JP2000143690A - Substrate for assaying glycosyltransferase activity and method of assaying the activity - Google Patents

Substrate for assaying glycosyltransferase activity and method of assaying the activity

Info

Publication number
JP2000143690A
JP2000143690A JP32690298A JP32690298A JP2000143690A JP 2000143690 A JP2000143690 A JP 2000143690A JP 32690298 A JP32690298 A JP 32690298A JP 32690298 A JP32690298 A JP 32690298A JP 2000143690 A JP2000143690 A JP 2000143690A
Authority
JP
Japan
Prior art keywords
sugar
reaction
glycosyltransferase
fluorescent substance
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32690298A
Other languages
Japanese (ja)
Other versions
JP4324817B2 (en
Inventor
Shinichiro Nishimura
紳一郎 西村
Kimito Washitani
公人 鷲谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP32690298A priority Critical patent/JP4324817B2/en
Publication of JP2000143690A publication Critical patent/JP2000143690A/en
Application granted granted Critical
Publication of JP4324817B2 publication Critical patent/JP4324817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the subject substrate, a fluorescence-labeled sugar acceptor or fluorescence-labeled sugar donor, for use in assaying the activity of a glycosyltransferase, esp. galactose transferase, a method for assaying galactose transferase activity using the substrate easily, in high sensitivity in a short time, and a reagent for the assay. SOLUTION: This substrate, e.g. a sugar nucleotide derivative, specifically uridine-5'-diphosphate naphthylated galactose, is such a sugar donor for glycosyltransferase enzyme reaction that a fluorescent substance is bound to a sixteto-hydroxyl group of a sugar nucleotide. The other objective method for assaying the activity of a glycosyltransferase, esp. β-1,4-galactose transferase comprises conducting a transglucosylation using the above substrate to form a compound bearing two kinds of fluorescent substances, exciting either one of the fluorescent substances, exciting the other fluorescence wavelength by the fluorescence wavelength emitted by the former excitation, and measuring the fluorescence intensity for the latter fluorescence wavelength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、糖転移酵素、特に
ガラクトース転移酵素活性において、基質として使用す
る新規な基質および該基質を利用する糖転移酵素活性測
定法ならびにその測定用試薬に関する。さらに詳細に
は、より優れた信号体雑音比および高感度、簡便性を有
する糖転移酵素活性測定用基質、該基質を使用する測定
法ならびにその測定用試薬組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel substrate to be used as a substrate in the activity of glycosyltransferases, particularly galactosyltransferases, a method for measuring glycosyltransferase activity using the substrates, and a reagent for the measurement. More specifically, the present invention relates to a substrate for measuring a glycosyltransferase activity having a better signal-to-noise ratio, high sensitivity, and simplicity, a measuring method using the substrate, and a reagent composition for measuring the same.

【0002】[0002]

【従来の技術】グルコース転移酵素、ガラクトース転移
酵素、アセチルガラクトース転移酵素、アセチルグルコ
サミン転移酵素、アセチルノイラミン酸転移酵素、フコ
ース転移酵素などの糖転移酵素は、糖を含む糖化合物の
糖残基に特定の糖ヌクレオチドを供与体として糖残基を
転移する作用を有する酵素であり、多くの糖複合体(Gl
yococonjugate)の糖部分の生合成に関与している。近
年、細胞由来の多くの糖転移酵素がヒト、ブタ、ウサギ
や微生物などから分離されている。
2. Description of the Related Art Glycosyltransferases such as glucose transferase, galactose transferase, acetylgalactosyltransferase, acetylglucosamine transferase, acetylneuraminic acid transferase, and fucose transferase are used as sugar residues in sugar compounds containing sugar. It is an enzyme that has the action of transferring a sugar residue using a specific sugar nucleotide as a donor.
yococonjugate). In recent years, many cell-derived glycosyltransferases have been isolated from humans, pigs, rabbits, microorganisms, and the like.

【0003】特に、β1,4ガラクトース転移酵素は1
種類しか存在しないと考えられてきたが、従来から知ら
れているβ1,4−ガラクトース転移酵素Iの他に、遺
伝子の塩基配列、アミノ酸配列、臓器発現が異なるβ
1,4−ガラクトース転移酵素II,III ,IVが見出され
ている。マウスの泌乳期で1,4−ガラクトース転移酵
素IとIVの発現量の挙動が異なることが知られている。
また、成人の脳においても4種の酵素のmRNAの発現
量に関して1,4−ガラクトース転移酵素IVのmRNA
は存在するが、他の3種類の酵素のmRNAは検出され
ていない。マウスの個体発生過程に脳でのmRNAに発
現の仕方は異なり、神経組織形成に関与していると言わ
れている。
In particular, β1,4 galactosyltransferase is 1
It has been thought that there are only different types, but in addition to the conventionally known β1,4-galactosyltransferase I, β
1,4-galactosyltransferases II, III, IV have been found. It is known that the behavior of the expression levels of 1,4-galactosyltransferase I and IV differs during the lactation period of mice.
Also, in the adult brain, the expression levels of the mRNAs of the four enzymes were compared with those of the mRNA of 1,4-galactosyltransferase IV.
Exists, but mRNAs of the other three enzymes have not been detected. The expression of mRNA in the brain differs during the ontogenesis of mice, and it is said to be involved in neural tissue formation.

【0004】また、受精において精子の頭部前端にある
小体(アクロソーム)の反応が受精の最初のステップ
で、精子が卵の透明帯を認識し進入する。次に、精子は
卵の原形質膜に到着すると、透明帯が変性し他の精子の
進入を防ぐ。そして、精子の原形質膜が卵のそれと融合
して核が卵に入る。この際、β1,4−ガラクトース転
移酵素が重要な役割を果たしていると考えられている。
In fertilization, the reaction of the body (acrosome) at the front end of the sperm head is the first step of fertilization, and the sperm recognizes and enters the zona pellucida of the egg. Then, when the sperm arrives at the plasma membrane of the egg, the zona pellucida denatures and prevents other sperm from entering. The sperm plasma membrane then fuses with that of the egg and the nucleus enters the egg. At this time, β1,4-galactosyltransferase is considered to play an important role.

【0005】このようにβ1,4−ガラクトース転移酵
素は生体内において重要な役割を果たしているものと考
えられるが、微量の酵素活性を簡便で迅速に測定するこ
とは容易でないことから、ノーザンブロッテイングなど
によりmRNAの発現を確認している程度である。
As described above, β1,4-galactosyltransferase is thought to play an important role in vivo, but it is not easy to measure a trace amount of enzyme activity simply and quickly. The level of mRNA expression has been confirmed by such methods.

【0006】これまで、β1,4−ガラクトース転移酵
素の活性測定には該酵素から生成される反応生成物質の
分離法、例えばイオンクロマトグラフィや高速液体クロ
マトグラフィにより得た糖授与体や糖供与体をアイソト
ープ或いは蛍光物資などで標識して行われてきた。また
該酵素によるガラクトース転移反応において糖供与体で
あるウリジン−5’−二燐酸ガラクトースから生成する
ウリジン−5’−二燐酸をピルビン酸キナーゼ(pyruva
te kinase)及び乳酸脱水酵素(lactate dehydrogenase)
を用いて下記式のように反応させる。β−NADHから
NADへの反応を波長340μmの吸収を追うことによ
り単位時間当たりのガラクトース転移量を求め酵素活性
を測定する方法がある。
Heretofore, the activity of β1,4-galactosyltransferase has been measured by isolating a sugar donor or a sugar donor obtained by a method of separating a reaction product formed from the enzyme, for example, ion chromatography or high performance liquid chromatography. Alternatively, labeling has been performed with fluorescent materials or the like. Further, in the galactose transfer reaction by the enzyme, uridine-5'-diphosphate generated from uridine-5'-diphosphate galactose as a sugar donor is converted to pyruvate kinase (pyruva kinase).
te kinase) and lactate dehydrogenase
The reaction is carried out according to the following formula. There is a method in which the reaction from β-NADH to NAD is followed by the absorption at a wavelength of 340 μm to determine the amount of galactose transfer per unit time to measure the enzyme activity.

【0007】[0007]

【化1】 Embedded image

【0008】しかしながら、これらの方法は供与体であ
る基質としてアイソトープ標識された糖ヌクレオチドは
人体に危険であり、また通常長時間を要する欠点があ
る。他方糖受与体としてピリジルアミノ化された糖鎖
(Biochemical., 第95巻, 第197〜203頁,198
4)、ANTS(8-aminonaphthalene-1,3,6-trisulfoni
c acid ) 、AMAC(2-aminoacridone )などの1級
アミノ基と2個のスルフォン酸基をもつ蛍光色素で標識
された糖鎖(J.Biochm., 第270巻,第705〜713
頁,1990)を用いる。
However, these methods have the disadvantage that the isotope-labeled sugar nucleotide as a donor substrate is dangerous to the human body and usually requires a long time. On the other hand, pyridylaminated sugar chains (Biochemical., Vol. 95, pp. 197-203, 198)
4), ANTS (8-aminonaphthalene-1,3,6-trisulfoni
sugar chains labeled with a fluorescent dye having a primary amino group and two sulfonic acid groups such as c-acid) and AMAC (2-aminoacridone) (J. Biochm., Vol. 270, Vol. 705-713).
P. 1990).

【0009】しかし、これらの標識した糖基質で酵素活
性を測定する場合、供与体基質、受容体基質のいずれに
おいても酵素反応で生成した物資を高速液体クロマトグ
ラフィで分離して生成量を測定する必要がある。したが
って、通常の多くの酵素活性測定のように直接反応液の
生成物tを機器によって測定できないため非常に操作が
煩雑で時間がかかるのが現状である。また、上記に示し
た反応で生成するUDPを酵素的に測定する方法がある
が、感度の点で問題がある。
However, when enzyme activity is measured with these labeled sugar substrates, it is necessary to separate the substances produced by the enzymatic reaction in both the donor substrate and the acceptor substrate by high performance liquid chromatography and measure the amount produced. There is. Therefore, since the product t of the reaction solution cannot be directly measured by an instrument as in many ordinary enzyme activity measurements, the operation is very complicated and time-consuming at present. In addition, there is a method of enzymatically measuring UDP generated by the above reaction, but there is a problem in sensitivity.

【0010】蛍光標識した糖鎖を用いて酵素活性を測定
する方法として、測定共鳴エネルギー移動法を用いる方
法が開発されている。この方法は二重蛍光プローブを有
する基質誘導体を作製し、蛍光エネルギー移動法という
活性評価方法の有効性を利用することにより、酵素活性
を測定する方法である。蛍光エネルギー移動法という活
性評価方法の有効性とは、それぞれエネルギー供与体蛍
光団、受容体蛍光団間の共鳴移動法による蛍光特性の消
失性フィールドを利用することにより、S/N感度の向
上を図ろうするものである。本発明者らは、特開平9−
173096号公報において、既にこの原理を利用した
糖転移酵素の活性測定方法を報告している。
As a method for measuring enzyme activity using a fluorescently labeled sugar chain, a method using a measurement resonance energy transfer method has been developed. In this method, a substrate derivative having a double fluorescent probe is prepared, and the enzymatic activity is measured by utilizing the effectiveness of an activity evaluation method called a fluorescence energy transfer method. The effectiveness of the activity evaluation method called the fluorescence energy transfer method means that the S / N sensitivity is improved by using the extinction field of the fluorescence characteristics by the resonance transfer method between the energy donor fluorophore and the acceptor fluorophore, respectively. It is something to try. The present inventors have disclosed Japanese Patent Application Laid-Open
No. 173096 has already reported a method for measuring the activity of glycosyltransferases utilizing this principle.

【0011】しかしながら,これまでに具体的な例とし
ては、Gal β1→4GlcNAc に蛍光物質を結合したオリゴ
糖誘導体によりα2,6−シアリルトランスフェラーゼ
を測定することが示されているが、他の糖転移酵素の活
性測定に有効で適切な蛍光標識された基質は報告されて
いない。特に、β1,4−ガラクトース転移酵素の酵素
活性は適切な蛍光標識した糖供与体が合成できないた
め、蛍光エネルギー移動法に基づいた測定は不可能であ
った。
However, as a specific example, it has been shown that α2,6-sialyltransferase is measured by an oligosaccharide derivative having a fluorescent substance bound to Gal β1 → 4GlcNAc. No effective and suitable fluorescently labeled substrate for measuring enzyme activity has been reported. In particular, the enzyme activity of β1,4-galactosyltransferase could not be measured based on the fluorescence energy transfer method because an appropriate fluorescently labeled sugar donor could not be synthesized.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的の一つ
は、ガラクトース転移酵素の活性測定に使用する蛍光標
識糖受容体および蛍光標識糖供与体を提供することであ
る。また、他の目的は、これらの基質を用いることによ
り、高感度で簡便にしてかつ短時間にガラクトース転移
酵素活性を測定する方法並びにその測定用試薬提供する
ことである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a fluorescently labeled sugar acceptor and a fluorescently labeled sugar donor for use in measuring the activity of galactosyltransferase. Another object of the present invention is to provide a method for measuring galactosyltransferase activity which is highly sensitive, simple, and in a short time by using these substrates, and to provide a reagent for the measurement.

【0013】[0013]

【課題を解決するための手段】本発明者らは、上述した
ように、糖転移酵素、特にガラクトース転移酵素を測定
する上での問題点を解決するため、種々鋭意検討した結
果、ガラクトース転移酵素活性測定に用いる新規な蛍光
標識糖受容体基質および蛍光標識糖供与体基質の合成に
成功した。そして、これらの基質を用いてガラクトース
転移酵素反応により生成する2種の蛍光団(すなわち、
供与体蛍光団および受容体蛍光団)を有する化合物の蛍
光団間の共鳴移動による蛍光特性の変化を利用すること
により、上記問題点を解決できることを見出し、本発明
を完成するに至った。
As described above, the present inventors have conducted intensive studies to solve the problems in measuring glycosyltransferases, particularly galactosyltransferases. We succeeded in synthesizing novel fluorescently labeled sugar acceptor substrates and fluorescently labeled sugar donor substrates used for activity measurement. Then, two types of fluorophores generated by the galactosyltransferase reaction using these substrates (ie,
The present inventors have found that the above problems can be solved by utilizing the change in the fluorescence properties of compounds having a donor fluorophore and an acceptor fluorophore) due to resonance transfer between the fluorophores, and have completed the present invention.

【0014】すなわち、本発明は以下のような構成から
なる。 (1)糖ヌクレオチドの糖質の第6級水酸基に蛍光物質
を結合した糖転移酵素反応の糖供与体であることを特徴
とする糖ヌクレオチド誘導体。 (2)糖ヌクレオチドの糖質の第6級水酸基に蛍光物質
を結合した糖転移酵素反応の糖供与体がウリジン−5’
−二燐酸ナフチル化ガラクトースである(1)の糖ヌク
レオチド誘導体。 (3)単糖もしくはオリゴ糖の還元末端にスペーサーを
介して蛍光物質を結合したオリゴ糖誘導体あるいは糖複
合体のペプチドもしくは脂質部位のアミノ酸に蛍光物質
を結合した糖転移酵素反応の糖受容体である糖複合体誘
導体と、糖ヌクレオチドの糖質の第6級水酸基に蛍光物
質を結合した糖転移酵素反応の糖供与体である糖ヌクレ
オチド誘導体を基質として糖転移反応を行い、生成した
2種の蛍光物質を有する化合物のいずれか一方の蛍光物
質を励起させ、該励起により放出される蛍光波長により
他方の蛍光波長を励起させ、その蛍光強度を測定するこ
とを特徴とする糖転移酵素活性測定方法。 (4)糖転移酵素がβ1,4−ガラクトース転移酵素で
ある(3)の糖転移酵素活性測定方法。 (5)単糖あるいはオリゴ糖の還元末端にスペーサーを
介して蛍光物質を結合した糖転移酵素反応の糖受容体で
ある糖誘導体あるいは糖複合体のペプチドあるいは脂質
部位のアミノ基に蛍光物質を結合した、糖転移酵素反応
の糖受容体である糖複合体誘導体および糖ヌクレオチド
の糖質の第6級水酸基に蛍光物質を結合した糖転移酵素
反応の糖供与体である糖ヌクレオチド誘導体を含有する
糖転移酵素活性測定用試薬。
That is, the present invention has the following configuration. (1) A sugar nucleotide derivative, which is a sugar donor for a glycosyltransferase reaction in which a fluorescent substance is bonded to a quaternary hydroxyl group of a sugar of a sugar nucleotide. (2) The sugar donor of the glycosyltransferase reaction in which a fluorescent substance is bonded to the quaternary hydroxyl group of the sugar of the sugar nucleotide is uridine-5 '
-The sugar nucleotide derivative according to (1), which is naphthylated galactose diphosphate. (3) An oligosaccharide derivative in which a fluorescent substance is bonded to a reducing end of a monosaccharide or an oligosaccharide via a spacer, or a sugar receptor of a glycosyltransferase reaction in which a fluorescent substance is bonded to an amino acid at a peptide or lipid site of a sugar complex. A sugar conjugate derivative and a sugar nucleotide derivative that is a sugar donor of a glycosyltransferase reaction in which a fluorescent substance is bonded to a quaternary hydroxyl group of the sugar of the sugar nucleotide are used as a substrate to carry out a glycosyltransfer reaction. A method for measuring glycosyltransferase activity, comprising exciting one fluorescent substance of a compound having a fluorescent substance, exciting the other fluorescent wavelength by a fluorescent wavelength emitted by the excitation, and measuring the fluorescence intensity. . (4) The method for measuring glycosyltransferase activity according to (3), wherein the glycosyltransferase is β1,4-galactosyltransferase. (5) Fluorescent substance bound to amino group of peptide or lipid moiety of saccharide derivative or saccharide complex which is a saccharide acceptor of glycosyltransferase reaction in which a reducing substance is bound to reducing terminal of monosaccharide or oligosaccharide via a spacer. And a saccharide comprising a saccharide derivative which is a saccharide acceptor for a glucosyltransferase reaction and a saccharide nucleotide derivative which is a saccharide donor for a glucosyltransferase reaction in which a fluorescent substance is bonded to a quaternary hydroxyl group of a saccharide of a saccharide nucleotide. Reagent for measuring transferase activity.

【0015】[0015]

【発明の実施の形態】本発明の基本的な原理は、共鳴エ
ネルギー移動法をガラクトース転移酵素活性測定に応用
することにある。つまり、ガラクトース転移酵素反応に
より蛍光物質を結合する糖供与体と異なる蛍光物質を結
合する糖受容体から生成した反応生成物において、2種
の蛍光物質を適当な光線で励起させ、該励起により放出
される蛍光波長により他方の蛍光強度を測定することに
より、糖転移酵素活性を測定するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The basic principle of the present invention is to apply the resonance energy transfer method to the measurement of galactosyltransferase activity. That is, in a reaction product generated from a sugar donor that binds a fluorescent substance and a sugar acceptor that binds a different fluorescent substance by a galactose transferase reaction, two kinds of fluorescent substances are excited by an appropriate light beam and released by the excitation. The glycosyltransferase activity is measured by measuring the fluorescence intensity of the other at the determined fluorescence wavelength.

【0016】本発明における糖受容体とは、アセチルグ
ルコサミンの還元末端にスペーサーを介して蛍光物質を
結合させた糖誘導体(図1)もしくはスペーサーを介し
てアセチルグルコサミンを側鎖に持ち、かつ同様にスペ
ーサーを介して蛍光物質を側鎖にもつアクリルアミドコ
ポリマー(図2)であり、すなわち、糖供与体から放射
された波長より励起される放射波長を有するエネルギー
を受容する蛍光団基をもつ糖(例えば、ガラクトース)
を受容する糖誘導体をいう。また、エネルギー供与と受
容の相対関係は、糖受容体および糖供与体が逆であって
も良い。
The sugar acceptor in the present invention refers to a sugar derivative (FIG. 1) in which a fluorescent substance is bonded to the reducing end of acetylglucosamine via a spacer or acetylglucosamine in the side chain via a spacer. An acrylamide copolymer having a fluorescent substance in a side chain via a spacer (FIG. 2), that is, a sugar having a fluorophore group that accepts energy having an emission wavelength excited from the wavelength emitted from the sugar donor (for example, , Galactose)
Refers to a sugar derivative that accepts In addition, the relative relationship between energy donation and acceptance may be reversed for a sugar acceptor and a sugar donor.

【0017】糖誘導体としては、例えば、糖が末端糖鎖
がアセチルグルコサミンをスペーサーを介して蛍光物質
を結合させた誘導体や(図1)、あるいはスペーサーを
介してアセチルグルコサミンを側鎖に持ち、かつスペー
サーを介して蛍光物質を側鎖にもつアクリルアミドコポ
リマーである(図2)。
As the sugar derivative, for example, a derivative in which the sugar has a terminal sugar chain bonded to a fluorescent substance via acetylglucosamine via a spacer (FIG. 1) or acetylglucosamine in a side chain via a spacer, and It is an acrylamide copolymer having a fluorescent substance in a side chain via a spacer (FIG. 2).

【0018】このような糖受容体としては、下記に示さ
れる3−〔N−(5−(N,N−ジメチルアミノ)−1
−ナフタレンスルホニル)アミノ〕プロピル2−アセト
アミド−3,4,6−トリ−o−アセチル−2−デオキ
シ−β−D−グルコピラノシドなどが例示される。
Examples of such a sugar acceptor include 3- [N- (5- (N, N-dimethylamino) -1] shown below.
-Naphthalenesulfonyl) amino] propyl 2-acetamido-3,4,6-tri-o-acetyl-2-deoxy-β-D-glucopyranoside.

【0019】[0019]

【化2】 Embedded image

【0020】また、下記に示されるアクリルアミド、3
−(N−アクリロイルアミノ)プロピル2−アセトアミ
ド−3,4,6−トリ−O−アセチル−2−デオキシ−
β−D−グルコピラノシドおよびN−〔5−(N,N−
ジメチルアミノ)−1−ナフタレンスルホニル〕−β−
アラニンアリルアミドを反応させて合成されるアクリル
アミドコポリマーなどが例示される。
Further, acrylamide shown below, 3
-(N-acryloylamino) propyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-
β-D-glucopyranoside and N- [5- (N, N-
Dimethylamino) -1-naphthalenesulfonyl] -β-
An acrylamide copolymer synthesized by reacting alanine allylamide is exemplified.

【0021】[0021]

【化3】 Embedded image

【0022】また、本発明における糖転移酵素反応の糖
供与体とは、糖ヌクレオチド(sugarnucleotide)の糖質
の第6級水酸基に蛍光物質を結合した糖ヌクレオチド誘
導体である(図2)。すなわち、蛍光団をもつ糖転移酵
素(例えば、ガラクトース転移酵素)特有の基質となる
糖ヌクレオチド誘導体をいう。
The sugar donor for the glycosyltransferase reaction in the present invention is a sugar nucleotide derivative in which a fluorescent substance is bonded to the quaternary hydroxyl group of the sugar of sugar nucleotide (FIG. 2). That is, it refers to a sugar nucleotide derivative that is a substrate specific to a glycosyltransferase having a fluorophore (eg, galactose transferase).

【0023】糖ヌクレオチド誘導体としては、例えば、
ウリジン−5’−〔6−フルオレセイニルチオウレイイ
ド)デオキシ−6−d−D−ガラクトピラノシル〕ジホ
スフェート(UDP−(6−fluoresceinyl )−Ga
l)などがあり、。フルオレセイニル(fluoresceinyl
)基は、ダンシル(dansyl)基、ナフチル(naphtyl
)基、ピレニル(pyrenyl )基などで代用される。
Examples of sugar nucleotide derivatives include, for example,
Uridine-5 '-[6-fluoresceinylthioureido) deoxy-6-d-D-galactopyranosyl] diphosphate (UDP- (6-fluoresceinyl) -Ga
l) and so on. Fluoresceinyl
) Group is a dansyl group, naphtyl
) Group, pyrenyl group and the like.

【0024】このような蛍光標識されたウリジンデオキ
シガラクトピラノシルジホスフェート(UDP−ガラク
トース)の例として、下記構造式を有するウリジン−
5’−〔6−デオキシ−6−N−(1−ナフチル)−d
−D−ガラクトピラノシル〕ジホスフェートジナトリウ
ム塩が挙げられる。
An example of such a fluorescently labeled uridine deoxygalactopyranosyl diphosphate (UDP-galactose) is uridine having the following structural formula:
5 '-[6-deoxy-6-N- (1-naphthyl) -d
-D-galactopyranosyl] diphosphate disodium salt.

【0025】[0025]

【化4】 Embedded image

【0026】本発明における糖受容体である糖誘導体に
結合する蛍光物質F2の蛍光団基としては、ナフチル
基、ピレニル基、ダンシル基、フルオレスカミン基など
が挙げられる。
Examples of the fluorophore group of the fluorescent substance F2 which binds to the sugar derivative as the sugar acceptor in the present invention include a naphthyl group, a pyrenyl group, a dansyl group, a fluorescamine group and the like.

【0027】また、本発明における糖供与体である糖ヌ
クレオチドに結合する蛍光物質F1の蛍光団基として
は,ナフチル基、ピレニル基、ダンシル基、フルオレス
カミン基などが挙げられる。
Further, examples of the fluorophore group of the fluorescent substance F1 which binds to the sugar nucleotide as the sugar donor in the present invention include a naphthyl group, a pyrenyl group, a dansyl group, a fluorescamine group and the like.

【0028】本発明において、糖受容体の蛍光物質F2
がダンシル基である場合、糖供与体の蛍光物質F1はナ
フチル基であることが好ましい。
In the present invention, the fluorescent substance F2 of the sugar receptor is used.
Is a dansyl group, the fluorescent substance F1 of the sugar donor is preferably a naphthyl group.

【0029】本発明の基質の製造方法は、例えば、蛍光
物質F2がダンシル基、蛍光物質F1がナフチル基であ
る場合には、糖受容体としてN−アセチルグルコサミン
の還元末端にスペーサーを介してアミノ基を導入し、こ
れをダンシル基を有する蛍光物質を反応させて目的物を
得、糖供与体としてはガラクトースの6級の水酸基にナ
フチル基を導入し、目的物質である上記ウリジン−5’
−〔6−デオキシ−6−N−(1−ナフチル)−d−D
−ガラクトピラノシル〕ジホスフェートジナトリウム塩
を得ることができる。
In the method for producing a substrate of the present invention, for example, when the fluorescent substance F2 is a dansyl group and the fluorescent substance F1 is a naphthyl group, an amino group is attached to the reducing end of N-acetylglucosamine via a spacer as a sugar acceptor. The desired substance is obtained by reacting a fluorescent substance having a dansyl group with a phosphatase group, and a naphthyl group is introduced as a sugar donor into the tertiary hydroxyl group of galactose, and the uridine-5 ′ as the desired substance is obtained.
-[6-deoxy-6-N- (1-naphthyl) -dD
-Galactopyranosyl] diphosphate disodium salt can be obtained.

【0030】本発明における糖転移酵素を測定する方法
とは、上記糖供与体および糖受容体に糖転移酵素を作用
させ、生成した2種の異なる蛍光物質を有する化合物の
いずれか一方の蛍光物質を紫外線で励起させ、該励起に
より放出される蛍光波長より、他方の蛍光強度を測定す
る糖転移酵素活性を測定するものである。その転移酵素
反応条件は酵素の反応至適条件に従う。
The method for measuring a glycosyltransferase in the present invention means that one of the compounds having two different fluorescent substances produced by reacting the above sugar donor and the sugar acceptor with the glycosyltransferase is used. Is excited by ultraviolet light, and the glycosyltransferase activity is measured by measuring the fluorescence intensity of the other from the fluorescence wavelength emitted by the excitation. The transfer enzyme reaction conditions follow the optimal reaction conditions of the enzyme.

【0031】蛍光物質を励起する条件および蛍光測定法
は、例えば、Luminescence spectrometer LS50B(Perkin
Elmer社製)にて、励起波長280nm、蛍光度測定を
310〜600nmまで行う。蛍光度の測定は50nm
HEPES緩衝液(pH7.0)中、37℃、Scanspee
d 500nm/分、Slit size 5nmで行う。糖転移反
応は、例えば、上記緩衝液4.2mlにβ1,4−ガラ
クトース転移酵素0.05単位、糖供与体10nmo
l、糖受容体300nmol、及びα-lactosamineを含
む反応液で行う。糖供与体と受容体の比は1:10〜
1:100が望ましいが、特にこの範囲に限定されるも
のでない。
The conditions for exciting the fluorescent substance and the method for measuring the fluorescence are described, for example, in Luminescence spectrometer LS50B (Perkin
Elmer), the excitation wavelength is 280 nm, and the fluorescence measurement is performed from 310 to 600 nm. Fluorescence measurement is 50 nm
Scanspee at 37 ° C in HEPES buffer (pH 7.0)
d 500 nm / min, Slit size 5 nm. The glycosyltransfer reaction is performed, for example, by adding 0.05 units of β1,4-galactosyltransferase and 10 nmo of a sugar donor to 4.2 ml of the above buffer solution.
1, 300 nmol of sugar acceptor, and α-lactosamine. The ratio of sugar donor to acceptor is 1:10
1: 100 is desirable, but it is not particularly limited to this range.

【0032】本発明の糖転移酵素活性測定用試薬組成物
の態様としては、例えば、上記糖供与体および上記糖受
容体、緩衝液ならびに酵素活性賦活剤を含むものが挙げ
られる。該緩衝液としては、糖転移酵素の反応に際して
使用できるものであれば特に制限されるものではない。
As an embodiment of the reagent composition for measuring a glycosyltransferase activity of the present invention, for example, one containing the above-mentioned sugar donor and the above-mentioned sugar acceptor, a buffer, and an enzyme activity activator can be mentioned. The buffer is not particularly limited as long as it can be used for the reaction of glycosyltransferase.

【0033】共鳴エネルギー移動の現象は、20世紀は
じめPerrinにより観察されたが、Forster は1940年
代後半に共鳴エネルギー移動により分子間相互作用を述
べる理論を提唱し、発色酸の距離と発色団の光学的性質
に関係づける移動速度式を導いた(Sinanoglu, O., E
d.,Modern Quantum Chemistry 第93〜137頁)。
Although the phenomenon of resonance energy transfer was observed by Perrin in the early 20th century, Forster proposed a theory describing intermolecular interactions by resonance energy transfer in the late 1940's, and explained the distance between chromogenic acids and the optics of chromophores. Derived a velocity equation that relates to dynamic properties (Sinanoglu, O., E
d., Modern Quantum Chemistry 93-137).

【0034】上記方法は改良され分子間平均距離は、共
鳴エネルギー移動の測定により信頼するデータが得られ
るようになっている。通常、エネルギー移動の測定は、
蛍光の検出を基本としているので、高感度を確保できる
利点がある。エネルギー供与体と受容体間のForster 距
離は、基本的には、(a) エネルギー供与体量子収量、
(b) エネルギー供与体の蛍光放射スペクトラム、(c) エ
ネルギー受容体の分子間吸光係数で測定出来るが、蛍光
物質の溶液状況などを考慮する必要がある。
The above method has been improved so that the average intermolecular distance can be obtained with reliable data by measuring the resonance energy transfer. Usually, the measurement of energy transfer is
Since the detection is based on fluorescence, there is an advantage that high sensitivity can be secured. The Forster distance between the energy donor and the acceptor is basically determined by (a) the energy donor quantum yield,
It can be measured by (b) the fluorescence emission spectrum of the energy donor and (c) the intermolecular extinction coefficient of the energy acceptor, but it is necessary to consider the solution state of the fluorescent substance.

【0035】本発明では、糖転移酵素は糖供与体である
糖ヌクレオチドから糖受容体に転移する酵素であるの
で、二つの適切な蛍光物質をこれらの両基質に酵素活性
の阻害を起こすことなく標識すれば、酵素反応の途中の
変化前後で両蛍光団物質の距離の変化に伴う蛍光放射の
変化で酵素活性を測定できる。すなわち、蛍光エネルギ
ー移動対はエネルギー供与体分子とエネルギー受容体分
子からなり、該エネルギー供与体分子は第1放射波長を
有し、そして該エネルギー受容体分子は第1放射波長に
より励起されることが出来、かつ第1放射波長と区別し
て検出可能な第2放射波長を有する蛍光発色基を有し、
さらにこれらの糖供与体、糖受容体が酵素転移酵素反応
を阻害しないものである。
In the present invention, since a glycosyltransferase is an enzyme that transfers a sugar donor, a sugar nucleotide, to a sugar acceptor, two suitable fluorescent substances can be added to both of these substrates without inhibiting the enzyme activity. By labeling, the enzyme activity can be measured by a change in fluorescence emission due to a change in the distance between the two fluorophores before and after the change during the enzymatic reaction. That is, a fluorescent energy transfer pair consists of an energy donor molecule and an energy acceptor molecule, the energy donor molecule having a first emission wavelength, and the energy acceptor molecule can be excited by the first emission wavelength. Having a fluorescent chromophore having a second emission wavelength that can be made and detected separately from the first emission wavelength;
Further, these sugar donors and sugar acceptors do not inhibit the enzyme transferase reaction.

【0036】本発明の原理および目的から、最も好まし
い条件下では、上記の糖供与体および糖受容体を使用
し、酵素反応が進行すれば、蛍光団をもつ糖が受容体に
転移され蛍光エネルギー移動対のエネルギー供与分子お
よびエネルギー受容体分子は同一分子上に近接し、これ
によりForster の原理によるエネルギー移動を起こすこ
とが出来る。また、蛍光団をもつ糖が受容体に転移され
生成物の物性により転移された蛍光物質の強度が反応に
進行するにつれて有意に変化することが観察されること
があるので、第1励起蛍光団の強度を直接モニターする
ことにより酵素活性を測定することが出来るものであ
る。
Under the most preferable conditions from the principle and purpose of the present invention, under the most preferable conditions, the above sugar donor and sugar acceptor are used, and if the enzymatic reaction proceeds, the sugar having a fluorophore is transferred to the acceptor and the fluorescent energy is The energy-donor and energy-acceptor molecules of a transfer pair are in close proximity on the same molecule, which can cause energy transfer according to Forster's principle. In addition, it may be observed that the intensity of the transferred fluorescent substance changes significantly as the sugar having the fluorophore is transferred to the receptor and the physical properties of the product proceeds to the reaction. The enzyme activity can be measured by directly monitoring the intensity of the enzyme.

【0037】上記のようにこれらの酵素反応液を励起
し、特定的にはエネルギー供与蛍光団をその励起波長で
励起し、そして受容体の放射波長を測定することによ
り、あるいは転移された供与体の蛍光強度を測定するこ
とにより試料中の酵素活性を定性的にあるいは定量的に
測定することが出来る。
As described above, these enzymatic reactions are excited, specifically the energy-donating fluorophore is excited at its excitation wavelength and the emission wavelength of the acceptor is measured, or the transferred donor is measured. By measuring the fluorescence intensity of the enzyme, the enzyme activity in the sample can be measured qualitatively or quantitatively.

【0038】[0038]

【実施例】以下、実施例により本発明を具体的に説明す
る。
The present invention will be described below in detail with reference to examples.

【0039】実施例1 1.蛍光物質標識糖受容体の合成 中間体(I)の合成 D−グルコサミン塩酸塩156.6g(0.73mo
l)をピリジン500ml中に懸濁し、トリエチルアミ
ン102ml(0.73mol)を加え塩酸塩を中和さ
せた後、無水酢酸500ml(約1.1mol)を加え
一晩攪拌させた。溶液が透明になっているのを確認した
後、TLC(薄層クロマトグラフィ)で反応の終了を確
認し、濃縮した。残渣にクロロホルム約0.5mlを加
え溶解させた後、脱イオン水、重曹水、食塩水で洗浄し
た。有機層を硫酸マグネシウムで乾燥させ、セライト濾
過し濃縮後、残渣をエタノールに溶解し再結晶させた。
結晶を濾過し、減圧下で乾燥させた。エタノール溶液は
濃縮し、再度エタノールに溶解し再結晶させた。以上の
ようにして、2−アセトアミド−1,3,4,6−テト
ラ−o−アセチル−2−デオキシ−D−グルコピラノー
スを収量256g、収率90%で得た。
Embodiment 1 1. Synthesis of fluorescent substance-labeled sugar receptor Synthesis of intermediate (I) 156.6 g of D-glucosamine hydrochloride (0.73 mol)
l) was suspended in 500 ml of pyridine, and 102 ml (0.73 mol) of triethylamine was added to neutralize the hydrochloride, and then 500 ml (about 1.1 mol) of acetic anhydride was added, followed by stirring overnight. After confirming that the solution became transparent, the completion of the reaction was confirmed by TLC (thin layer chromatography), and the solution was concentrated. After about 0.5 ml of chloroform was added to the residue to dissolve it, it was washed with deionized water, aqueous sodium bicarbonate and brine. The organic layer was dried over magnesium sulfate, filtered through celite and concentrated, and the residue was dissolved in ethanol and recrystallized.
The crystals were filtered and dried under reduced pressure. The ethanol solution was concentrated, dissolved again in ethanol, and recrystallized. As described above, 256 g of 2-acetamido-1,3,4,6-tetra-o-acetyl-2-deoxy-D-glucopyranose was obtained in a yield of 90%.

【0040】次に、この2−アセトアミド−1,3,
4,6−テトラ−o−アセチル−2−デオキシ−D−グ
ルコピラノース5.0g(13mmol)を1,2−ジ
クロロエタン50mlに溶解し、60℃でTMSOTf
(トリメチルシリルトリフルオロメタンスルフォネー
ト)2.6ml(13mmol)を加え、2時間攪拌し
た。TLCで反応の終了を確認し、トリエチルアミン
5.4ml(38mmol)を加え、TMSOTfをク
エンチした。その後、一度溶媒を完全に留去し、ジクロ
ロメタン50mlに再度溶解した。
Next, this 2-acetamido-1,3,3
5.0 g (13 mmol) of 4,6-tetra-o-acetyl-2-deoxy-D-glucopyranose was dissolved in 50 ml of 1,2-dichloroethane, and TMSOTf was added at 60 ° C.
2.6 ml (13 mmol) of (trimethylsilyltrifluoromethanesulfonate) was added, and the mixture was stirred for 2 hours. The completion of the reaction was confirmed by TLC, and 5.4 ml (38 mmol) of triethylamine was added to quench TMSOTf. Thereafter, the solvent was completely distilled off once, and the residue was dissolved again in 50 ml of dichloromethane.

【0041】この溶液に3−(N−ベンジルオキシカル
ボニルアミノ)プロパノール8.0g(38mmol)
を加え、さらにCSA((±)−しょうのう−10−ス
ルホン酸)を少量ずつpHが2〜3になるまで加え、7
0℃で還流しながら4時間攪拌した。TLCで反応の終
了を確認し、反応液を室温まで冷し、重曹水、食塩水で
洗浄した。有機層を硫酸マグネシウムで乾燥させ、セラ
イト濾過し濃縮した。最後に残渣をシリカゲルクロマト
グラフィで精製して(展開溶媒 クロロホルム:メタノ
ール=50:1)、3−(N−ベンジルオキシカルボニ
ルアミノ)プロピル−2−アセトアミド−3,4,6−
トリ−o−アセチル−2−デオキシ−β−D−グルコピ
ラノシドを収量2.8g、収量40%で得た。
To this solution, 8.0 g (38 mmol) of 3- (N-benzyloxycarbonylamino) propanol was added.
, And CSA ((±) -camphor-10-sulfonic acid) is added little by little until the pH becomes 2-3, and 7
The mixture was stirred at 0 ° C under reflux for 4 hours. After confirming the completion of the reaction by TLC, the reaction solution was cooled to room temperature, and washed with aqueous sodium hydrogen carbonate and brine. The organic layer was dried over magnesium sulfate, filtered through celite and concentrated. Finally, the residue was purified by silica gel chromatography (developing solvent: chloroform: methanol = 50: 1) to give 3- (N-benzyloxycarbonylamino) propyl-2-acetamide-3,4,6-
Tri-o-acetyl-2-deoxy-β-D-glucopyranoside was obtained in a yield of 2.8 g and a yield of 40%.

【0042】[0042]

【化5】 Embedded image

【0043】3−〔N−(5−(N,N−ジメチルアミ
ノ)−1−ナフタレンスルホニル)アミノ〕プロピル2
−アセトアミド3,4,6−トリ−o−アセチル−2−
デオキシ−β−D−グルコピラノシドの合成 上記中間体(I)300mg(0.56mmol)をド
ライメタノール8mlに溶解しナトリウムメトキシド1
0mgを加え、室温で一晩攪拌した。TLCで反応の終
了を確認し、イオン交換樹脂(ダウエックスH+ 型)で
中和した。イオン交換樹脂を綿栓濾過で取り除き、濃縮
する。
3- [N- (5- (N, N-dimethylamino) -1-naphthalenesulfonyl) amino] propyl 2
-Acetamide 3,4,6-tri-o-acetyl-2-
Synthesis of deoxy-β-D-glucopyranoside 300 mg (0.56 mmol) of the above intermediate (I) was dissolved in 8 ml of dry methanol, and sodium methoxide 1
0 mg was added, and the mixture was stirred at room temperature overnight. The completion of the reaction was confirmed by TLC, and neutralized with an ion exchange resin (Dowex H + type). The ion exchange resin is removed by cotton plug filtration and concentrated.

【0044】次に、残渣をメタノール8mlに溶解し、
Pd/C(パラジウム炭素)100mgを加え、水素雰
囲気下室温で1時間攪拌した。TLCで反応の終了を確
認した後、セライト濾過して、さらに濃縮した。そし
て、残渣をドライメタノール5mlに溶解し、トリエチ
ルアミン93μl(0.67mmol)ダンシルクロラ
イド150mg(0.56mmol)を加え、0℃で4
時間攪拌した。TLCで反応の終了を確認し、濃縮し
た。最後に、セファデックスG−10(ファルマシアバ
イオテク製)を用いてゲル濾過(展開溶媒は脱イオン
水)により精製した。収量267mg、収率100%で
あった。
Next, the residue was dissolved in 8 ml of methanol,
100 mg of Pd / C (palladium carbon) was added, and the mixture was stirred at room temperature under a hydrogen atmosphere for 1 hour. After confirming the completion of the reaction by TLC, the reaction mixture was filtered through celite and further concentrated. The residue was dissolved in 5 ml of dry methanol, and 93 μl (0.67 mmol) of triethylamine and 150 mg (0.56 mmol) of dansyl chloride were added.
Stirred for hours. The completion of the reaction was confirmed by TLC, and the mixture was concentrated. Finally, purification was performed by gel filtration (developing solvent was deionized water) using Sephadex G-10 (manufactured by Pharmacia Biotech). The yield was 267 mg and the yield was 100%.

【0045】NMR分析値(プロトンNMR) H-1:4.10ppm (d,1H,J1,2 =8.8 Hz) H-2:3.45ppm (t,1H,J2,3 =10.3Hz) H-3:3.33ppm (t,1H,J3,4 =8.8Hz ) H-5:3.56ppm (m,1H,J4,5 =11.0Hz,J5,6a =0.0Hz ,
J5,6b =5.1Hz ) 3.21-3.28ppm(m,2H,H-4,H-6b ) 1.65ppm (s,3H,Ac ) 2.68ppm (s,6H,Dan's Me×2) 2.68-3.56ppm(m,6H, CH2 ×3) 7.21ppm (d,1H, NH) 7.49-8.33ppm(d ×3,dd×1,6H,Naph)
NMR analysis value (proton NMR) H-1: 4.10 ppm (d, 1H, J1,2 = 8.8 Hz) H-2: 3.45 ppm (t, 1H, J2,3 = 10.3 Hz) H-3: 3.33ppm (t, 1H, J3,4 = 8.8Hz) H-5: 3.56ppm (m, 1H, J4,5 = 11.0Hz, J5,6a = 0.0Hz,
J5,6b = 5.1Hz) 3.21-3.28ppm (m, 2H, H-4, H-6b) 1.65ppm (s, 3H, Ac) 2.68ppm (s, 6H, Dan's Me × 2) 2.68-3.56ppm ( m, 6H, CH 2 × 3) 7.21ppm (d, 1H, NH) 7.49-8.33ppm (d × 3, dd × 1,6H, Naph)

【0046】実施例2 2.蛍光物質標識糖受容体の合成 中間体(II)の合成 2−アセトアミド−1,3,4,6−テトラ−o−アセ
チル−2−デオキシ−D−グルコピラノース50g
(0.13mol)をドライクロロホルム300mlに
溶解し、0℃で無水酢酸5ml、30%臭化水素−酢酸
115ml(0.45mol)を加え、徐々に室温に戻
しながら2時間攪拌した。TLCで反応の終了を確認し
たら、反応溶液を0℃に冷し、ピリジン60ml(0.
64mol)を加え、徐々に室温に戻しながらさらに一
晩攪拌した。TLCで反応の終了を確認後、反応液を脱
イオン水、重曹水、食塩水で洗浄した。有機層を硫酸マ
グネシウムで乾燥させ、セライト濾過し、濃縮した。
Embodiment 2 2. Synthesis of fluorescent substance-labeled sugar receptor Synthesis of intermediate (II) 2-acetamido-1,3,4,6-tetra-o-acetyl-2-deoxy-D-glucopyranose 50 g
(0.13 mol) was dissolved in 300 ml of dry chloroform, 5 ml of acetic anhydride and 115 ml (0.45 mol) of 30% hydrogen bromide-acetic acid were added at 0 ° C., and the mixture was stirred for 2 hours while gradually returning to room temperature. When the completion of the reaction was confirmed by TLC, the reaction solution was cooled to 0 ° C., and pyridine (60 ml, 0.
64 mol), and the mixture was further stirred overnight while gradually returning to room temperature. After confirming the completion of the reaction by TLC, the reaction solution was washed with deionized water, aqueous sodium bicarbonate, and brine. The organic layer was dried over magnesium sulfate, filtered through celite, and concentrated.

【0047】次に、残渣を1,2−ジクロロエタン20
0mlに溶解し、この溶液に3−(N−ベンジルオキシ
カルボニルアミノ)プロパノール13.4g(64mm
ol)を加え、さらにCSA((±)−しょうのう−1
0−スルホン酸)を少量ずつpHが2〜3になるまで加
え、70℃で還流しながら一晩攪拌した。TLCで反応
の終了を確認し、反応液を室温まで冷し、重曹水、食塩
水で洗浄した。有機層を硫酸マグネシウムで乾燥させ、
セライト濾過して濃縮した。最後に、残渣をシリカゲル
クロマトグラフィで精製(展開溶媒 クロロホルム:メ
タノール=50:1)し、さらにエタノールで再結晶さ
せ、3−(N−ベンジルオキシカルボニルアミノ)プロ
ピル−2−アセトアミド−3,4,6−トリ−o−アセ
チル−2−デオキシ−β−D−グルコピラノシドを収量
16.0g、収率46%で合成した。
Next, the residue was treated with 1,2-dichloroethane 20
0-ml, and 3- (N-benzyloxycarbonylamino) propanol 13.4 g (64 mm
ol), and further add CSA ((±)-camphor-1
0-sulfonic acid) was added little by little until the pH became 2-3, and the mixture was stirred at 70 ° C under reflux overnight. After confirming the completion of the reaction by TLC, the reaction solution was cooled to room temperature, and washed with aqueous sodium hydrogen carbonate and brine. The organic layer is dried over magnesium sulfate,
Celite filtration and concentration. Finally, the residue is purified by silica gel chromatography (developing solvent: chloroform: methanol = 50: 1), and further recrystallized from ethanol to give 3- (N-benzyloxycarbonylamino) propyl-2-acetamide-3,4,6. -Tri-o-acetyl-2-deoxy-β-D-glucopyranoside was synthesized in a yield of 16.0 g and a yield of 46%.

【0048】[0048]

【化6】 Embedded image

【0049】次に、3−(N−アクリロイルアミノ)プ
ロピル2−アセトアミド−3,4,6−トリ−o−アセ
チル−2−デオキシ−β−D−グルコピラノシド1.9
g(3.5mmol)をメタノール20mlに溶解し、
Pd/C(パラジウム炭素)200mgを加え、水素雰
囲気下室温で1時間攪拌した。TLCにより反応の終了
を確認後、セライト濾過した後、さらに濃縮した。残渣
をTHF(テトラヒドロフラン)60ml−メタノール
25mlの混合溶媒に溶解させ、0℃でトリエチルアミ
ン0.59ml(4.2mmol)、アクリロイルクロ
ライド0.34ml(4.2mmol)を加え、徐々に
室温に戻しながら、2時間攪拌した。この際、pHが酸
性側に偏らないように少量ずつトリエチルアミンを加え
た。
Next, 3- (N-acryloylamino) propyl 2-acetamido-3,4,6-tri-o-acetyl-2-deoxy-β-D-glucopyranoside 1.9.
g (3.5 mmol) in 20 ml of methanol,
200 mg of Pd / C (palladium carbon) was added, and the mixture was stirred at room temperature under a hydrogen atmosphere for 1 hour. After confirming the completion of the reaction by TLC, the mixture was filtered through celite and further concentrated. The residue was dissolved in a mixed solvent of 60 ml of THF (tetrahydrofuran) -25 ml of methanol, and 0.59 ml (4.2 mmol) of triethylamine and 0.34 ml (4.2 mmol) of acryloyl chloride were added at 0 ° C. Stir for 2 hours. At this time, triethylamine was added little by little so that the pH was not biased toward the acidic side.

【0050】TLCにより反応の進行が良くないことが
確認されたので、さらにアクリロイルクロライド0.5
0ml(4.9mmol)を加え、2時間攪拌した。T
LCで反応の終了を確認した後、濃縮し、残渣をクロロ
ホルムに溶解させ、重曹水と食塩水で洗浄した。有機層
を硫酸マグネシウムで乾燥させた後、セライト濾過を行
い、さらに濃縮し、シリカゲルクロマトグラフィで精製
(展開溶媒 クロロホルム:メタノール=30:1)
し、3−(N−アクリロイルアミノ)プロピル−2−ア
セトアミド−3,4,6−トリ−o−アセチル−2−デ
オキシ−β−D−グルコピラノシドを、収量491m
g、収率31%で得た。
The progress of the reaction was confirmed to be poor by TLC.
0 ml (4.9 mmol) was added, and the mixture was stirred for 2 hours. T
After confirming the completion of the reaction by LC, the mixture was concentrated, the residue was dissolved in chloroform, and washed with aqueous sodium bicarbonate and brine. The organic layer was dried over magnesium sulfate, filtered through celite, further concentrated, and purified by silica gel chromatography (developing solvent: chloroform: methanol = 30: 1).
To give 3- (N-acryloylamino) propyl-2-acetamido-3,4,6-tri-o-acetyl-2-deoxy-β-D-glucopyranoside in a yield of 491 m.
g, 31% yield.

【0051】次に、3−(N−アクリロイルアミノ)プ
ロピル2−アセトアミド−3,4,6−トリ−o−アセ
チル−2−デオキシ−β−D−グルコピラノシド491
mg(1.07mmol)をメタノール10mlに溶解
し、ナトリウムメトキシド10mgを加え、一晩攪拌し
た。そして、TLCで反応の終了を確認した後、イオン
交換樹脂(ダウエックスH+ 型)で中和した。最後に、
イオン交換樹脂を綿栓濾過で取り除き、濃縮し、収率1
00%で3−(N−アクリロイルアミノ)プロピル−2
−アセトアミド−2−デオキシ−β−D−グルコピラノ
シドを得た。
Next, 3- (N-acryloylamino) propyl 2-acetamido-3,4,6-tri-o-acetyl-2-deoxy-β-D-glucopyranoside 491
mg (1.07 mmol) was dissolved in methanol (10 ml), sodium methoxide (10 mg) was added, and the mixture was stirred overnight. After confirming the completion of the reaction by TLC, the mixture was neutralized with an ion exchange resin (Dowex H + type). Finally,
The ion exchange resin was removed by cotton plug filtration, concentrated, and the yield was 1
3- (N-acryloylamino) propyl-2 at 00%
-Acetamide-2-deoxy-β-D-glucopyranoside was obtained.

【0052】中間体(III )の合成 上記に合成したN−t−ブチルオキシカルボニル−β−
アラニン5.0g(26.4mmol)とアリルアミン
2.0ml(26.7mmol)をエタノール−ベンゼ
ン(1:1)50ml溶解し、EEDQ(1−エトキシ
カルボニル−2−エトキシ−1,2−ジヒドロキノリ
ン)7.2g(29.1mmol)を加え、室温で一晩
攪拌した。TLCで反応の終了を確認した後、さらに濃
縮し、シリカゲルクロマトグラフィで精製(展開溶媒
クロロホルム:メタノール=50:1)し、N−t−ブ
チルオキシカルボニル−β−アラニンアリルアミドを収
量5.5g、収率92%で得た。
Synthesis of Intermediate (III) Nt-butyloxycarbonyl-β-synthesized above
5.0 g (26.4 mmol) of alanine and 2.0 ml (26.7 mmol) of allylamine are dissolved in 50 ml of ethanol-benzene (1: 1), and EEDQ (1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline) is dissolved. 7.2 g (29.1 mmol) was added, and the mixture was stirred at room temperature overnight. After confirming the completion of the reaction by TLC, the mixture was further concentrated and purified by silica gel chromatography (developing solvent).
Chloroform: methanol = 50: 1) to obtain 5.5 g of Nt-butyloxycarbonyl-β-alanine allylamide in a yield of 92%.

【0053】N−t−ブチルオキシカルボニル−β−ア
ラニンアリルアミド5.5gを4N塩化水素ジオキサン
溶液150mlに溶解し、室温で一晩攪拌する。TLC
により反応の終了を確認した後、さらに濃縮し、エタノ
ールで再結晶させた。収量3.0g、収率81%でβ−
アラニンアクリルアミド塩酸塩を得た。
5.5 g of Nt-butyloxycarbonyl-β-alanine allylamide is dissolved in 150 ml of a 4N hydrogen chloride dioxane solution, and the mixture is stirred at room temperature overnight. TLC
After the completion of the reaction was confirmed by, the mixture was further concentrated and recrystallized from ethanol. 3.0 g, 81% yield and β-
Alanine acrylamide hydrochloride was obtained.

【0054】上記で合成したN−t−ブチルオキシカル
ボニル−β−アラニン塩酸塩114.6mg(0.74
mmol)をドライメタノール5mlに溶解し、0℃で
トリエチルアミン0.24ml(1.72mmol)と
ダンシルクロライド200mg(0.74mmol)を
加え、4時間攪拌した。TLCで反応の終了を確認し、
濃縮し、シリカゲルクロマトグラフィで精製(展開溶媒
クロロホルム:メタノール=50:1)し、N−〔5
−(N,N−ジメチルアミノ)−1−ナフタレンスルホ
ニル〕−β−アラニンアクリルアミドを収量133m
g、収率51%で合成した。
The above synthesized Nt-butyloxycarbonyl-β-alanine hydrochloride 114.6 mg (0.74
was dissolved in 5 ml of dry methanol, and 0.24 ml (1.72 mmol) of triethylamine and 200 mg (0.74 mmol) of dansyl chloride were added at 0 ° C., followed by stirring for 4 hours. Confirm the completion of the reaction by TLC,
It was concentrated and purified by silica gel chromatography (developing solvent: chloroform: methanol = 50: 1), and N- [5
-(N, N-dimethylamino) -1-naphthalenesulfonyl] -β-alanine acrylamide in a yield of 133 m
g, 51% yield.

【0055】[0055]

【化7】 Embedded image

【0056】アクリルアミドコポリマーの合成 3−(N−アクリロイルアミノ)プロピル−2−アセト
アミド−2−デオキシ−β−D−グルコピラノシド1
0.0mg(0.030mmol)、微少量のメタノー
ルに溶解したN−〔5−(N,N−ジメチルアミノ)−
1−ナフタレンスルホニル〕−β−アラニンアクリルア
ミド1.04mg(0.0030mmol)、アクリル
アミド21.3mg(0.30mmol)を脱イオン水
に溶解し、減圧下超音波をかけながら脱気した。さら
に、脱気したメタノールを溶液が透明になるまで加え、
TEMED(N,N,N,N−テトラメチルエチレンジ
アミン)2.00μl(0.013mmol)とAPS
(ペルオキソ二硫酸アンモニウム)1.22mg(5.
3mmol)を加え、窒素雰囲気下で一晩攪拌した。反
応液をそのままゲル濾過カラム(セファデックスG−5
0)に供して精製し、アクリルアミドコポリマー19.
6mgを、収率61%で得た。
Synthesis of Acrylamide Copolymer 3- (N-acryloylamino) propyl-2-acetamido-2-deoxy-β-D-glucopyranoside 1
0.0 mg (0.030 mmol) of N- [5- (N, N-dimethylamino)-dissolved in a small amount of methanol
1.04 mg (0.0030 mmol) of 1-naphthalenesulfonyl] -β-alanine acrylamide and 21.3 mg (0.30 mmol) of acrylamide were dissolved in deionized water, and degassed while applying ultrasonic waves under reduced pressure. In addition, add degassed methanol until the solution is clear,
TEMED (N, N, N, N-tetramethylethylenediamine) 2.00 μl (0.013 mmol) and APS
1.22 mg of (ammonium peroxodisulfate) (5.
3 mmol) and stirred overnight under a nitrogen atmosphere. The reaction solution is directly used as a gel filtration column (Sephadex G-5).
Purified by subjecting the acrylamide copolymer to 19.)
6 mg was obtained with a yield of 61%.

【0057】NMR分析値(プロトンNMR) H-1:4.41ppm (d,1H) H-6a:3.35ppm(s,1H) 3.45-3.66ppm(m,3h,H-2,H-3,H-4) 3.82ppm (m,2H,H-5,H-6b ) 1.95ppm (s,3H,Ac ) 1.55-2.33ppm(m,CH2,CH) 7.61-8.42ppm(m,Naph)NMR analysis value (proton NMR) H-1: 4.41 ppm (d, 1H) H-6a: 3.35 ppm (s, 1H) 3.45-3.66 ppm (m, 3h, H-2, H-3, H -4) 3.82ppm (m, 2H, H-5, H-6b) 1.95ppm (s, 3H, Ac) 1.55-2.33ppm (m, CH 2, CH) 7.61-8.42ppm (m, Naph)

【0058】積分値より、グルコサミン残基:アクリル
アミド残基:ダンシル残基=7.47:92.37:
0.16と算出された。
From the integrated value, glucosamine residue: acrylamide residue: dansyl residue = 7.47: 92.37:
0.16 was calculated.

【0059】13CNMR C-1 101.97ppm C-2 56.40ppm C-3 74.61ppm C-4 70.78ppm C-5 76.82ppm C-6 61.61ppm 35.27-37.04ppm(CH2 ) 42.21-42.99ppm(CH) 180.28ppm (CO) 13 C NMR C-1 101.97 ppm C-2 56.40 ppm C-3 74.61 ppm C-4 70.78 ppm C-5 76.82 ppm C-6 61.61 ppm 35.27-37.04 ppm (CH 2 ) 42.21-42.99 ppm (CH) 180.28ppm (CO)

【0060】実施例3 1.蛍光物質標識糖供与体の合成 中間体(IV)の合成 ガラクトース500gをピリジン1.5ml/無水酢酸
1.5mlの混合溶媒に懸濁させ、一晩攪拌した。溶液
が透明になっていることを確認した後、TLCで反応の
終了を確認し、濃縮した。残渣にクロロホルム約1.5
mlを加え溶解させた後、脱イオン水、重曹水、食塩水
で洗浄した。有機層を硫酸マグネシウムで乾燥させた
後、セライト濾過し濃縮後、残渣をエタノールに溶解し
再結晶させた。結晶を濾過し、減圧下で乾燥させた。エ
タノール溶液は濃縮しそのまま保存した。収量1.08
kg、収率100%で、1,2,3,4,6−ヘキサ−
o−アセチル−D−カラクトピラノースを得た。
Embodiment 3 1. Synthesis of Fluorescent Substance Labeled Sugar Donor Synthesis of Intermediate (IV) Galactose (500 g) was suspended in a mixed solvent of pyridine (1.5 ml) / acetic anhydride (1.5 ml) and stirred overnight. After confirming that the solution was clear, TLC confirmed the completion of the reaction and concentrated. About 1.5 chloroform in the residue
After adding and dissolving the solution, the solution was washed with deionized water, aqueous sodium bicarbonate and brine. The organic layer was dried over magnesium sulfate, filtered through celite and concentrated, and the residue was dissolved in ethanol and recrystallized. The crystals were filtered and dried under reduced pressure. The ethanol solution was concentrated and stored as it was. Yield 1.08
kg, 100% yield, 1,2,3,4,6-hexa-
o-Acetyl-D-caractopyranose was obtained.

【0061】次に、1,2,3,4,6−ヘキサ−o−
アセチル−D−カラクトピラノース12.6g(32.
3mmol)をTHF130mlに溶解し、ベンジルア
ミン5.30ml(48.5mmol)を加え、室温で
一晩攪拌する。TLCで反応の終了を確認し、反応液を
約30mlまで濃縮した。残渣にクロロホルム約100
mlを加え、再び30mlまで濃縮した。残渣にクロロ
ホルム約300mlを加え、1N塩酸、重曹水、食塩水
で洗浄した。有機層を硫酸マグネシウムで乾燥させた
後、セライト濾過し、さらに濃縮後、シリカゲルクロマ
トグラフィで精製(展開溶媒 トルエン:酢酸エチル=
5:1〜2:1)し、収率100%で2,3,4,6−
テトラ−o−アセチル−D−カラクトピラノースを得
た。
Next, 1,2,3,4,6-hexa-o-
12.6 g of acetyl-D-caractopyranose (32.
3 mmol) was dissolved in 130 ml of THF, 5.30 ml (48.5 mmol) of benzylamine was added, and the mixture was stirred at room temperature overnight. The completion of the reaction was confirmed by TLC, and the reaction solution was concentrated to about 30 ml. About 100 chloroform in the residue
ml, and concentrated again to 30 ml. About 300 ml of chloroform was added to the residue, and the mixture was washed with 1N hydrochloric acid, aqueous sodium bicarbonate and brine. The organic layer was dried over magnesium sulfate, filtered through celite, concentrated, and then purified by silica gel chromatography (developing solvent: toluene: ethyl acetate =
5: 1 to 2: 1), and 2,3,4,6-
Tetra-o-acetyl-D-calactopyranose was obtained.

【0062】次に、亜リン酸ジベンジル1.29g
(4.9mmol)をトルエン20mlに溶解し、N−
クロロコハク酸イミド0.66g(4.9mmol)を
加え、室温で1時間攪拌する。TLCで反応の終了を確
認した後、グラスフィルターで濾過し、濃縮した。残渣
と2,3,4,6−テトラ−o−アセチル−D−カラク
トピラノース0.57g(1.6mmol)をTHF2
0mlに溶解し、70℃で1.6M n−ブチルリチウ
ムヘキサン溶液1.0ml(1.6mmol)を加え
た。約2時間かけて徐々に反応溶液を40℃まで上げ、
TLCで反応の終了を確認した。反応液をクロロホルム
約100mlで希釈し、重曹水、食塩水で洗浄した。有
機層を硫酸マグネシウムで乾燥させた後、セライト濾過
し濃縮し、シリカゲルクロマトグラフィで精製(展開溶
媒 トルエン:酢酸エチル=5:1)し、ジフェニル−
2,3,4,6−テトラ−o−アセチル−α−D−カラ
クトピラノシルホスフェートを、収量0.53g、収率
50%で得た。
Next, 1.29 g of dibenzyl phosphite
(4.9 mmol) was dissolved in 20 ml of toluene.
0.66 g (4.9 mmol) of chlorosuccinimide is added, and the mixture is stirred at room temperature for 1 hour. After confirming the completion of the reaction by TLC, the reaction mixture was filtered through a glass filter and concentrated. 0.57 g (1.6 mmol) of the residue and 2,3,4,6-tetra-o-acetyl-D-caractopyranose were added to THF2
The solution was dissolved in 0 ml, and 1.0 ml (1.6 mmol) of a 1.6 M n-butyllithium hexane solution was added at 70 ° C. Raise the reaction solution gradually to 40 ° C over about 2 hours,
The completion of the reaction was confirmed by TLC. The reaction solution was diluted with about 100 ml of chloroform, and washed with aqueous sodium bicarbonate and brine. The organic layer was dried over magnesium sulfate, filtered through celite, concentrated, and purified by silica gel chromatography (developing solvent: toluene: ethyl acetate = 5: 1) to give diphenyl-
2,3,4,6-tetra-o-acetyl-α-D-calactopyranosyl phosphate was obtained in a yield of 0.53 g and a yield of 50%.

【0063】次に、ジフェニル−2,3,4,6−テト
ラ−o−アセチル−α−D−カラクトピラノシルホスフ
ェート0.30mg(0.49mmol)をメタノール
5mlに溶解し、Pd/C(パラジウム炭素)100m
gを加え、水素雰囲気下室温で1時間攪拌した。TLC
で反応の終了を確認後、セライト濾過した後、さらに濃
縮した。残渣をトリエチルアミン:メタノール:脱イオ
ン水=1.5ml:10ml:4.6mlの混合溶媒に
溶解して、室温で1時間攪拌した。TLCで反応の終了
を確認した後、濃縮し、α−D−ガラクトピラノシルホ
スフェート−ジ−n−ブチルアンモニウム塩を収率10
0%で合成した。
Next, 0.30 mg (0.49 mmol) of diphenyl-2,3,4,6-tetra-o-acetyl-α-D-caractopyranosyl phosphate was dissolved in 5 ml of methanol, and Pd / C ( Palladium carbon) 100m
g was added, and the mixture was stirred at room temperature for 1 hour under a hydrogen atmosphere. TLC
After confirming the completion of the reaction by filtration, the mixture was filtered through celite and further concentrated. The residue was dissolved in a mixed solvent of triethylamine: methanol: deionized water = 1.5 ml: 10 ml: 4.6 ml and stirred at room temperature for 1 hour. After confirming the completion of the reaction by TLC, the reaction mixture was concentrated to obtain α-D-galactopyranosyl phosphate-di-n-butylammonium salt in a yield of 10%.
It was synthesized at 0%.

【0064】[0064]

【化8】 Embedded image

【0065】中間体(V)の合成 中間体(IV)117mg(0.253mmol)、カタ
ラーゼ1mg及びガラクトースオキシデース20mgを
0.01Mリン酸緩衝液(pH7.0)20mlに溶解
して、30分振とうした。続いて、α−ナフチルアミン
70.9mg(0.51mmol)、アセトニトリル6
mlを加え、30分振とうした。次に、α−ナフチルア
ミンが全て溶けるまでアセトニトリルを加え、さらに1
時間振とうした。水素化シアノホウ素ナトリウム16.
4mg(0.25mmol)を加え、5分間振とうし、
脱イオン水100mlで希釈し、ジエチルエーテル、ト
ルエンで洗浄した。水層を凍結乾燥し、結晶をセファデ
ックスG−10によるゲル濾過(展開溶媒 脱イオン
水)を行うことにより精製した。さらに、陽イオン交換
樹脂(ダウエックス50W−X8,ピリジニウムイオン
型)カラム(直径0.5cm×長さ5.0cm)に通し
た後、n−ブチルアミンを14.7μl(62μmo
l)加えて濃縮し、ピリジンで3回共沸させ、6−デオ
キシ−6−N−(1−ナフチル)−α−D−ガラクトピ
ラノシルホスフェートを、収量21mg、収率15.3
%で得た。
Synthesis of Intermediate (V) 117 mg (0.253 mmol) of Intermediate (IV), 1 mg of catalase and 20 mg of galactose oxidase were dissolved in 20 ml of 0.01 M phosphate buffer (pH 7.0), and the mixture was dissolved for 30 minutes. Shake. Subsequently, 70.9 mg (0.51 mmol) of α-naphthylamine, acetonitrile 6
ml was added and shaken for 30 minutes. Next, acetonitrile was added until all the α-naphthylamine was dissolved.
Shake time. Sodium cyanoborohydride 16.
Add 4 mg (0.25 mmol), shake for 5 minutes,
Diluted with 100 ml of deionized water and washed with diethyl ether and toluene. The aqueous layer was freeze-dried, and the crystals were purified by gel filtration (developing solvent deionized water) using Sephadex G-10. Furthermore, after passing through a cation exchange resin (Dowex 50W-X8, pyridinium ion type) column (diameter 0.5 cm × length 5.0 cm), 14.7 μl (62 μmo) of n-butylamine was added.
l) Added, concentrated and azeotroped with pyridine three times to give 6-deoxy-6-N- (1-naphthyl) -α-D-galactopyranosyl phosphate in a yield of 21 mg and 15.3.
%.

【0066】[0066]

【化9】 Embedded image

【0067】ウリジン−5’−〔6−デオキシ−6−N
−(1−ナフチル)−α−D−ガラクトピラノシル〕ジ
ホスフェートジナトリウム塩の合成 ウリジン−5’−モノホスホモルホリデート−4−モル
ホリン−N,N−ジシクロヘキシルカルボキシアミジン
塩34mg(50μmol)をピリジンで3回共沸させ
た。残渣と6−デオキシ−6−N−(1−ナフチル)−
α−D−ガラクトピラノシルホスフェ−ト−ジ−n−ブ
チルアンモニウム塩21mg(39μmol)をピリジ
ン約5mlに溶解させて、濃縮を行い、再度ピリジン3
mlに溶解し、一晩攪拌した。脱イオン水約50mlで
希釈し、ジエチルエーテルで洗浄し、水層を凍結乾燥し
た。結晶を陰イオン交換樹脂(DEAE−セファセル、
炭酸水素イオン型)を用いて精製(展開溶媒 0.05
〜0.5M 炭酸水素アンモニウム水溶液)し、さらに
セファデックスG−10を用いて精製した。最後に、陽
イオン交換樹脂(ダウエックス50W−X8,Na
+ 型)を通し、濾液を凍結乾燥し、ウリジン−5’−
〔6−デオキシ−6−N−(1−ナフチル)−α−d−
ガラクトピラノシル〕ジホスフェートジナトリウム塩を
収量9.5mg、収率33.6%で得た。
Uridine-5 '-[6-deoxy-6-N
Synthesis of-(1-naphthyl) -α-D-galactopyranosyl] diphosphate disodium salt Uridine-5′-monophosphomorpholidate-4-morpholine-N, N-dicyclohexylcarboxamidine salt 34 mg (50 μmol) Was azeotroped three times with pyridine. Residue and 6-deoxy-6-N- (1-naphthyl)-
21 mg (39 μmol) of α-D-galactopyranosylphosphate-di-n-butylammonium salt is dissolved in about 5 ml of pyridine, concentrated and concentrated again.
and stirred overnight. The mixture was diluted with about 50 ml of deionized water, washed with diethyl ether, and the aqueous layer was freeze-dried. The crystals are converted to an anion exchange resin (DEAE-Sephacel,
Purification using hydrogencarbonate ion type (developing solvent 0.05)
0.50.5 M aqueous solution of ammonium hydrogen carbonate) and further purified using Sephadex G-10. Finally, a cation exchange resin (Dowex 50W-X8, Na
+ Form), freeze-dry the filtrate and uridine-5'-
[6-Deoxy-6-N- (1-naphthyl) -α-d-
[Galactopyranosyl] diphosphate disodium salt was obtained in a yield of 9.5 mg and a yield of 33.6%.

【0068】NMR分析値 H-1':5.47ppm(d,1H,J1,P =8.0Hz,J1,2=0.0Hz ) H-4':4.99ppm(s,1H,J3,4 =0.0Hz,J4,5=0.0Hz ) 3.73-4.77ppm(m,11H,H-2',H-3',H=5',H-6a',H-6b',H-
1,H-2,H-3,H-4,H-5a,H-5b) 5.57-5.83ppm(m,2H,uridine) 6.98ppm (d,1H, NH-Naph ) 7.33-7.93ppm(m,8H,uridine)
NMR analysis value H-1 ': 5.47 ppm (d, 1H, J1, P = 8.0 Hz, J1, 2 = 0.0 Hz) H-4': 4.99 ppm (s, 1H, J3, 4 = 0.0 Hz) , J4,5 = 0.0Hz) 3.73-4.77ppm (m, 11H, H-2 ', H-3', H = 5 ', H-6a', H-6b ', H-
1, H-2, H-3, H-4, H-5a, H-5b) 5.57-5.83ppm (m, 2H, uridine) 6.98ppm (d, 1H, NH-Naph) 7.33-7.93ppm (m , 8H, uridine)

【0069】中間体(IV)107mg(0.23mmo
l)、カタラーゼ1mg及びガラクトースオキシデース
10mgを0.01Mリン酸緩衝液(pH7.0)20
mlに溶解し、30分振とうした。続いて、1−ナフチ
ルメチルアミン68μl(0.46mmol)、アセト
ニトリル6mlを加え、30分振とうした。次に、1−
ナフチルメチルアミンが全て溶けるまでアセトニトリル
を加え、さらに1時間振とうした。水素化シアノホウ素
ナトリウム15mg(0.23mmol)を加え、5分
間振とうし、脱イオン水100mlで希釈し、ジエチル
エーテル、トルエンで洗浄した。水層を凍結乾燥し、結
晶をセファデックスG−10を用いたゲル濾過(展開溶
媒 脱イオン水)により精製した。さらに、陽イオン交
換樹脂(ダウエックス50W−X8,ピリジニウムイオ
ン型)カラム(直径0.5cm×長さ5.0cm)に通
した後、n−ブチルアミンを14.7μl(62μmo
l)加えて濃縮し、ピリジンで3回共沸させ、下記6−
デオキシ−6−N−(1−ナフチルメチル)−α−D−
ガラクトピラノシルホスフェートを、収量55mg、収
率46%で得た。
Intermediate (IV) 107 mg (0.23 mmol
l), 1 mg of catalase and 10 mg of galactose oxidase were added to a 0.01 M phosphate buffer (pH 7.0) 20
The mixture was dissolved in ml and shaken for 30 minutes. Subsequently, 68 μl (0.46 mmol) of 1-naphthylmethylamine and 6 ml of acetonitrile were added, and the mixture was shaken for 30 minutes. Next, 1-
Acetonitrile was added until all the naphthylmethylamine was dissolved, and the mixture was shaken for another hour. 15 mg (0.23 mmol) of sodium cyanoborohydride was added, shaken for 5 minutes, diluted with 100 ml of deionized water, and washed with diethyl ether and toluene. The aqueous layer was freeze-dried, and the crystals were purified by gel filtration (developing solvent deionized water) using Sephadex G-10. Furthermore, after passing through a cation exchange resin (Dowex 50W-X8, pyridinium ion type) column (diameter 0.5 cm × length 5.0 cm), 14.7 μl (62 μmo) of n-butylamine was added.
1) Add and concentrate, azeotrope three times with pyridine,
Deoxy-6-N- (1-naphthylmethyl) -α-D-
Galactopyranosyl phosphate was obtained in a yield of 55 mg and a yield of 46%.

【0070】[0070]

【化10】 Embedded image

【0071】ウリジン−5’−〔6−デオキシ−6−N
−(1−ナフチルメチル)−α−D−ガラクトピラノシ
ル〕ジホスフェート−ジナトリウム塩の合成 ウリジン−5’−モノホスホモルホリデート−4−モル
ホリン−N,N−ジシクロヘキシルカルボキシアミジン
塩20mg(37μmol)をピリジンで3回共沸させ
た。残渣と6−デオキシ−6−N−(1−ナフチルメチ
ル)−α−D−ガラクトピラノシルホスフェート−ジ−
n−ブチルアンモニウム塩16mg(29μmol)を
ピリジン約5mlに溶解させ、濃縮し、再度ピリジン3
mlに溶解し、一晩攪拌した。約50mlの脱イオン水
で希釈し、ジエチルエーテルで洗浄し、水層を凍結乾燥
した。結晶を陰イオン交換樹脂(DEAE−セファセ
ル、炭酸水素イオン型)で2回精製し(展開溶媒 0.
05〜0.5M炭酸水素アンモニウム水溶液)、さらに
セファデックスG−10で2回精製した。最後に、陽イ
オン交換樹脂(ダウエックス50W−X8,Na+ 型)
を通し、濾液を凍結乾燥し、ウリジン−5’−〔6−デ
オキシ−6−N−(1−ナフチルメチル)−α−D−ガ
ラクトピラノシル〕ジホスフェートジナトリウム塩を得
た。
Uridine-5 '-[6-deoxy-6-N
Synthesis of-(1-naphthylmethyl) -α-D-galactopyranosyl] diphosphate disodium salt 20 mg of uridine-5′-monophosphomorpholidate-4-morpholine-N, N-dicyclohexylcarboxyamidine salt ( (37 μmol) was azeotroped with pyridine three times. The residue and 6-deoxy-6-N- (1-naphthylmethyl) -α-D-galactopyranosyl phosphate-di-
16 mg (29 μmol) of n-butylammonium salt was dissolved in about 5 ml of pyridine, concentrated,
and stirred overnight. Diluted with about 50 ml of deionized water, washed with diethyl ether, and lyophilized the aqueous layer. The crystals were purified twice using an anion exchange resin (DEAE-Sephacel, bicarbonate ion type) (developing solvent 0. 1).
(0.5-0.5 M aqueous solution of ammonium bicarbonate) and further purified twice with Sephadex G-10. Finally, cation exchange resin (Dowex 50W-X8, Na + type)
And the filtrate was freeze-dried to obtain uridine-5 '-[6-deoxy-6-N- (1-naphthylmethyl) -α-D-galactopyranosyl] diphosphate disodium salt.

【0072】H-1': 5.55ppm (d,1H,J1,P =8.0Hz,J1,2
=0.0Hz ) H-3': 4.26ppm (dd,1H ) H-4': 5.08ppm (d,1H,J3,4 =2.9Hz,J4,5=0.0Hz ) H-5': 3.78ppm (m,1H) 4.06-4.13ppm(m,6H,H-2',H-6a',H-6b',リボース) 3.51ppm,4.72ppm (eachs,3H, リボース) 5.63-5.66ppm(m,2H,uridine ) 7.46-8.02ppm(m,8H,Naph,uridine )
H-1 ': 5.55 ppm (d, 1H, J1, P = 8.0 Hz, J1, 2
= 0.0Hz) H-3 ': 4.26ppm (dd, 1H) H-4': 5.08ppm (d, 1H, J3,4 = 2.9Hz, J4,5 = 0.0Hz) H-5 ': 3.78ppm ( m, 1H) 4.06-4.13ppm (m, 6H, H-2 ', H-6a', H-6b ', ribose) 3.51ppm, 4.72ppm (eachs, 3H, ribose) 5.63-5.66ppm (m, 2H , Uridine) 7.46-8.02ppm (m, 8H, Naph, uridine)

【0073】実施例4 糖供与体であるウリジン−5’−〔6−デオキシ−6−
N−(1−ナフチル)−d−D−ガラクトピラノシル〕
ジホスフェートジナトリウム塩2.38μMおよび糖受
容体である3−〔N−(5−(N,N−ジメチルアミ
ノ)−1−ナフタレンスルホニル)アミノ〕プロピル2
−アセトアミド3,4,6−トリ−o−アセチル−2−
デオキシ−β−D−グルコピラノシドを71.42μM
およびα−ラクトアルブミン9.52μg/mlおよび
β1,4−ガラクト−ス転移酵素0.05単位からなる
反応液4.2ml(50mM HEPES緩衝液;pH
7.0)の条件で37℃にて作用させ、反応液を経時的
に蛍光物質を励起させ蛍光強度を測定した。
Example 4 Uridine-5 '-[6-deoxy-6-
N- (1-naphthyl) -d-D-galactopyranosyl]
2.38 μM diphosphate disodium salt and 3- [N- (5- (N, N-dimethylamino) -1-naphthalenesulfonyl) amino] propyl 2 which is a sugar acceptor
-Acetamide 3,4,6-tri-o-acetyl-2-
Deoxy-β-D-glucopyranoside at 71.42 μM
And 4.2 ml of a reaction solution consisting of 9.52 μg / ml of α-lactalbumin and 0.05 unit of β1,4-galactose transferase (50 mM HEPES buffer; pH
Under the condition of (7.0), the reaction was carried out at 37 ° C., and the reaction solution was excited with a fluorescent substance over time to measure the fluorescence intensity.

【0074】該蛍光物質を励起する条件および蛍光強度
の測定については、Luminescence spectorphotometer L
S50B(Perkin Elmer社製)にて励起させ、蛍光測定は3
10〜570nmまで行った。図3のように、ナフチル
基は430nmで放射されその結果ダンシル基が励起さ
れ放射蛍光が530nmで検出された。また、ナフチル
基による430nmの蛍光強度の変化が観察された。
The conditions for exciting the fluorescent substance and the measurement of the fluorescence intensity are described in Luminescence spectorphotometer L.
Excitation with S50B (Perkin Elmer).
It went to 10-570 nm. As shown in FIG. 3, the naphthyl group was emitted at 430 nm, and as a result, the dansyl group was excited and the emitted fluorescence was detected at 530 nm. Further, a change in the fluorescence intensity at 430 nm due to the naphthyl group was observed.

【0075】[0075]

【発明の効果】上述したように、本発明における基質を
用いた測定方法においては、非特異性バックグラウンド
はS/N比を低下させるが、適切な緩衝剤および試薬お
よび蛍光物質の組合せを選択することにより減少あるい
は排除することが出来る。さらに、本発明の測定方法に
よると、ガラクトース転移酵素の生産物を高速液体クロ
マトグラフィなどで分離することなく酵素活性を高感度
で測定することができるので、簡単にしてかつ短時間で
測定できる。
As described above, in the measurement method using the substrate according to the present invention, the non-specific background lowers the S / N ratio, but an appropriate combination of buffer, reagent and fluorescent substance is selected. Can be reduced or eliminated. Further, according to the measurement method of the present invention, the enzyme activity can be measured with high sensitivity without separating the product of galactose transferase by high performance liquid chromatography or the like, so that the measurement can be performed simply and in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の糖受容体誘導体の模式図を示す。FIG. 1 shows a schematic diagram of the sugar receptor derivative of the present invention.

【図2】本発明の糖供与体誘導体の模式図を示す。FIG. 2 shows a schematic diagram of the sugar donor derivative of the present invention.

【図3】ガラクトース転移酵素反応液における蛍光スペ
クトラムを示す。
FIG. 3 shows a fluorescence spectrum in a galactose transferase reaction solution.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 糖ヌクレオチドの糖質の第6級水酸基に
蛍光物質を結合した糖転移酵素反応の糖供与体であるこ
とを特徴とする糖ヌクレオチド誘導体。
1. A sugar nucleotide derivative, which is a sugar donor for a glycosyltransferase reaction in which a fluorescent substance is bonded to a quaternary hydroxyl group of a sugar of a sugar nucleotide.
【請求項2】 糖ヌクレオチドの糖質の第6級水酸基に
蛍光物質を結合した糖転移酵素反応の糖供与体がウリジ
ン−5’−二燐酸ナフチル化ガラクトースである請求項
1記載の糖ヌクレオチド誘導体。
2. The sugar nucleotide derivative according to claim 1, wherein the sugar donor in the glycosyltransferase reaction in which a fluorescent substance is bonded to the carboxy tertiary hydroxyl group of the sugar nucleotide is uridine-5′-diphosphate naphthylated galactose. .
【請求項3】 単糖もしくはオリゴ糖の還元末端にスペ
ーサーを介して蛍光物質を結合したオリゴ糖誘導体ある
いは糖複合体のペプチドもしくは脂質部位のアミノ酸に
蛍光物質を結合した糖転移酵素反応の糖受容体である糖
複合体誘導体と、糖ヌクレオチドの糖質の第6級水酸基
に蛍光物質を結合した糖転移酵素反応の糖供与体である
糖ヌクレオチド誘導体を基質として糖転移反応を行い、
生成した2種の蛍光物質を有する化合物のいずれか一方
の蛍光物質を励起させ、該励起により放出される蛍光波
長により他方の蛍光波長を励起させ、その蛍光強度を測
定することを特徴とする糖転移酵素活性測定方法。
3. A sugar acceptor in a glycosyltransferase reaction in which a fluorescent substance is bonded to an oligosaccharide derivative or a peptide of a sugar complex or an amino acid at a lipid site, wherein the fluorescent substance is bonded to the reducing end of a monosaccharide or oligosaccharide via a spacer. A sugar conjugate derivative that is a body and a sugar nucleotide derivative that is a sugar donor of a glycosyltransferase reaction in which a fluorescent substance is bonded to a quaternary hydroxyl group of the sugar of the sugar nucleotide to perform a sugar transfer reaction as a substrate,
A saccharide characterized in that one of the two compounds having two kinds of fluorescent substances is excited, the other fluorescent wavelength is excited by the fluorescent wavelength emitted by the excitation, and the fluorescence intensity is measured. Method for measuring transferase activity.
【請求項4】 糖転移酵素がβ1,4−ガラクトース転
移酵素である請求項3記載の糖転移酵素活性測定方法。
4. The method according to claim 3, wherein the glycosyltransferase is β1,4-galactosyltransferase.
【請求項5】 単糖あるいはオリゴ糖の還元末端にスペ
ーサーを介して蛍光物質を結合した糖転移酵素反応の糖
受容体である糖誘導体あるいは糖複合体のペプチドある
いは脂質部位のアミノ基に蛍光物質を結合した、糖転移
酵素反応の糖受容体である糖複合体誘導体および糖ヌク
レオチドの糖質の第6級水酸基に蛍光物質を結合した糖
転移酵素反応の糖供与体である糖ヌクレオチド誘導体を
含有する糖転移酵素活性測定用試薬。
5. A fluorescent substance is attached to an amino group of a peptide or a lipid of a saccharide derivative or a saccharide complex which is a saccharide receptor for a glycosyltransferase reaction in which a fluorescent substance is bonded to a reducing end of a monosaccharide or an oligosaccharide via a spacer via a spacer. Containing a glycoconjugate derivative which is a sugar acceptor of a glycosyltransferase reaction and a sugar nucleotide derivative which is a sugar donor of a glycosyltransferase reaction in which a fluorescent substance is bound to a quaternary hydroxyl group of a sugar of a sugar nucleotide. For measuring glycosyltransferase activity.
JP32690298A 1998-11-17 1998-11-17 Substrate for measuring the activity of glycosyltransferase and method for measuring the activity Expired - Fee Related JP4324817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32690298A JP4324817B2 (en) 1998-11-17 1998-11-17 Substrate for measuring the activity of glycosyltransferase and method for measuring the activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32690298A JP4324817B2 (en) 1998-11-17 1998-11-17 Substrate for measuring the activity of glycosyltransferase and method for measuring the activity

Publications (2)

Publication Number Publication Date
JP2000143690A true JP2000143690A (en) 2000-05-26
JP4324817B2 JP4324817B2 (en) 2009-09-02

Family

ID=18193033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32690298A Expired - Fee Related JP4324817B2 (en) 1998-11-17 1998-11-17 Substrate for measuring the activity of glycosyltransferase and method for measuring the activity

Country Status (1)

Country Link
JP (1) JP4324817B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069855A1 (en) * 2003-02-04 2004-08-19 Shionogi Co., Ltd. Novel glycosyl transferase with consideration of activity expression mechanism and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069855A1 (en) * 2003-02-04 2004-08-19 Shionogi Co., Ltd. Novel glycosyl transferase with consideration of activity expression mechanism and method of producing the same
JPWO2004069855A1 (en) * 2003-02-04 2006-05-25 塩野義製薬株式会社 A novel glycosyltransferase inhibitor considering its mechanism of activity and its production method

Also Published As

Publication number Publication date
JP4324817B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
US8193335B2 (en) Click chemistry for the production of reporter molecules
JP5139085B2 (en) Solid-phase oligosaccharide tagging: manipulation techniques for immobilized carbohydrates
US20030060431A1 (en) Base analogues
Kamel et al. Chemo-enzymatic synthesis of α-D-pentofuranose-1-phosphates using thermostable pyrimidine nucleoside phosphorylases
Thiem et al. Chemoenzymatic syntheses of sialyloligosaccharides with immobilized sialidase
EP1140963B1 (en) Functionalised polynucleotide compound, optionally marked and method for detecting a target nucleic acid
Vidal et al. Non-isosteric C-glycosyl analogues of natural nucleotide diphosphate sugars as glycosyltransferase inhibitors
EP2006289B1 (en) Pyrazole-type cyanine dye
JP4324817B2 (en) Substrate for measuring the activity of glycosyltransferase and method for measuring the activity
Bridiau et al. One-pot stereoselective synthesis of β-N-aryl-glycosides by N-glycosylation of aromatic amines: application to the synthesis of tumor-associated carbohydrate antigen building blocks
WO2010016587A1 (en) Method for evaluating specific incorporation of d-glucose into cells
Kamst et al. Chemical synthesis of N-acetylglucosamine derivatives and their use as glycosyl acceptors by the Mesorhizobium loti chitin oligosaccharide synthase NodC
US5109126A (en) 5'[2'(3')-O-(2,4,6-trinitrophenyl) pyprimidine nucleoside]diphosphate 1-glycosides
Bojarová et al. N-Acetylhexosamine triad in one molecule: Chemoenzymatic introduction of 2-acetamido-2-deoxy-β-d-galactopyranosyluronic acid residue into a complex oligosaccharide
JP4015710B2 (en) New pseudoglycolipid
Rejzek et al. Chemical synthesis of UDP-Glc-2, 3-diNAcA, a key intermediate in cell surface polysaccharide biosynthesis in the human respiratory pathogens B. pertussis and P. aeruginosa
US20050239073A1 (en) Fluorescent entity comprising a fluorophore covalently attached to at least one oligonucleotide and comprising at least one functional group, and uses thereof
ES2302605B2 (en) METHOD FOR THE DETECTION OF GLUCOGENO BY FLUORESCENCE.
JP5892750B2 (en) Method for preparing sugar derivative in which N-acetylglucosamine is bonded with α
JP3852625B2 (en) Substrate for measuring glycosyltransferase activity and its use
Prifti et al. Synthesis of fluorescently labelled rhamnosides: probes for the evaluation of rhamnogalacturonan II biosynthetic enzymes
Mariño et al. Facile synthesis of benzyl β-D-galactofuranoside. A convenient intermediate for the synthesis of D-galactofuranose-containing molecules
KR20050065540A (en) Versatile linker compound, ligand and producing method thereof
JP4171088B2 (en) Novel oligosaccharide derivative, reagent for measuring α-amylase activity containing the same, and measurement method
EP3191501A1 (en) Fluorescent carbohydrate conjugates, the preparation method and uses thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050516

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090219

A521 Written amendment

Effective date: 20090331

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090527

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees