It is observed in the temperature range of from 9C to 992C. In the present invention
Is obtained by rapidly heating the compact in an inert atmosphere.
The melting point of Al or Al alloy in the compact (reaction (2))
TiAl that occurs most recentlyThree Formation reaction (Reaction (1), Reaction (3)
 ), And the TiAlThree Generation reaction (1) (3)
The temperature of the compact is automatically raised rapidly by heat, and T
iC particle formation reaction (reaction (4), reaction (5))
You.

【0025】そのために、急速加熱の加熱速度は、Ti
Al3 生成反応(1) (3) で発生する熱から外部への放散
および生じうる吸熱反応(反応(2) 等)による熱損失を
差し引いた残余の熱により、成形体全体がTiC粒子生
成反応(4) (5) の生じる温度(882℃〜992℃)に
まで自動的に昇温できるように、十分な短時間でTiA
3 生成反応(1) (3) を進行させる加熱速度とする。ま
た、急速加熱による加熱到達温度はTiAl3 生成反応
(1) (3) の生じ得る下限温度(=反応(1) の起きる下限
温度617℃)からTiC粒子生成反応(4) (5) の生じ
得る上限温度(=反応(5) の起きる上限温度992℃)
までの範囲内とする。
Therefore, the heating rate of the rapid heating is Ti
Al 3 formation reaction (1) The heat generated in (3) dissipates to the outside and the residual heat obtained by subtracting the heat loss due to possible endothermic reaction (reaction (2), etc.) causes the entire molded body to react to form TiC particles. (4) In order to automatically raise the temperature to the temperature at which (5) occurs (882 ° C to 992 ° C), the TiO should be sufficiently short in a short time.
The heating rate at which the l 3 generation reaction (1) (3) proceeds. In addition, the ultimate temperature of heating by rapid heating depends on the TiAl 3 formation reaction.
(1) From the lower limit temperature at which (3) can occur (= lower limit temperature at which reaction (1) occurs 617 ° C.) to the upper limit temperature at which TiC particle formation reaction (4) (5) can occur (= upper limit temperature at which reaction (5) occurs) 992 ° C)
Within the range up to.

【0026】上記のように急速加熱を行うことにより、
本来は図1のように各々独立した反応である(1) 〜(5)
の反応が連続的に生じ、見掛け上一つの発熱反応とな
り、反応(1) の開始から1〜2分程度の極めて短時間で
反応(5) まで完了する。図2に、本発明による急速加熱
を行った場合の時間に対するDTA挙動を、図1のよう
な緩速加熱時の挙動と比較して模式的に示す(横軸は時
間である。)このような急速加熱は、誘導加熱により容
易に行うことができ、加熱装置を到達温度700℃に設
定し、加熱速度20℃/min で行えば反応(1) 〜(5) を
自動的に連続進行させるには十分である。この場合、設
定温度の700℃に到達する直前(617℃)から反応
(1) により発熱が始まり、成形体の温度は実際には設定
温度の700℃で停留することなく連続昇温が進行し、
1〜2分程度で1200℃程度まで到達する。反応(5)
によるTiC生成が完了すると、成形体は急速に温度降
下する。
By performing rapid heating as described above,
Originally, they are independent reactions as shown in Fig. 1 (1) to (5)
The reaction (1) occurs continuously and apparently becomes one exothermic reaction, and the reaction (5) is completed in a very short time of about 1 to 2 minutes from the start of the reaction (1). FIG. 2 schematically shows the DTA behavior with respect to the time when rapid heating according to the present invention is performed, as compared with the behavior at the time of slow heating as shown in FIG. 1 (the horizontal axis is time). Rapid heating can be easily performed by induction heating. If the heating device is set at an ultimate temperature of 700 ° C. and the heating rate is 20 ° C./min, the reactions (1) to (5) automatically and continuously proceed. Is enough. In this case, the reaction starts immediately before reaching the set temperature of 700 ° C. (617 ° C.).
(1) causes heat generation, and the temperature of the molded body actually increases at a set temperature of 700 ° C. without continuing to rise,
It reaches about 1200 ° C. in about 1 to 2 minutes. Reaction (5)
When the formation of TiC is completed, the temperature of the compact rapidly decreases.

【0027】上記のように急速加熱により発熱反応を誘
起して短時間でTiC粒子の生成を完遂させる上で、含
浸を行うことは下記2点で決定的に重要である。 (1)化合物粒子の微細化 含浸により成形体中の空隙は殆どAlで充填される。こ
れにより、Ti粉末粒子、C粉末粒子、Alとの化合物
粒子の間には含浸されたAlが介在するため、急速加熱
による反応中に各生成物粒子、特に最終的なTiC粒子
同士の凝集による粗大化が防止され、微細なTiC粒子
が分散した金属基複合材料が得られる。粒子の微細分散
は、この金属基複合材料を直接実用に供する場合には優
れた機械特性を付与するし、また、この金属基複合材料
を粒子添加材として溶湯中に導入する場合には粒子が溶
湯中に容易に微細分散し、凝固により得られる金属基複
合材料の機械特性の向上に寄与する。
In order to induce the exothermic reaction by rapid heating to complete the generation of TiC particles in a short time as described above, impregnation is crucial in the following two points. (1) Miniaturization of Compound Particles Almost all voids in the compact are filled with Al by impregnation. Thereby, since impregnated Al is interposed between Ti powder particles, C powder particles, and compound particles with Al, each product particle, particularly final TiC particles, is aggregated during reaction by rapid heating. A metal matrix composite material in which coarsening is prevented and fine TiC particles are dispersed can be obtained. The fine dispersion of particles imparts excellent mechanical properties when the metal matrix composite is directly put into practical use, and when the metal matrix composite is introduced into a molten metal as a particle additive, the particles are not easily dispersed. It is easily finely dispersed in the molten metal and contributes to the improvement of the mechanical properties of the metal matrix composite obtained by solidification.

【0028】(2)急速加熱時の反応促進 含浸時にAl溶湯とTi粉末粒子とが反応してTi粒子
の周囲に微細なTiAl3 粒子が生成し、急速加熱時に
最終反応であるTiAl3 +C→TiC+3Alが促進
される。これにより見掛け上の反応開始温度が低下し、
本発明の急速加熱によるTiC粒子の効率的な生成を可
能とする。
(2) Acceleration of Reaction During Rapid Heating During the impregnation, the Al molten metal and the Ti powder particles react to form fine TiAl 3 particles around the Ti particles, and the final reaction during rapid heating, TiAl 3 + C → TiC + 3Al is promoted. This lowers the apparent reaction initiation temperature,
The efficient generation of TiC particles by the rapid heating of the present invention is enabled.

【0029】また、含浸により成形体中の空隙が殆どA
lで充填されるので、急速加熱時に成形体全体に渡って
熱伝導が促進され反応が促進される。このように本発明
によれば、従来のように高温・長時間の加熱を必要とせ
ず、例えば分単位の極めて短時間でTiC粒子の生成反
応を完遂させられる。更に、従来のような重力偏析等の
問題が生じないので、成形体のサイズをかなり大きくす
ることができる。
Further, the voids in the molded body are almost completely A due to the impregnation.
Since it is filled with l, heat conduction is promoted throughout the molded body during rapid heating, and the reaction is promoted. As described above, according to the present invention, the generation reaction of the TiC particles can be completed in a very short time, for example, in minutes, without requiring high-temperature and long-time heating as in the related art. Furthermore, since problems such as gravitational segregation unlike the conventional case do not occur, the size of the molded body can be considerably increased.

【0030】すなわち、従来の高温・長時間の加熱で
は、一因としては、マトリクス成分であるAlまたはA
l合金が溶融状態で長時間維持されるので、各粉末から
の成分元素や生成した化合物粒子の重力偏析が生じ易い
ため、またもう一つの原因としては、成形体のサイズが
大きくなると温度分布が不均一になるため、サイズの大
きい成形体では体積全体に渡ってTiC粒子の生成反応
を完遂させることができなくなる。
That is, in the conventional high-temperature and long-time heating, one of the causes is that the matrix component Al or A
Since the alloy is maintained in a molten state for a long time, the gravitational segregation of the component elements and the generated compound particles from each powder is liable to occur. Another factor is that the temperature distribution increases when the size of the compact increases. Due to the non-uniformity, it is impossible to complete the reaction of forming TiC particles over the entire volume of a large-sized compact.

【0031】本発明では、成形体全体を加熱反応開始温
度まで急速に、すなわち短時間加熱して、TiC生成に
到る各反応を自動進行させることにより、上記従来の問
題が解消され、成形体のサイズに対する制限が大幅に緩
和される。第1観点のTiC粒子に代えて、第2、第
3、第4、第5観点によりZrC粒子、HfC粒子、N
bC粒子、TiB2 粒子を生成させる場合にも、同様な
原理により極めて短時間で大きな成形体中に各粒子を生
成させることができる。
In the present invention, the above-mentioned conventional problems are solved by heating the entire molded body rapidly, that is, for a short time, to the heating reaction starting temperature and automatically proceeding each reaction leading to TiC formation. The restriction on the size of the file is greatly relaxed. Instead of the TiC particles of the first aspect, the ZrC particles, HfC particles, N
Even when bC particles and TiB 2 particles are generated, each particle can be generated in a large compact in an extremely short time by the same principle.

【0032】[0032]

【実施例】〔実施例1〕第1発明の第1態様に従って、
純アルミニウム中にTiC粒子を生成させた金属基複合
材料を下記の手順で製造した。TiCのC源としてC粉
末を用いた。 〔成形体の作製〕純アルミニウム粉(−45μm、9
9.3%)、純チタン粉(−45μm、99.4%)、
純黒鉛粉(−45μm、99.4%)をそれぞれ7g、
11.2g、2.8g秤量して混合し、成形圧7t/cm
2 でφ30mmの円柱状成形体を作製した。得られた成形
体の空隙率は約10%であった。
[Embodiment 1] According to the first embodiment of the first invention,
A metal-based composite material in which TiC particles were generated in pure aluminum was manufactured by the following procedure. C powder was used as a C source of TiC. [Production of molded article] Pure aluminum powder (-45 μm, 9
9.3%), pure titanium powder (-45 μm, 99.4%),
7 g each of pure graphite powder (-45 μm, 99.4%)
11.2 g, 2.8 g were weighed and mixed, and the molding pressure was 7 t / cm.
In step 2 , a cylindrical molded body having a diameter of 30 mm was produced. The porosity of the obtained molded body was about 10%.

【0033】〔アルミニウム溶湯の含浸〕上記の成形体
を730℃の純アルミニウム溶湯(純度99.9%)に
30秒浸漬させた後、速やかに溶湯より取り出し、成形
体の空隙中に純アルミニウム溶湯を含浸させた。この含
浸により、成形体の重量は含浸前の18.5gから約3
0gに増加した。
[Impregnation of Molten Aluminum] The above compact was immersed in 730 ° C. pure aluminum (purity: 99.9%) for 30 seconds, then immediately taken out of the melt, and the pure aluminum melt was inserted into the voids of the compact. Was impregnated. By this impregnation, the weight of the molded body was reduced from 18.5 g before impregnation to about 3
Increased to 0 g.

【0034】含浸したアルミニウム溶湯は、成形体の内
部の密着性・熱伝導性を高める効果に加え、チタン粉末
粒子と反応してTi粒子の周囲に微細なAl3 Ti粒子
を生成し、後にの急速加熱によるTiC生成までの反応
を効率良く進め、TiC粒径の微細化に寄与する。図3
に、含浸後の成形体の顕微鏡組織の一例を示す。Alマ
トリクス(黒色)中に分散したTi粒子(白色)の周囲
に1μm程度の微細なTiAl3 (灰色)が多数生成し
ている。
The impregnated aluminum melt has the effect of increasing the adhesiveness and thermal conductivity inside the compact, and reacts with the titanium powder particles to form fine Al 3 Ti particles around the Ti particles. The reaction up to the generation of TiC by rapid heating is efficiently advanced, and contributes to the miniaturization of the TiC particle size. FIG.
An example of the microstructure of the compact after impregnation is shown below. Many fine TiAl 3 (gray) of about 1 μm are generated around Ti particles (white) dispersed in an Al matrix (black).

【0035】これ対して、作製した含浸なしの成形体
は、後の高周波加熱において加熱効率が著しく低く、健
全なAl−TiCペレットが得られなかった。また、同
じ比較材を、5℃/min の昇温速度で1300℃まで昇
温させてTiCを生成させたが、生成したTiC粒子は
平均粒径3μmと大きかった。 〔TiC粒子の生成〕TiC粒子生成のための急速加熱
を、周波数3600Hz、出力20kWの高周波電動発
電機を備えた真空溶解炉を用いて行った。
On the other hand, the formed compact without impregnation had a remarkably low heating efficiency in the subsequent high-frequency heating, and a sound Al-TiC pellet could not be obtained. The same comparative material was heated up to 1300 ° C. at a rate of 5 ° C./min to generate TiC. The generated TiC particles had a large average particle size of 3 μm. [Production of TiC Particles] Rapid heating for producing TiC particles was performed using a vacuum melting furnace equipped with a high-frequency motor generator having a frequency of 3600 Hz and an output of 20 kW.

【0036】炉内に上記含浸後の成形体を7個重ねて装
入し(計210g)、炉内を10-2Torrまで真空引きし
た後、Arガスを−20cmHgまで導入し、高周波誘
導加熱により急速加熱を行った。加熱速度は、高周波出
力の設定により制御した。表1に示したように、試料の
加熱速度および装置の設定到達温度はそれぞれ、発明例
1:30℃/min ,700℃、発明例2:50℃/min
,800℃、発明例3:100℃/min ,650℃と
した。
Seven pieces of the impregnated compacts were stacked and charged in a furnace (total 210 g), the inside of the furnace was evacuated to 10 −2 Torr, and Ar gas was introduced to −20 cmHg. For rapid heating. The heating rate was controlled by setting the high frequency output. As shown in Table 1, the heating rate of the sample and the set ultimate temperature of the apparatus were respectively 30 ° C./min and 700 ° C. for Invention Example 1, and 50 ° C./min for Invention Example 2.
, 800 ° C, Invention Example 3: 100 ° C / min, 650 ° C.

【0037】比較例1は、加熱設定温度を本発明の範囲
(TiAl3 生成反応下限温度である617℃以上)よ
り低い600℃とした以外は、発明例1と同じ条件で処
理を行った例である。比較例2〜5では、加熱速度が本
発明の範囲(一旦TiAl3 生成反応が開始した後はT
iC粒子生成反応の生じる温度にまで自動的に昇温でき
る加熱速度)より遅い例として、従来と同様に通常の電
気炉にて加熱を行った。加熱速度は炉の能力上限一杯の
10℃/min とし、加熱設定温度は比較例2では800
℃、比較例3、4、5では1200℃とした。加熱保持
は行なわず、設定温度到達後に炉内で冷却した。
Comparative Example 1 was an example in which the treatment was performed under the same conditions as in Invention Example 1 except that the heating set temperature was set at 600 ° C., which was lower than the range of the present invention (i.e., 617 ° C. or more, which is the lower limit temperature of the TiAl 3 generation reaction). It is. In Comparative Examples 2 to 5, the heating rate was within the range of the present invention (after the TiAl 3 generation reaction started, T
As an example that is slower than the heating rate at which the temperature can be automatically raised to the temperature at which the iC particle generation reaction occurs), heating was performed in a normal electric furnace as in the related art. The heating rate was 10 ° C./min, which is the maximum capacity of the furnace, and the heating set temperature was 800 in Comparative Example 2.
° C, and 1200 ° C in Comparative Examples 3, 4, and 5. Heating and holding were not performed, and cooling was performed in the furnace after reaching the set temperature.

【0038】比較例6は、含浸を行わず、本発明の範囲
の加熱条件で高周波加熱を行った例である。試料サイズ
は、比較例2、3では30g(成形体1個)、比較例4
では60g(成形体2個)、比較例5では90g(成形
体3個)と変化させた。比較例6の試料サイズは60g
(成形体2個)とした。
Comparative Example 6 is an example in which high-frequency heating was performed under heating conditions within the range of the present invention without performing impregnation. The sample size was 30 g in Comparative Examples 2 and 3 (one molded body), and Comparative Example 4
Was changed to 60 g (two molded bodies) and Comparative Example 5 was changed to 90 g (three molded bodies). The sample size of Comparative Example 6 is 60 g.
(Two molded bodies).

【0039】本発明による急速加熱を行った発明例1、
2、3では、昇温過程において600℃を超えた温度付
近から急激な試料温度の上昇が始まり、20秒〜40秒
でそれぞれ1215℃、1235℃、1320℃に達
し、その後、急激に温度が降下した。これは、反応(1)
〜(5) が連続的に生じることにより自己発熱で試料の温
度が短時間で上昇し、最後の反応(5) の完了とともに温
度が急速に降下したためである。このように、反応によ
る自己発熱の方が高周波装置による人為的な加熱を遙か
に上回るため、本実施例の範囲内の設定温度であれば、
TiC生成に要する時間はほぼ同程度の極めて短時間で
ある。
Inventive Example 1 in which rapid heating was performed according to the present invention,
In 2 and 3, in the temperature rising process, a sharp rise in the sample temperature starts around a temperature exceeding 600 ° C., and reaches 1215 ° C., 1235 ° C., and 1320 ° C. in 20 seconds to 40 seconds, respectively, and thereafter, the temperature rapidly increases. Descended. This is the reaction (1)
This is because the temperature of the sample rises in a short time due to the self-heating due to the continuous occurrence of (5), and the temperature falls rapidly with the completion of the last reaction (5). As described above, since self-heating due to the reaction far exceeds artificial heating by the high-frequency device, if the set temperature is within the range of the present embodiment,
The time required for TiC generation is extremely short, almost the same.

【0040】発明例1〜3および比較例1〜6による処
理後の試料について、X線回折による相同定およびSE
Mミクロ組織写真の画像処理による粒径測定を行った。
これらの調査結果も併せて表1に示す。本発明による急
速加熱を行った発明例1〜3は、Alマトリクス中に平
均粒径0.2μmのTiC粒子が均一に分散した組織で
あった。他の相は検出されなかった。
For the samples treated according to Invention Examples 1 to 3 and Comparative Examples 1 to 6, phase identification by X-ray diffraction and SE
The particle size was measured by image processing of an M microstructure photograph.
Table 1 also shows the results of these investigations. Inventive Examples 1 to 3 in which rapid heating was performed according to the present invention had a structure in which TiC particles having an average particle size of 0.2 μm were uniformly dispersed in an Al matrix. No other phases were detected.

【0041】比較例1では、加熱速度は発明例1と同等
であったが、加熱設定温度600℃が反応(1) のAl3
Ti生成反応開始温度617℃に達しなかったため、こ
の反応による自己発熱が起きず、その後の昇温はなく試
料到達温度は加熱設定温度の600℃止まりであり、T
iCの生成には到らなかった。処理後の試料は、含浸に
よるAl凝固相、Al粒子(含浸時未溶解分)、Ti粒
子、C粒子、TiAl 3 粒子が混在した組織であった。
In Comparative Example 1, the heating rate was the same as in Invention Example 1.
However, the heating setting temperature of 600 ° C.Three 
Since the Ti formation reaction start temperature did not reach 617 ° C,
No self-heating occurred due to the reaction of
The temperature at which the material is reached is 600 ° C. of the heating set temperature, and T
It did not lead to the generation of iC. The treated sample is impregnated
Solidification phase, Al particles (undissolved during impregnation), Ti particles
Particles, C particles, TiAl Three The structure was a mixture of particles.

【0042】比較例2は、加熱設定温度は800℃であ
り反応(1) (3) によるTiAl3 生成による発熱はあっ
たが、加熱速度が本発明の範囲より遅かったため、反応
(1)(3) から反応(4) (5) が連続して生ずることがな
く、TiCは生成しなかった。処理後の試料は、Al凝
固相中にTi、C、TiAl3 の各粒子が混在した組織
であった。
In Comparative Example 2, although the heating set temperature was 800 ° C. and the reaction (1) and (3) generated heat due to the generation of TiAl 3 , the heating rate was lower than the range of the present invention.
Reactions (4) and (5) did not occur continuously from (1) and (3), and no TiC was formed. The sample after the treatment had a structure in which Ti, C, and TiAl 3 particles were mixed in the Al solidification phase.

【0043】比較例3、4、5は、本出願人が開発した
日本特許第2734891号による従来の処理条件を満
たしており、発明例1〜3と同様にAlマトリクス中に
平均粒径0.2μmのTiC粒子が均一に分散した組織
が得られた。ただし、試料サイズが30gの比較例3で
はAl相とTiC粒子のみが観察されたが、試料サイズ
を60g、90gと増加させた比較例4、5では、Al
相およびTiC粒子以外にTiAl3 相が混在してお
り、その量は試料サイズの増加に伴い増加していた。処
理炉内で試料の下部であった部位にTiAl3 粒子が存
在する傾向が強かったことから、その存在理由は次のよ
うに考えられる。
Comparative Examples 3, 4, and 5 satisfy the conventional processing conditions according to Japanese Patent No. 27348891, which was developed by the present applicant. A structure in which 2 μm TiC particles were uniformly dispersed was obtained. However, in Comparative Example 3 in which the sample size was 30 g, only the Al phase and TiC particles were observed. In Comparative Examples 4 and 5 in which the sample size was increased to 60 g and 90 g,
The TiAl 3 phase was mixed in addition to the phase and the TiC particles, and the amount increased as the sample size increased. Since there was a strong tendency for TiAl 3 particles to be present in the lower part of the sample in the processing furnace, the reason for the existence is considered as follows.

【0044】すなわち、従来のような加熱保持によるT
iC生成処理においては、(A)反応(1) 〜(5) が全て
完了するのに要する時間が長いため、1200℃で溶融
状態にあるAlの溶湯中で重力偏析により組成のばらつ
きが生じ、反応(1) (3) で生成した中間生成物であるべ
きTiAl3 が反応(4) (5) へ進行せずに残留したか、
(B)試料サイズが大きいため温度分布が不均一になり
易く、局所的に反応の進行が不完全になったか、あるい
はこれら両者が併行したか、である。
That is, T
In the iC generation process, since the time required for completing all of the reactions (1) to (5) is long, the composition variation occurs due to gravitational segregation in the molten Al at 1200 ° C. Whether TiAl 3 , which should be an intermediate product formed in reactions (1) and (3), remained without proceeding to reactions (4) and (5),
(B) Since the sample size is large, the temperature distribution is likely to be non-uniform, and whether the progress of the reaction has become incomplete locally, or whether both of them have been concurrently performed.

【0045】発明例1〜3では、試料全体を少なくとも
反応(1) が生じ得る温度にまで急速加熱し、以降の反応
(2) 〜(5) を自動的に連続進行させることにより、短時
間でTiC生成反応(5) まで完全に行わせるので、上記
のような長時間加熱保持による重力偏析や温度不均一に
よるTiAl3 の残留が起きることがない。更に、発明
例1〜3による成形体総重量が増加してもTiC粒径は
平均0.2μmであり、表1には示していないが粒径は
均一で0.3μm以上のTiC粒子は存在しない。
In Inventive Examples 1 to 3, the entire sample was rapidly heated to at least a temperature at which reaction (1) could take place.
(2) to (5) are automatically advanced continuously to complete the reaction up to the TiC generation reaction (5) in a short time. No residue of 3 occurs. Furthermore, even if the total weight of the molded articles according to Inventive Examples 1 to 3 increases, the average particle size of TiC is 0.2 μm. Although not shown in Table 1, TiC particles having a uniform particle size and 0.3 μm or more exist. do not do.

【0046】これに対し、従来の高温熱処理を行った比
較例3〜5では、TiC粒径は平均0.2μmではある
が、0.1μm〜1.5μmの粒径分布が認められた。
このように本発明により均一なTiC粒径が得られたの
は、TiC生成が極めて短時間で完了したことに加え、
成形体内で温度差が殆ど生じないためであると考えられ
る。
On the other hand, in Comparative Examples 3 to 5 in which conventional high-temperature heat treatment was performed, the average particle diameter of TiC was 0.2 μm, but a particle diameter distribution of 0.1 μm to 1.5 μm was observed.
Thus, the uniform TiC particle size was obtained by the present invention, in addition to the fact that TiC generation was completed in a very short time,
This is considered to be because a temperature difference hardly occurs in the molded body.

【0047】[0047]

【表1】 [Table 1]

【0048】〔実施例2〕第1発明の第1態様に従っ
て、TiC粒子添加材として、純アルミニウム中にTi
C粒子を生成させた金属基複合材料を下記の手順で製造
した。TiCのC源としてSiC粉末を用いた。 〔成形体の作製〕純アルミニウム粉(−45μm、9
9.3%)、純チタン粉(−45μm、99.4%)、
SiC粉(13μm、50μm)をそれぞれ表2の配合
で混合し、成形圧7t/cm2 でφ30mmの円柱状成形体
を作製した。発明例1および3は、全てのSiCがTi
と反応するモル比として配合であり、SiC粉の粒径を
2水準とした。発明例2は、Tiとの反応に必要な量の
2倍のモル比のSiC量とした。得られた成形体の空隙
率は約7%であった。
Example 2 According to the first aspect of the first invention, as an additive for TiC particles,
A metal-based composite material that produced C particles was produced by the following procedure. SiC powder was used as a C source of TiC. [Production of molded article] Pure aluminum powder (-45 μm, 9
9.3%), pure titanium powder (-45 μm, 99.4%),
SiC powders (13 μm and 50 μm) were mixed in the respective formulations shown in Table 2 to produce a cylindrical molded body having a molding pressure of 7 t / cm 2 and a diameter of 30 mm. Inventive Examples 1 and 3 show that all of SiC is Ti
And the molar ratio that reacts with the SiC powder. In Invention Example 2, the amount of SiC was twice as much as the amount required for the reaction with Ti. The porosity of the obtained molded body was about 7%.

【0049】[0049]

【表2】 [Table 2]

【0050】〔アルミニウム溶湯の含浸〕上記の成形体
を730℃の純アルミニウム溶湯(純度99.9%)に
30秒浸漬させた後、速やかに溶湯より取り出し、成形
体の空隙中に純アルミニウム溶湯を含浸させた。この含
浸により、成形体の重量は、発明例1では含浸前の2
7.6gから約31gに、発明例2では37gから42
gに、発明例3では27.6gから30gに、それぞれ
増加した。含浸後の成形体中には、Al、Ti、Si
C、Al3 Tiが存在していた。Al3 Tiは、Ti粒
子の周囲に微細粒(直径1μm程度)として生成してい
た。
[Impregnation of molten aluminum] The above-mentioned molded body was immersed in pure aluminum molten metal (purity 99.9%) at 730 ° C for 30 seconds, then immediately taken out of the molten metal, and pure aluminum molten metal was filled in the voids of the molded body. Was impregnated. Due to this impregnation, the weight of the molded article in Inventive Example 1 was 2% before impregnation.
From 7.6 g to about 31 g, and in Invention Example 2, from 37 g to 42 g
g, and in Invention Example 3, from 27.6 g to 30 g. Al, Ti, Si are contained in the compact after impregnation.
C and Al 3 Ti were present. Al 3 Ti was generated as fine particles (about 1 μm in diameter) around the Ti particles.

【0051】〔TiC粒子の生成〕TiC粒子生成のた
めの急速加熱を、実施例1と同じ真空溶解炉を用いて行
った。炉内に上記含浸後の成形体を、表3に示した重量
・個数で炉内に装入し、炉内を10-2Torrまで真空引き
した後、Arガスを−20cmHgまで導入し、高周波
加熱により急速加熱を行った。
[Production of TiC Particles] Rapid heating for producing TiC particles was performed using the same vacuum melting furnace as in Example 1. The molded body after the impregnation was charged into the furnace with the weight and number shown in Table 3, and the inside of the furnace was evacuated to 10 -2 Torr, and then Ar gas was introduced to -20 cmHg, Rapid heating was performed by heating.

【0052】加熱速度は、高周波出力の設定により制御
した。試料の加熱速度および装置の設定到達温度は全て
100℃/min 、700℃とした。発明例1〜3のいず
れの場合も、昇温過程において700℃付近から急激な
試料温度の上昇が始まり20秒〜40秒で約1300℃
に達し、その後、急激に温度が低下した。この急激な昇
温は、下記の発熱反応によると考えられる。
The heating rate was controlled by setting the high frequency output. The heating speed of the sample and the set temperature of the apparatus were all 100 ° C./min and 700 ° C. In each case of invention examples 1 to 3, in the heating process, a sharp rise in the sample temperature starts at around 700 ° C. and reaches about 1300 ° C. in 20 to 40 seconds.
, And then the temperature dropped sharply. This rapid temperature increase is considered to be due to the following exothermic reaction.

【0053】Ti+3Al → TiAl3 TiAl3 +SiC → 3Al+TiC +Si(*) Ti+SiC → TiC+Si(*) (*:Ti粉末に対してSiC 粉末の配合量が過剰な場合に
SiC が残留)すなわち、上記の発熱反応が連続的に起き
ることによる自己発熱で試料の温度が上昇し、極めて短
時間でTiCの生成反応が進行したものである。
Ti + 3Al → TiAl 3 TiAl 3 + SiC → 3Al + TiC + Si (*) Ti + SiC → TiC + Si (*) (*: When the compounding amount of the SiC powder is excessive with respect to the Ti powder,
That is, the temperature of the sample rises due to self-heating caused by the continuous occurrence of the above-mentioned exothermic reaction, and the generation reaction of TiC proceeds in an extremely short time.

【0054】上記処理後の発明例1〜3の試料につい
て、X線回折による相同定およびSEMミクロ組織写真
の画像処理による粒径測定を行った。これらの調査結果
を表3に示す。
The samples of Invention Examples 1 to 3 after the above treatment were subjected to phase identification by X-ray diffraction and particle size measurement by image processing of SEM microstructure photographs. Table 3 shows the results of these investigations.

【0055】[0055]

【表3】 [Table 3]

【0056】発明例1〜3のいずれにおいても、Alマ
トリクス中に平均粒径0.2μmのTiC粒子が均一に
分散した組織であった。また、反応副生成物としてSi
相(5〜50μm)が存在するが、SiはAl合金の強
度、耐摩耗性、鋳造性を向上させる効果がある。発明例
2においては、過剰に添加したSiC粒子が残存してお
り、TiC粒子とSiC粒子の2種類の分散粒子(強化
粒子)を有するアルミニウム基複合材料が得られた。
In each of Invention Examples 1 to 3, the structure was such that TiC particles having an average particle size of 0.2 μm were uniformly dispersed in the Al matrix. In addition, Si as a reaction by-product
Although there is a phase (5 to 50 μm), Si has the effect of improving the strength, wear resistance and castability of the Al alloy. In Invention Example 2, the excessively added SiC particles remained, and an aluminum-based composite material having two types of dispersed particles (reinforced particles) of TiC particles and SiC particles was obtained.

【0057】本実施例においては、TiC粒子のC源と
して黒鉛粉末に代えてSiC粉末を用いたことにより下
記の点で有利である。 SiC粉末は黒鉛粉末に比べて価格が数分の1と安価
である。 SiCとTiとの反応による副生成物であるSiは、
Al溶湯の流動性、鋳造性を高める元素であり、成形体
をTiC粒子添加材としてAl溶湯中に添加した際の溶
湯中への溶解性とTiC粒子(およびSiC粒子)の溶
湯中への分散性を高める。Al−Si系2元状態図から
も分かるように、純Alの融点660℃はSiの添加に
より最低577℃まで低下するので、この低融点化によ
る直接的な溶解性および分散性の向上効果も得られる。
In this embodiment, the use of SiC powder instead of graphite powder as the C source of TiC particles is advantageous in the following points. SiC powder is inexpensive, at a fraction of the price, compared to graphite powder. Si, which is a by-product of the reaction between SiC and Ti,
It is an element that enhances the fluidity and castability of Al melt, and the solubility of TiC particles (and SiC particles) in the melt when the compact is added to the Al melt as a TiC particle additive. Enhance the nature. As can be seen from the Al-Si system binary phase diagram, the melting point of 660 ° C. of pure Al is lowered to at least 577 ° C. by the addition of Si. can get.

【0058】発明例2のように、意図的にSiCをTi
に対して過剰量とすることにより、TiC生成処理後の
成形体中にSiCを共存させると、TiC粒子よりもS
iC粒子の方がAl溶湯中での分散性が高いことを、下
記のように利用できる利点がある。TiC粒子を生成さ
せた成形体を添加する溶湯の合金組成が、例えばAl−
Sn−Si等である場合、成形体の添加および溶解後の
凝固時に、TiC粒子がAl相から排出されて最終凝固
部である粒界に偏析する傾向がある。偏析によりTiC
粒子は本来の分散効果を十分に発揮できず、複合材料と
して所期の強度特性が得られない場合がある。特に、偏
析が顕著な場合には、粒界に偏析したTiC粒子により
粒界脆化が起きてしまい、むしろ強度が低下する危険も
ある。
As in Invention Example 2, SiC was intentionally replaced with Ti.
When SiC coexists in the compact after the TiC generation treatment, the amount of S
The advantage that the iC particles have higher dispersibility in the Al melt can be used as follows. The alloy composition of the molten metal to which the compact having generated the TiC particles is added is, for example, Al-
When Sn-Si or the like is used, the TiC particles tend to be discharged from the Al phase and segregated at the grain boundary, which is the final solidified portion, at the time of solidification after addition and dissolution of the molded body. TiC due to segregation
In some cases, the particles cannot sufficiently exhibit the original dispersing effect, and the desired strength characteristics cannot be obtained as a composite material. In particular, when segregation is remarkable, grain boundary embrittlement occurs due to the TiC particles segregated at the grain boundary, and there is a risk that the strength is rather lowered.

【0059】このような組成のAl合金に対しては、T
iC粒子とSiC粒子が共存することにより、TiC粒
子よりも分散性の高いSiC粒子により分散強化を行
い、同時に、TiC粒子によりAlマトリクスの微細化
と耐摩耗性向上を行うことができる。 〔実施例3〕第2発明の第1態様に従い、下記の手順に
より、TiC粒子含有成形体をMgまたはMg合金の溶
湯に添加して、金属基複合材料を製造した。
For an Al alloy having such a composition, T
When the iC particles and the SiC particles coexist, the dispersion strengthening can be performed by the SiC particles having higher dispersibility than the TiC particles, and at the same time, the Al matrix can be miniaturized and the wear resistance can be improved by the TiC particles. Example 3 According to the first aspect of the second invention, a metal-based composite material was produced by adding a TiC particle-containing compact to a molten Mg or Mg alloy by the following procedure.

【0060】純MgおよびAZ91Mg合金をそれぞれ
SF6 ガス雰囲気中で溶解した。得られたMgまたはM
g合金の溶湯に、上記発明例1および発明例3により作
成したTiC粒子含有成形体を添加し、5分間の機械的
攪拌を行った後、JIS4号舟金型に750℃で鋳造し
た。成形体の添加量を種々に変えることにより、鋳造材
中のTiC含有量を0〜5 vol%の範囲で変化させた。
各鋳造材について、硬さ、引張特性、耐摩耗性を調べた
結果を図4〜7に示す。純MgおよびAZ91Mg合金
のいずれについても、TiC粒子による分散強化が得ら
れた。なお、引張強度特性および耐摩耗特性は下記条件
での試験により求めた。
Pure Mg and AZ91Mg alloy were each dissolved in an SF 6 gas atmosphere. Mg or M obtained
The TiC particle-containing compacts prepared in Inventive Example 1 and Inventive Example 3 were added to the molten g alloy, and the mixture was mechanically stirred for 5 minutes, and then cast at 750 ° C. in a JIS No. 4 boat mold. The TiC content in the cast material was changed in the range of 0 to 5 vol% by changing the amount of the formed body in various ways.
The results of examining the hardness, tensile properties, and wear resistance of each cast material are shown in FIGS. Dispersion strengthening by TiC particles was obtained for both pure Mg and AZ91Mg alloy. The tensile strength characteristics and wear resistance characteristics were determined by tests under the following conditions.

【0061】<引張試験条件> 試験片形状:平行部、φ5×25(mm) 引張速度:1mm/min <摩耗試験条件> 試験片形状:15.7×10.1×6.3 相手材形状:φ35リング状 相手材材質:SUJ−2 回転速度:160rpm 荷重:196N 試験時間:60分 潤滑:5W−30基油 また、TiC粒子の添加により鋳造材の結晶粒が微細化
した。図8に純Mg鋳造材の鋳造組織を示す。TiC粒
子添加なしの鋳造材(A)に比べて、上記のようにTi
C粒子を1 vol%添加した鋳造材(B)は鋳造組織が顕
著に微細化している。
<Tensile test conditions> Test specimen shape: parallel part, φ5 × 25 (mm) Peeling speed: 1 mm / min <Wear test conditions> Test specimen shape: 15.7 × 10.1 × 6.3 : Φ35 ring shape Material of mating material: SUJ-2 Rotation speed: 160 rpm Load: 196N Test time: 60 minutes Lubrication: 5W-30 base oil In addition, the crystal grain of the cast material was refined by adding TiC particles. FIG. 8 shows a casting structure of a pure Mg casting material. As compared to the cast material (A) without the addition of TiC particles,
The cast material (B) containing 1 vol% of C particles has a remarkably fine cast structure.

【0062】従来、MgおよびMg合金の鋳造組織微細
化には、ヘキサクロロエタン(C2Cl6 )等が微細化
材として広く用いられており、微細化機構としてはAl
4 3 による異種核生成説が一般的に取られている。本
発明によれば、分散強化による強度特性の向上と同時に
鋳造組織の微細化による強度特性および耐食性の向上が
可能になる。
Conventionally, fine structure of cast structure of Mg and Mg alloy
Hexachloroethane (CTwoCl6) Etc.
Widely used as material
FourC ThreeHeterogeneous nucleation theory is generally taken. Book
According to the invention, at the same time as the improvement of the strength characteristics by dispersion strengthening,
Improvement of strength characteristics and corrosion resistance by refinement of casting structure
Will be possible.

【0063】〔実施例4〕第1発明の第2態様に従っ
て、純アルミニウム中にZrC粒子を生成させた金属基
複合材料を下記の手順で製造した。 〔成形体の作製〕純アルミニウム粉(−45μm、9
9.99%)、純ジルコニウム粉(−147μm、9
9.9%)、純黒鉛粉(−45μm、99%)をそれぞ
れ7g、16.85g、2.22g秤量して混合し、成
形圧7t/cm2 でφ30mmの円柱状成形体を作製した。
得られた成形体の空隙率は約3%であった。
Example 4 According to the second aspect of the first invention, a metal-based composite material in which ZrC particles were formed in pure aluminum was manufactured by the following procedure. [Production of molded article] Pure aluminum powder (-45 μm, 9
9.99%), pure zirconium powder (-147 μm, 9
9.9%) and pure graphite powder (−45 μm, 99%) were weighed and mixed in an amount of 7 g, 16.85 g and 2.22 g, respectively, to produce a columnar molded body of φ30 mm at a molding pressure of 7 t / cm 2 .
The porosity of the obtained molded body was about 3%.

【0064】この際、Zr粉末とC粉末との混合比はZ
rCの化学量論比(モル比)に対応させることが望まし
い。Zr粉末およびC粉末とAl粉末との混合比は特に
限定されない。粉末の混合比は最終的に作成するZrC
粒子含有成形体の目標ZrC濃度に応じて調整すること
ができる。 〔アルミニウム溶湯の含浸〕上記の成形体を730℃の
純アルミニウム溶湯(純度99.99%)に30秒浸漬
させた後、速やかに溶湯より取り出し、成形体の空隙中
に純アルミニウム溶湯を含浸させた。この含浸により、
成形体の重量は含浸前の26.07gから約50gに増
加した。比較のため、含浸を行わない試料も用意した。
At this time, the mixing ratio of Zr powder and C powder is Z
It is desirable to correspond to the stoichiometric ratio (molar ratio) of rC. The mixing ratio of Zr powder or C powder to Al powder is not particularly limited. The mixing ratio of the powder is ZrC
It can be adjusted according to the target ZrC concentration of the particle-containing compact. [Impregnation of molten aluminum] After immersing the above-mentioned molded body in 730 ° C pure aluminum molten metal (purity: 99.99%) for 30 seconds, it is immediately taken out of the molten metal, and the voids of the molded body are impregnated with the pure aluminum molten metal. Was. With this impregnation,
The weight of the compact increased from 26.07 g before impregnation to about 50 g. For comparison, a sample without impregnation was also prepared.

【0065】〔ZrC粒子の生成〕ZrC粒子生成のた
めの急速加熱を、実施例1と同じ真空溶解炉を用いて高
周波誘導加熱により行った。ただし、比較のため通常の
電気炉による加熱も行った。生成粒子について、X線回
折による相同定およびSEMミクロ組織写真の画像処理
による粒径測定を行った。表4に、加熱条件および生成
相を示す。
[Production of ZrC Particles] Rapid heating for producing ZrC particles was performed by high-frequency induction heating using the same vacuum melting furnace as in Example 1. However, for comparison, heating with a normal electric furnace was also performed. The resulting particles were subjected to phase identification by X-ray diffraction and particle size measurement by image processing of SEM microstructure photographs. Table 4 shows heating conditions and formed phases.

【0066】[0066]

【表4】 [Table 4]

【0067】〔金属溶湯への添加〕第2発明の第2態様
に従って、発明例1により作製したZrC粒子含有成形
体を、800℃に保持したAl−Si合金(AC8A)
の溶湯(重量500g)中に添加し(添加量:40
g)、5分間攪拌した後、溶湯温度750℃で、80℃
に予熱したJIS4号舟金型に鋳造した。比較のため、
上記添加を行わずに同様に鋳造を行った。ZrC粒子の
添加により、硬さ、耐摩耗性、引張強さが向上すること
を確認した。
[Addition to the Molten Metal] According to the second aspect of the second invention, the ZrC particle-containing compact produced according to Inventive Example 1 was kept at 800 ° C. using an Al—Si alloy (AC8A).
(Weight: 500 g) (addition amount: 40 g)
g) After stirring for 5 minutes, at a melt temperature of 750 ° C. and 80 ° C.
JIS No. 4 boat mold was preheated. For comparison,
Casting was performed in the same manner without the above addition. It was confirmed that the addition of the ZrC particles improved the hardness, wear resistance, and tensile strength.

【0068】上記ZrC粒子を添加した合金溶湯をアト
マイズすることにより、ZrC粒子含有金属基複合材料
粉末を作製することができる。ZrC粒子はAl合金溶
湯に溶け込まないため、ZrC粒子の添加量を増加する
ことにより、更に高強度の金属基複合材料を得ることも
できる。 〔実施例5〕第1発明の第3態様に従って、純アルミニ
ウム中にHfC粒子を生成させた金属基複合材料を下記
の手順で製造した。
By atomizing the molten alloy to which the ZrC particles are added, a ZrC particle-containing metal-based composite material powder can be produced. Since the ZrC particles do not dissolve in the molten Al alloy, a higher strength metal-based composite material can be obtained by increasing the amount of the ZrC particles added. Example 5 According to the third aspect of the first invention, a metal-based composite material in which HfC particles were formed in pure aluminum was manufactured by the following procedure.

【0069】〔成形体の作製〕純アルミニウム粉(−4
5μm、99.99%)、純ハフニウム粉(−45μ
m、98%)、純黒鉛粉(−45μm、99%)をそれ
ぞれ7g、31.73g、2.14g秤量して混合し、
成形圧7t/cm2 でφ30mmの円柱状成形体を作製し
た。得られた成形体の空隙率は約6%であった。
[Preparation of molded article] Pure aluminum powder (-4
5 μm, 99.99%), pure hafnium powder (−45 μm)
m, 98%) and pure graphite powder (−45 μm, 99%) were weighed and mixed in 7 g, 31.73 g, and 2.14 g, respectively.
At a molding pressure of 7 t / cm 2 , a cylindrical molded body having a diameter of 30 mm was produced. The porosity of the obtained molded body was about 6%.

【0070】この際、Hf粉末とC粉末との混合比はH
fCの化学量論比(モル比)に対応させることが望まし
い。Hf粉末およびC粉末とAl粉末との混合比は特に
限定されない。粉末の混合比は最終的に作成するHfC
粒子含有成形体の目標HfC濃度に応じて調整すること
ができる。 〔アルミニウム溶湯の含浸〕上記の成形体を730℃の
純アルミニウム溶湯(純度99.99%)に30秒浸漬
させた後、速やかに溶湯より取り出し、成形体の空隙中
に純アルミニウム溶湯を含浸させた。この含浸により、
成形体の重量は含浸前の40.87gから約65gに増
加した。
At this time, the mixing ratio between the Hf powder and the C powder is H
It is desirable to correspond to the stoichiometric ratio (molar ratio) of fC. The mixing ratio of the Hf powder and the C powder to the Al powder is not particularly limited. The mixing ratio of the powder is HfC
It can be adjusted according to the target HfC concentration of the particle-containing compact. [Impregnation of molten aluminum] After immersing the above-mentioned molded body in 730 ° C pure aluminum molten metal (purity: 99.99%) for 30 seconds, it is immediately taken out of the molten metal, and the voids of the molded body are impregnated with the pure aluminum molten metal. Was. With this impregnation,
The weight of the compact increased from 40.87 g before impregnation to about 65 g.

【0071】〔HfC粒子の生成〕HfC粒子生成のた
めの急速加熱を、実施例1と同じ真空溶解炉を用いて高
周波誘導加熱により行った。ただし、比較のため通常の
電気炉による加熱も行った。生成粒子について、X線回
折による相同定およびSEMミクロ組織写真の画像解析
による粒径測定を行った。表5に、加熱条件および生成
相を示す。
[Production of HfC Particles] Rapid heating for producing HfC particles was performed by high-frequency induction heating using the same vacuum melting furnace as in Example 1. However, for comparison, heating with a normal electric furnace was also performed. The resulting particles were subjected to phase identification by X-ray diffraction and particle size measurement by SEM microstructure photograph image analysis. Table 5 shows heating conditions and formed phases.

【0072】[0072]

【表5】 [Table 5]

【0073】HfC粒子の生成は、約650℃以上の温
度域で、低温側から順に下記の反応が起きることによ
る。 Hf +3Al → HfAl3 (1) HfAl3 +C → HfC+ 3Al (2) 粉末成形体にAl溶湯を含浸すると、Hf粉末粒子とA
l溶湯とが上記(1) の反応をして、Hf粉末粒子の周囲
に微細なHfAl3 粒子が生成する。この状態で次の急
速加熱をすると(2) の反応が促進される。
The generation of HfC particles is caused by the following reactions occurring in the temperature range of about 650 ° C. or higher in order from the lower temperature side. Hf + 3Al → HfAl 3 (1) HfAl 3 + C → HfC + 3Al (2) When impregnating the powder compact with molten aluminum, Hf powder particles and A
(1) reacts with the molten metal to form fine HfAl 3 particles around the Hf powder particles. When the next rapid heating is performed in this state, the reaction of (2) is accelerated.

【0074】反応(2) によるHfC生成には、通常は1
000℃以上の高温域まで加熱する必要がある。本発明
に従って昇温速度20℃/分以上で急速加熱することに
より、反応(1) が起きる約650℃まで加熱すれば、反
応(1) による自己発熱で自動的に昇温し、反応(2) が起
きてHfCが生成する。要した加熱時間は20秒〜2分
であった。
For the production of HfC by the reaction (2), usually 1
It is necessary to heat to a high temperature range of 000 ° C. or higher. According to the present invention, if the mixture is heated to about 650 ° C. at which the reaction (1) occurs by rapid heating at a rate of temperature increase of 20 ° C./min or more, the temperature is automatically increased by the self-heating of the reaction (1), and the reaction (2) ) Occurs to generate HfC. The required heating time was 20 seconds to 2 minutes.

【0075】本実施例では、加熱雰囲気として不活性ガ
ス雰囲気を用いたが、例え大気中で加熱しても、本発明
の急速加熱であれば成形体の表面が僅かに酸化されるだ
けなので、問題はない。 〔金属溶湯への添加〕第2発明の第3態様に従って、発
明例1により作製したHfC粒子含有成形体を、800
℃に保持したAl−Si合金(AC8A)の溶湯(重量
500g)中に添加し(添加量:45g)、5分間攪拌
した後、溶湯温度750℃で、80℃に予熱したJIS
4号舟金型に鋳造した。比較のため、上記添加を行わず
に同様に鋳造を行った。HfC粒子の添加により、硬
さ、耐摩耗性、引張強さが向上することを確認した。
In this embodiment, an inert gas atmosphere is used as the heating atmosphere. However, even if heating is performed in the air, the rapid heating of the present invention only slightly oxidizes the surface of the molded body. No problem. [Addition to the Molten Metal] According to the third embodiment of the second invention, the HfC particle-containing compact produced according to Inventive Example 1 was treated with 800
JIS which was added to a molten metal (weight: 500 g) of an Al-Si alloy (AC8A) maintained at a temperature of 500 ° C. (addition amount: 45 g), stirred for 5 minutes, and then preheated to a temperature of 750 ° C. and a temperature of 80 ° C.
It was cast into a No. 4 boat mold. For comparison, the same casting was performed without the above addition. It was confirmed that the addition of the HfC particles improved the hardness, wear resistance, and tensile strength.

【0076】上記HfC粒子を添加した合金溶湯をアト
マイズすることにより、HfC粒子含有金属基複合材料
粉末を作製することができる。HfC粒子はAl合金溶
湯に溶け込まないため、HfC粒子の添加量を増加する
ことにより、更に高強度の金属基複合材料を得ることも
できる。 〔実施例6〕第1発明の第4態様に従って、純アルミニ
ウム中にNbC粒子を生成させた金属基複合材料を下記
の手順で製造した。
By atomizing the molten alloy to which the HfC particles have been added, a metal-based composite material powder containing HfC particles can be produced. Since the HfC particles do not dissolve in the Al alloy melt, a higher strength metal-based composite material can be obtained by increasing the amount of the HfC particles added. Example 6 According to the fourth aspect of the first invention, a metal-based composite material in which NbC particles were formed in pure aluminum was manufactured by the following procedure.

【0077】〔成形体の作製〕純アルミニウム粉(−4
5μm、99.99%)、純ニオブ粉(−150μm、
99.9%)、純黒鉛粉(−45μm、99%)をそれ
ぞれ7g,19.49g,2.52g秤量して混合し、
成形圧7t/cm2 でφ30mmの円柱状成形体を作製し
た。得られた成形体の空隙率は約10%であった。
[Preparation of molded article] Pure aluminum powder (-4
5 μm, 99.99%), pure niobium powder (−150 μm,
99.9%) and 7 g, 19.49 g, and 2.52 g of pure graphite powder (−45 μm, 99%) were weighed and mixed, respectively.
At a molding pressure of 7 t / cm 2 , a cylindrical molded body having a diameter of 30 mm was produced. The porosity of the obtained molded body was about 10%.

【0078】この際、Nb粉末と黒鉛粉末との混合比は
NbCの化学量論比(モル比)に対応させることが望ま
しい。Nb粉末および黒鉛粉末とAl粉末との混合比は
特に限定されない。粉末の混合比は最終的に作成するN
bC粒子含有成形体の目標NbC濃度に応じて調整する
ことができる。 〔アルミニウム溶湯の含浸〕上記の成形体を730℃の
純アルミニウム溶湯(純度99.99%)に30秒浸漬
させた後、速やかに溶湯より取り出し、成形体の空隙中
に純アルミニウム溶湯を含浸させた。この含浸により、
成形体の重量は含浸前の29.01gから約35gに増
加した。
At this time, it is desirable that the mixing ratio of the Nb powder and the graphite powder correspond to the stoichiometric ratio (molar ratio) of NbC. The mixing ratio of Nb powder or graphite powder to Al powder is not particularly limited. The mixing ratio of the powder is
It can be adjusted according to the target NbC concentration of the bC particle-containing molded body. [Impregnation of molten aluminum] After immersing the above-mentioned molded body in 730 ° C pure aluminum molten metal (purity: 99.99%) for 30 seconds, it is immediately taken out of the molten metal, and the voids of the molded body are impregnated with the pure aluminum molten metal. Was. With this impregnation,
The weight of the compact increased from 29.01 g before impregnation to about 35 g.

【0079】〔NbC粒子の生成〕NbC粒子生成のた
めの急速加熱を、実施例1と同じ真空溶解炉を用いて高
周波誘導加熱により行った。ただし、比較のため通常の
電気炉による加熱も行った。生成粒子について、X線回
折による相同定およびSEMミクロ組織写真の画像解析
による粒径測定を行った。表6に、加熱条件および生成
相を示す。
[Production of NbC Particles] Rapid heating for producing NbC particles was performed by high-frequency induction heating using the same vacuum melting furnace as in Example 1. However, for comparison, heating with a normal electric furnace was also performed. The resulting particles were subjected to phase identification by X-ray diffraction and particle size measurement by SEM microstructure photograph image analysis. Table 6 shows heating conditions and formed phases.

【0080】[0080]

【表6】 [Table 6]

【0081】NbC粒子の生成は、約650℃以上の温
度域で、低温側から順に下記の反応が起きることによ
る。 Nb +3Al → NbAl3 (1) NbAl3 +C → NbC+ 3Al (2) 粉末成形体にAl溶湯を含浸すると、Nb粉末粒子とA
l溶湯とが上記(1) の反応をして、Nb粉末粒子の周囲
に微細なNbAl3 粒子が生成する。この状態で次の急
速加熱をすると(2) の反応が促進される。
The generation of NbC particles is based on the following reactions occurring in the temperature range of about 650 ° C. or higher in order from the lower temperature side. Nb + 3Al → NbAl 3 (1) NbAl 3 + C → NbC + 3Al (2) When impregnating a powder compact with molten Al, Nb powder particles and A
(1) reacts with the molten metal to produce fine NbAl 3 particles around the Nb powder particles. When the next rapid heating is performed in this state, the reaction of (2) is accelerated.

【0082】反応(2) によるNbC生成には、通常は1
000℃以上の高温域まで加熱する必要がある。本発明
に従って昇温速度20℃/分以上で急速加熱することに
より、反応(1) が起きる約650℃まで加熱すれば、反
応(1) による自己発熱で自動的に昇温し、反応(2) が起
きてNbCが生成する。要した加熱時間は20秒〜2分
であった。
For the production of NbC by the reaction (2), usually 1
It is necessary to heat to a high temperature range of 000 ° C. or higher. According to the present invention, if the mixture is heated to about 650 ° C. at which the reaction (1) occurs by rapid heating at a rate of temperature increase of 20 ° C./min or more, the temperature is automatically increased by the self-heating of the reaction (1), and the reaction (2) ) Occurs to generate NbC. The required heating time was 20 seconds to 2 minutes.

【0083】本実施例では、加熱雰囲気として不活性ガ
ス雰囲気を用いたが、例え大気中で加熱しても、本発明
の急速加熱であれば成形体の表面が僅かに酸化されるだ
けなので、問題はない。 〔金属溶湯への添加〕第2発明の第4態様に従って、発
明例1により作製したNbC粒子含有成形 体を、80
0℃に保持したAl−Si合金(AC8A)の溶湯(重
量500g)中に添加し(添加量:35g)、5分間攪
拌した後、溶湯温度750℃で、80℃に予熱したJI
S4号舟金型に鋳造した。比較のため、上記添加を行わ
ずに同様に鋳造を行った。NbC粒子の添加により、硬
さ、耐摩耗性、引張強さが向上することを確認した。
In this embodiment, an inert gas atmosphere is used as the heating atmosphere. However, even if heating is performed in the air, the rapid heating of the present invention only slightly oxidizes the surface of the molded body. No problem. [Addition to Molten Metal] According to the fourth aspect of the second aspect of the present invention, the NbC particle-containing molded body produced according to Inventive Example 1 was prepared by
JI which was added to a molten metal (weight: 500 g) of an Al-Si alloy (AC8A) held at 0 ° C. (addition amount: 35 g), stirred for 5 minutes, and then preheated to 80 ° C. at a molten metal temperature of 750 ° C.
It was cast into S4 boat mold. For comparison, the same casting was performed without the above addition. It was confirmed that the addition of NbC particles improved hardness, wear resistance, and tensile strength.

【0084】上記NbC粒子を添加した合金溶湯をアト
マイズすることにより、NbC粒子含有金属基複合材料
粉末を作製することができる。NbC粒子はAl合金溶
湯に溶け込まないため、NbC粒子の添加量を増加する
ことにより、更に高強度の金属基複合材料を得ることも
できる。 〔実施例7〕第1発明の第5態様に従って、純アルミニ
ウム中にTiB2 粒子を生成させた金属基複合材料を下
記の手順で製造した。
By atomizing the molten alloy to which the NbC particles are added, a metal-based composite material powder containing NbC particles can be produced. Since the NbC particles do not dissolve in the Al alloy melt, a higher strength metal-based composite material can be obtained by increasing the amount of the NbC particles added. Example 7 According to a fifth aspect of the first invention, a metal-based composite material in which TiB 2 particles were formed in pure aluminum was manufactured by the following procedure.

【0085】〔成形体の作製〕純アルミニウム粉(−4
5μm、99.99%)、純チタン粉(−150μm、
99.4%)、AlB2 粉(−45μm、99%)を重
量比で5:8:8の割合で混合し、成形圧7t/cm2
φ30×10mmの円柱状成形体を作製した。得られた成
形体の空隙率は約10%であった。
[Preparation of molded article] Pure aluminum powder (-4
5 μm, 99.99%), pure titanium powder (−150 μm,
99.4%) and AlB 2 powder (−45 μm, 99%) were mixed at a weight ratio of 5: 8: 8 to produce a columnar molded body of φ30 × 10 mm at a molding pressure of 7 t / cm 2 . The porosity of the obtained molded body was about 10%.

【0086】この際、Ti粉末とAlB2 粉末との混合
比はTiB2 の化学量論比(モル比)に対応させること
が望ましい。Ti粉末およびAlB2 粉末とAl粉末と
の混合比は特に限定されない。粉末の混合比は最終的に
作成するTiB2 粒子含有成形体の目標TiB2 濃度に
応じて調整することができる。 〔アルミニウム溶湯の含浸〕上記の成形体を730℃の
純アルミニウム溶湯(純度99.99%)に30秒浸漬
させた後、速やかに溶湯より取り出し、成形体の空隙中
に純アルミニウム溶湯を含浸させた。この含浸により、
成形体の重量は含浸前の24.87gから約35gに増
加した。
At this time, it is desirable that the mixing ratio of the Ti powder and the AlB 2 powder correspond to the stoichiometric ratio (molar ratio) of TiB 2 . The mixing ratio of Ti powder or AlB 2 powder to Al powder is not particularly limited. The mixing ratio of the powder can be adjusted according to the target TiB 2 concentration of the TiB 2 particle-containing compact to be finally produced. [Impregnation of molten aluminum] After immersing the above-mentioned molded body in 730 ° C pure aluminum molten metal (purity: 99.99%) for 30 seconds, it is immediately taken out of the molten metal, and the voids of the molded body are impregnated with the pure aluminum molten metal. Was. With this impregnation,
The weight of the compact increased from 24.87 g before impregnation to about 35 g.

【0087】〔TiB2 粒子の生成〕TiB2 粒子生成
のための急速加熱を、実施例1と同じ真空溶解炉を用い
て高周波誘導加熱により行った。ただし、比較のため通
常の電気炉による加熱も行った。生成粒子について、X
線回折による相同定およびSEMミクロ組織写真の画像
解析による粒径測定を行った。表7に、加熱条件および
生成相を示す。
[0087] The rapid heating for [TiB generation of 2 Particles] TiB 2 particles produced was carried out by high-frequency induction heating using the same vacuum melting furnace as in Example 1. However, for comparison, heating with a normal electric furnace was also performed. For the generated particles, X
Phase identification by X-ray diffraction and particle size measurement by image analysis of SEM microstructure photographs were performed. Table 7 shows heating conditions and formed phases.

【0088】[0088]

【表7】 [Table 7]

【0089】TiB2 粒子の生成は、617℃以上の温
度域で、低温側から順に下記の反応が起きることによ
る。 Ti +3Al → TiAl3 (1) TiAl3 +AlB2→ TiB2 + 3Al (2) AlB2+T → Al +TiB2 (3) 粉末成形体にAl溶湯を含浸すると、Ti粉末粒子とA
l溶湯とが上記(1) の反応をして、Ti粉末粒子の周囲
に微細なTiAl3 粒子が生成する。この状態で次の急
速加熱をすると(2) の反応が促進される。
The generation of TiB 2 particles is based on the following reactions occurring in the temperature range of 617 ° C. or higher in order from the lower temperature side. Ti + 3Al → TiAl 3 (1) TiAl 3 + AlB 2 → TiB 2 + 3Al (2) AlB 2 + T → Al + TiB 2 (3) When impregnating a powder compact with molten aluminum, Ti powder particles and A
(1) reacts with the molten metal to form fine TiAl 3 particles around the Ti powder particles. When the next rapid heating is performed in this state, the reaction of (2) is accelerated.

【0090】反応(2) および(3) によるTiB2 生成に
は、通常は1000℃以上の高温域まで加熱する必要が
ある。本発明に従って昇温速度20℃/分以上で急速加
熱することにより、反応(1) が起きる617℃まで加熱
すれば、反応(1) による自己発熱で自動的に昇温し、反
応(2) および(3) が起きてTiB2 が生成する。生成に
ようする加熱時間は20秒〜2分であった。
The production of TiB 2 by the reactions (2) and (3) usually requires heating to a high temperature range of 1000 ° C. or higher. According to the present invention, by heating rapidly to a temperature of 617 ° C. at which the reaction (1) occurs by rapidly heating at a temperature rising rate of 20 ° C./min or more, the temperature automatically rises due to the self-heating of the reaction (1), and the reaction (2) And (3) occur to produce TiB 2 . The heating time for formation was 20 seconds to 2 minutes.

【0091】表7において、発明例1は、アルミニウム
溶湯含浸後に高周波加熱により20℃/分で700℃ま
で加熱したもので、700℃に到達した後は上記反応
(1) 〜(3) の連鎖による自己発熱で1350℃まで自動
的に昇温し、その後急激に温度低下した。700℃から
1350℃までの所要時間は約20秒であった。加熱後
の試料は、Alマトリクス中に平均粒径0.2μm(最
大粒径3μm)のTiB 2 粒子が均一に分散していた。
In Table 7, Invention Example 1 was made of aluminum.
After impregnating the molten metal, it is heated up to 700 ° C at 20 ° C / min by high frequency heating.
After reaching 700 ° C, the above reaction
Automatic up to 1350 ° C due to self-heating by the chain of (1) to (3)
The temperature rose rapidly, and then dropped sharply. From 700 ° C
The time required to 1350 ° C. was about 20 seconds. After heating
The sample with the average particle size of 0.2 μm (the
Large particle size 3μm) TiB TwoThe particles were uniformly dispersed.

【0092】比較例1は、アルミニウム溶湯含浸後に高
周波加熱により20℃/分で600℃まで加熱したもの
で、反応(1) の温度に達していないため、自己発熱は起
きなかった。加熱後の試料は、TiB2 は生成しておら
ず、原料粉末のAl,Ti,AlB2 と、含浸時に生成
したAl3 Tiとが混在した状態であった。比較例2
は、アルミニウム溶湯含浸後に電気炉にて10℃/分で
1100℃まで加熱したもので、1100℃に到達した
後に炉の出力を切って、室温まで炉冷した。加熱後の試
料は、Alマトリクス中に平均粒径0.5μm(最大粒
径3μm)のTiB2 粒子が均一に分散していたが、未
反応のAlB2 およびTiが残存していた。
In Comparative Example 1, heating was performed at a rate of 20 ° C./min to 600 ° C. by high-frequency heating after the impregnation of the molten aluminum. Since the temperature of the reaction (1) was not reached, self-heating did not occur. In the sample after heating, TiB 2 was not generated, and Al, Ti, AlB 2 of the raw material powder and Al 3 Ti generated during the impregnation were mixed. Comparative Example 2
Was heated in an electric furnace to 1100 ° C. at 10 ° C./min after impregnation with the molten aluminum. After reaching 1100 ° C., the output of the furnace was turned off and the furnace was cooled to room temperature. In the sample after heating, TiB 2 particles having an average particle size of 0.5 μm (maximum particle size of 3 μm) were uniformly dispersed in the Al matrix, but unreacted AlB 2 and Ti remained.

【0093】比較例3は、アルミニウム溶湯の含浸を行
わずに、比較例2と同様に電気炉で加熱した。ただし、
加熱雰囲気は大気中であった。加熱後の試料は、多孔質
のAlマトリクス中に平均粒径3μm(最大粒径10μ
m)のTiB2 粒子が分散していた。また、試料表面に
Al2 3 等の酸化物が生成していた。 〔金属溶湯への添加〕第2発明の第5態様に従って、発
明例1により作製したTiB2 粒子含有成形体(TiB
2 濃度:約33 vol%(45wt%))を、それぞれ80
0℃に保持したAl−4.5Cu合金およびAl−Si
合金(AC8A)の溶湯(重量500g)中に添加し
(TiB2 添加量:0.05〜5 vol%)、5分間攪拌
した後、溶湯温度750℃で、80℃に予熱したJIS
4号舟金型に鋳造した。比較のため、上記添加を行わず
に同様に鋳造を行った。
Comparative Example 3 was heated in an electric furnace in the same manner as Comparative Example 2 without impregnating the molten aluminum. However,
The heating atmosphere was in the air. The sample after heating had an average particle size of 3 μm (maximum particle size of 10 μm) in a porous Al matrix.
m) TiB 2 particles were dispersed. Also, oxides such as Al 2 O 3 were formed on the sample surface. [Addition to the Molten Metal] According to the fifth aspect of the second invention, a TiB 2 particle-containing molded product (TiB
2 concentration: about 33 vol% (45 wt%)
Al-4.5Cu alloy and Al-Si held at 0 ° C
Was added to the molten metal (weight 500 g) of the alloy (AC8A) (TiB 2 added amount: 0.05 to 5 vol%), after stirring for 5 min, at melt temperature of 750 ° C., it was preheated to 80 ° C. JIS
It was cast into a No. 4 boat mold. For comparison, the same casting was performed without the above addition.

【0094】TiB2 の添加により鋳造材のマクロ組織
が著しく微細化されることを確認した。この微細化効果
は上記範囲の添加量について同等であった。Al−4.
5Cu合金の平均結晶粒径は、無添加材で約3mmであっ
たのが、TiB2 添加材では30μmまで微細化されて
おり、結晶粒の形状はデンドライト構造から全て等軸晶
に変化していた。AC8A合金では、デンドライト構造
が残っており、結晶粒径の定量的な測定はできなかった
が、図9に示すようにTiB2 添加により著しく微細化
していることが分かる。
It was confirmed that the macrostructure of the cast material was significantly reduced by the addition of TiB 2 . This refining effect was equivalent for the addition amount in the above range. Al-4.
The average crystal grain size of the 5Cu alloy was about 3 mm in the non-added material, but it was refined to 30 μm in the TiB 2 added material, and the shape of the crystal grains was all changed from a dendrite structure to an equiaxed crystal. Was. In the AC8A alloy, the dendrite structure remained, and the crystal grain size could not be quantitatively measured. However, as shown in FIG. 9, it can be seen that the crystal size was significantly reduced by the addition of TiB 2 .

【0095】表8に機械的性質を示す。発明例2〜7お
よび比較例4,5は上記鋳造により作製した鋳造材であ
る。発明例8,9は上記TiB2 添加後の溶湯を下記条
件でアトマイズした粉末から熱間押出により作製した粉
末冶金材である。引張強度特性および耐摩耗特性は実施
例3と同様の試験により評価した。 <アトマイズ条件> 溶湯温度:1100℃ 噴霧圧力:9.8MPa(N2 ガス) 噴霧ノズル径:φ2mm <熱間押出条件>アトマイズ粉末30gをφ30mmの銅
缶に入れ、3ton /cm2 の圧力でプリフォームを作製
し、これを窒素ガス雰囲気中で1時間加熱して脱気した
後、間接押出を行った。
Table 8 shows the mechanical properties. Invention Examples 2 to 7 and Comparative Examples 4 and 5 are cast materials produced by the above-described casting. Inventive Examples 8 and 9 are powder metallurgy materials produced by hot extrusion from powders obtained by atomizing the melt after the addition of TiB 2 under the following conditions. The tensile strength characteristics and the wear resistance characteristics were evaluated by the same test as in Example 3. <Atomizing conditions> Molten metal temperature: 1100 ° C Spray pressure: 9.8 MPa (N 2 gas) Spray nozzle diameter: φ2 mm <Hot extrusion conditions> 30 g of atomized powder is put into a φ30 mm copper can and pressed at a pressure of 3 ton / cm 2. After a reform was produced and heated for 1 hour in a nitrogen gas atmosphere to be degassed, indirect extrusion was performed.

【0096】 温度:400℃ 押出比:12 ラム速度:0.2mm/秒Temperature: 400 ° C. Extrusion ratio: 12 Ram speed: 0.2 mm / sec

【0097】[0097]

【表8】 [Table 8]

【0098】表8の結果から、鋳造材の全てにおいて、
TiB2 添加により強度と延性が大幅に向上しているこ
とが分かる。このように本発明は、組織微細化と分散強
化とにより、強度と延性を同時に向上させることができ
るという、顕著な効果が得られる。粉末冶金材について
も、高い強度と延性が両立できることが分かる。本実施
例では、鋳造材と同じ組成での評価しか行っていない
が、TiB2 粒子はAl合金溶湯に溶け込まないため、
TiB2 粒子の添加量を増加することにより、更に高強
度の金属基複合材料を得ることもできる。
From the results in Table 8, it was found that in all the cast materials,
It can be seen that the strength and ductility are significantly improved by the addition of TiB 2 . As described above, according to the present invention, a remarkable effect that strength and ductility can be simultaneously improved by refining the structure and strengthening the dispersion is obtained. It can be seen that high strength and ductility can both be achieved for powder metallurgy. In this example, only the evaluation with the same composition as the cast material was performed. However, since the TiB 2 particles do not dissolve in the molten Al alloy,
By increasing the amount of TiB 2 particles added, a metal-based composite material having higher strength can be obtained.

【0099】上記各実施例では、AlまたはAl合金マ
トリクス中にTiC、ZrC、HfC、NbC、または
TiB2 粒子が分散したAl基複合材料を製造する場合
について説明しが、本発明はこれに限定されることな
く、急速加熱した際に化合物生成反応の自己発熱により
最終的な化合物粒子の生成反応まで連続的に自動進行し
得るマトリクス組成および化合物組成であれば、本発明
を適用できることは勿論である。
In each of the above embodiments, the case where an Al-based composite material in which TiC, ZrC, HfC, NbC, or TiB 2 particles are dispersed in an Al or Al alloy matrix is described, but the present invention is not limited to this. The present invention can of course be applied to any matrix composition and compound composition that can automatically and continuously proceed to the final compound particle generation reaction due to the self-heating of the compound generation reaction upon rapid heating without rapid heating. is there.

【0100】[0100]

【発明の効果】以上説明したように、本発明によれば、
粉末成形体に溶湯を含浸した後に加熱して分散強化用化
合物粒子を生成させる方法を改良し、高温・長時間の加
熱を必要とせず極めて短時間の処理で、且つ一度に処理
できる成形体のサイズを拡大し、高い生産性で金属基複
合材料を製造することができる。
As described above, according to the present invention,
Improve the method of producing the compound particles for dispersion strengthening by impregnating the molten powder into the powder and then heating it to form a compound particle for dispersion strengthening. It is possible to increase the size and manufacture the metal matrix composite with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、Ti粉、黒鉛粉、Al粉から成る圧粉
成形体にAlを含浸させた試料について、常温からゆっ
くりと昇温させる過程で生ずる発熱ピークと吸熱ピーク
を示す示差熱分析(DTA)チャートである。横軸は温
度であり、縦軸は標準試料(測定温度範囲に発熱反応も
吸熱反応もない物質)との温度差ΔTである。
FIG. 1 is a diagram showing a differential heat showing an exothermic peak and an endothermic peak generated in a process in which a compact formed of Ti powder, graphite powder, and Al powder is impregnated with Al in a process of slowly raising the temperature from room temperature. It is an analysis (DTA) chart. The horizontal axis represents temperature, and the vertical axis represents a temperature difference ΔT from a standard sample (a substance having neither exothermic reaction nor endothermic reaction in the measurement temperature range).

【図2】図2は、本発明の急速加熱時に自己発熱により
一連の反応が見掛け上一体として連続的に進行する場合
の発熱ピークを、図1のDTA曲線と対比して模式的に
示すグラフである。ただし、横軸は時間である。
FIG. 2 is a graph schematically showing an exothermic peak in a case where a series of reactions seemingly and continuously proceeds by self-heating during rapid heating according to the present invention, in comparison with the DTA curve of FIG. 1; It is. However, the horizontal axis is time.

【図3】図3は、含浸後の成形体のミクロ組織の一例を
示す金属組織写真である。Alマトリクス(黒色)中に
分散したTi粒子(白色)の周囲に1μm程度の微細な
TiAl3 (灰色)が多数生成している。
FIG. 3 is a metallographic photograph showing an example of a microstructure of a compact after impregnation. Many fine TiAl 3 (gray) of about 1 μm are generated around Ti particles (white) dispersed in an Al matrix (black).

【図4】図4は、純MgおよびAZ91合金の硬さとT
iC粒子の添加量の関係を示すグラフである。
FIG. 4 shows hardness and T of pure Mg and AZ91 alloy.
It is a graph which shows the relationship of the addition amount of iC particle.

【図5】図5は、純MgおよびAZ91合金の摩耗深さ
とTiC粒子の添加量の関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the wear depth of pure Mg and AZ91 alloy and the amount of TiC particles added.

【図6】図6は、純MgおよびAZ91合金の引張強さ
とTiC粒子の添加量の関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the tensile strength of pure Mg and AZ91 alloy and the amount of TiC particles added.

【図7】図7は、純MgおよびAZ91合金の伸びとT
iC粒子の添加量の関係を示すグラフである。
FIG. 7 shows elongation and T of pure Mg and AZ91 alloy.
It is a graph which shows the relationship of the addition amount of iC particle.

【図8】図8は、TiC粒子添加(A)ありおよび
(B)なしの純Mg鋳造材のマクロ組織を示す金属組織
写真である。
FIG. 8 is a metallographic photograph showing the macrostructure of a pure Mg cast material with and without TiC particles added (A) and (B).

【図9】図9は、TiB2 粒子添加(A)ありおよび
(B)なしのAC8C合金鋳造材のマクロ組織を示す金
属組織写真である。
FIG. 9 is a metallographic photograph showing a macrostructure of an AC8C alloy cast material with and without TiB 2 particle addition (A) and (B).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 49/11 C22C 1/09 T // C22C 32/00 32/00 Q (72)発明者 社本 裕幸 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 4K018 AA13 AA14 AB02 AB04 AC04 BA03 BA07 BA08 BA11 BB04 BC12 CA11 FA08 FA35 JA10 JA16 KA01 4K020 AA22 AC01 AC02 BA02 BB27 BC02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 49/11 C22C 1/09 T // C22C 32/00 32/00 Q (72) Inventor Hiroyuki Shamoto 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation F term (reference) 4K018 AA13 AA14 AB02 AB04 AC04 BA03 BA07 BA08 BA11 BB04 BC12 CA11 FA08 FA35 JA10 JA16 KA01 4K020 AA22 AC01 AC02 BA02 BB27 BC02

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 金属または金属の合金から成る金属マト
リクス中に第1元素と第2元素との化合物粒子が分散し
ている金属基複合材料の製造方法において、下記の工
程:該第1元素の粉末と、該第2元素または該第2元素
の化合物の粉末と、該金属または金属の合金の粉末とか
ら成る成形体を形成する工程、 該成形体中に該金属または金属の合金の溶湯を含浸させ
る工程、および該含浸済の成形体の全体を不活性雰囲気
中にて急速加熱することにより該成形体中で発熱反応で
ある該第1元素と該金属との化合反応を生じさせ、この
化合反応の発熱により該成形体を自動的に急速昇温させ
て該成形体中で前記化合物粒子の生成反応を生じさせる
工程であって、該急速加熱の加熱速度は、該第1元素と
該金属との化合反応で発生する熱から外部への放散およ
び生じ得る吸熱反応による熱損失を差し引いた残余の熱
により該成形体全体が前記化合物粒子の生成反応の生じ
る温度にまで自動的に昇温できるように十分な短時間で
該第1元素と該金属との化合反応を進行させる加熱速度
であり、該急速加熱による加熱到達温度は該第1元素と
該金属との化合反応の生じ得る下限温度から前記化合物
粒子の生成反応の生じ得る上限温度までの範囲内である
工程、を含むことを特徴とする金属基複合材料の製造方
法。
1. A method for producing a metal-based composite material in which compound particles of a first element and a second element are dispersed in a metal matrix made of a metal or an alloy of a metal, the method comprising: Forming a compact comprising a powder, a powder of the second element or the compound of the second element, and a powder of the metal or alloy of the metal; and forming a molten metal of the metal or alloy of the metal in the compact. A step of impregnating, and rapidly heating the whole of the impregnated molded body in an inert atmosphere to cause a compounding reaction between the first element and the metal which is an exothermic reaction in the molded body, A step of automatically raising the temperature of the molded body by the heat generated by the compounding reaction to cause a formation reaction of the compound particles in the molded body, wherein the heating rate of the rapid heating is the first element and the heating rate. From heat generated by chemical reaction with metal to the outside The first element is combined with the first element in a short enough time to allow the entire molded body to automatically rise to the temperature at which the reaction for forming the compound particles occurs by the residual heat after subtracting the heat loss due to heat dissipation due to heat dissipation and possible endothermic reaction. A heating rate at which a compounding reaction with the metal proceeds, and a temperature at which heating by rapid heating reaches a maximum temperature at which a compounding reaction between the first element and the metal can occur to a temperature at which the compounding particle forming reaction can occur. A process for producing a metal-based composite material, comprising the steps of:
【請求項2】 請求項1記載の方法により生成した前記
化合物粒子を含む成形体を金属または金属の合金の溶湯
中に導入し、該成形体の金属マトリクスを該溶湯中に溶
解させると共に該化合物粒子を該溶湯中に分散させた
後、該溶湯を凝固させることを特徴とする金属基複合材
料の製造方法。
2. A molded article containing the compound particles produced by the method according to claim 1 is introduced into a molten metal or metal alloy, and a metal matrix of the molded article is dissolved in the molten metal and the compound is melted. A method for producing a metal-based composite material, comprising: dispersing particles in the molten metal; and then solidifying the molten metal.
【請求項3】 請求項1記載の方法において、Alまた
はAlの合金から成る前記金属マトリクス中にTiCか
ら成る前記化合物粒子が分散している金属基複合材料の
製造方法であって、前記第1元素がTi、前記第2元素
がCであり、前記成形体を形成する工程においてTi粉
末とC粉末とAlまたはAl合金粉末とから成る成形体
を形成することを特徴とする金属基複合材料の製造方
法。
3. The method according to claim 1, wherein the compound particles made of TiC are dispersed in the metal matrix made of Al or an alloy of Al. Wherein the element is Ti and the second element is C, and wherein in the step of forming the compact, a compact comprising Ti powder, C powder and Al or Al alloy powder is formed. Production method.
【請求項4】 請求項3記載の方法において、前記成形
体を形成する工程において前記C粉末に代えてSiC粉
末を用いることを特徴とする金属基複合材料の製造方
法。
4. The method according to claim 3, wherein a SiC powder is used in place of the C powder in the step of forming the molded body.
【請求項5】 請求項1記載の方法において、Alまた
はAlの合金から成る前記金属マトリクス中にZrCか
ら成る前記化合物粒子が分散している金属基複合材料の
製造方法であって、前記第1元素がZr、前記第2元素
がCであり、前記成形体を形成する工程においてZr粉
末とC粉末とAlまたはAl合金粉末とから成る成形体
を形成することを特徴とする金属基複合材料の製造方
法。
5. The method according to claim 1, wherein the compound particles made of ZrC are dispersed in the metal matrix made of Al or an Al alloy. Wherein the element is Zr and the second element is C, and wherein in the step of forming the compact, a compact comprising Zr powder, C powder and Al or Al alloy powder is formed. Production method.
【請求項6】 請求項1記載の方法において、Alまた
はAlの合金から成る前記金属マトリクス中にHfCか
ら成る前記化合物粒子が分散している金属基複合材料の
製造方法であって、前記第1元素がHf、前記第2元素
がCであり、前記成形体を形成する工程においてHf粉
末とC粉末とAlまたはAl合金粉末とから成る成形体
を形成することを特徴とする金属基複合材料の製造方
法。
6. The method according to claim 1, wherein said compound particles comprising HfC are dispersed in said metal matrix comprising Al or an Al alloy. The element is Hf, the second element is C, and a step of forming the compact forms a compact comprising Hf powder, C powder, and Al or Al alloy powder. Production method.
【請求項7】 請求項1記載の方法において、Alまた
はAlの合金から成る前記金属マトリクス中にNbCか
ら成る前記化合物粒子が分散している金属基複合材料の
製造方法であって、前記第1元素がNb、前記第2元素
がCであり、前記成形体を形成する工程においてNb粉
末とC粉末とAlまたはAl合金粉末とから成る成形体
を形成することを特徴とする金属基複合材料の製造方
法。
7. The method according to claim 1, wherein said compound particles comprising NbC are dispersed in said metal matrix comprising Al or an Al alloy. Wherein the element is Nb and the second element is C, and wherein in the step of forming the compact, a compact comprising Nb powder, C powder and Al or Al alloy powder is formed. Production method.
【請求項8】 請求項1記載の方法において、Alまた
はAlの合金から成る前記金属マトリクス中にTiB2
から成る前記化合物粒子が分散している金属基複合材料
の製造方法であって、前記第1元素がTi、前記第2元
素がBであり、前記成形体を形成する工程においてTi
粉末とAlB2 またはAlB12粉末とAlまたはAl合
金粉末とから成る成形体を形成することを特徴とする金
属基複合材料の製造方法。
8. The method of claim 1, wherein TiB 2 is contained in said metal matrix comprising Al or an alloy of Al.
A method of producing a metal-based composite material in which the compound particles are dispersed, wherein the first element is Ti and the second element is B;
A method for producing a metal-based composite material, comprising forming a compact comprising powder, AlB 2 or AlB 12 powder, and Al or Al alloy powder.
【請求項9】 AlまたはAl合金から成る金属マトリ
クス中にTiC粒子が分散している金属基複合材料の製
造方法において、下記の工程:Ti粉末とC粉末とAl
またはAl合金粉末とから成る成形体を形成する工程、 該成形体中にAlまたはAl合金の溶湯を含浸させる工
程、および該含浸済の成形体の全体を不活性雰囲気中に
て急速加熱することにより該成形体中で該AlまたはA
l合金の融点直近で起きるTiAl3 生成反応を生じさ
せ、該TiAl3 生成反応の発熱により該成形体を自動
的に急速昇温させて該成形体中でTiC粒子生成反応を
生じさせる工程であって、該急速加熱の加熱速度は、該
TiAl3 生成反応で発生する熱から外部への放散およ
び生じうる吸熱反応による熱損失を差し引いた残余の熱
により該成形体全体が該TiC粒子生成反応の生じる温
度にまで自動的に昇温できるように十分な短時間で該T
iAl3 生成反応を進行させる加熱速度であり、該急速
加熱による加熱到達温度は該TiAl 3 生成反応の生じ
得る下限温度から該TiC粒子生成反応の生じ得る上限
温度までの範囲内である工程、を含むことを特徴とする
金属基複合材料の製造方法。
9. A metal matrix made of Al or an Al alloy.
Of metal-based composite material in which TiC particles are dispersed
In the manufacturing method, the following steps: Ti powder, C powder and Al
Or a step of forming a compact comprising an Al alloy powder and a step of impregnating the compact with a molten metal of Al or an Al alloy.
And the whole of the impregnated molded body is placed in an inert atmosphere.
Al or A in the compact by rapid heating
TiAl occurring near the melting point of 1 alloyThree Producing a reaction
The TiAlThree The compact is automatically turned on by the heat generated by the formation reaction.
And rapidly raise the temperature to cause the TiC particle formation reaction in the compact.
Wherein the heating rate of the rapid heating is
TiAlThree Dissipation of heat generated by the formation reaction to the outside
Residual heat less heat loss due to possible endothermic reactions
The temperature at which the TiC particle formation reaction takes place
The T for a short enough time to automatically raise the temperature to
iAlThree The heating rate at which the formation reaction proceeds
The ultimate temperature of heating by heating is Three Generation reaction occurs
From the lower limit temperature to the upper limit at which the TiC particle formation reaction can occur
A step within a range up to a temperature.
A method for producing a metal matrix composite material.
【請求項10】 前記急速加熱の加熱到達温度が、固体
Alと固体Tiとの化合によるTiAl3 生成反応の生
じうる下限温度617℃から、固体TiAl 3 と固体C
との反応による固体TiC粒子生成反応の生じうる上限
温度992℃までの範囲内の温度であることを特徴とす
る請求項9記載の金属基複合材料の製造方法。
10. The heating ultimate temperature of the rapid heating is a solid
TiAl by combining Al and solid TiThree Production reaction
From the lower limit temperature of 617 ° C Three And solid C
Upper limit at which the reaction to produce solid TiC particles by the reaction with
The temperature is within a range up to 992 ° C.
The method for producing a metal matrix composite material according to claim 9.
【請求項11】 前記急速加熱の加熱速度が20℃/分
以上であることを特徴とする請求項3から10までのい
ずれか1項記載の金属基複合材料の製造方法。
11. The method for producing a metal-based composite material according to claim 3, wherein a heating rate of the rapid heating is 20 ° C./min or more.
【請求項12】 前記急速加熱を誘導加熱により行うこ
とを特徴とする請求項3から11までのいずれか1項に
記載の金属基複合材料の製造方法。
12. The method for producing a metal-based composite material according to claim 3, wherein the rapid heating is performed by induction heating.
【請求項13】 請求項3から12までのいずれか1項
記載の方法により生成したTiC粒子、ZrC粒子、H
fC粒子、NbC粒子、TiB2 粒子のいずれかを含む
前記成形体を、Al、Al合金、Mg、またはMg合金
の溶湯中に導入し、該成形体の金属マトリクスを該溶湯
中に溶解させると共に該粒子を該溶湯中に分散させた
後、該溶湯を凝固させることを特徴とする金属基複合材
料の製造方法。
13. TiC particles, ZrC particles, H produced by the method according to any one of claims 3 to 12.
fC particles, NbC particles, the molded body containing any of the TiB 2 particles, Al, Al alloy, Mg, or introduced into a molten metal of Mg or Mg alloy, while melting the metal matrix of the molded body in the molten metal A method for producing a metal-based composite material, comprising: dispersing the particles in the molten metal; and then solidifying the molten metal.
JP16860899A 1998-08-26 1999-06-15 Method for producing metal matrix composite material Expired - Fee Related JP3777878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16860899A JP3777878B2 (en) 1998-08-26 1999-06-15 Method for producing metal matrix composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24010298 1998-08-26
JP10-240102 1998-08-26
JP16860899A JP3777878B2 (en) 1998-08-26 1999-06-15 Method for producing metal matrix composite material

Publications (2)

Publication Number Publication Date
JP2000144281A true JP2000144281A (en) 2000-05-26
JP3777878B2 JP3777878B2 (en) 2006-05-24

Family

ID=26492250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16860899A Expired - Fee Related JP3777878B2 (en) 1998-08-26 1999-06-15 Method for producing metal matrix composite material

Country Status (1)

Country Link
JP (1) JP3777878B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723184B2 (en) 2002-03-05 2004-04-20 Taiho Kogyo Co., Ltd. Aluminum alloy and slide bearing
WO2018074179A1 (en) * 2016-10-17 2018-04-26 株式会社ベイシティ Aluminum-graphite-carbide composite
CN115354182A (en) * 2022-08-29 2022-11-18 哈尔滨工业大学 TiAl in-situ growth 3 Texture of the skeleton Ti 3 AlC 2 Preparation method of reinforced aluminum-based composite material
CN115404373A (en) * 2022-10-10 2022-11-29 中北大学 Method for preparing in-situ synthesis aluminum carbide and titanium trialuminate reinforced aluminum/titanium laminated material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018200270A1 (en) * 2017-04-25 2018-11-01 Nanoscale Powders, LLC Metal matrix composites and methods of making the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723184B2 (en) 2002-03-05 2004-04-20 Taiho Kogyo Co., Ltd. Aluminum alloy and slide bearing
WO2018074179A1 (en) * 2016-10-17 2018-04-26 株式会社ベイシティ Aluminum-graphite-carbide composite
CN109862976A (en) * 2016-10-17 2019-06-07 海湾城市株式会社 Aluminium-graphite-carbide complex
CN115354182A (en) * 2022-08-29 2022-11-18 哈尔滨工业大学 TiAl in-situ growth 3 Texture of the skeleton Ti 3 AlC 2 Preparation method of reinforced aluminum-based composite material
CN115404373A (en) * 2022-10-10 2022-11-29 中北大学 Method for preparing in-situ synthesis aluminum carbide and titanium trialuminate reinforced aluminum/titanium laminated material
CN115404373B (en) * 2022-10-10 2023-03-10 中北大学 Method for preparing in-situ synthesis aluminum carbide and titanium trialuminate reinforced aluminum/titanium laminated material

Also Published As

Publication number Publication date
JP3777878B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
JP5826219B2 (en) Method for making a metal article having other additive components without melting
JP5025084B2 (en) Method for producing a metal alloy article without melting
Laurent et al. Processing-microstructure relationships in compocast magnesium/SiC
JP5524257B2 (en) Method for producing metal articles without melting
JP2691221B2 (en) Method for forming metal-second phase composite
Azarniya et al. A new method for fabrication of in situ Al/Al3Ti–Al2O3 nanocomposites based on thermal decomposition of nanostructured tialite
JP4451913B2 (en) Method for producing Ti particle-dispersed magnesium-based composite material
Novák et al. Preparation of Ti–Al–Si alloys by reactive sintering
EP2514542A1 (en) Production method and production device for a composite metal powder using the gas spraying method
KR101071722B1 (en) Alloy matrix composite using powders and the method thereof
US9138806B2 (en) In-situ combustion synthesis of titanium carbide (TiC) reinforced aluminum matrix composite
JP3777878B2 (en) Method for producing metal matrix composite material
Kannan et al. Advanced liquid state processing techniques for ex-situ discontinuous particle reinforced nanocomposites: A review
JP2008238183A (en) Method for producing magnesium alloy and magnesium alloy
RU2637545C1 (en) METHOD FOR PRODUCING Al-Ti MODIFYING ALLOY
JP2001200322A (en) Metal matrix composite and producing method therefor
RU2716566C1 (en) Method of producing deformed semi-finished products from aluminum-calcium composite alloy
JP2000345254A (en) Aluminum base composite material and its production
WO2006120322A1 (en) Grain refinement agent comprising titanium nitride and method for making same
JP2004230394A (en) Rheocast casting method
JP2003193153A (en) Grain refiner for magnesium alloy, magnesium-alloy for casting, casting, and manufacturing method thereof
Palampalle et al. A Comparative Study on Microstructures and Mechanical Properties of Al-GNPs Composites Fabricated by Casting Method
AU2004201727B8 (en) Method for grain refinement of magnesium alloy castings
JP4398100B2 (en) Magnesium alloy grain refiner
JP4126742B2 (en) Method for producing SiC particles

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Ref document number: 3777878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees