JP2000143322A - Explosion-resistant concrete - Google Patents
Explosion-resistant concreteInfo
- Publication number
- JP2000143322A JP2000143322A JP32097698A JP32097698A JP2000143322A JP 2000143322 A JP2000143322 A JP 2000143322A JP 32097698 A JP32097698 A JP 32097698A JP 32097698 A JP32097698 A JP 32097698A JP 2000143322 A JP2000143322 A JP 2000143322A
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- fiber
- explosion
- fibers
- organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/06—Macromolecular compounds fibrous
- C04B16/0616—Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B16/0625—Polyalkenes, e.g. polyethylene
- C04B16/0633—Polypropylene
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/06—Macromolecular compounds fibrous
- C04B16/0616—Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B16/0641—Polyvinylalcohols; Polyvinylacetates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Building Environments (AREA)
- Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は建築物やトンネル
等、火災を受ける可能性のある構造物に用いる火災時の
耐爆裂性に優れたコンクリートに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to concrete having excellent fire explosion resistance for use in structures such as buildings and tunnels that may be subject to fire.
【0002】[0002]
【従来の技術】コンクリートにおける水と結合材、即
ち、セメント、スラグ、フライアッシュ、シリカフュー
ム等、コンクリート中で水和反応する材料、との比率を
小さくすると高強度のコンクリートが得られる。コンク
リートを高強度にすることにより、建造物の柱の断面寸
法を小さくしたり、建築物の高層化が図れる等さまざま
な利益が得られる。しかしながら、水の含有量を低下さ
せてコンクリートを高強度化すると、火災時等高温環境
下で、水蒸気圧や熱応力等により表面のコンクリートが
爆裂し易くなり、種々の問題を生ずる可能性のあること
が知られている。このような高強度コンクリートを用い
た建築物の爆裂を抑制するために、次の技術が知られて
いる。特開平9−13531号には柱の周囲の、火災を
直接受ける表面近傍に強度の低いコンクリートを使用し
て爆裂を抑制するとともに、中央部には高強度コンクリ
ートを利用して、外力と火災に対して高い抵抗性を保持
する構造物が記載されている。2. Description of the Related Art A high-strength concrete can be obtained by reducing the ratio of water in a concrete and a binder, that is, a material that undergoes a hydration reaction in the concrete, such as cement, slag, fly ash, silica fume and the like. By increasing the strength of the concrete, various benefits can be obtained, such as reducing the cross-sectional dimensions of the columns of the building and increasing the height of the building. However, when the content of water is reduced to increase the strength of the concrete, the concrete on the surface tends to explode due to steam pressure, thermal stress, and the like in a high-temperature environment such as a fire, which may cause various problems. It is known. The following technology is known to suppress the explosion of a building using such high-strength concrete. Japanese Patent Application Laid-Open No. Hei 9-13531 discloses the use of low-strength concrete in the vicinity of pillars and in the vicinity of a surface directly receiving a fire to suppress explosion, while using high-strength concrete in the center to prevent external forces and fire. Structures are described that retain high resistance to them.
【0003】また、構造体に用いるコンクリートそのも
のではないが、建物の内外装用のパネルなどに使用する
高強度の押出し成型板として、例えば、特公昭57−2
0126号には、長さ5〜20mm、太さ1〜25デニ
ールのアセテート、またはレーヨン繊維をセメントアス
ベスト重量の0.5〜2.0%混入した押出し成型板が
記載され、火災時に繊維が蒸発して細孔を形成し、この
部分から水蒸気を逃すことにより爆裂を防止する旨の開
示がある。さらに、特開昭59−1284号には、中空
のポリプロピレン繊維を混入し、この繊維の孔から蒸気
を逃すことにより、爆裂を防止する方法が、同じく、特
公昭62−12197号には、パーライトやパルプを混
合することにより、空隙率30〜60%のアスベストセ
メント中の1〜5μmの細孔を空隙の10%以上確保
し、爆裂を防止する方法が記載されている。これらは、
いずれもコンクリートの耐爆裂性にある程度の効果を有
するが、特開平9−13531のように、高強度コンク
リート部材の表面に低強度のコンクリートを使用する方
法は、建築物の柱等の断面積を必然的に大きくせざるを
得ず、高強度コンクリートを利用する効果を減じてしま
うことになり、さらに、少なくとも二種類のコンクリー
トを使用することで、複雑な施工法となり、著しくコス
トが高くなるという問題があった。[0003] Further, although it is not concrete itself used for a structure, as a high-strength extruded plate used for panels for interior and exterior of buildings, for example, Japanese Patent Publication No. Sho 57-2
No. 0126 describes an extruded plate in which acetate or rayon fiber having a length of 5 to 20 mm and a thickness of 1 to 25 denier is mixed with 0.5 to 2.0% of the weight of cement asbestos. There is a disclosure that pores are formed in such a way that water vapor escapes from this portion to prevent explosion. JP-A-59-1284 discloses a method of preventing explosion by mixing hollow polypropylene fibers and letting steam escape from the holes of the fibers. A method is described in which a mixture of pulp and pulp secures pores of 1 to 5 μm in asbestos cement having a porosity of 30 to 60% to 10% or more of the voids to prevent explosion. They are,
Each of them has a certain effect on the explosion resistance of concrete, but the method of using low-strength concrete on the surface of a high-strength concrete member, as disclosed in Japanese Patent Application Laid-Open No. 9-13531, requires that Inevitably, the effect of using high-strength concrete must be increased, and the use of at least two types of concrete results in a complicated construction method and significantly increases costs. There was a problem.
【0004】また、特公昭57−20126号や特開昭
59−1284号等のように、コンクリートに繊維など
の充填材を混入する方法は、高強度のコンクリートに適
用可能であるが、爆裂を抑制する効果がある有効量を混
入するとコンクリートの流動性が低下し、施工現場で型
枠中に打設するのが困難になる。特公昭62−1219
7号のようにアスベストセメント中に空隙を確保する技
術を高強度コンクリートに適用した場合、多量の空隙を
形成することにより必然的に強度が低下してしまい、高
強度コンクリートの本質的な目的が達成できなくなる。A method of mixing a filler such as fiber into concrete as disclosed in JP-B-57-20126 and JP-A-59-1284 is applicable to high-strength concrete. If an effective amount having a suppressing effect is mixed, the fluidity of the concrete is reduced, and it is difficult to place the concrete in a formwork at a construction site. Tokiko 62-1219
When technology to secure voids in asbestos cement as in No. 7 is applied to high-strength concrete, strength is inevitably reduced by forming a large amount of voids, and the essential purpose of high-strength concrete is Cannot be achieved.
【0005】もともと、高強度コンクリートは、セメン
ト等の結合材に対する水の量の比率を小さくして高い強
度を達成しているが、水結合材比の低下とともに、塑性
粘度が大きくなり、作業性が低下することから、高強度
セメント用の分散剤としての界面活性剤の開発や、ガラ
ス質シリカの超微粒子であるシリカフュームの利用等に
より所要の流動性を確保しているものである。したがっ
て、爆裂に対する抵抗性を確保するために、繊維を多量
に混入して、流動性が低下することは実用上も好ましく
なく、繊維の混入が爆裂防止に有効であるとしても、高
強度コンクリートの流動性の低下を最小限に抑制できる
ものでなければならない。[0005] Originally, high-strength concrete achieves high strength by reducing the ratio of the amount of water to binder such as cement. However, as the ratio of water binder decreases, the plastic viscosity increases and the workability increases. Therefore, the required fluidity is ensured by the development of a surfactant as a dispersant for high-strength cement and the use of silica fume which is ultrafine particles of vitreous silica. Therefore, in order to ensure resistance to explosion, it is not preferable in practice to mix a large amount of fiber to lower the fluidity, and even if fiber incorporation is effective in preventing explosion, high-strength concrete It must be able to minimize the decrease in liquidity.
【0006】[0006]
【発明が解決しようとする課題】上記のように高強度コ
ンクリートの爆裂を防止しようとする現状の技術は、各
々、ある程度の効果を有する反面、高強度コンクリート
に適用した場合には種々の課題を有している。本発明
は、このような現状を考慮し、流動性を低下させること
なく、爆裂を抑制することができ、経済性の高い高強度
コンクリートを提供しようとするものである。The current techniques for preventing explosion of high-strength concrete as described above have some effects, but have various problems when applied to high-strength concrete. Have. The present invention has been made in view of such a current situation, and aims to provide a highly economical high-strength concrete that can suppress explosion without lowering fluidity.
【0007】[0007]
【課題を解決するための手段】本願発明者らは、上記問
題に鑑みて、有機材料からなる繊維を混入する技術が爆
裂防止に有効であり、かつ、経済性が高い点に着目し、
流動性の低下を抑制し、高強度コンクリートに適用する
効果的な手段を種々検討のうえ、本発明を完成した。即
ち、繊維を混入した時の流動性の低下を抑制するために
は、少量の繊維で、爆裂を防止する。すなわち、爆裂防
止効果の高い繊維を使うことが有効である。本発明者ら
は、従来知られている有機繊維材料を検討し、繊維を5
00℃に加熱した時の蒸発量の違いによって爆裂防止効
果に大きな違いがあることを見出した結果に基づき、高
温度条件下において効率よく空隙を形成しうる特定の材
料を用いることにより前記目的を達成しうることを見出
したものである。Means for Solving the Problems In view of the above problems, the present inventors have focused on the point that the technique of mixing fibers made of an organic material is effective in preventing explosion and is highly economical.
The present invention was completed after various studies on effective means for suppressing a decrease in fluidity and applying to high-strength concrete. That is, in order to suppress a decrease in fluidity when fibers are mixed, explosion is prevented with a small amount of fibers. That is, it is effective to use a fiber having a high explosion prevention effect. The present inventors have studied conventionally known organic fiber materials,
Based on the finding that there is a large difference in the explosion prevention effect due to the difference in the amount of evaporation when heated to 00 ° C., the above object is achieved by using a specific material that can efficiently form voids under high temperature conditions. It has been found that it can be achieved.
【0008】即ち、本発明の耐爆裂性コンクリートは、
500℃に加熱した時の重量残存率が30%以下である
有機材料よりなる、直径5〜100μm、長さ5〜40
mmの有機繊維を0.02〜0.2容量%を含有し、水
結合材比が35%以下であることを特徴とする。このよ
うに500℃に加熱した時の重量残存率(非蒸発量) が
30%以下の、重量残存率が小さい有機材料からなる有
機繊維を用いることにより、繊維の添加量が少量であっ
ても速やかに減容して有効な空孔を形成しうるため、コ
ンクリートの流動性を低下させない程度の有機繊維の添
加量によっても有効な爆裂防止性を達成しうる。That is, the explosion-resistant concrete of the present invention comprises:
Made of an organic material having a weight retention rate of 30% or less when heated to 500 ° C., having a diameter of 5 to 100 μm and a length of 5 to 40.
It is characterized by containing 0.02 to 0.2% by volume of organic fibers having a water binder ratio of 35% or less. By using an organic fiber made of an organic material having a small weight residual ratio (non-evaporation amount) of 30% or less when heated to 500 ° C., even if the amount of the added fiber is small, Since an effective pore can be formed by rapidly reducing the volume, an effective explosion-proof property can be achieved even with the added amount of the organic fiber which does not decrease the fluidity of the concrete.
【0009】[0009]
【発明の実施の形態】本発明において、コンクリートに
添加する有機繊維には、500℃に加熱した時の重量残
存率が30%以下である有機材料により形成されたもの
を用いる。通常、耐爆裂性コンクリートに加熱時に水蒸
気を逃がして爆裂を防止するための空孔を形成する材料
としては、融点の低い有機材料が好ましいとされている
が、本発明者らの検討の結果、単に融点が低いのみでは
優れた耐爆裂性を必ずしも発現せず、この特性は500
℃に加熱した時の重量残存率に関連することが見いださ
れた。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, as an organic fiber to be added to concrete, a fiber formed of an organic material having a residual weight ratio of 30% or less when heated to 500 ° C. is used. Normally, as a material for forming pores for preventing explosion by releasing steam when heated to explosion-resistant concrete, an organic material having a low melting point is preferable, but as a result of a study by the present inventors, Simply having a low melting point does not necessarily develop excellent explosion resistance.
It was found to be related to the residual weight when heated to ° C.
【0010】各種有機繊維における500℃に加熱した
時の重量残存率には、10〜20%のものから80%程
度のものまで、各種あるが、重量残存率の大きい繊維を
使用した場合には、火災時に、繊維の蒸発によって形成
される爆裂防止用のコンクリート中の水蒸気の逃し穴が
十分形成されず、爆裂防止に対する繊維の効果は、大き
くそこなわれてしまう。これに対して、500℃に加熱
した時の重量残存率の小さい繊維は、火災時によく蒸発
し、効果的に水蒸気の逃し穴を形成することができ、少
ない繊維で有効に爆裂を防止できることになる。500
℃に加熱した時の重量残存率が30%を上回る場合には
繊維の蒸発による水蒸気逃し穴の形成が不十分で耐爆裂
性が低下し、これが30%以下の場合には、繊維の蒸発
により蒸発前の繊維体積に匹敵する容積の大きな空孔が
形成され、その空孔が水蒸気逃し穴としてよく機能し、
好ましい耐爆裂性を発現する。When various types of organic fibers are heated to 500 ° C., there are various types of the residual weight from 10 to 20% to about 80%. In the event of a fire, the holes for water vapor in the concrete for preventing explosion formed by evaporation of the fiber are not sufficiently formed, and the effect of the fiber on explosion prevention is greatly impaired. On the other hand, the fibers having a small weight retention rate when heated to 500 ° C. evaporate well in the event of a fire, can effectively form a water vapor escape hole, and can effectively prevent explosion with a small number of fibers. Become. 500
If the residual weight ratio at the time of heating to 30 ° C. exceeds 30%, the formation of water vapor escape holes due to the evaporation of the fiber is insufficient, and the explosion resistance is reduced. Large pores with a volume comparable to the fiber volume before evaporation are formed, and the pores function well as water vapor release holes,
It develops favorable explosion resistance.
【0011】このようにコンクリートマトリックス中に
存在する各繊維が加熱後は効果的な空孔を速やかに形成
するため、繊維使用量を少なくすることができ、繊維の
混入がコンクリートの流動性に及ぼす影響も小さくな
り、施工性のよい高強度コンクリートを経済的に実現で
きることになる。これらの有機繊維を構成する有機材料
としては、火災時の加熱により分解又は溶融して体積の
急激な減少を起こす天然、半合成あるいは合成の有機材
料が用いられる。As described above, since each fiber present in the concrete matrix quickly forms effective pores after heating, the amount of fibers used can be reduced, and the mixing of fibers affects the fluidity of concrete. The influence is reduced, and high-strength concrete with good workability can be economically realized. As an organic material constituting these organic fibers, a natural, semi-synthetic or synthetic organic material which is decomposed or melted by heating in a fire to cause a sharp decrease in volume is used.
【0012】次に、500℃に加熱した時の重量残存率
の測定方法について説明する。まず、有機繊維の気乾質
量を測定して6〜7mgを秤量し、示差走査熱分析法に
より測定を行う。具体的な測定条件としては、示差走査
熱量天秤(TAS200、理学電気社製)を用いて、ア
ルミナ製サンプルホルダーにて、温度上昇率:5.0℃
/分、測定時間間隔:0.6秒にて測定する。Next, a method for measuring the weight residual ratio when heated to 500 ° C. will be described. First, the air-dried mass of the organic fiber is measured, 6 to 7 mg is weighed, and the measurement is performed by differential scanning calorimetry. As specific measurement conditions, a differential scanning calorimeter (TAS200, manufactured by Rigaku Denki Co., Ltd.) was used, and the temperature rise rate was 5.0 ° C. in an alumina sample holder.
/ Min, measurement time interval: 0.6 seconds.
【0013】有機材料との関係でいえば、比較的溶融温
度の低い繊維であるポリプロピレン、ポリ塩化ビニル、
ビニロン、アクリル繊維等を前記条件で測定すると、ポ
リプロピレン、ビニロンはそれぞれ重量残存率が14
%、18%であり、本発明の要件に適合するが、ポリ塩
化ビニル、アクリル繊維は重量残存率が30%を超える
ため、本発明の繊維としては適さない。本発明の有機繊
維を構成する天然、半合成あるいは合成の有機材料とし
ては、加熱により溶融又は蒸発して急激な体積の減少が
起こり、特に500℃に加熱した時の重量残存率が30
%以下であることを要するため、公知の合成樹脂類、天
然繊維、合成繊維及び半合成繊維などから前記の条件を
考慮して選択する必要があり、例えば、ポリプロピレン
系、ビニロン系、ビニリデン系などの材料が好ましく挙
げられる。In relation to organic materials, fibers having relatively low melting temperatures, such as polypropylene and polyvinyl chloride,
When vinylon, acrylic fiber and the like were measured under the above conditions, the residual weight ratio of polypropylene and vinylon was 14
% And 18%, which satisfies the requirements of the present invention. However, polyvinyl chloride and acrylic fibers are not suitable as the fibers of the present invention because the residual weight ratio exceeds 30%. As a natural, semi-synthetic or synthetic organic material constituting the organic fiber of the present invention, the volume is rapidly reduced by melting or evaporating by heating, and particularly, the weight residual ratio when heated to 500 ° C. is 30%.
%, It is necessary to select from known synthetic resins, natural fibers, synthetic fibers, semi-synthetic fibers and the like in consideration of the above conditions. For example, polypropylene-based, vinylon-based, vinylidene-based and the like The following materials are preferred.
【0014】次に、有機繊維の形状について検討するた
めに、本発明者らはコンクリートモデルを用いて評価を
行った。有機繊維の形状は有機繊維の蒸発により形成さ
れる空孔の形状に直接関連するが、その空孔、即ち、加
熱時の耐爆裂性をもたらす水蒸気逃し穴の作用は、ここ
で検討する繊維の径、さらには、繊維の混入量、コンク
リートの強度等によって効果に違いが生じる。コンクリ
ート中に分散した繊維(直径df )が図1(A)に示す
ようにかぶりコンクリート部で均一に被覆され、平行に
分布しているとモデル化すると、1本の繊維によって火
災時に形成される穴には、図1(B)に示すような六角
形で近似される筒状のコンクリート部分(有効コンクリ
ート柱と呼ぶことにする) からの水蒸気が逃げてくるこ
とになる。この水蒸気の移動を図1(C)に矢印で示
す。このように、繊維によって形成された空孔はかぶり
コンクリート部の領域からの水蒸気を穴から外に逃がす
ことになる。六角形の有効コンクリート柱の直径をdc
(mm)、繊維の直径をdf (mm)、繊維の混入量を
Vf (cm3 /m3 )とすると、dc 、df 、Vr の間
には、下記式(1)の関係があることが算定される。Next, in order to study the shape of the organic fiber, the present inventors evaluated using a concrete model. Although the shape of the organic fibers is directly related to the shape of the pores formed by the evaporation of the organic fibers, the effect of the pores, that is, the water vapor vent holes that provide resistance to explosion upon heating, is considered to be the shape of the fibers considered here. The effect varies depending on the diameter, the amount of fibers mixed in, the strength of the concrete, and the like. When the fibers (diameter d f ) dispersed in the concrete are modeled as being uniformly covered with the cover concrete portion and distributed in parallel as shown in FIG. 1 (A), the fibers are formed by a single fiber in a fire. Water vapor from a cylindrical concrete portion (referred to as an effective concrete column) approximated by a hexagon as shown in FIG. This movement of water vapor is indicated by an arrow in FIG. In this way, the holes formed by the fibers allow the water vapor from the area of the cover concrete portion to escape from the holes. The diameter of a hexagonal effective concrete column is d c
(Mm), the diameter of the fiber is d f (mm), and the mixing amount of the fiber is V f (cm 3 / m 3 ), and d c , d f , and V r are represented by the following formula (1). It is calculated that there is a relationship.
【0015】[0015]
【数1】 (Equation 1)
【0016】式(1)のdc とVf の関係をVf を混入
率(%)に変換し、繊維の直径をパラメーターにして、
プロットすると図2のようになる。図2は有効コンクリ
ート柱の直径dc (mm)と繊維のコンクリート中への
混入量Vf (cm3 /m3 )との関係を、繊維の直径ご
とに示したグラフである。図2より、繊維の混入率が多
くなる程、有効コンクリート柱の直径が小さくなるこ
と、及び、繊維の直径が小さくなる程、有効コンクリー
ト柱の直径が小さくなることがわかる。図1にモデル図
を用いて説明したように、有効コンクリート柱の直径が
小さい程、繊維の穴1つで水蒸気を集めてくる領域が狭
く、従って、爆裂防止効果が大きいことになる。すなわ
ち、繊維の混入率が多い程、繊維の直径が小さい程、爆
裂防止に効果的なことがわかる。The relationship between d c and V f in the equation (1) is converted from V f into a mixing ratio (%), and the diameter of the fiber is used as a parameter,
The plot is as shown in FIG. FIG. 2 is a graph showing the relationship between the diameter d c (mm) of the effective concrete column and the amount V f (cm 3 / m 3 ) of fiber mixed into the concrete for each fiber diameter. From FIG. 2, it can be seen that the diameter of the effective concrete column decreases as the fiber mixing ratio increases, and that the diameter of the effective concrete column decreases as the fiber diameter decreases. As described with reference to the model diagram in FIG. 1, the smaller the diameter of the effective concrete column, the smaller the area for collecting water vapor at one fiber hole, and thus the greater the explosion prevention effect. That is, it is understood that the larger the fiber mixing ratio and the smaller the fiber diameter, the more effective in preventing explosion.
【0017】爆裂防止に必要な有効コンクリート柱の直
径は、コンクリートの強度、すなわち、組織の緻密さに
よって1つの繊維穴に水蒸気を集める速度が異なるた
め、強度が大きくなる程小さくなる。本発明者らの行っ
た鉄筋コンクリート柱の載荷加熱実験によれば、3時
間、強度の1/3の力を保持(通常の長期荷重の最大
値)するのに必要な繊維の量を、繊維径が20μmのポ
リプロピレン繊維を用いて、圧縮強度の異なるコンクリ
ートに混入して評価したところ、コンクリートの圧縮強
度800kgf/cm2 の場合には、必要な繊維混入量
は0.01〜0.02容量%、1000kgf/cm2
の場合には、0.05容量%程度であった。これを図2
のグラフに当てはめて検討するに、爆裂防止に必要な有
効コンクリート柱の直径は、コンクリートの圧縮強度が
800kgf/cm2 の場合で2.0〜2.5mm程
度、1000kgf/cm2 の場合で1.0mm前後と
推定される。The diameter of the effective concrete column required for preventing explosion is reduced as the strength increases, because the strength of the concrete, that is, the speed of collecting water vapor in one fiber hole differs depending on the denseness of the structure. According to the loading heating experiment of the reinforced concrete column performed by the present inventors, the amount of fiber required to maintain a force of 1/3 of the strength (the maximum value of a normal long-term load) for 3 hours is determined by the fiber diameter. Was mixed with concrete having different compressive strengths using polypropylene fibers of 20 μm and evaluated. When the compressive strength of concrete was 800 kgf / cm 2 , the necessary fiber mixing amount was 0.01 to 0.02% by volume. , 1000kgf / cm 2
In this case, the content was about 0.05% by volume. Figure 2
To consider fitting the graph, the diameter of the effective concrete column required explosion prevention, compressive strength of concrete 2.0~2.5mm about in the case of 800 kgf / cm 2, in the case of 1000 kgf / cm 2 1 It is estimated to be around 0.0 mm.
【0018】本発明においては、高強度コンクリートの
耐爆裂性向上の観点から、少なくともコンクリートの圧
縮強度が800kgf/cm2 程度以上であることを考
慮して、図1にモデル図で示した有効コンクリート柱の
直径(dc )が2.0mm以下の領域で選定することが
必要であることがわかる。爆裂防止に適した繊維の直径
を有効コンクリート柱の直径を考慮して選択すれば、繊
維の直径は5〜100μmであることが好ましい。5μ
m未満であると水蒸気の経路として好ましい空孔を形成
し難く、100μmを超えると高密度コンクリートに対
して十分な耐爆裂性を発現し難い。In the present invention, from the viewpoint of improving the explosion resistance of high-strength concrete, considering that at least the compressive strength of the concrete is about 800 kgf / cm 2 or more, the effective concrete shown in the model diagram in FIG. It can be seen that it is necessary to select a column in a region where the diameter (d c ) of the column is 2.0 mm or less. If the diameter of the fiber suitable for preventing explosion is selected in consideration of the diameter of the effective concrete column, the diameter of the fiber is preferably 5 to 100 μm. 5μ
If it is less than m, it is difficult to form pores which are preferable as a water vapor passage, and if it is more than 100 μm, it is difficult to exhibit sufficient explosion resistance to high-density concrete.
【0019】また、繊維の長さは、5〜40mmである
ことが好ましい。5mm未満であると爆裂防止効果が不
十分であり、繊維長が40mmを上回るようになると、
繊維の分散が悪くなり、均一なコンクリートを得難い。
これらの有機繊維は、コンクリート中で凝集することな
く、それぞれが均一に分散が可能であれば、モノフィラ
メントでもストランド状の繊維でも使用することができ
る。高強度コンクリートの爆裂防止に必要な繊維の混入
量はコンクリートの体積に対して0.02〜0.2容量
%、すなわち、1m3 当たり0.2〜2リットルである。本
発明の有機繊維の如く、高温で速やかに蒸発がおこり、
有効な空隙を形成しやすい繊維を用いた場合でも、0.
02容量%すなわち0.2リットル/m3 未満では爆裂防止
効果が不十分であり、0.2容量%すなわち2リットル/m
3 以上混入すると、コンクリートの流動性が低下するた
め、いずれも好ましくない。The length of the fiber is preferably 5 to 40 mm. When it is less than 5 mm, the effect of preventing explosion is insufficient, and when the fiber length exceeds 40 mm,
Dispersion of the fibers is poor, making it difficult to obtain uniform concrete.
As long as these organic fibers can be uniformly dispersed without agglomeration in concrete, either monofilaments or strand fibers can be used. The amount of fibers required to prevent explosion of high-strength concrete is 0.02 to 0.2% by volume based on the volume of concrete, that is, 0.2 to 2 liters per m 3 . Like the organic fibers of the present invention, evaporation occurs quickly at high temperatures,
Even when a fiber that easily forms an effective void is used, it is preferable to use a fiber having an effective void.
If it is less than 02% by volume, that is, less than 0.2 l / m 3 , the effect of preventing explosion is insufficient, and 0.2% by volume, ie, 2 l / m 3
Mixing 3 or more is not preferable because the fluidity of the concrete decreases.
【0020】このように本発明の耐爆裂性コンクリート
においては、混入した繊維の熱収縮、蒸発により連続し
た空隙が形成され、そこを次々に水蒸気が伝わることに
より効率的に水蒸気を外に逃がして爆裂を防止すること
ができる。本発明に係る有機繊維は柔軟性であり、コン
クリート中に分散されても、その流動性に与える影響は
少ない。この繊維を充填材としてコンクリートに分散す
ることにより、火災時に発生するコンクリート中の水蒸
気を外部へ逃がすことで、コンクリートの爆裂を効果的
に防止するものであるが、コンクリートの水結合材比が
35%を上回る通常のコンクリートの場合には火災時に
コンクリートに生ずる爆裂の影響が問題にならないレベ
ルであり、この発明は、水結合材比が35%以下の高強
度コンクリートに適用して特に有用であるといえる。As described above, in the explosion-resistant concrete of the present invention, continuous voids are formed by the heat shrinkage and evaporation of the mixed fibers, and the steam is transmitted through the voids one after another to efficiently escape the steam. Explosion can be prevented. The organic fibers according to the present invention are flexible and have little effect on fluidity even when dispersed in concrete. By dispersing this fiber as a filler in concrete, the water vapor in the concrete generated at the time of fire is released to the outside, thereby effectively preventing the explosion of the concrete. % In the case of ordinary concrete in which the effect of explosion occurring in the concrete at the time of a fire is not a problem. The present invention is particularly useful when applied to high-strength concrete having a water binder ratio of 35% or less. It can be said that.
【0021】[0021]
【実施例】以下に、実施例を挙げて本発明を具体的に説
明するが、本発明はこの実施例に制限されるものではな
い。 (実施例1〜2) (1)コンクリートの材料 セメント:普通ポルトランドセメント 細骨材 :山砂(比重2.55、吸水率1.54%)と硬質砂岩 砕砂(比重2.65、吸水率1.26%)を6:4に混合 粗骨材 :硬質砂岩砕石(比重2.6、吸水率1.12%) 混和材 :粉体シリカフューム(比重2.2、比表面積14m2 /g、 SiO2 含有量94%) 混和剤 :ポリカルボン酸塩系高性能AE減水剤(商品名:チューポールHP −11、竹本油脂社製) (2)コンクリートの調合 下記表1に示す水結合材比が25%の高強度コンクリー
トを基材として実験した。EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples. (Examples 1 and 2) (1) Concrete material Cement: ordinary Portland cement Fine aggregate: mountain sand (specific gravity 2.55, water absorption 1.54%) and hard sandstone crushed sand (specific gravity 2.65, water absorption 1) .26%) in a ratio of 6: 4 Coarse aggregate: crushed hard sandstone (specific gravity 2.6, water absorption 1.12%) Admixture: powdered silica fume (specific gravity 2.2, specific surface area 14 m 2 / g, SiO) (2 content 94%) Admixture: Polycarboxylate-based high-performance AE water reducing agent (trade name: Tupole HP-11, manufactured by Takemoto Yushi Co., Ltd.) (2) Mixing of concrete An experiment was performed using 25% high-strength concrete as a base material.
【0022】[0022]
【表1】 [Table 1]
【0023】(3)有機繊維 ポリプロピレン繊維で、直径20μm、長さ19mm、
500℃に加熱した時の重量残存率が14%のものを用
いた。 (4)繊維の混入量 前記有機繊維を前記で調製したコンクリート中に0.0
5容量%、0.10容量%、0.20容量%、0.30
容量%の条件で混入した。 (5)コンクリートの製造 100リットルパン型強制練りミキサーを使用した。1回の
練り量を60リットルとした。砂、セメント、シリカフュー
ムを15秒空練りした後、水と混和剤を投入し1分練混
ぜた後、粗骨材を投入した。粗骨材投入後の練混ぜ時間
を2分とし、最初の30秒の間で繊維を混入した。得ら
れたコンクリートのうち、有機繊維の混入量が0.05
容量%のものを実施例1、0.1容量%のものを実施例
2、0.2容量%のものを実施例3、0.3容量%のも
のを実施例4とした。(3) Organic fiber A polypropylene fiber having a diameter of 20 μm, a length of 19 mm,
The one having a residual weight ratio of 14% when heated to 500 ° C. was used. (4) Incorporation amount of fiber The organic fiber was added to the concrete prepared above in a quantity of 0.0
5% by volume, 0.10% by volume, 0.20% by volume, 0.30%
It was mixed under the condition of volume%. (5) Production of concrete A 100-liter pan-type forced kneading mixer was used. The amount of one kneading was 60 liters. After sand, cement and silica fume were kneaded for 15 seconds, water and an admixture were added and kneaded for 1 minute, and then coarse aggregate was added. The mixing time after the addition of the coarse aggregate was 2 minutes, and the fibers were mixed during the first 30 seconds. In the obtained concrete, the mixing amount of the organic fiber is 0.05
The one with 0.1% by volume was designated as Example 2, the one with 0.1% by volume was designated as Example 2, the one with 0.2% by volume was designated as Example 3, and the one with 0.3% by volume was designated as Example 4.
【0024】(6)コンクリートの流動性試験 スランプフロー60cmのコンクリートのLフロー速度
を、特許登録第2589757号に記載の方法により測
定し、繊維の混入が流動性に及ぼす影響を検討した。L
フロー速度の高いものが、塑性粘度が小さく、流動性が
良い。結果を下記表2に示した。また、有機繊維を全く
混入しなかったものをコントロール(比較例1)とし
て、同様の測定を行った結果も表2に併記した。この流
動性と繊維の混入率との関係を図3のグラフに示した。 (7)耐火試験 水蒸気が蒸発しないよう、封かん状態で養生したφ15
×30cm試験体の封かんを解いてJIS A1304
に定められた標準加熱曲線に従って加熱し、加熱前後の
試験体の重量を測定した。この試験では、爆裂したもの
は重量が軽くなり、加熱前後の重量の差が大きくなる。
従って、重量変化(重量減少率)の数値が小さいものを
耐爆裂性に優れていると評価した。結果を下記表2に示
した。この重量減少率と繊維の混入率との関係を図4の
グラフに示した。(6) Fluidity test of concrete The L-flow rate of concrete having a slump flow of 60 cm was measured by the method described in Japanese Patent No. 2,589,575, and the effect of mixing of fibers on fluidity was examined. L
Those having a high flow rate have low plastic viscosity and good fluidity. The results are shown in Table 2 below. Table 2 also shows the results of the same measurement with the control (Comparative Example 1) in which no organic fiber was mixed. The relationship between the fluidity and the fiber mixing ratio is shown in the graph of FIG. (7) Fire resistance test φ15 cured in a sealed state to prevent evaporation of water vapor
JIS A1304 by unsealing the × 30cm specimen
The specimen was heated according to the standard heating curve defined in the above section, and the weight of the specimen before and after the heating was measured. In this test, the exploded material becomes lighter in weight and the difference in weight before and after heating becomes larger.
Therefore, those having a small weight change (weight loss ratio) were evaluated as having excellent explosion resistance. The results are shown in Table 2 below. The relationship between the weight loss rate and the fiber mixing rate is shown in the graph of FIG.
【0025】(比較例1〜4)前記実施例1において、
混入する繊維を前記有機繊維に換えて、直径17μm、
長さ20mm、500℃に加熱した時の重量残存率が7
6%のアクリル繊維を使用し、混入量を0.05容量
%、0.1容量%、0.2容量%、0.3容量%とした
他は、実施例1と同様にしてコンクリートを製造し、そ
れぞれ比較例1〜4とした。比較例1〜4のコンクリー
トについても、実施例1と同様に、前記(6)コンクリ
ートの流動性試験及び(7)耐火試験を行った。結果を
表2に示した。(Comparative Examples 1 to 4)
The fiber to be mixed is replaced with the organic fiber, and the diameter is 17 μm.
Length of 20 mm, weight residual ratio when heated to 500 ° C is 7
Concrete was manufactured in the same manner as in Example 1 except that 6% of acrylic fiber was used, and the mixing amounts were 0.05% by volume, 0.1% by volume, 0.2% by volume, and 0.3% by volume. And Comparative Examples 1 to 4, respectively. Similarly to Example 1, the concretes of Comparative Examples 1 to 4 were subjected to the (6) fluidity test of the concrete and (7) the fire resistance test. The results are shown in Table 2.
【0026】[0026]
【表2】 [Table 2]
【0027】上記表2及び図3のグラフより実施例1乃
至4では、繊維を混入しないコンクリート(図3で繊維
混入量=0の値)に比較して流動性の低下は少なく、実
用上問題のないレベルであることがわかる。また、表2
及び図4のグラフに明らかなように、耐火試験において
は、実施例1〜4の重量変化が、繊維を混入しないコン
クリート(図4で繊維混入量=0の値)に比較して著し
く低下しており、有機繊維0.05容量%の混入量で、
十分に爆裂を防止する効果があることがわかる。一方、
本発明の範囲外の有機繊維を混入した比較例1〜4で
は、耐火試験における重量変化は無混入と変わらず、爆
裂防止効果が認められなかった。From the graphs in Table 2 and FIG. 3, in Examples 1 to 4, there is little decrease in fluidity as compared with concrete in which no fiber is mixed (in FIG. 3, the amount of fiber mixed = 0), which is a practical problem. It can be seen that there is no level. Table 2
4 and in the graph of FIG. 4, in the fire resistance test, the weight change of Examples 1 to 4 was remarkably reduced as compared with concrete without fiber mixing (fiber mixing amount = 0 in FIG. 4). With the mixing amount of 0.05% by volume of organic fiber,
It can be seen that there is a sufficient effect of preventing explosion. on the other hand,
In Comparative Examples 1 to 4 in which organic fibers outside the scope of the present invention were mixed, the change in weight in the fire resistance test was not different from that in the case of no mixing, and no explosion preventing effect was observed.
【0028】[0028]
【発明の効果】本発明は前記構成としたため、流動性を
低下させることなく、爆裂を効果的に抑制することがで
き、経済性の高い高強度の耐爆裂性コンクリートを提供
しうるという効果を奏する。According to the present invention, since the present invention has the above-described structure, it is possible to effectively suppress explosion without lowering the fluidity, and to provide an economical high-strength explosion-resistant concrete. Play.
【図面の簡単な説明】[Brief description of the drawings]
【図1】 (A)〜(C)耐爆裂性検討のための有効コ
ンクリート柱と繊維孔を示すモデル図である。1 (A) to 1 (C) are model diagrams showing effective concrete columns and fiber holes for explosion resistance studies.
【図2】 有効コンクリート柱の直径と繊維のコンクリ
ート中への混入量との関係を、繊維の直径ごとに示した
グラフである。FIG. 2 is a graph showing the relationship between the diameter of an effective concrete column and the amount of fiber mixed into concrete for each fiber diameter.
【図3】 有機繊維を混入した耐爆裂性コンクリートの
繊維の混入率と流動性の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the mixing ratio of fibers and the fluidity of explosion-resistant concrete mixed with organic fibers.
【図4】 有機繊維を混入した耐爆裂性コンクリートの
重量減少率と繊維の混入率の関係を示すグラフである。FIG. 4 is a graph showing the relationship between the weight loss rate of explosion-resistant concrete mixed with organic fibers and the mixing rate of fibers.
10 有効コンクリート柱 12 繊維穴(空孔) 10 Effective concrete columns 12 Fiber holes (voids)
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 16:06) 111:28 (72)発明者 古平 章夫 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 (72)発明者 藤中 英生 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 (72)発明者 三井 健郎 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 (72)発明者 山崎 庸行 東京都江東区越中島三丁目4番17号 清水 建設株式会社技術研究所内 (72)発明者 西田 朗 東京都江東区越中島三丁目4番17号 清水 建設株式会社技術研究所内 (72)発明者 森田 武 東京都江東区越中島三丁目4番17号 清水 建設株式会社技術研究所内 Fターム(参考) 2E001 DE01 EA01 HA04 JD04 4G012 PA04 PA24 PB04 PB32 PC02 PC11 PC12 4G056 AA08 AA11 CB23 CC04 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C04B 16:06) 111: 28 (72) Inventor Akio Kohira 1-5-1, Otsuka, Inzai-shi, Chiba Pref. Takenaka Corporation In-store Technology Research Institute (72) Inventor Hideo Fujinaka 1-5-1, Otsuka, Inzai City, Chiba Prefecture Co., Ltd. In-store Takenaka Corporation Technical Research Institute (72) Inventor Kenro Mitsui 1-5-1, Otsuka 1, Inzai City, Chiba Prefecture Stock Company (72) Inventor: Yasuyuki Yamazaki, 3-4-1-17 Ecchujima, Koto-ku, Tokyo Shimizu Construction Co., Ltd. (72) Akira Nishida, 3-4-1-17 Ecchujima, Koto-ku, Tokyo Shimizu Construction Co., Ltd. Technical Research Institute (72) Inventor Takeshi Morita 3-4-17 Etchujima, Koto-ku, Tokyo Shimizu Construction Co., Ltd. Technical Research Laboratory F-term (reference) 2E001 DE01 EA01 HA04 JD04 4G012 PA04 PA24 PB04 PB32 PC02 PC11 PC12 4G056 AA08 AA11 CB23 CC04
Claims (2)
0%以下である有機材料よりなる、直径5〜100μ
m、長さ5〜40mmの有機繊維を0.02〜0.2容
量%を含有し、水結合材比が35%以下であることを特
徴とする耐爆裂性コンクリート。1. The method according to claim 1, wherein the weight residual ratio when heated to 500 ° C. is 3
5-100 μm in diameter made of an organic material that is 0% or less
m, containing 0.02 to 0.2% by volume of organic fibers having a length of 5 to 40 mm and a water binder ratio of 35% or less.
リプロピレン、ビニロンからなる群より選択される1種
以上であることを特徴とする、請求項1に記載の耐爆裂
性コンクリート。2. The explosion-resistant concrete according to claim 1, wherein the organic material constituting the organic fibers is at least one selected from the group consisting of polypropylene and vinylon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32097698A JP3584171B2 (en) | 1998-11-11 | 1998-11-11 | Explosion-resistant concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32097698A JP3584171B2 (en) | 1998-11-11 | 1998-11-11 | Explosion-resistant concrete |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000143322A true JP2000143322A (en) | 2000-05-23 |
JP3584171B2 JP3584171B2 (en) | 2004-11-04 |
Family
ID=18127410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32097698A Expired - Lifetime JP3584171B2 (en) | 1998-11-11 | 1998-11-11 | Explosion-resistant concrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3584171B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001139361A (en) * | 1999-09-03 | 2001-05-22 | Kuraray Co Ltd | Cement formed body |
JP2002179444A (en) * | 2000-12-12 | 2002-06-26 | Shimizu Corp | Fiber for suppressing explosive fracture of concrete |
JP2002193654A (en) * | 2000-12-27 | 2002-07-10 | Shimizu Corp | Cement mixed body having high toughness and refractoriness |
JP2002309693A (en) * | 2001-04-12 | 2002-10-23 | Shimizu Corp | Method for controlling explosive fracture of concrete structure |
JP2002326856A (en) * | 2001-05-02 | 2002-11-12 | Fujita Corp | Rupture resistant cement mortar and method for producing the same |
JP2003055020A (en) * | 2001-08-20 | 2003-02-26 | Nishimatsu Constr Co Ltd | Explosion-resistant high-strength concrete and manufacturing method for explosion-resistant high- strength concrete |
JP2003089561A (en) * | 2001-09-14 | 2003-03-28 | Taiheiyo Cement Corp | Method for producing bursting resistant high strength cement hardened body |
JP2003112958A (en) * | 2001-10-09 | 2003-04-18 | Taiheiyo Cement Corp | Method for producing explosion resistant high strength cement hardened body |
KR20030047069A (en) * | 2001-12-07 | 2003-06-18 | 한천구 | Method of producing for spalling resistance of high performance concrete and high performance concrete using that method |
JP2004168577A (en) * | 2002-11-19 | 2004-06-17 | Taiheiyo Cement Corp | Method of manufacturing explosion resistant high strength cement hardened body |
JP2005194187A (en) * | 2005-04-08 | 2005-07-21 | Okumura Corp | High strength and extra-high strength concrete and high strength and extra-high strength concrete structure |
KR101008322B1 (en) | 2008-12-26 | 2011-01-13 | 주식회사 삼표 | Spalling prevention material composed of fiber and powder, and high strength refractory concrete using the same |
JP2012001395A (en) * | 2010-06-17 | 2012-01-05 | Shimizu Corp | High-strength concrete |
JP2012237162A (en) * | 2011-05-13 | 2012-12-06 | Kajima Corp | Column structure and construction method of column structure |
JP2013028474A (en) * | 2011-07-27 | 2013-02-07 | Takenaka Komuten Co Ltd | Fiber-containing cement slurry |
JP2017014085A (en) * | 2015-07-06 | 2017-01-19 | 株式会社大林組 | Concrete and manufacturing method of concrete |
US9556539B2 (en) | 2007-08-31 | 2017-01-31 | Es Fibervisions Co., Ltd. | Shrinkable fiber for porous molded body |
JP7146362B2 (en) | 2016-04-19 | 2022-10-04 | 株式会社大林組 | Method for producing hydraulic composition |
-
1998
- 1998-11-11 JP JP32097698A patent/JP3584171B2/en not_active Expired - Lifetime
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001139361A (en) * | 1999-09-03 | 2001-05-22 | Kuraray Co Ltd | Cement formed body |
JP4716207B2 (en) * | 2000-12-12 | 2011-07-06 | 清水建設株式会社 | Effective fiber selection method for concrete explosion control |
JP2002179444A (en) * | 2000-12-12 | 2002-06-26 | Shimizu Corp | Fiber for suppressing explosive fracture of concrete |
JP2002193654A (en) * | 2000-12-27 | 2002-07-10 | Shimizu Corp | Cement mixed body having high toughness and refractoriness |
JP2002309693A (en) * | 2001-04-12 | 2002-10-23 | Shimizu Corp | Method for controlling explosive fracture of concrete structure |
JP4565303B2 (en) * | 2001-04-12 | 2010-10-20 | 清水建設株式会社 | Explosion control method for concrete structures |
JP2002326856A (en) * | 2001-05-02 | 2002-11-12 | Fujita Corp | Rupture resistant cement mortar and method for producing the same |
JP2003055020A (en) * | 2001-08-20 | 2003-02-26 | Nishimatsu Constr Co Ltd | Explosion-resistant high-strength concrete and manufacturing method for explosion-resistant high- strength concrete |
JP2003089561A (en) * | 2001-09-14 | 2003-03-28 | Taiheiyo Cement Corp | Method for producing bursting resistant high strength cement hardened body |
JP2003112958A (en) * | 2001-10-09 | 2003-04-18 | Taiheiyo Cement Corp | Method for producing explosion resistant high strength cement hardened body |
KR20030047069A (en) * | 2001-12-07 | 2003-06-18 | 한천구 | Method of producing for spalling resistance of high performance concrete and high performance concrete using that method |
JP2004168577A (en) * | 2002-11-19 | 2004-06-17 | Taiheiyo Cement Corp | Method of manufacturing explosion resistant high strength cement hardened body |
JP2005194187A (en) * | 2005-04-08 | 2005-07-21 | Okumura Corp | High strength and extra-high strength concrete and high strength and extra-high strength concrete structure |
US9556539B2 (en) | 2007-08-31 | 2017-01-31 | Es Fibervisions Co., Ltd. | Shrinkable fiber for porous molded body |
KR101008322B1 (en) | 2008-12-26 | 2011-01-13 | 주식회사 삼표 | Spalling prevention material composed of fiber and powder, and high strength refractory concrete using the same |
JP2012001395A (en) * | 2010-06-17 | 2012-01-05 | Shimizu Corp | High-strength concrete |
JP2012237162A (en) * | 2011-05-13 | 2012-12-06 | Kajima Corp | Column structure and construction method of column structure |
JP2013028474A (en) * | 2011-07-27 | 2013-02-07 | Takenaka Komuten Co Ltd | Fiber-containing cement slurry |
JP2017014085A (en) * | 2015-07-06 | 2017-01-19 | 株式会社大林組 | Concrete and manufacturing method of concrete |
JP7146362B2 (en) | 2016-04-19 | 2022-10-04 | 株式会社大林組 | Method for producing hydraulic composition |
Also Published As
Publication number | Publication date |
---|---|
JP3584171B2 (en) | 2004-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000143322A (en) | Explosion-resistant concrete | |
Yıldırım et al. | Self-healing performance of aged cementitious composites | |
US4895598A (en) | Stabilization of extremely lightweight aggregate concrete | |
JP4071983B2 (en) | Explosion resistant concrete | |
RU2006132737A (en) | SELF-SEALING CONCRETE WITH ULTRA HIGH PROPERTIES, METHOD FOR PREPARING AND APPLICATION | |
EP3294684A1 (en) | Concrete composition with very low shrinkage | |
Dang et al. | Role of recycled brick powder and alkaline solution on the properties of eco-friendly alkali-activated foam concrete | |
KR101165666B1 (en) | Heat insulating material for building used the lightweight aggregates that is produced by bottom ash and waste glass | |
Nasruddin et al. | Thermogravimetric analysis on rice husk ashes-based geopolymer paste | |
CA2027378C (en) | Composition and method for manufacturing steel-containment equipment | |
KR20100126985A (en) | A high strength concrete composition with fire resistance and concrete using it | |
JP6830817B2 (en) | Refractory mortar composition | |
KR20180138079A (en) | Mortar composition for preventing explosion of high strength concrete and method for manufacturing mortar for preventing explosion of high strength concrete comprising there of | |
JP4090762B2 (en) | Explosion-resistant hydraulic hardened body | |
JP2001328855A (en) | Concrete mixture improved in fire resistance | |
WO2001085641A1 (en) | Concrete being resistant to rupture | |
US10730794B1 (en) | Method of delivery of dry polymeric microsphere powders for protecting concrete from freeze-thaw damage | |
Kantharia et al. | Experimental assessment of cement mortar using nano oxide compounds | |
Sharma et al. | Investigating the use of Wollastonite micro fiber in yielding SCC | |
JP3790061B2 (en) | Building material and method for producing the same | |
US8663386B2 (en) | Dry cement mix for forming light concretes with low thermal conductivity, and concretes thus obtained | |
JP3700109B2 (en) | Explosion control method for concrete structures | |
JP7115677B2 (en) | Hydraulic composition and hydraulic hardening body | |
RU2788951C2 (en) | Method for production of mineral foam obtained from foaming thick suspension with high yield strength | |
JP2006016218A (en) | Refractory shotcrete and high strength lining concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040430 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040623 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040727 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040802 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100806 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110806 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120806 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |