JP2000143250A - Nonmagnetic particulate powder for nonmagnetic underlayer of magnetic recording medium, its production and magnetic recording medium - Google Patents

Nonmagnetic particulate powder for nonmagnetic underlayer of magnetic recording medium, its production and magnetic recording medium

Info

Publication number
JP2000143250A
JP2000143250A JP31360998A JP31360998A JP2000143250A JP 2000143250 A JP2000143250 A JP 2000143250A JP 31360998 A JP31360998 A JP 31360998A JP 31360998 A JP31360998 A JP 31360998A JP 2000143250 A JP2000143250 A JP 2000143250A
Authority
JP
Japan
Prior art keywords
magnetic
particles
particle powder
magnetic recording
axis diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31360998A
Other languages
Japanese (ja)
Other versions
JP3427883B2 (en
Inventor
Kazuyuki Hayashi
一之 林
Keisuke Iwasaki
敬介 岩崎
Hiroko Morii
弘子 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP31360998A priority Critical patent/JP3427883B2/en
Publication of JP2000143250A publication Critical patent/JP2000143250A/en
Application granted granted Critical
Publication of JP3427883B2 publication Critical patent/JP3427883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain nonmagnetic particulate powder for a nonmagnetic underlayer of a magnetic recording medium excellent in surface smoothness and uniform in minor axis size by specifying the geometric standard deviations of major and minor axis sizes of acicular hematite particles and the BET specific surface area and average major axis size of the particles. SOLUTION: Nonmagnetic particulate powder comprises acicular hematite. The geometric standard deviations of major and minor axis sizes of the powder are <=1.5 and <=1.3, respectively, the BET specific surface area of the powder is 40-150 m2/g and the average major axis size is 0.01-0.2 μm. The acicular hematite particulate powder is preferably coated with a surface coating comprising at least one selected from hydroxides and oxides of aluminum and silicon. The average minor axis size of the powder is preferably 0.005-0.1 μm and the axial ratio of the powder (ratio between average major and minor axis sizes) is preferably 2-20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、表面平滑性がより優れ
た磁気記録媒体の非磁性下地層用非磁性粒子粉末として
好適な針状ヘマタイト粒子粉末を提供する。
BACKGROUND OF THE INVENTION The present invention provides a needle-like hematite particle powder suitable as a non-magnetic particle powder for a non-magnetic underlayer of a magnetic recording medium having better surface smoothness.

【0002】[0002]

【従来の技術】近年、ビデオ用、オーディオ用磁気記録
再生用機器の長時間記録化、小型軽量化が進むにつれ
て、磁気テープ、磁気ディスク等の磁気記録媒体に対す
る高性能化、即ち、高密度記録化、高出力特性、殊に周
波数特性の向上、低ノイズ化の要求が益々強まってい
る。
2. Description of the Related Art In recent years, as long-term recording and miniaturization of video and audio magnetic recording / reproducing devices have progressed, the performance of magnetic recording media such as magnetic tapes and magnetic disks has been improved. There is an increasing demand for higher performance, higher output characteristics, especially improved frequency characteristics, and lower noise.

【0003】殊に、近時におけるビデオテープの高画像
高画質化に対する要求は益々強まっており、従来のビデ
オテープに比べ、記録されるキャリアー信号の周波数が
短波長領域に移行しており、その結果、磁気テープの表
面からの磁化深度が著しく浅くなっている。
In particular, in recent years, the demand for higher image quality and higher image quality of video tapes has been increasing more and more, and the frequency of a carrier signal to be recorded has shifted to a short wavelength region as compared with conventional video tapes. As a result, the magnetization depth from the surface of the magnetic tape is extremely shallow.

【0004】短波長信号に対して、磁気記録媒体の高出
力特性、殊に、S/N比を向上させるためには、磁気記
録層の薄層化が強く要求されている。この事実は、例え
ば、株式会社総合技術センター発行「磁性材料の開発と
磁粉の高分散化技術」(1982年)第312頁の「‥
‥塗布型テープにおける高密度記録のための条件は、短
波長信号に対して、低ノイズで高出力特性を保持できる
ことであるが、その為には保磁力Hcと残留磁化Brが
‥‥共に大きいことと塗布膜の厚みがより薄いことが必
要である。‥‥」なる記載の通りである。
[0004] In order to improve the high output characteristics of a magnetic recording medium, especially the S / N ratio, for a short wavelength signal, it is strongly required to make the magnetic recording layer thinner. This fact is described in, for example, “‥ Development of Magnetic Materials and Technology for Highly Dispersing Magnetic Powder” published by Sogo Gijutsu Center (1982), p.
The condition for high-density recording in a coating type tape is to be able to maintain high output characteristics with low noise for a short wavelength signal. For this purpose, both the coercive force Hc and the residual magnetization Br are large. And the thickness of the coating film must be thinner. ‥‥ ”.

【0005】磁気記録層の薄層化が進む中で、磁気記録
層の平滑化と厚みむらの問題が生じている。周知の通
り、磁気記録層を平滑で厚みむらがないものとするため
には、ベースフィルムの表面もまた平滑でなければなら
ない。この事実は、例えば、工学情報センター出版部発
行「磁気テープ−ヘッド走行系の摩擦摩耗発生要因とト
ラブル対策−総合技術資料集(−以下、総合技術資料集
という−)」(昭和62年)第180及び181頁の
「‥‥硬化後の磁性層表面粗さは、ベースの表面粗さ
(バック面粗さ)に強く依存し両者はほぼ比例関係にあ
り、‥‥磁性層はベースの上に塗布されているからベー
スの表面を平滑にすればするほど均一で大きなヘッド出
力が得られS/Nが向上する。‥‥」なる記載の通りで
ある。
[0005] As the thickness of the magnetic recording layer is reduced, the problems of smoothness and uneven thickness of the magnetic recording layer have arisen. As is well known, the surface of the base film must also be smooth in order to make the magnetic recording layer smooth and without thickness unevenness. This fact can be found, for example, in the Engineering Information Center Publishing Division, "Magnetic Tape-Factors Arising from Friction and Wear in Head Running System and Troubleshooting-Comprehensive Technical Data Collection (hereinafter referred to as" Comprehensive Technical Data Collection ")," (1987) “The surface roughness of the magnetic layer after curing strongly depends on the surface roughness (back surface roughness) of the base, and both are almost proportional to each other. The smoother the surface of the base is, the more uniform and large the head output is obtained, and the higher the S / N ratio is.

【0006】そこで、ベースフィルム等の非磁性支持体
上に針状へマタイト粒子等の非磁性粒子粉末を結合剤樹
脂中に分散させてなる下地層(以下、非磁性下地層とい
う。)を少なくとも一層設けることにより、磁気記録層
の表面性の悪化や電磁変換特性を劣化させる等の問題を
解決することが提案され、実用化されている。(特公平
6−93297号公報、特開昭62−159338号公
報、特開昭63−187418号公報、特開平4−16
7225号公報、特開平4−325915公報、特開平
5−73882号公報、特開平5−182177号公
報、特開平9−170003号公報等)
Therefore, at least an underlayer (hereinafter referred to as a nonmagnetic underlayer) formed by dispersing nonmagnetic particles such as acicular hematite particles in a binder resin on a nonmagnetic support such as a base film. It has been proposed and has been put to practical use to solve problems such as deterioration of surface properties of the magnetic recording layer and deterioration of electromagnetic conversion characteristics by providing one layer. (JP-B-6-93297, JP-A-62-159338, JP-A-63-187418, JP-A-4-16
7225, JP-A-4-325915, JP-A-5-73882, JP-A-5-182177, JP-A-9-170003, etc.

【0007】下地層の表面平滑性の改善は強く求められ
ており、これまで長軸径の粒度に注目して、非磁性粒子
粉末である針状ヘマタイト粒子粉末の分散性を向上させ
ることが試みられてきた。(特開平9−170003号
公報、特開平10−198948号公報、特開平10−
273325号公報等)。
Improvement of the surface smoothness of the underlayer has been strongly demanded. Attempts have been made to improve the dispersibility of acicular hematite particles, which are nonmagnetic particles, by focusing on the particle diameter of the major axis. I have been. (JP-A-9-170003, JP-A-10-198948, JP-A-10-1989)
No. 273325).

【0008】更に、下地層の表面をより平滑にするため
に、針状へマタイト粒子粉末の分散性を改善することが
望まれており、本出願人は、針状へマタイト粒子中のヘ
マタイト超微粒子を除去したヘマタイト粒子に係る発明
を出願している(特願平9−342163号)。
[0008] Further, in order to make the surface of the underlayer more smooth, it is desired to improve the dispersibility of acicular hematite particle powder. An application for an invention relating to hematite particles from which fine particles have been removed has been filed (Japanese Patent Application No. 9-342163).

【0009】[0009]

【発明が解決しようとする課題】表面平滑性がより優れ
た磁気記録媒体の非磁性下地層用非磁性粒子粉末として
好適である、均斉な粒度を有する、殊に短軸径の粒度が
均斉である針状ヘマタイト粒子粉末は現在最も要求され
ているところであるが、未だ得られていない。
The particles having a uniform particle size, particularly those having a short axis diameter, which are suitable as a nonmagnetic particle powder for a nonmagnetic underlayer of a magnetic recording medium having more excellent surface smoothness. Certain acicular hematite particle powders are currently the most demanded, but have not yet been obtained.

【0010】即ち、前出特開平9−170003号公報
には、針状ゲータイト粒子又は該針状ゲータイト粒子を
加熱脱水して得られた針状へマタイト粒子を550℃以
上の温度で加熱して高密度化された針状へマタイト粒子
を得る方法が記載されているが、後出比較例に示す通
り、短軸径の幾何標準偏差値が高いため、短軸径の粒度
が十分に均斉といえるものではない。
That is, Japanese Patent Application Laid-Open No. 9-170003 discloses that acicular goethite particles or acicular hematite particles obtained by heating and dehydrating the acicular goethite particles are heated at a temperature of 550 ° C. or more. Although a method for obtaining densified needle-like hematite particles has been described, as shown in Comparative Examples below, the geometric standard deviation of the minor axis is high, and the particle diameter of the minor axis is sufficiently uniform and uniform. Not at all.

【0011】また、前出特願平9−342163号は、
針状へマタイト粒子粉末を酸溶解することにより、針状
へマタイト粒子粉末中に存在する針状ヘマタイト微粒子
成分を溶解し、粒子径の粒度分布を改善したものである
が、後出比較例に示す通り、短軸径の幾何標準偏差値が
高いため、短軸径の粒度が十分に均斉であるとは言い難
いものである。
[0011] Also, Japanese Patent Application No. 9-342163 mentioned above,
By dissolving the acicular hematite particle powder in acid, the acicular hematite fine particle component present in the acicular hematite particle powder is dissolved to improve the particle size distribution of the particle diameter. As shown, since the minor axis diameter has a high geometric standard deviation value, it is difficult to say that the minor axis diameter is sufficiently uniform.

【0012】そこで、本発明は、表面平滑性に優れた磁
気記録媒体の非磁性下地層用非磁性粒子粉末として好適
な、均斉な粒度を有する、殊に短軸径の粒度が均斉であ
る針状ヘマタイト粒子粉末を得ることを技術的課題とす
る。
Therefore, the present invention provides a needle having a uniform particle size, particularly a short axis diameter, which is suitable as a nonmagnetic particle powder for a nonmagnetic underlayer of a magnetic recording medium having excellent surface smoothness. It is a technical object to obtain powdery hematite particles.

【0013】[0013]

【課題を解決する為の手段】前記技術的課題は、次の通
りの本発明によって達成できる。
The above technical object can be achieved by the present invention as described below.

【0014】即ち、本発明は、長軸径の幾何標準偏差値
が1.5以下であって短軸径の幾何標準偏差値が1.3
以下であり、且つ、BET比表面積値が40〜150m
/gである平均長軸径が0.01〜0.2μmの針状
ヘマタイト粒子粉末からなることを特徴とする磁気記録
媒体の非磁性下地層用非磁性粒子粉末である(本発明
1)。
That is, according to the present invention, the geometric standard deviation of the major axis is 1.5 or less and the geometric standard deviation of the minor axis is 1.3.
Or less, and the BET specific surface area value is 40 to 150 m
Non-magnetic particle powder for a non-magnetic underlayer of a magnetic recording medium, characterized by comprising acicular hematite particle powder having an average major axis diameter of 0.01 to 0.2 μm of 2 / g (the present invention 1). .

【0015】また、本発明は、本発明1における針状ヘ
マタイト粒子粉末の粒子表面が、アルミニウムの水酸化
物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ
素の酸化物から選ばれる少なくとも一種からなる表面被
覆物によって被覆されていることを特徴とする磁気記録
媒体の非磁性下地層用非磁性粒子粉末である(本発明
2)。
Further, according to the present invention, the particle surface of the acicular hematite particles according to the present invention is characterized in that the particle surface is made of at least one selected from aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide. A non-magnetic particle powder for a non-magnetic underlayer of a magnetic recording medium, which is characterized by being coated with a surface coating (the present invention 2).

【0016】また、本発明は、針状ゲータイト粒子粉末
を550〜850℃の温度範囲で加熱脱水処理して針状
ヘマタイト粒子粉末とするに当って、前記加熱脱水処理
に先立ってあらかじめ、前記ゲータイト粒子粉末を10
0〜200℃の温度範囲で加熱処理して該ゲータイト粒
子粉末に含まれているゲータイト超微粒子をゲータイト
粒子に吸収させておくことを特徴とする上記記載の磁気
記録媒体の非磁性下地層用非磁性粒子粉末の製造法であ
る。
In addition, the present invention relates to a method of heating and dehydrating acicular goethite particles in a temperature range of 550 to 850 ° C. to obtain acicular hematite particles. 10 particles powder
The non-magnetic underlayer for a magnetic recording medium according to the above, wherein the goethite ultrafine particles contained in the goethite particle powder are absorbed by the goethite particles by performing a heat treatment in a temperature range of 0 to 200 ° C. This is a method for producing magnetic particle powder.

【0017】また、本発明は、非磁性支持体、該非磁性
支持体上に形成される非磁性粒子粉末と結合剤樹脂とか
らなる非磁性下地層及び該非磁性下地層の上に形成され
る磁性粒子粉末と結合剤樹脂とからなる磁気記録層から
なる磁気記録媒体において、前記非磁性粒子粉末が上記
本発明1及び本発明2に係る各非磁性下地層用非磁性粒
子粉末であることを特徴とする磁気記録媒体である。
Further, the present invention provides a non-magnetic support, a non-magnetic underlayer comprising a non-magnetic particle powder formed on the non-magnetic support and a binder resin, and a magnetic layer formed on the non-magnetic under layer. In a magnetic recording medium comprising a magnetic recording layer composed of particle powder and a binder resin, the non-magnetic particle powder is the non-magnetic particle powder for a non-magnetic underlayer according to the first and second aspects of the present invention. Magnetic recording medium.

【0018】次に、本発明の構成をより詳しく説明すれ
ば次の通りである。
Next, the structure of the present invention will be described in more detail.

【0019】まず、本発明に係る針状ヘマタイト粒子粉
末について述べる。
First, the acicular hematite particles according to the present invention will be described.

【0020】本発明に係る針状へマタイト粒子粉末は、
長軸径の幾何標準偏差値が1.5以下であって短軸径の
幾何標準偏差値が1.3以下であり、且つ、BET比表
面積値が40〜150m/gである平均長軸径が0.
01〜0.2μmの針状へマタイト粒子からなる。
The acicular hematite particle powder according to the present invention comprises:
Average major axis having a geometric standard deviation value of the major axis diameter of 1.5 or less, a geometric standard deviation value of the minor axis diameter of 1.3 or less, and a BET specific surface area value of 40 to 150 m 2 / g. The diameter is 0.
It consists of needle-like hematite particles having a size of from 01 to 0.2 μm.

【0021】本発明に係る針状ヘマタイト粒子粉末の粒
子形状は、針状である。ここで「針状」とは、文字どお
りの針状はもちろん、紡錘状や米粒状などを含む意味で
ある。
The particle shape of the acicular hematite particles according to the present invention is acicular. Here, the term "needle-shaped" means a needle-like shape, a spindle shape, a rice grain shape, and the like, as well as a literal needle-like shape.

【0022】長軸径の幾何標準偏差値が1.5を超える
場合及び短軸径の幾何標準偏差値が1.3を超える場合
には、存在する粗大粒子が塗膜の表面平滑性に悪影響を
与えるために好ましくない。塗膜の表面平滑性を考慮す
れば、長軸径の幾何標準偏差値は、好ましくは1.40
以下、より好ましくは1.35以下である。また、短軸
径の幾何標準偏差値は、好ましくは1.28以下、より
好ましくは1.25である。工業的な生産性を考慮すれ
ば、得られる針状へマタイト粒子の長軸径及び短軸径の
幾何標準偏差値の下限値は、1.01である。
When the geometric standard deviation of the major axis exceeds 1.5 and the geometric standard deviation of the minor axis exceeds 1.3, the existing coarse particles adversely affect the surface smoothness of the coating film. Is not preferred to give. In consideration of the surface smoothness of the coating film, the geometric standard deviation of the major axis diameter is preferably 1.40.
Or less, more preferably 1.35 or less. Further, the geometric standard deviation value of the minor axis diameter is preferably 1.28 or less, more preferably 1.25. In consideration of industrial productivity, the lower limit of the geometric standard deviation of the major axis diameter and the minor axis diameter of the obtained acicular hematite particles is 1.01.

【0023】本発明に係る針状ヘマタイト粒子粉末の平
均長軸径が0.01μm未満の場合には、粒子の微粒子
化による分子間力の増大により、ビヒクル中における分
散が困難となる。平均長軸径が0.2μmを超える場合
には、粒子サイズが大きすぎるため、塗膜の表面平滑性
を害するので好ましくない。ビヒクル中における分散性
及び塗膜の表面平滑性を考慮すれば平均長軸径は0.0
2〜0.1μmが好ましい。
When the average major axis diameter of the acicular hematite particle powder according to the present invention is less than 0.01 μm, dispersion in a vehicle becomes difficult due to an increase in intermolecular force due to finer particles. If the average major axis diameter exceeds 0.2 μm, the particle size is too large, which impairs the surface smoothness of the coating film, which is not preferred. Considering the dispersibility in the vehicle and the surface smoothness of the coating film, the average major axis diameter is 0.0
2 to 0.1 μm is preferred.

【0024】本発明に係る針状へマタイト粒子粉末の平
均短軸径は0.005〜0.1μmが好ましい。
The average minor axis diameter of the acicular hematite particles according to the present invention is preferably 0.005 to 0.1 μm.

【0025】本発明に係る針状へマタイト粒子粉末の平
均短軸径の下限値及び上限値を定めた理由は、上記平均
長軸径の場合と同様である。ビヒクル中における分散性
及び塗膜の表面平滑性を考慮すれば平均短軸径は0.0
1〜0.05μmが好ましい。
The reason for setting the lower limit and the upper limit of the average minor axis diameter of the acicular hematite particles according to the present invention is the same as in the case of the average major axis diameter. Considering the dispersibility in the vehicle and the surface smoothness of the coating film, the average minor axis diameter is 0.0
1 to 0.05 μm is preferred.

【0026】本発明に係る針状ヘマタイト粒子粉末は、
BET比表面積値が40〜150m /gである。BE
T比表面積値の下限値及び上限値を定めた理由は、上記
平均長軸径の上限値及び下限値と同様である。ビヒクル
中における分散性及び塗膜の表面平滑性を考慮すれば、
BET比表面積値は45〜100m/gが好ましく、
より好ましくは50〜80m/gである。
The acicular hematite particle powder according to the present invention comprises:
BET specific surface area value is 40-150m 2/ G. BE
The reason for setting the lower limit and upper limit of the T specific surface area value is described above.
It is the same as the upper limit value and the lower limit value of the average major axis diameter. Vehicle
Considering the dispersibility in and the surface smoothness of the coating,
BET specific surface area value is 45-100m2/ G is preferred,
More preferably 50-80m2/ G.

【0027】本発明に係る針状ヘマタイト粒子粉末は、
軸比(平均長軸径と平均短軸径の比)が2〜20が好ま
しい。軸比が2未満の場合には、十分なスティフネスを
有する塗膜が得られ難い。軸比が20を超える場合に
は、ビヒクル中での粒子の絡み合いが多くなり、分散性
が悪くなったり、粘度が増加したりすることがある。
The acicular hematite particle powder according to the present invention comprises:
The axial ratio (ratio of average major axis diameter to average minor axis diameter) is preferably 2 to 20. When the axial ratio is less than 2, it is difficult to obtain a coating film having a sufficient stiffness. When the axial ratio exceeds 20, the entanglement of the particles in the vehicle increases, and the dispersibility may deteriorate or the viscosity may increase.

【0028】本発明に係る針状へマタイト粒子粉末の密
度化の程度は、0.5〜2.5が好ましい。密度化の程
度はBET法により測定した比表面積SBET値と電子
顕微鏡写真に示されている粒子から計測された長軸径及
び短軸径から算出した表面積STEM値との比(S
BET/STEM値)で示した。
The degree of densification of the acicular hematite particles according to the present invention is preferably 0.5 to 2.5. The degree of densification is determined by the ratio of the specific surface area S BET value measured by the BET method to the surface area S TEM value calculated from the major axis diameter and the minor axis diameter measured from the particles shown in the electron micrograph (S
(BET / S TEM value).

【0029】SBET/STEM値が0.5未満の場合
には、針状へマタイト粒子粉末の高密度化が達成されて
はいるが、粒子及び粒子相互間の焼結により、粒子径が
増大しており、十分な表面平滑性を有する塗膜が得られ
ない。SBET/STEM値が2.5を超える場合に
は、高密度化が十分ではなく、粒子内部及び粒子表面に
多数の脱水孔が存在するため、ビヒクル中における分散
性が不十分となる。ビヒクル中における分散性及び塗膜
の表面平滑性を考慮するとSBET/STEM値は0.
7〜2.0が好ましく、より好ましくは0.8〜1.6
である。
When the S BET / S TEM value is less than 0.5, although the densification of the acicular hematite particle powder has been achieved, the particle diameter is reduced due to sintering between the particles and the particles. It is so large that a coating film having sufficient surface smoothness cannot be obtained. If the S BET / S TEM value exceeds 2.5, the density is not sufficiently increased, and a large number of dehydration pores are present inside the particles and on the surface of the particles, so that the dispersibility in the vehicle becomes insufficient. Taking into account the dispersibility in the vehicle and the surface smoothness of the coating film, the S BET / S TEM value is 0.1.
7 to 2.0 is preferable, and 0.8 to 1.6 is more preferable.
It is.

【0030】本発明に係る針状へマタイト粒子粉末は、
必要により、粒子表面がアルミニウムの水酸化物、アル
ミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化
物から選ばれる少なくとも1種からなる表面被覆物によ
って被覆されていてもよい。粒子表面が表面被覆物で被
覆されている針状ヘマタイト粒子粉末は、ビヒクル中に
分散させる場合に、結合剤樹脂とのなじみがよく、容易
に所望の分散度が得られ易い。
The acicular hematite particle powder according to the present invention comprises:
If necessary, the particle surface may be coated with a surface coating made of at least one selected from aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide. The acicular hematite particle powder whose particle surface is coated with a surface coating has good compatibility with a binder resin when dispersed in a vehicle, and a desired degree of dispersion is easily obtained.

【0031】前記被覆物の量は、針状へマタイト粒子粉
末に対しアルミニウムの水酸化物やアルミニウムの酸化
物はAl換算で、ケイ素の水酸化物やケイ素の酸化物は
SiO換算で、それぞれ0.01〜50重量%が好ま
しい。0.01重量%未満である場合には、被覆による
分散性向上効果がほとんどなく、50重量%を超える場
合には、被覆効果が飽和するため、必要以上に被覆する
意味がない。ビヒクル中における分散性向上効果及び工
業的な生産性を考慮すれば、0.05〜20重量%がよ
り好ましい。
The amount of the coating is such that aluminum hydroxide and aluminum oxide are converted to Al and silicon hydroxide and silicon oxide are converted to SiO 2 with respect to the acicular hematite particle powder. 0.01 to 50% by weight is preferred. When the amount is less than 0.01% by weight, the effect of improving the dispersibility by the coating is almost nil. Considering the effect of improving dispersibility in the vehicle and industrial productivity, 0.05 to 20% by weight is more preferable.

【0032】アルミニウム化合物とケイ素化合物とを併
せて使用する場合には、針状ヘマタイト粒子粉末に対
し、Al換算量とSiO換算量との総和で0.01〜
50重量%が好ましい。
When the aluminum compound and the silicon compound are used in combination, the total amount of the converted amount of Al and the converted amount of SiO 2 is 0.01 to
50% by weight is preferred.

【0033】本発明に係る表面被覆物で被覆されている
針状へマタイト粒子粉末は、表面被覆物で被覆されてい
ない本発明に係る針状へマタイト粒子粉末とほぼ同程度
の粒子サイズ、幾何標準偏差値、軸比、BET比表面積
値及びSBET/STEM値を有している。
The acicular hematite particle powder coated with the surface coating according to the present invention has substantially the same particle size and geometry as the acicular hematite particle powder according to the present invention not coated with the surface coating. It has a standard deviation value, an axial ratio, a BET specific surface area value, and an S BET / S TEM value.

【0034】次に、本発明に係る針状へマタイト粒子粉
末の製造法について述べる。
Next, a method for producing acicular hematite particles according to the present invention will be described.

【0035】本発明に係る針状ヘマタイト粒子粉末は、
第一鉄塩と水酸化アルカリ水溶液、炭酸アルカリ水溶液
又は水酸化アルカリ・炭酸アルカリ水溶液のいずれかの
水溶液を用いて反応して得られる鉄含有沈殿物を含む懸
濁液に空気等の酸素含有ガスを通気しゲータイト粒子粉
末を生成させ、該ゲータイト粒子粉末を100〜200
℃の温度範囲で加熱処理した後、更に550〜850℃
の温度範囲で加熱脱水処理して得ることができる。
The acicular hematite particle powder according to the present invention comprises:
An oxygen-containing gas such as air is added to a suspension containing an iron-containing precipitate obtained by reacting with a ferrous salt and an aqueous solution of an alkali hydroxide aqueous solution, an alkali carbonate aqueous solution or an alkali hydroxide / alkali carbonate aqueous solution. To generate goethite particle powder,
After the heat treatment in the temperature range of ℃, further 550-850 ℃
In the above temperature range.

【0036】本発明における出発原料粒子粉末としての
ゲータイト粒子粉末は、長軸径の幾何標準偏差値が1.
7以下、短軸径の幾何標準偏差値が1.5以下、平均長
軸径が0.01〜0.25μm、平均短軸径が0.00
5〜0.17μm、BET比表面積値が50〜250m
/gであるものを用いる。
The goethite particle powder as the starting material particle powder in the present invention has a geometric standard deviation of the major axis diameter of 1.
7 or less, the geometric standard deviation of the minor axis diameter is 1.5 or less, the average major axis diameter is 0.01 to 0.25 μm, and the average minor axis diameter is 0.00.
5 to 0.17 μm, BET specific surface area 50 to 250 m
2 / g is used.

【0037】なお、ゲータイト粒子の生成反応中に、粒
子の長軸径、短軸径、軸比等の諸特性向上のために通常
添加されているNi、Zn、P、Si等の異種元素が添
加されていても支障はない。
During the formation reaction of the goethite particles, different elements such as Ni, Zn, P, and Si, which are usually added to improve various properties such as the major axis diameter, the minor axis diameter, and the axial ratio of the particles, are used. There is no problem even if added.

【0038】加熱処理温度が100℃未満の場合、ゲー
タイト超微粒子を十分にゲータイト粒子に吸収させるこ
とが困難であり、粒度が均斉な粒子を得ることができな
い。200℃を超える場合、ゲータイト超微粒子成分が
存在したままゲータイト粒子の脱水が始まるため、粒子
間で焼結が起こり、粒度が均斉な粒子を得ることができ
ない。工業的な生産性等を考慮すれば加熱処理温度は好
ましくは、120〜200℃である。
When the heat treatment temperature is lower than 100 ° C., it is difficult to sufficiently absorb goethite ultrafine particles into goethite particles, and particles having a uniform particle size cannot be obtained. When the temperature exceeds 200 ° C., dehydration of the goethite particles starts in the presence of the ultra-fine goethite particles, so that sintering occurs between the particles and particles having a uniform particle size cannot be obtained. The heat treatment temperature is preferably 120 to 200 ° C. in consideration of industrial productivity and the like.

【0039】加熱処理の時間は、5〜60分が好まし
い。
The heating time is preferably 5 to 60 minutes.

【0040】100〜200℃の温度範囲で加熱処理し
たゲータイト粒子粉末は、平均長軸径が0.01〜0.
2μm、平均短軸径が0.007〜0.18μm、長軸
径の幾何標準偏差値が1.5以下、短軸径の幾何標準偏
差値が1.3以下、BET比表面積値が50〜250m
/gである。
The goethite particle powder heat-treated in a temperature range of 100 to 200 ° C. has an average major axis diameter of 0.01 to 0.1.
2 μm, average minor axis diameter 0.007 to 0.18 μm, major axis diameter geometric standard deviation 1.5 or less, minor axis diameter geometric standard deviation 1.3 or less, BET specific surface area 50 to 50 250m
2 / g.

【0041】加熱脱水処理の温度が550℃未満の場合
には、高密度化が不十分であるためヘマタイト粒子の粒
子内部及び粒子表面に脱水孔が多数存在しており、その
結果、ビヒクル中における分散性が不十分となり、非磁
性下地層を形成した時、表面平滑な塗膜が得られにく
い。850℃を超える場合には、針状へマタイト粒子の
高密度化は十分なされているが、粒子及び粒子相互間の
焼結が生じるため、粒子径が増大し、同様に表面平滑な
塗膜は得られにくい。加熱温度の上限値は好ましくは8
00℃である。
When the temperature of the heat dehydration treatment is lower than 550 ° C., since the densification is insufficient, a large number of dehydrated pores are present inside and on the surface of the hematite particles. Dispersibility becomes insufficient, and when a nonmagnetic underlayer is formed, it is difficult to obtain a coating film having a smooth surface. When the temperature is higher than 850 ° C., the densification of the acicular hematite particles is sufficient, but sintering between the particles and the particles occurs. It is difficult to obtain. The upper limit of the heating temperature is preferably 8
00 ° C.

【0042】なお、本発明に係る針状へマタイト粒子粉
末としては、100〜200℃の温度範囲で加熱処理し
たゲータイト粒子粉末を、250〜500℃の温度範囲
で加熱脱水処理を行い低密度針状ヘマタイト粒子粉末を
得、次いで、該低密度針状ヘマタイト粒子粉末を550
〜850℃の温度範囲で焼きしめを行うことにより得ら
れる高密度針状へマタイト粒子粉末であることが好まし
い。
The needle-like hematite particles according to the present invention may be obtained by heating and dehydrating goethite particles at a temperature of 100 to 200 ° C. at a temperature of 250 to 500 ° C. Hematite particle powder, and then the low-density acicular hematite particle powder
It is preferably a high-density acicular hematite particle powder obtained by baking in a temperature range of 850 ° C.

【0043】低密度化の加熱脱水温度が250℃未満の
場合には、脱水反応に長時間を要する。加熱脱水温度が
500℃を超える場合には、脱水反応が急激に生起し、
粒子の形状が崩れやすくなったり、粒子相互間の焼結を
引き起こす可能性がある。加熱脱水処理して得られる針
状ヘマタイト粒子は、ゲータイト粒子からHOが脱水
され、脱水孔を多数有する低密度粒子であり、BET比
表面積値が針状ゲータイト粒子の1.2〜2倍程度とな
る。
When the heat dehydration temperature for lowering the density is lower than 250 ° C., a long time is required for the dehydration reaction. When the heating dehydration temperature exceeds 500 ° C., a dehydration reaction occurs rapidly,
There is a possibility that the shape of the particles is easily collapsed and sintering between the particles is caused. The acicular hematite particles obtained by the heat dehydration treatment are low-density particles having a large number of dehydrated pores in which H 2 O is dehydrated from goethite particles, and have a BET specific surface area of 1.2 to 2 times that of the acicular goethite particles. About.

【0044】焼きしめの温度が550℃未満の場合に
は、高密度化が不十分であるためヘマタイト粒子の粒子
内部及び粒子表面に脱水孔が多数存在しており、その結
果、ビヒクル中における分散性が不十分となり、非磁性
下地層を形成した時、表面平滑な塗膜が得られにくい。
850℃を超える場合には、針状へマタイト粒子の高密
度化は十分なされているが、粒子及び粒子相互間の焼結
が生じるため、粒子径が増大し、同様に表面平滑な塗膜
は得られにくい。加熱温度の上限値は好ましくは800
℃である。
When the baking temperature is lower than 550 ° C., the densification is insufficient, so that a large number of dehydrated pores exist inside and on the surface of the hematite particles. When the nonmagnetic underlayer is formed, it is difficult to obtain a coating film having a smooth surface.
When the temperature is higher than 850 ° C., the densification of the acicular hematite particles is sufficient, but sintering between the particles and the particles occurs. It is difficult to obtain. The upper limit of the heating temperature is preferably 800
° C.

【0045】本発明に係る針状へマタイト粒子粉末は、
550〜850℃の加熱脱水処理又は高密度化のための
焼きしめ処理に先立って、あらかじめ粒子表面を焼結防
止剤で被覆処理しておくことが好ましい。焼結防止剤に
よる被覆処理は、出発原料粒子粉末である針状ゲータイ
ト粒子粉末又は100〜200℃で加熱処理後の針状ゲ
ータイト粒子粉末を250〜500℃の温度範囲で加熱
脱水処理して得られる低密度針状ヘマタイト粒子粉末を
含む水懸濁液中に焼結防止剤を添加し、混合攪拌した
後、濾別、水洗、乾燥すればよい。
The acicular hematite particle powder according to the present invention comprises:
Prior to the heat dehydration treatment at 550 to 850 ° C. or the baking treatment for densification, it is preferable to coat the particle surface with a sintering inhibitor in advance. The coating treatment with the sintering inhibitor is performed by heating and dehydrating the acicular goethite particle powder as the starting material particle powder or the acicular goethite particle powder after the heat treatment at 100 to 200 ° C. in the temperature range of 250 to 500 ° C. The sintering inhibitor may be added to the resulting aqueous suspension containing the low-density acicular hematite particles, mixed, stirred, filtered, washed with water, and dried.

【0046】焼結防止剤としては、通常使用されるヘキ
サメタリン酸ナトリウム、ポリリン酸、オルトリン酸等
のリン化合物、3号水ガラス、オルトケイ酸ナトリウ
ム、メタケイ酸ナトリウム、コロイダルシリカ等のケイ
素化合物、ホウ酸等のホウ素化合物、酢酸アルミニウ
ム、硫酸アルミニウム、塩化アルミニウム、硝酸アルミ
ニウム等のアルミニウム塩や、アルミン酸ソーダ等のア
ルミン酸アルカリ塩、アルミナゾル等のアルミニウム化
合物、硫酸チタニル等のチタン化合物を使用することが
できる。
Examples of the sintering inhibitor include phosphorus compounds such as sodium hexametaphosphate, polyphosphoric acid and orthophosphoric acid which are usually used, No. 3 water glass, silicon compounds such as sodium orthosilicate, sodium metasilicate and colloidal silica, and boric acid. Aluminum compounds such as aluminum acetate, aluminum sulfate, aluminum chloride, and aluminum nitrate; alkali aluminates such as sodium aluminate; aluminum compounds such as alumina sol; and titanium compounds such as titanyl sulfate. .

【0047】次に、本発明に係る表面被覆物で被覆され
ている針状ヘマタイト粒子の表面被覆処理は、本発明に
係る針状ヘマタイト粒子粉末を水溶液中に分散して得ら
れる水懸濁液に、アルミニウム化合物、ケイ素化合物又
は当該両化合物を添加して混合攪拌することにより、ま
たは、必要により、混合攪拌後にpH値を調整すること
により、前記針状ヘマタイト粒子の粒子表面に、アルミ
ニウムの水酸化物、アルミニウムの酸化物、ケイ素の水
酸化物及びケイ素の酸化物を被覆すればよく、次いで、
濾別、水洗、乾燥、粉砕する。必要により、更に、脱気
・圧密処理等を行ってもよい。
Next, the surface coating treatment of the acicular hematite particles coated with the surface coating according to the present invention is performed by dispersing the acicular hematite particle powder according to the present invention in an aqueous solution. To the particle surface of the acicular hematite particles by adding an aluminum compound, a silicon compound, or both compounds, and mixing and stirring, or, if necessary, adjusting the pH value after mixing and stirring. Oxide, aluminum oxide, silicon hydroxide and silicon oxide may be coated,
Filter, wash, dry and pulverize. If necessary, a deaeration / consolidation treatment or the like may be further performed.

【0048】表面被覆処理に用いるアルミニウム化合物
及びケイ素化合物としては、前出焼結防止剤として用い
ているアルミニウム化合物及びケイ素化合物と同じもの
が使用できる。
As the aluminum compound and silicon compound used for the surface coating treatment, the same aluminum compound and silicon compound used as the above-mentioned sintering inhibitor can be used.

【0049】次に、本発明に係る磁気記録媒体について
述べる。
Next, the magnetic recording medium according to the present invention will be described.

【0050】本発明に係る磁気記録媒体は、非磁性支持
体、該非磁性支持体上に形成された非磁性下地層及び該
非磁性下地層上に形成された磁気記録層とからなる。
The magnetic recording medium according to the present invention comprises a non-magnetic support, a non-magnetic underlayer formed on the non-magnetic support, and a magnetic recording layer formed on the non-magnetic under layer.

【0051】前記非磁性支持体としては、現在、磁気記
録媒体に汎用されているポリエチレンテレフタレート、
ポリエチレン、ポリプロピレン、ポリカーボネート、ポ
リエチレンナフタレート、ポリアミド、ポリアミドイミ
ド、ポリイミド等の合成樹脂フィルム、アルミニウム、
ステンレス等金属の箔や板および各種の紙を使用するこ
とができる。その厚みは、その材質により種々異なる
が、通常好ましくは1.0〜300μm、より好ましく
は2.0〜200μmである。磁気ディスクの場合、非
磁性支持体としてはポリエチレンテレフタレートが通常
用いられ、その厚みは、通常50〜300μm、好まし
くは60〜200μmである。磁気テープの場合は、ポ
リエチレンテレフタレートの場合、その厚みは、通常3
〜100μm、好ましくは4〜20μm、ポリエチレン
ナフタレートの場合、その厚みは、通常3〜50μm、
好ましくは4〜20μm、ポリアミドの場合、その厚み
は、通常2〜10μm、好ましくは3〜7μmである。
As the non-magnetic support, polyethylene terephthalate, which is currently widely used for magnetic recording media,
Polyethylene, polypropylene, polycarbonate, polyethylene naphthalate, polyamide, polyamide imide, synthetic resin film such as polyimide, aluminum,
Metal foils and plates such as stainless steel and various types of paper can be used. Although the thickness varies depending on the material, it is usually preferably 1.0 to 300 μm, more preferably 2.0 to 200 μm. In the case of a magnetic disk, polyethylene terephthalate is usually used as the nonmagnetic support, and its thickness is usually 50 to 300 μm, preferably 60 to 200 μm. In the case of magnetic tape, the thickness of polyethylene terephthalate is usually 3
100100 μm, preferably 4-20 μm, in the case of polyethylene naphthalate, the thickness is usually 3-50 μm,
The thickness is preferably 4 to 20 μm, and in the case of polyamide, the thickness is usually 2 to 10 μm, preferably 3 to 7 μm.

【0052】本発明における非磁性下地層は、本発明に
係る針状へマタイト粒子粉末又は本発明に係る表面被覆
物で被覆されている針状へマタイト粒子粉末と結合剤樹
脂とからなる。
The nonmagnetic underlayer according to the present invention comprises the acicular hematite particle powder according to the present invention or the acicular hematite particle powder coated with the surface coating according to the present invention and a binder resin.

【0053】結合剤樹脂としては、現在、磁気記録媒体
の製造にあたって汎用されている塩化ビニル−酢酸ビニ
ル共重合体、ウレタン樹脂、塩化ビニル−酢酸ビニル−
マレイン酸共重合体、ウレタンエラストマー、ブタジエ
ン−アクリロニトリル共重合体、ポリビニルブチラー
ル、ニトロセルロース等セルロース誘導体、ポリエステ
ル樹脂、ポリブタジエン等の合成ゴム系樹脂、エポキシ
樹脂、ポリアミド樹脂、ポリイソシアネート、電子線硬
化型アクリルウレタン樹脂等とその混合物を使用するこ
とができる。また、各結合剤樹脂には−OH、−COO
H、−SOM、−OPO、−NH等の極性基
(但し、MはH、Na、Kである。)が含まれていても
よい。本発明に係る針状へマタイト粒子のビヒクル中に
おける分散性を考慮すれば、極性基として−COOH、
−SOMが含まれている結合剤樹脂が好ましい。
As the binder resin, vinyl chloride-vinyl acetate copolymers, urethane resins, vinyl chloride-vinyl acetate-
Maleic acid copolymer, urethane elastomer, butadiene-acrylonitrile copolymer, polyvinyl butyral, cellulose derivatives such as nitrocellulose, polyester resin, synthetic rubber resin such as polybutadiene, epoxy resin, polyamide resin, polyisocyanate, electron beam curable acrylic Urethane resins and the like and mixtures thereof can be used. Also, each binder resin has -OH, -COO
A polar group such as H, —SO 3 M, —OPO 2 M 2 , and —NH 2 (where M is H, Na, or K) may be included. Considering the dispersibility of the needle-like hematite particles according to the present invention in a vehicle, -COOH as a polar group,
Binder resins that contain -SO 3 M are preferable.

【0054】本発明に係る針状へマタイト粒子粉末又は
本発明に係る表面被覆物で被覆されている針状へマタイ
ト粒子粉末と結合剤樹脂との配合割合は、結合剤樹脂1
00重量部に対し、針状へマタイト粒子粉末が5〜20
00重量部、好ましくは100〜1000重量部であ
る。
The mixing ratio of the acicular hematite particle powder according to the present invention or the acicular hematite particle powder coated with the surface coating according to the present invention and the binder resin is as follows.
The acicular hematite particle powder is 5 to 20 parts by weight with respect to 00 parts by weight.
00 parts by weight, preferably 100 to 1000 parts by weight.

【0055】非磁性支持体上に形成された非磁性下地層
の塗膜厚さは、0.2〜10μmである。0.2μm未
満の場合には、非磁性支持体の表面粗さを改善すること
が困難となり、スティフネスも不十分となりやすい。磁
気記録媒体の薄層化及び塗膜のスティフネスを考慮すれ
ば、塗膜厚さはより好ましくは0.5〜5μmである。
The coating thickness of the nonmagnetic underlayer formed on the nonmagnetic support is 0.2 to 10 μm. If it is less than 0.2 μm, it becomes difficult to improve the surface roughness of the nonmagnetic support, and the stiffness tends to be insufficient. In consideration of the thinning of the magnetic recording medium and the stiffness of the coating film, the thickness of the coating film is more preferably 0.5 to 5 μm.

【0056】なお、非磁性下地層に、通常の磁気記録媒
体の製造に用いられる潤滑剤、研磨剤、帯電防止剤等
を、必要により、添加してもよい。
Incidentally, a lubricant, an abrasive, an antistatic agent and the like used in the manufacture of a normal magnetic recording medium may be added to the non-magnetic underlayer, if necessary.

【0057】粒子表面が前記表面被覆物によって被覆さ
れていない本発明に係る針状へマタイト粒子粉末を用い
た非磁性下地層は、塗膜の光沢度が188〜300%、
好ましくは193〜300%、より好ましくは198〜
300%であって、塗膜表面粗度Raが0.5〜8.8
nm、好ましくは0.5〜8.2nmであって、より好
ましくは0.5〜7.8nm、塗膜のスティフネスは、
ヤング率(相対値)が119〜160、好ましくは12
0〜160である。
The nonmagnetic underlayer using the acicular hematite particle powder according to the present invention in which the particle surface is not covered with the surface coating has a glossiness of the coating film of 188 to 300%,
Preferably 193 to 300%, more preferably 198 to
300%, and the coating film surface roughness Ra is 0.5 to 8.8.
nm, preferably 0.5 to 8.2 nm, more preferably 0.5 to 7.8 nm, the stiffness of the coating film is
Young's modulus (relative value) is 119 to 160, preferably 12
0 to 160.

【0058】粒子表面が前記表面被覆物によって被覆さ
れている本発明に係る針状へマタイト粒子粉末を用いた
非磁性下地層は、塗膜の光沢度が193〜300%、好
ましくは196〜300%、より好ましくは200〜3
00%であって、塗膜表面粗度Raが0.5〜8.0n
m、好ましくは0.5〜7.5nm、より好ましくは
0.5〜7.0nmであって、塗膜のスティフネスは、
ヤング率(相対値)が120〜160、好ましくは12
3〜160である。
The non-magnetic underlayer using the acicular hematite particle powder according to the present invention in which the particle surface is coated with the surface coating has a glossiness of the coating film of 193 to 300%, preferably 196 to 300%. %, More preferably 200-3
00%, and the coating film surface roughness Ra is 0.5 to 8.0 n.
m, preferably 0.5 to 7.5 nm, more preferably 0.5 to 7.0 nm, and the stiffness of the coating film is
Young's modulus (relative value) is 120 to 160, preferably 12
3 to 160.

【0059】本発明における磁気記録層は、磁性粒子粉
末と結合剤樹脂とからなる。
The magnetic recording layer according to the present invention comprises magnetic particle powder and a binder resin.

【0060】磁性粒子粉末としては、マグヘマイト粒子
粉末(γ−Fe)やマグネタイト粒子粉末(Fe
・Fe、0<x≦1)等の磁性酸化鉄粒子粉
末にCo又はCo及びFeを被着させたCo被着型磁性
酸化鉄粒子粉末、前記Co被着型磁性酸化鉄粒子粉末に
Fe以外のCo、Al、Ni、P、Zn、Si、B、希
土類金属等の異種元素を含有させたCo被着型磁性酸化
鉄粒子粉末、鉄を主成分とする金属磁性粒子粉末、鉄以
外のCo、Al、Ni、P、Zn、Si、B等を含有す
る鉄合金磁性粒子粉末、Ba,Sr,Ba−Srを含有
する板状フェライト粒子粉末等のマグネトプランバイト
型板状フェライト粒子粉末並びにこれらにCo、Ni、
Zn、Mn、Mg、Tiの2価及び4価の金属から選ば
れた保磁力低減剤の1種又は2種以上を含有させた板状
マグネトプランバイト型フェライト粒子粉末等のいずれ
をも用いることができる。
The magnetic particles include maghemite particles (γ-Fe 2 O 3 ) and magnetite particles ( Fe
Co-coated magnetic iron oxide particles obtained by coating Co or Co and Fe on magnetic iron oxide particles such as O x .Fe 2 O 3 , 0 <x ≦ 1); Co-coated magnetic iron oxide particles containing different elements such as Co, Al, Ni, P, Zn, Si, B, and rare earth metals other than Fe, and metal magnetic particles containing iron as a main component , Iron alloy magnetic particles containing Co, Al, Ni, P, Zn, Si, B, etc. other than iron, plate-like ferrite particles containing Ba, Sr, Ba-Sr, etc. Ferrite particle powder and Co, Ni,
Any one of plate-like magnetoplumbite-type ferrite particles containing one or more coercive force reducing agents selected from divalent and tetravalent metals of Zn, Mn, Mg, and Ti is used. Can be.

【0061】なお、近年の短波長記録、高密度記録を考
慮すれば、鉄を主成分とする金属磁性粒子粉末、鉄以外
のCo、Al、Ni、P、Zn、Si、B、希土類金属
等を含有する鉄合金磁性粒子粉末等が好ましい。
In consideration of recent short-wavelength recording and high-density recording, metal magnetic particle powder containing iron as a main component, Co, Al, Ni, P, Zn, Si, B, rare earth metal, etc. other than iron Is preferred.

【0062】磁性粒子粉末は、平均長軸径(板状粒子の
場合は平均粒子径)が0.01〜0.5μm、好ましく
は0.03〜0.3μmである。該磁性粒子粉末の粒子
の形状は針状もしくは板状が好ましい。ここで「針状」
とは、文字通りの針状はもちろん、紡錘状や米粒状など
を含む意味である。
The magnetic particle powder has an average major axis diameter (average particle diameter in the case of plate-like particles) of 0.01 to 0.5 μm, preferably 0.03 to 0.3 μm. The shape of the particles of the magnetic particle powder is preferably needle-like or plate-like. Here "needle"
The meaning of the term includes not only a needle-like shape in a literal sense but also a spindle shape, a rice grain shape and the like.

【0063】また、磁性粒子粉末の粒子形状が針状の場
合、軸比は3以上、好ましくは5以上であり、ビヒクル
中における分散性を考慮すれば、その上限値は15であ
り、好ましくは10である。
When the particle shape of the magnetic particle powder is acicular, the axial ratio is 3 or more, preferably 5 or more. In consideration of dispersibility in a vehicle, the upper limit is 15, and preferably the upper limit is 15. It is 10.

【0064】磁性粒子粉末の粒子形状が板状の場合、板
状比(粒子の平均粒子径と粒子の平均厚みの比)(以
下、「板状比」という。)は2以上、好ましくは3以上
であり、ビヒクル中における分散性を考慮すれば、その
上限値は20であり、好ましくは15である。
When the particle shape of the magnetic particle powder is plate-like, the plate-like ratio (the ratio of the average particle diameter of the particles to the average thickness of the particles) (hereinafter referred to as “plate-like ratio”) is 2 or more, preferably 3. As described above, when the dispersibility in the vehicle is taken into consideration, the upper limit is 20 and preferably 15.

【0065】磁性粒子粉末の磁気特性は、保磁力値が5
00〜3200Oe、好ましくは550〜3200Oe
であって、飽和磁化値が50〜170emu/g、好ま
しくは60〜170emu/gである。高密度記録化等
を考慮すれば、保磁力値は、より好ましくは900〜3
200Oe、飽和磁化値は、より好ましくは70〜17
0emu/gである。
The magnetic properties of the magnetic particles are as follows.
00-3200 Oe, preferably 550-3200 Oe
And the saturation magnetization is 50 to 170 emu / g, preferably 60 to 170 emu / g. Considering high-density recording and the like, the coercive force value is more preferably 900 to 3
200 Oe, the saturation magnetization value is more preferably 70 to 17
0 emu / g.

【0066】結合剤樹脂としては、前記非磁性下地層を
形成するために用いた結合剤樹脂を使用することができ
る。
As the binder resin, the binder resin used for forming the nonmagnetic underlayer can be used.

【0067】非磁性下地層上に設けられた磁気記録層の
塗膜厚さは、0.01〜5μmの範囲である。0.01
μm未満の場合には、均一な塗布が困難であり、塗りむ
ら等の現象が出やすくなるため好ましくない。5μmを
超える場合には、反磁界の影響のため、所望の電磁変換
特性が得られにくくなる。好ましくは0.05〜1μm
の範囲である。
The coating thickness of the magnetic recording layer provided on the non-magnetic underlayer is in the range of 0.01 to 5 μm. 0.01
When the thickness is less than μm, uniform application is difficult and phenomena such as uneven coating are likely to occur, which is not preferable. If it exceeds 5 μm, it becomes difficult to obtain desired electromagnetic conversion characteristics due to the influence of a demagnetizing field. Preferably 0.05 to 1 μm
Range.

【0068】磁性粒子粉末と結合剤樹脂との配合割合
は、結合剤樹脂100重量部に対し、磁性粒子粉末が2
00〜2000重量部、好ましくは300〜1500重
量部である。
The mixing ratio of the magnetic particle powder to the binder resin is such that the magnetic particle powder is 2 parts per 100 parts by weight of the binder resin.
It is 00 to 2000 parts by weight, preferably 300 to 1500 parts by weight.

【0069】磁気記録層中には、通常用いられる潤滑
剤、研磨剤、帯電防止剤等を添加してもよい。
The magnetic recording layer may contain commonly used lubricants, abrasives, antistatic agents and the like.

【0070】本発明に係る磁気記録媒体は、磁性粒子粉
末としてCo被着型磁性酸化鉄粒子を用いた場合には、
保磁力値が500〜1500Oe、好ましくは550〜
1500Oe、角形比(残留磁束密度Br/飽和磁束密
度Bm)が0.85〜0.95、好ましくは0.86〜
0.95、塗膜の光沢度が130〜200%、好ましく
は140〜200%、塗膜表面粗度Raが12.0nm
以下、好ましくは2.0〜11.0nm、より好ましく
は2.0〜10.0nm、ヤング率が125〜160、
好ましくは130〜160である。
The magnetic recording medium according to the present invention, when using Co-coated magnetic iron oxide particles as the magnetic particle powder,
Coercive force value of 500 to 1500 Oe, preferably 550 to
1500 Oe, squareness ratio (residual magnetic flux density Br / saturated magnetic flux density Bm) of 0.85 to 0.95, preferably 0.86 to 0.96
0.95, the glossiness of the coating film is 130 to 200%, preferably 140 to 200%, and the coating film surface roughness Ra is 12.0 nm.
Hereinafter, preferably 2.0 to 11.0 nm, more preferably 2.0 to 10.0 nm, Young's modulus is 125 to 160,
Preferably it is 130-160.

【0071】磁性粒子粉末として鉄を主成分とする針状
金属磁性粒子粉末又は鉄合金磁性粒子粉末を用いた場合
には、保磁力値が800〜3200Oe、好ましくは9
00〜3200Oe、角形比(残留磁束密度Br/飽和
磁束密度Bm)が0.87〜0.95、好ましくは0.
88〜0.95、塗膜の光沢度が193〜300%、好
ましくは198〜300%、塗膜表面粗度Raが8.8
nm以下、好ましくは2.0〜8.3nm、より好まし
くは2.0〜7.8nm、ヤング率が126〜160、
好ましくは131〜160である。
When acicular metal magnetic particles containing iron as a main component or iron alloy magnetic particles are used as the magnetic particles, the coercive force value is 800 to 3200 Oe, preferably 9 to 3200 Oe.
00-3200 Oe, and the squareness ratio (residual magnetic flux density Br / saturated magnetic flux density Bm) is 0.87-0.95, preferably 0.1-0.
88 to 0.95, glossiness of the coating film is 193 to 300%, preferably 198 to 300%, and coating film surface roughness Ra is 8.8.
nm or less, preferably 2.0 to 8.3 nm, more preferably 2.0 to 7.8 nm, and a Young's modulus of 126 to 160,
Preferably it is 131-160.

【0072】磁性粒子粉末として板状マグネトプランバ
イト型フェライト粒子粉末を用いた場合には、保磁力値
が800〜3200Oe、好ましくは900〜3200
Oe、角形比(残留磁束密度Br/飽和磁束密度Bm)
が0.85〜0.95、好ましくは0.86〜0.9
5、塗膜の光沢度が160〜300%、好ましくは17
0〜300%、塗膜表面粗度Raが12.0nm以下、
好ましくは2.0〜11.0nm、より好ましくは2.
0〜10.0nm、ヤング率が124〜160、好まし
くは128〜160である。
When plate-like magnetoplumbite type ferrite particles are used as the magnetic particles, the coercive force value is 800 to 3200 Oe, preferably 900 to 3200 Oe.
Oe, squareness ratio (residual magnetic flux density Br / saturated magnetic flux density Bm)
Is 0.85 to 0.95, preferably 0.86 to 0.9
5. The glossiness of the coating film is 160 to 300%, preferably 17
0 to 300%, the coating film surface roughness Ra is 12.0 nm or less,
Preferably from 2.0 to 11.0 nm, more preferably from 2.
It is from 0 to 10.0 nm and its Young's modulus is from 124 to 160, preferably from 128 to 160.

【0073】なお、前記非磁性下地層及び前記磁気記録
層の形成に用いる溶剤としては、磁気記録媒体に汎用さ
れているメチルエチルケトン、トルエン、シクロヘキサ
ノン、メチルイソブチルケトン、テトラヒドロフラン及
びその混合物等を使用することができる。
As a solvent used for forming the nonmagnetic underlayer and the magnetic recording layer, methyl ethyl ketone, toluene, cyclohexanone, methyl isobutyl ketone, tetrahydrofuran, a mixture thereof and the like commonly used for magnetic recording media can be used. Can be.

【0074】溶剤の使用量は、粒子粉末100重量部に
対しその総量で65〜1000重量部である。65重量
部未満では塗料とした場合に粘度が高くなりすぎ塗布が
困難となる。1000重量部を超える場合には、塗膜を
形成する際の溶剤の揮発量が多くなりすぎ工業的に不利
となる。
The amount of the solvent used is 65 to 1000 parts by weight in total with respect to 100 parts by weight of the particle powder. If the amount is less than 65 parts by weight, the viscosity becomes too high in the case of a paint, and application becomes difficult. If the amount exceeds 1000 parts by weight, the amount of the solvent volatilized when forming a coating film becomes too large, which is industrially disadvantageous.

【0075】[0075]

【発明の実施の形態】本発明の代表的な実施の形態は、
次の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the present invention is as follows.
It is as follows.

【0076】粒子の平均長軸径、平均短軸径は、電子顕
微鏡写真(×30,000)を縦方向及び横方向にそれ
ぞれ4倍に拡大した写真に示される粒子約350個につ
いて長軸径、短軸径をそれぞれ測定し、その平均値で示
した。
The average major axis diameter and average minor axis diameter of the particles were determined for the approximately 350 particles shown in the electron micrograph (× 30,000) enlarged four times in the vertical and horizontal directions, respectively. And the minor axis diameter were measured, and the average value was shown.

【0077】軸比は、平均長軸径と平均短軸径との比
で、板状比は、平均粒子径と平均厚みとの比で示した。
The axial ratio is the ratio between the average major axis diameter and the average minor axis diameter, and the plate ratio is the ratio between the average particle diameter and the average thickness.

【0078】粒子の長軸径及び短軸径(以下、「粒子
径」という。)の粒度分布は、下記の方法により求めた
値で示した。
The particle size distribution of the major axis diameter and the minor axis diameter (hereinafter, referred to as “particle diameter”) of the particles was shown by the value obtained by the following method.

【0079】即ち、上記拡大写真に示される粒子の粒子
径を測定した値を、その測定値から計算して求めた粒子
の実際の粒子径と個数から統計学的手法に従って対数正
規確率紙上に横軸に粒子径を、縦軸に所定の粒子径区間
のそれぞれに属する粒子の累積個数(積算フルイ下)を
百分率でプロットする。そして、このグラフから粒子の
個数が50%及び84.13%のそれぞれに相当する粒
子径の値を読みとり、幾何標準偏差値=積算フルイ下8
4.13%における粒子径/積算フルイ下50%におけ
る粒子径(幾何平均径)に従って算出した値で示した。
幾何標準偏差値が小さい程、粒子の粒度分布が優れてい
ることを意味する。
That is, the value obtained by measuring the particle size of the particles shown in the above enlarged photograph is plotted on a log-normal probability paper in accordance with a statistical method from the actual particle size and the number of particles calculated from the measured values. The axis is plotted with the particle diameter, and the vertical axis is plotted as a percentage of the cumulative number of particles belonging to each of the predetermined particle diameter sections (under the integrated screen). Then, from this graph, the values of the particle diameters corresponding to 50% and 84.13% of the number of particles are read, and the geometric standard deviation value = 8
The value was calculated according to the particle diameter at 4.13% / the particle diameter (geometric mean diameter) at 50% under the integrated screen.
The smaller the geometric standard deviation value, the better the particle size distribution of the particles.

【0080】比表面積値はBET法により測定した値で
示した。
The specific surface area was indicated by a value measured by the BET method.

【0081】針状ヘマタイト粒子の内部や表面に存在す
るAl量、Si量及びP量のそれぞれは「蛍光X線分析
装置3063M型」(理学電機工業(株)製)を使用
し、JIS K0119の「けい光X線分析通則」に従
って測定した。
The amount of Al, the amount of Si, and the amount of P existing inside and on the surface of the acicular hematite particles were measured using a “X-ray fluorescence spectrometer 3063M” (manufactured by Rigaku Corporation) according to JIS K0119. The measurement was performed according to “General rules for X-ray fluorescence analysis”.

【0082】針状へマタイト粒子の密度化の程度は、前
述した通り、SBET/STEM値で示した。ここで、
BET値は、上記BET法により測定した比表面積の
値である。STEM値は、前記電子顕微鏡写真から測定
した粒子の平均長軸径lcm、平均短軸径wcmを用い
て粒子を直方体と仮定して数1に従って算出した値であ
る。
The degree of densification of the acicular hematite particles was indicated by the S BET / S TEM value as described above. here,
The S BET value is a value of the specific surface area measured by the above BET method. S TEM value is the electron micrograph from an average major axis diameter lcm of the measured particles is a value calculated according to Equation 1 by assuming the particles a rectangular parallelepiped with an average short axis diameter wcm.

【0083】[0083]

【数1】STEM値(m/g)=〔(4lw+2
)/(lw・ρ)〕×10−4 (但し、ρはへマタイト粒子の真比重であり、5.2
g/cmを用いた。)
[Equation 1] STEMValue (m2/ G) = [(4lw + 2
w2) / (Lw2・ Ρp)] × 10-4  (However, ρpIs the true specific gravity of hematite particles, and 5.2
g / cm3Was used. )

【0084】塗料粘度は、得られた塗料の25℃におけ
る塗料粘度を、E型粘度計EMD−R(株式会社東京計
器製)を用いて測定し、ずり速度D=1.92sec
−1における値で示した。
The paint viscosity was measured at 25 ° C. using an E-type viscometer EMD-R (manufactured by Tokyo Keiki Co., Ltd.), and the shear rate D was 1.92 sec.
It was shown by the value at -1 .

【0085】非磁性下地層及び磁気記録層の塗膜表面の
光沢度は、「グロスメーターUGV−5D」(スガ試験
機株式会社製)を用いて塗膜の45°光沢度を測定して
求めた。
The glossiness of the surface of the coating film of the non-magnetic underlayer and the magnetic recording layer was determined by measuring the 45 ° glossiness of the coating film using “Gloss Meter UGV-5D” (manufactured by Suga Test Instruments Co., Ltd.). Was.

【0086】表面粗度Raは、「Surfcom−57
5A」(東京精密株式会社製)を用いて塗布膜の中心線
平均粗さを測定した。
The surface roughness Ra is calculated as follows: Surfcom-57
The center line average roughness of the coating film was measured using “5A” (manufactured by Tokyo Seimitsu Co., Ltd.).

【0087】塗膜のスティフネスは、「オートグラフ」
(株式会社島津製作所製)を用いて塗膜のヤング率を測
定して求めた。ヤング率は市販ビデオテープ「AV T
−120(日本ビクター株式会社製)」との相対値で表
した。相対値が高いほど塗膜のスティフネスが良好であ
ることを示す。
The stiffness of the coating film was measured using an “autograph”
It was determined by measuring the Young's modulus of the coating film using (manufactured by Shimadzu Corporation). Young's modulus was measured on a commercial videotape "AV T
-120 (manufactured by Victor Company of Japan, Ltd.) ". The higher the relative value, the better the stiffness of the coating film.

【0088】磁気記録媒体を構成する非磁性支持体、非
磁性下地層及び磁気記録層の各層の厚みは、次の通りの
測定手法によって測定した。
The thickness of each of the nonmagnetic support, the nonmagnetic underlayer, and the magnetic recording layer constituting the magnetic recording medium was measured by the following measuring method.

【0089】デジタル電子マイクロメーターK351C
(安立電気株式会社製)を用いて、先ず、非磁性支持体
の膜厚(A)を測定する。次に、非磁性支持体と該非磁
性支持体上に形成された非磁性下地層との厚み(B)
(非磁性支持体の厚みと非磁性下地層の厚みとの総和)
を同様にして測定する。更に、非磁性下地層上に磁気記
録層を形成することにより得られた磁気記録媒体の厚み
(C)(非磁性支持体の厚みと非磁性下地層の厚みと磁
気記録層の厚みとの総和)を同様にして測定する。そし
て、非磁性下地層の厚みは(B)−(A)で示し、磁気
記録層の厚みは(C)−(B)で示した。
Digital electronic micrometer K351C
First, the film thickness (A) of the nonmagnetic support is measured using (manufactured by Anritsu Electric Co., Ltd.). Next, the thickness (B) of the nonmagnetic support and the nonmagnetic underlayer formed on the nonmagnetic support
(Sum of the thickness of the nonmagnetic support and the thickness of the nonmagnetic underlayer)
Is measured in the same manner. Further, the thickness (C) of the magnetic recording medium obtained by forming the magnetic recording layer on the nonmagnetic underlayer (the sum of the thickness of the nonmagnetic support, the thickness of the nonmagnetic underlayer, and the thickness of the magnetic recording layer) ) Is measured in the same manner. The thickness of the nonmagnetic underlayer is shown by (B)-(A), and the thickness of the magnetic recording layer is shown by (C)-(B).

【0090】磁気特性は、「振動試料型磁力計VSM−
3S−15」(東英工業株式会社製)を使用し、外部磁
場10KOeまでかけて測定した。
The magnetic characteristics are described in “Vibrating sample magnetometer VSM-
3S-15 "(manufactured by Toei Industry Co., Ltd.) using an external magnetic field of up to 10 KOe.

【0091】<紡錘状ヘマタイト粒子粉末の製造>硫酸
第一鉄水溶液と炭酸ナトリウム水溶液とを用いて得られ
た紡錘状ゲータイト粒子粉末(平均長軸径0.0812
μm、長軸径の幾何標準偏差値1.53、平均短軸径
0.0110μm、短軸径の幾何標準偏差値1.33、
軸比7.4及びBET比表面積値168.9m/g)
1200gを水中に懸濁させてスラリーとし、固形分濃
度を8g/lに調整した。このスラリー150lを加熱
し、温度を60℃とし、0.1NのNaOH水溶液を加
えてスラリーのpH値を10.0に調整した。
<Production of Spindle-Shaped Hematite Particle Powder> Spindle-shaped goethite particle powder (average major axis diameter 0.0812) obtained using an aqueous ferrous sulfate solution and an aqueous sodium carbonate solution.
μm, geometric standard deviation of major axis diameter 1.53, average minor axis diameter 0.0110 μm, geometric standard deviation of minor axis diameter 1.33,
(Axial ratio 7.4 and BET specific surface area value 168.9 m 2 / g)
1200 g was suspended in water to form a slurry, and the solid content concentration was adjusted to 8 g / l. 150 liters of this slurry was heated to a temperature of 60 ° C., and the pH value of the slurry was adjusted to 10.0 by adding a 0.1N aqueous NaOH solution.

【0092】次に、上記アルカリ性スラリー中に、焼結
防止剤として3号水ガラス36.0gを徐々に加え、添
加が終わった後、60分間熟成を行った。次に、このス
ラリーに0.1Nの酢酸溶液を加え、スラリーのpH値
を6.0に調整した。その後、常法により、濾別、水
洗、乾燥、粉砕を行い、ケイ素の酸化物が粒子表面に被
覆されている紡錘状ゲータイト粒子粉末を得た。ケイ素
の含有量はSiO換算で0.78重量%であった。
Next, 36.0 g of No. 3 water glass as a sintering inhibitor was gradually added to the alkaline slurry, and after the addition was completed, aging was performed for 60 minutes. Next, a 0.1 N acetic acid solution was added to the slurry to adjust the pH value of the slurry to 6.0. Thereafter, filtration, washing with water, drying, and pulverization were performed by a conventional method to obtain spindle-shaped goethite particles having a silicon oxide coating on the particle surfaces. The silicon content was 0.78% by weight in terms of SiO 2 .

【0093】得られた紡錘状ゲータイト粒子粉末を金属
製の熱処理炉に入れ、150℃で30分間加熱処理を行
い、紡錘状ゲータイト粒子粉末中に含まれるゲータイト
超微粒子を紡錘状ゲータイト粒子に吸収させた。
The obtained spindle-shaped goethite particles were placed in a heat treatment furnace made of metal and heated at 150 ° C. for 30 minutes to allow the spindle-shaped goethite particles to absorb the ultra-fine goethite particles contained in the spindle-shaped goethite particles. Was.

【0094】次いで、得られた紡錘状ゲータイト粒子粉
末を再度、金属製の熱処理炉に入れ、320℃で30分
間加熱脱水処理を行い、紡錘状ゲータイト粒子を脱水し
て、低密度紡錘状ヘマタイト粒子粉末を得た。得られた
低密度紡錘状ヘマタイト粒子粉末は、平均長軸径0.7
856μm、長軸径の幾何標準偏差値1.38、平均短
軸径0.0118μm、短軸径の幾何標準偏差値1.1
6、軸比6.1、BET比表面積値190.3m
g、SBET/STEM値2.70であった。ケイ素の
含有量はSiO換算で0.78重量%であった。
Next, the obtained spindle-shaped goethite particles were again placed in a metal heat treatment furnace and subjected to a heat dehydration treatment at 320 ° C. for 30 minutes to dehydrate the spindle-shaped goethite particles to obtain low-density spindle-shaped hematite particles. A powder was obtained. The obtained low-density spindle-shaped hematite particle powder has an average major axis diameter of 0.7.
856 μm, geometric standard deviation of major axis diameter 1.38, average minor axis diameter 0.0118 μm, geometric standard deviation of minor axis diameter 1.1
6, axial ratio 6.1, BET specific surface area value 190.3 m 2 /
g, S BET / S TEM value was 2.70. The silicon content was 0.78% by weight in terms of SiO 2 .

【0095】次に、上記低密度紡錘状ヘマタイト粒子粉
末850gをセラミック製の回転炉に投入し、回転駆動
させながら空気中650℃で30分間熱処理を行い、脱
水孔の封孔処理を行った。高密度化された紡錘状ヘマタ
イト粒子粉末は、平均長軸径が0.0727μm、長軸
径の幾何標準偏差値が1.38、平均短軸径が0.01
20μm、短軸径の幾何標準偏差値が1.17、軸比が
6.1、BET比表面積値が86,8m/g、S
BET/STEM値が1.25であった。ケイ素の含有
量はSiO換算で0.87重量%であった。
Next, 850 g of the above-mentioned low-density spindle-shaped hematite particle powder was placed in a ceramic rotary furnace, and heat-treated in air at 650 ° C. for 30 minutes while being rotated to seal the dewatered holes. The densified spindle-shaped hematite particles have an average major axis diameter of 0.0727 μm, a geometric standard deviation of the major axis diameter of 1.38, and an average minor axis diameter of 0.01.
20 μm, geometric standard deviation of minor axis diameter is 1.17, axial ratio is 6.1, BET specific surface area is 86,8 m 2 / g, S
The BET / S TEM value was 1.25. The silicon content was 0.87% by weight in terms of SiO 2 .

【0096】<非磁性下地層の形成>得られた高密度紡
錘状ヘマタイト粒子粉末と結合剤樹脂及び溶剤とを混合
し、固形分率75重量%でプラストミルを用いて30分
間混練した。しかる後、所定量の混練物を取り出し、ガ
ラスビンにガラスビーズ及び溶剤とともに添加し、ペイ
ントコンディショナーで6時間混合・分散を行った。
<Formation of Non-Magnetic Underlayer> The obtained high-density spindle-shaped hematite particles were mixed with a binder resin and a solvent and kneaded at a solid content of 75% by weight using a plast mill for 30 minutes. Thereafter, a predetermined amount of the kneaded material was taken out, added to a glass bottle together with the glass beads and a solvent, and mixed and dispersed for 6 hours with a paint conditioner.

【0097】得られた非磁性塗料の組成は、下記の通り
である。 紡錘状ヘマタイト粒子粉末 100重量部 スルホン酸ナトリウム基を有する 塩化ビニル−酢酸ビニル共重合樹脂 10重量部 スルホン酸ナトリウム基を有するポリウレタン樹脂 10重量部 シクロヘキサノン 44.6重量部 メチルエチルケトン 111.4重量部 トルエン 66.9重量部
The composition of the obtained non-magnetic paint is as follows. Spindle-shaped hematite particle powder 100 parts by weight Vinyl chloride-vinyl acetate copolymer resin having sodium sulfonate group 10 parts by weight Polyurethane resin having sodium sulfonate group 10 parts by weight Cyclohexanone 44.6 parts by weight Methyl ethyl ketone 111.4 parts by weight Toluene 66 .9 parts by weight

【0098】得られた非磁性塗料を厚さ14μmのポリ
エチレンテレフタレートフィルム上にアプリケーターを
用いて55μmの厚さに塗布し、次いで、乾燥させるこ
とにより非磁性下地層を形成した。
The obtained nonmagnetic paint was applied on a polyethylene terephthalate film having a thickness of 14 μm to a thickness of 55 μm using an applicator, and then dried to form a nonmagnetic underlayer.

【0099】得られた非磁性下地層の光沢は213%、
表面粗度Raは6.0nm、ヤング率は131であっ
た。
The resulting nonmagnetic underlayer has a gloss of 213%,
The surface roughness Ra was 6.0 nm and the Young's modulus was 131.

【0100】<磁気記録層の形成>鉄を主成分とする針
状金属磁性粒子粉末(平均長軸径0.103μm、平均
短軸径0.0152μm、軸比6.8、保磁力値191
0Oe、飽和磁化値136emu/g)と結合剤樹脂及
び溶剤とを混合し、固形分率78重量%でプラストミル
を用いて30分間混練して混練物を得た。この混練物を
ガラスビンにガラスビーズ及び溶剤とともに添加し、ペ
イントコンディショナーで6時間混合・分散を行った。
<Formation of Magnetic Recording Layer> Needle-like metal magnetic particles containing iron as a main component (average major axis diameter 0.103 μm, average minor axis diameter 0.0152 μm, axial ratio 6.8, coercive force value 191)
(0 Oe, saturation magnetization value: 136 emu / g), a binder resin and a solvent, and kneaded at a solid content of 78% by weight using a plastmill for 30 minutes to obtain a kneaded product. This kneaded material was added to a glass bottle together with a glass bead and a solvent, and mixed and dispersed for 6 hours with a paint conditioner.

【0101】その後、研磨剤、潤滑剤及び硬化剤とを加
え、更に、15分間混合・分散した。得られた磁性塗料
の組成は下記の通りであった。 鉄を主成分とする針状金属磁性粒子粉末 100重量部 スルホン酸ナトリウム基を有する 塩化ビニル−酢酸ビニル共重合樹脂 10重量部 スルホン酸ナトリウム基を有するポリウレタン樹脂 10重量部 研磨剤 10重量部 カーボンブラック #3250B 1.0重量部 潤滑剤 3.0重量部 硬化剤 5重量部 シクロヘキサノン 64.9重量部 メチルエチルケトン 162.2重量部 トルエン 97.3重量部
Thereafter, an abrasive, a lubricant and a hardener were added, and the mixture was further mixed and dispersed for 15 minutes. The composition of the obtained magnetic paint was as follows. Acicular metallic magnetic particles containing iron as a main component 100 parts by weight Vinyl chloride-vinyl acetate copolymer resin having sodium sulfonate group 10 parts by weight Polyurethane resin having sodium sulfonate group 10 parts by weight Abrasive 10 parts by weight carbon black # 3250B 1.0 parts by weight Lubricant 3.0 parts by weight Curing agent 5 parts by weight Cyclohexanone 64.9 parts by weight Methyl ethyl ketone 162.2 parts by weight Toluene 97.3 parts by weight

【0102】得られた磁性塗料を前記非磁性下地層の上
にアプリケーターを用いて15μmの厚さに塗布した
後、磁場中において配向・乾燥し、次いで、カレンダー
処理を行った後、60℃で24時間硬化反応を行い0.
5インチ幅にスリットして磁気テープを得た。
After applying the obtained magnetic paint to a thickness of 15 μm on the nonmagnetic underlayer using an applicator, orienting and drying in a magnetic field, and then performing a calendering treatment, Perform a curing reaction for 24 hours.
A magnetic tape was obtained by slitting to a width of 5 inches.

【0103】得られた磁気テープのHcは2011O
e、角型比(Br/Bm)は0.88、光沢度は235
%、表面粗度Raは6.0nm、ヤング率は133であ
った。
The Hc of the obtained magnetic tape was 2011O.
e, squareness ratio (Br / Bm) is 0.88, glossiness is 235
%, Surface roughness Ra was 6.0 nm, and Young's modulus was 133.

【0104】[0104]

【作用】本発明において重要な点は、加熱脱水処理に先
立って、針状ゲータイト粒子粉末を100〜200℃の
温度範囲で加熱処理することにより、長軸径の幾何標準
偏差値が1.5以下であって、短軸径の幾何標準偏差値
が1.3以下である粒度が均斉な、殊に短軸径の粒度が
均斉である針状へマタイト粒子粉末を得ることができる
という事実である。
The important point in the present invention is that, prior to the heat dehydration treatment, the acicular goethite particles are heated in a temperature range of 100 to 200 ° C. so that the geometric standard deviation of the major axis diameter becomes 1.5. Due to the fact that it is possible to obtain a needle-like hematite particle powder having a uniform particle size with a geometrical standard deviation of the minor axis diameter of 1.3 or less, particularly with a uniform minor axis diameter. is there.

【0105】本発明に係る粒度が均斉な針状ヘマタイト
粒子粉末が得られる理由について、本発明者は、針状ゲ
ータイト粒子粉末を、100〜200℃の温度範囲で加
熱処理することにより、ゲータイト超微粒子が針状ゲー
タイト粒子に吸収されるため、超微粒子成分が少なく、
長軸径の粒度が均斉であるとともに短軸径の粒度も均斉
である針状ゲータイト粒子粉末が得られるとともに、ゲ
ータイト超微粒子成分が減少することによって、その後
の加熱脱水処理においてゲータイト超微粒子に起因する
粒子間の焼結が起こりにくいことにより、針状ゲータイ
ト粒子の均斉な粒度を保持した針状ヘマタイト粒子粉末
を得ることができるためと考えている。
Regarding the reason why the acicular hematite particle powder having a uniform particle size according to the present invention can be obtained, the present inventor has proposed that the acicular goethite particle powder is subjected to heat treatment in a temperature range of 100 to 200 ° C. Since the fine particles are absorbed by the acicular goethite particles, the ultrafine particle component is small,
Needle-like goethite particles having a uniform major axis diameter and a uniform minor axis diameter are obtained, and the goethite ultrafine particle component is reduced. It is considered that the sintering between the particles is less likely to occur, so that it is possible to obtain acicular hematite particle powder that maintains the uniform particle size of the acicular goethite particles.

【0106】本発明に係る磁気記録媒体は、非磁性下地
層用非磁性粒子粉末として本発明に係る針状ヘマタイト
粒子粉末を用いた場合、優れた表面平滑性を有してい
る。
The magnetic recording medium according to the present invention has excellent surface smoothness when the acicular hematite particle powder according to the present invention is used as the nonmagnetic particle powder for the nonmagnetic underlayer.

【0107】本発明に係る磁気記録媒体の表面平滑性が
向上する理由について、本発明者は、本発明に係る針状
ヘマタイト粒子粉末の長軸径の幾何標準偏差値が1.5
以下、短軸径の幾何標準偏差値が1.3以下であり、粗
大な粒子や微細な粒子の存在が少ない均斉な粒子である
こと及びBET比表面積値が40〜150m/gであ
り、粒子内部及び粒子表面に脱水孔が少ない粒子である
ことの相乗効果により、ビヒクル中での分散性がより向
上し、その結果、得られる非磁性下地層の表面平滑性も
更に向上したものと考えている。
Regarding the reason why the surface smoothness of the magnetic recording medium according to the present invention is improved, the present inventor has determined that the geometric standard deviation of the major axis diameter of the acicular hematite particles according to the present invention is 1.5.
Hereinafter, the geometric standard deviation value of the minor axis diameter is 1.3 or less, the presence of coarse particles and fine particles is less uniform particles, and the BET specific surface area value is 40 to 150 m 2 / g, It is thought that the synergistic effect of the particles having few dewatered pores inside the particles and on the surface of the particles further improved the dispersibility in the vehicle, and as a result, the surface smoothness of the obtained nonmagnetic underlayer was further improved. ing.

【0108】[0108]

【実施例】次に、実施例並びに比較例を挙げる。Next, examples and comparative examples will be described.

【0109】ゲータイト粒子1〜2 出発原料粒子として、表1に示す特性を有する針状ゲー
タイト粒子粉末1及び2を準備した。
Goethite Particles 1-2 Needle-like goethite particle powders 1 and 2 having the properties shown in Table 1 were prepared as starting material particles.

【0110】[0110]

【表1】 [Table 1]

【0111】ゲータイト粒子3〜5 出発原料粒子の種類、焼結防止剤の種類及び量を種々変
化させた以外は、前記本発明の発明の実施の形態と同様
にして焼結防止処理を行った針状ゲータイト粒子粉末を
得た。
Goethite particles 3 to 5 The sintering prevention treatment was carried out in the same manner as in the embodiment of the present invention, except that the type of the starting material particles and the type and amount of the sintering inhibitor were variously changed. Acicular goethite particle powder was obtained.

【0112】得られた針状ゲータイト粒子粉末の諸特性
を表2に示す。
Table 2 shows the properties of the obtained acicular goethite particles.

【0113】[0113]

【表2】 [Table 2]

【0114】<加熱処理> ゲータイト粒子6〜9 出発原料粒子の種類、加熱処理における温度及び時間を
種々変化させた以外は前記発明の実施の形態と同様にし
て針状ゲータイト粒子6〜9を得た。
<Heat treatment> Goethite particles 6 to 9 Acicular goethite particles 6 to 9 were obtained in the same manner as in the embodiment of the invention except that the type of starting material particles, and the temperature and time in the heat treatment were variously changed. Was.

【0115】この時の主要製造条件を表3に、得られた
針状ゲータイト粒子粉末の諸特性を表4に示す。
The main production conditions at this time are shown in Table 3, and various properties of the obtained acicular goethite particle powder are shown in Table 4.

【0116】[0116]

【表3】 [Table 3]

【0117】[0117]

【表4】 [Table 4]

【0118】<低密度針状へマタイト粒子粉末の製造>
ゲータイト粒子の種類及び加熱脱水処理における温度及
び時間を種々変化させた以外は前記発明の実施の形態と
同様にして低密度針状ヘマタイト粒子1〜4を得た。
<Production of low-density acicular hematite particle powder>
Low-density acicular hematite particles 1 to 4 were obtained in the same manner as in the embodiment of the invention except that the type of goethite particles and the temperature and time in the heat dehydration treatment were variously changed.

【0119】この時の主要製造条件を表5に、得られた
低密度針状へマタイト粒子粉末の諸特性を表6に示す。
Table 5 shows the main production conditions at this time, and Table 6 shows the properties of the obtained low-density acicular hematite particle powder.

【0120】[0120]

【表5】 [Table 5]

【0121】[0121]

【表6】 [Table 6]

【0122】実施例1〜4及び比較例1〜5 被処理粒子の種類、高温加熱処理における温度及び時間
を種々変化させた以外は前記発明の実施の形態と同様に
して針状ヘマタイト粒子を得た。
Examples 1 to 4 and Comparative Examples 1 to 5 Acicular hematite particles were obtained in the same manner as in the embodiment of the invention except that the type of particles to be treated and the temperature and time in the high-temperature heat treatment were variously changed. Was.

【0123】この時の主要製造条件を表7に、得られた
針状へマタイト粒子粉末の諸特性を表8に示す。
Table 7 shows the main production conditions at this time, and Table 8 shows various properties of the obtained acicular hematite particle powder.

【0124】[0124]

【表7】 [Table 7]

【0125】[0125]

【表8】 [Table 8]

【0126】比較例6 (特願平9−342163号公
報の追試実験例) <高密度針状ヘマタイト粒子粉末の製造>ゲータイト粒
子粉末5(出発原料粒子粉末)1000gを、ステンレ
ス製回転炉に投入し、回転駆動させながら空気中で34
0℃で30分間熱処理を行って加熱脱水し、低密度針状
ヘマタイト粒子粉末を得た。得られた低密度針状ヘマタ
イト粒子粉末は、平均長軸径が0.0839μm、長軸
径の幾何標準偏差値が1.52、平均短軸径が0.01
34μm、短軸径の幾何標準偏差値が1.38、軸比が
6.3、BET比表面積値が213.6m/g、S
BET/STEM値が3.45、ケイ素の含有量はSi
換算で1.21重量%であった。
Comparative Example 6 (Example of Additional Tests in Japanese Patent Application No. 9-342163) <Production of High-Density Acicular Hematite Particle Powder> 1000 g of goethite particle powder 5 (starting material particle powder) was put into a stainless steel rotary furnace. And rotate and drive in air.
Heat treatment was performed at 0 ° C. for 30 minutes, followed by heat dehydration to obtain low-density acicular hematite particles. The obtained low-density acicular hematite particle powder has an average major axis diameter of 0.0839 μm, a geometric standard deviation of the major axis diameter of 1.52, and an average minor axis diameter of 0.01.
34 μm, geometric standard deviation of minor axis diameter is 1.38, axial ratio is 6.3, BET specific surface area value is 213.6 m 2 / g, S
BET / S TEM value is 3.45, silicon content is Si
O 2 was 1.21 wt% in terms of.

【0127】次に、上記低密度針状ヘマタイト粒子粉末
850gをセラミック製の回転炉に投入し、回転駆動さ
せながら空気中630℃で20分間熱処理を行い、脱水
孔の封孔処理を行った。高密度化された針状ヘマタイト
粒子粉末は、平均長軸径が0.0830μm、長軸径の
幾何標準偏差値が1.52、平均短軸径が0.0138
μm、短軸径の幾何標準偏差値が1.38、軸比が6.
0、BET比表面積値が69.4m/g、SBET
TEM値が1.15、ケイ素の含有量はSiO換算
で1.22重量%であった。
Next, 850 g of the low-density acicular hematite particle powder was put into a ceramic rotary furnace, and heat-treated at 630 ° C. for 20 minutes in the air while being rotated to seal the dewatering holes. The densified acicular hematite particle powder has an average major axis diameter of 0.0830 μm, a geometric standard deviation of the major axis diameter of 1.52, and an average minor axis diameter of 0.0138.
μm, the geometric standard deviation of the minor axis diameter is 1.38, and the axial ratio is 6.
0, BET specific surface area value is 69.4 m 2 / g, S BET /
The S TEM value was 1.15 and the silicon content was 1.22% by weight in terms of SiO 2 .

【0128】得られた高密度針状ヘマタイト粒子粉末8
00gを奈良式粉砕機で粗粉砕した後、純水4.7lに
投入し、ホモミキサー(特殊機化工業株式会社製)を用
いて60分間解膠し、スラリーを横型SGM(ディスパ
マットSL:エスシー・アディケム株式会社製)で循環
しながら、軸回転数2000rpmのもとで3時間分散
した。得られたスラリー中の高密度針状ヘマタイト粒子
粉末の325mesh(目開き44μm)における篩残
分は0%であった。
Obtained high-density acicular hematite particle powder 8
After coarsely pulverizing 00 g with a Nara-type pulverizer, the mixture was poured into 4.7 l of pure water, and pulverized for 60 minutes using a homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.). The mixture was dispersed for 3 hours at a shaft rotation speed of 2,000 rpm while circulating with S.C. The sieve residue of the high-density acicular hematite particle powder in the obtained slurry at 325 mesh (mesh size of 44 μm) was 0%.

【0129】<高密度針状ヘマタイト粒子粉末の酸によ
る溶解処理>得られた高密度針状ヘマタイト粒子粉末の
スラリーに水を添加して該スラリーの濃度を100g/
lとした後、当該スラリーを7l採取した。採取したス
ラリーを攪拌しながら、70重量%の硫酸水溶液を加え
て硫酸濃度を1.3Nとし、スラリーのpH値を0.5
9に調整した。次に、このスラリーを攪拌しながら加熱
して80℃まで昇温し、その温度で3時間保持して溶解
処理を行って、液中に存在している高密度針状ヘマタイ
ト粒子粉末全体量の20.2重量%を溶解させた。
<Dissolution Treatment of High-Density Acicular Hematite Particle Powder with Acid> Water was added to the obtained slurry of the high-density acicular hematite particle powder to reduce the concentration of the slurry to 100 g / g.
After reducing to 1, 7 l of the slurry was collected. While stirring the collected slurry, a 70% by weight aqueous sulfuric acid solution was added to adjust the sulfuric acid concentration to 1.3 N, and the pH value of the slurry was set to 0.5.
Adjusted to 9. Next, the slurry is heated with stirring to raise the temperature to 80 ° C., and the solution is kept at that temperature for 3 hours to perform a dissolving treatment, so that the total amount of the high-density acicular hematite particles present in the liquid is reduced. 20.2% by weight were dissolved.

【0130】次に、このスラリーを濾過して濾液(硫酸
鉄の酸性水溶液)を分離した後、デカンテーション法に
より水洗し、pH値が5.0の水洗スラリーとした。こ
の時点でのスラリー濃度を確認したところ79g/lで
あった。
Next, this slurry was filtered to separate a filtrate (an aqueous solution of iron sulfate), followed by washing with water by a decantation method to obtain a washing slurry having a pH value of 5.0. When the slurry concentration at this time was confirmed, it was 79 g / l.

【0131】次に、得られた水洗スラリー2lをブフナ
ーロートを用いて濾別し、純水を通水して濾液の電導度
が30μs以下になるまで水洗し、その後、常法によっ
て乾燥させた後、粉砕して、高密度針状ヘマタイト粒子
粉末を得た。得られた高密度針状ヘマタイト粒子粉末
は、平均長軸径が0.0785μm、長軸径の幾何標準
偏差値が1.46、平均短軸径が0.0128μm、短
軸径の幾何標準偏差値が1.33、軸比が6.1、BE
T比表面積値が74.8m/g、SBET/S TEM
値が1.15、ケイ素の含有量はSiO換算で1.3
3重量%であった。
Next, 2 l of the obtained water-washing slurry was
-Filtered using a funnel and passed through pure water to conduct the filtrate.
Is washed with water until it is 30 μs or less.
After drying, pulverize to obtain high-density acicular hematite particles.
A powder was obtained. Obtained high-density acicular hematite particle powder
Is 0.0785 μm average major axis diameter, geometric standard of major axis diameter
Deviation value is 1.46, average minor axis diameter is 0.0128 μm, short
The geometric standard deviation of the shaft diameter is 1.33, the axial ratio is 6.1, BE
T specific surface area value is 74.8m2/ G, SBET/ S TEM
Value of 1.15 and silicon content of SiO21.3 in conversion
It was 3% by weight.

【0132】<表面被覆処理> 実施例5〜8 被処理粒子の種類、被覆工程の添加前pH値、添加物種
類、添加量及び最終pHを種々変化させた以外は前記発
明の実施の形態と同様にして表面被覆物によって被覆さ
れた針状ヘマタイト粒子を得た。
<Surface Coating Treatment> Examples 5 to 8 The embodiment of the present invention is the same as the above embodiment except that the kind of particles to be treated, the pH value before addition in the coating step, the kind of additive, the amount added and the final pH are variously changed. Similarly, acicular hematite particles coated with the surface coating were obtained.

【0133】この時の主要製造条件を表9に、得られた
表面被覆物によって被覆された針状へマタイト粒子粉末
の諸特性を表10に示す。
Table 9 shows the main production conditions at this time, and Table 10 shows various properties of the acicular hematite particle powder coated with the obtained surface coating.

【0134】[0134]

【表9】 [Table 9]

【0135】[0135]

【表10】 [Table 10]

【0136】実施例9〜16及び比較例7〜16 実施例1〜8、ヘマタイト粒子1〜4及び比較例1〜6
で得られた各粒子粉末を用いて前記発明の実施の形態と
同様にして非磁性下地層を形成した。
Examples 9 to 16 and Comparative Examples 7 to 16 Examples 1 to 8, Hematite Particles 1 to 4 and Comparative Examples 1 to 6
A nonmagnetic underlayer was formed in the same manner as in the embodiment of the present invention using the respective particle powders obtained in the above.

【0137】この時の主要製造条件及び得られた非磁性
下地層の諸特性を表11に示す。
Table 11 shows the main manufacturing conditions and various characteristics of the obtained non-magnetic underlayer.

【0138】[0138]

【表11】 [Table 11]

【0139】磁性粒子a〜e 磁気記録媒体用磁性粒子として磁性粒子a〜eを用意し
た。
Magnetic Particles a to e Magnetic particles a to e were prepared as magnetic particles for a magnetic recording medium.

【0140】磁性粒子a〜eの諸特性を表12に示す。Table 12 shows properties of the magnetic particles a to e.

【0141】[0141]

【表12】 [Table 12]

【0142】実施例17〜24及び比較例17〜26 非磁性下地層の種類及び磁性粒子の種類を種々変化させ
た以外は前記発明の実施の形態と同様にして磁気記録媒
体を得た。
Examples 17 to 24 and Comparative Examples 17 to 26 Magnetic recording media were obtained in the same manner as in the embodiment of the invention except that the type of the nonmagnetic underlayer and the type of the magnetic particles were variously changed.

【0143】この時の主要製造条件及び得られた磁気記
録媒体の諸特性を表13に示す。
Table 13 shows the main manufacturing conditions and various characteristics of the obtained magnetic recording medium.

【0144】[0144]

【表13】 [Table 13]

【0145】[0145]

【発明の効果】本発明に係る針状へマタイト粒子粉末
は、非磁性下地層用非磁性粒子粉末として用いた場合、
表面平滑性に優れた非磁性下地層を得ることができ、該
非磁性下地層を用いて磁気記録媒体とした場合、表面平
滑性に優れた磁気記録媒体とすることができるため、高
密度磁気記録媒体の非磁性下地層用非磁性粒子粉末とし
て好適である。
The acicular hematite particle powder according to the present invention, when used as a non-magnetic particle powder for a non-magnetic underlayer,
A non-magnetic underlayer having excellent surface smoothness can be obtained. When a magnetic recording medium is formed using the non-magnetic underlayer, a magnetic recording medium having excellent surface smoothness can be obtained. It is suitable as a non-magnetic particle powder for a non-magnetic underlayer of a medium.

【0146】また、本発明に係る磁気記録媒体は、上述
した通り、表面平滑性に優れているので高密度磁気記録
媒体として好適である。
As described above, the magnetic recording medium according to the present invention has excellent surface smoothness and is therefore suitable as a high-density magnetic recording medium.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G002 AA06 AA12 AB00 AB03 AD01 AE03 5D006 CA04 FA00  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G002 AA06 AA12 AB00 AB03 AD01 AE03 5D006 CA04 FA00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 長軸径の幾何標準偏差値が1.5以下で
あって短軸径の幾何標準偏差値が1.3以下であり、且
つ、BET比表面積値が40〜150m/gである平
均長軸径が0.01〜0.2μmの針状ヘマタイト粒子
粉末からなることを特徴とする磁気記録媒体の非磁性下
地層用非磁性粒子粉末。
1. A geometric standard deviation value of a major axis diameter of 1.5 or less, a geometric standard deviation value of a minor axis diameter of 1.3 or less, and a BET specific surface area value of 40 to 150 m 2 / g. 3. A non-magnetic particle powder for a non-magnetic underlayer of a magnetic recording medium, comprising acicular hematite particle powder having an average major axis diameter of 0.01 to 0.2 μm.
【請求項2】 請求項1記載の針状ヘマタイト粒子粉末
の粒子表面が、アルミニウムの水酸化物、アルミニウム
の酸化物、ケイ素の水酸化物及びケイ素の酸化物から選
ばれる少なくとも一種からなる表面被覆物によって被覆
されていることを特徴とする磁気記録媒体の非磁性下地
層用非磁性粒子粉末。
2. The surface coating of the acicular hematite particle powder according to claim 1, wherein the particle surface is made of at least one selected from hydroxide of aluminum, oxide of aluminum, hydroxide of silicon and oxide of silicon. Non-magnetic particle powder for a non-magnetic underlayer of a magnetic recording medium, which is coated with a material.
【請求項3】 針状ゲータイト粒子粉末を550〜85
0℃の温度範囲で加熱脱水処理して針状ヘマタイト粒子
粉末とするに当って、前記加熱脱水処理に先立ってあら
かじめ、前記ゲータイト粒子粉末を100〜200℃の
温度範囲で加熱処理して該ゲータイト粒子粉末に含まれ
ているゲータイト超微粒子をゲータイト粒子に吸収させ
ておくことを特徴とする請求項1記載の磁気記録媒体の
非磁性下地層用非磁性粒子粉末の製造法。
3. A method of preparing acicular goethite particles from 550 to 85.
Prior to the heating and dehydrating treatment, the goethite particle powder is heated and dehydrated in a temperature range of 100 to 200 ° C. prior to the heating and dehydrating treatment to form the goethite particles. 2. The method for producing a non-magnetic particle powder for a non-magnetic underlayer of a magnetic recording medium according to claim 1, wherein goethite ultra-fine particles contained in the particle powder are absorbed by the goethite particles.
【請求項4】 非磁性支持体、該非磁性支持体上に形成
される非磁性粒子粉末と結合剤樹脂とからなる非磁性下
地層及び該非磁性下地層の上に形成される磁性粒子粉末
と結合剤樹脂とからなる磁気記録層からなる磁気記録媒
体において、前記非磁性粒子粉末が請求項1又は請求項
2記載の非磁性下地層用非磁性粒子粉末であることを特
徴とする磁気記録媒体。
4. A non-magnetic support, a non-magnetic underlayer composed of a non-magnetic particle powder formed on the non-magnetic support and a binder resin, and bonding to a magnetic particle powder formed on the non-magnetic under layer 3. A magnetic recording medium comprising a magnetic recording layer comprising a resin material, wherein the non-magnetic particle powder is the non-magnetic particle powder for a non-magnetic underlayer according to claim 1 or 2.
JP31360998A 1998-11-04 1998-11-04 Non-magnetic particle powder for non-magnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium Expired - Lifetime JP3427883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31360998A JP3427883B2 (en) 1998-11-04 1998-11-04 Non-magnetic particle powder for non-magnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31360998A JP3427883B2 (en) 1998-11-04 1998-11-04 Non-magnetic particle powder for non-magnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2000143250A true JP2000143250A (en) 2000-05-23
JP3427883B2 JP3427883B2 (en) 2003-07-22

Family

ID=18043387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31360998A Expired - Lifetime JP3427883B2 (en) 1998-11-04 1998-11-04 Non-magnetic particle powder for non-magnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium

Country Status (1)

Country Link
JP (1) JP3427883B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088219A1 (en) * 2002-04-03 2003-10-23 Dowa Mining Co., Ltd. Powder for sublayer of coating type magnetic recording medium and magnetic recording medium comprising the same
WO2003088218A1 (en) * 2002-04-03 2003-10-23 Dowa Mining Co., Ltd. Powder for sublayer of coating type magnetic recording medium
WO2005004116A1 (en) * 2003-07-04 2005-01-13 Dowa Mining Co., Ltd. Powder for lower layer of application type of layered magnetic recording medium and magnetic recording medium using the same
JP2007039317A (en) * 2005-06-27 2007-02-15 Dowa Holdings Co Ltd Iron compound particle powder and magnetic recording medium using same
US7641990B2 (en) 2005-06-27 2010-01-05 Dowa Electronics Materials Co., Ltd. Iron compound particles and magnetic recording medium using same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088219A1 (en) * 2002-04-03 2003-10-23 Dowa Mining Co., Ltd. Powder for sublayer of coating type magnetic recording medium and magnetic recording medium comprising the same
WO2003088218A1 (en) * 2002-04-03 2003-10-23 Dowa Mining Co., Ltd. Powder for sublayer of coating type magnetic recording medium
US7238438B2 (en) 2002-04-03 2007-07-03 Dowa Mining Co., Ltd. Powder for underlayer of coating-type magnetic recording medium
CN100356452C (en) * 2002-04-03 2007-12-19 同和矿业株式会社 Powder for sublayer coating type magnetic recording medium
US7357997B2 (en) 2002-04-03 2008-04-15 Dowa Electronics Materials Co., Ltd. Powder for underlayer of coating-type magnetic recording medium and magnetic recording medium comprising the same
WO2005004116A1 (en) * 2003-07-04 2005-01-13 Dowa Mining Co., Ltd. Powder for lower layer of application type of layered magnetic recording medium and magnetic recording medium using the same
JPWO2005004116A1 (en) * 2003-07-04 2006-08-17 同和鉱業株式会社 Powder for lower layer of coating type multi-layer magnetic recording medium and magnetic recording medium using the same
JP4787958B2 (en) * 2003-07-04 2011-10-05 Dowaエレクトロニクス株式会社 Powder for lower layer of coating type multi-layer magnetic recording medium and magnetic recording medium using the same
JP2007039317A (en) * 2005-06-27 2007-02-15 Dowa Holdings Co Ltd Iron compound particle powder and magnetic recording medium using same
US7641990B2 (en) 2005-06-27 2010-01-05 Dowa Electronics Materials Co., Ltd. Iron compound particles and magnetic recording medium using same

Also Published As

Publication number Publication date
JP3427883B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
JP3514068B2 (en) Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and method for producing the same, nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
JP3509837B2 (en) Hematite particle powder for a non-magnetic underlayer of a magnetic recording medium using iron-based metal magnetic particle powder, non-magnetic underlayer of a magnetic recording medium using the hematite particle powder, and the non-magnetic underlayer Magnetic recording medium and method for producing said hematite particle powder
JP2000123354A (en) Particulate powder for nonmagnetic underlayer of magnetic recording medium, its production and magnetic recording medium
JP3427883B2 (en) Non-magnetic particle powder for non-magnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
JP4305589B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
JP4870860B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
JP3832539B2 (en) Magnetic recording medium
JP4732556B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
JPH11353637A (en) Acicular hematite particle powder for nonmagnetic base layer and magnetic recording medium having nonmagnetic base layer using the acicular hematite particle powder
JP3763353B2 (en) Hematite powder for nonmagnetic underlayer of magnetic recording medium, nonmagnetic underlayer and magnetic recording medium of magnetic recording medium using hematite powder for nonmagnetic underlayer
JP3661734B2 (en) Needle-like hematite particle powder for nonmagnetic underlayer of magnetic recording medium using metal magnetic particle powder containing iron as main component, and magnetic recording medium having nonmagnetic underlayer using the acicular hematite particle powder
JP4732555B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
JP3512056B2 (en) Hematite particle powder for non-magnetic underlayer of magnetic recording medium and magnetic recording medium
JP3763333B2 (en) Acicular hematite particle powder for non-magnetic underlayer of magnetic recording medium and magnetic recording medium
JP3661738B2 (en) Magnetic recording medium substrate having non-magnetic underlayer and magnetic recording medium using the substrate
JP3952171B2 (en) Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
JP3690456B2 (en) Acicular hematite particle powder for non-magnetic underlayer of magnetic recording medium and magnetic recording medium
JP3632727B2 (en) Acicular hematite particle powder for non-magnetic underlayer of magnetic recording medium and magnetic recording medium
JP3661735B2 (en) Magnetic recording medium
JP3656700B2 (en) Magnetic recording medium
JP4352270B2 (en) Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
JP3661733B2 (en) Magnetic recording medium
JPH10241148A (en) Magnetic recording medium
JP3661730B2 (en) Magnetic recording medium substrate having non-magnetic underlayer and magnetic recording medium using the substrate
JP3965660B2 (en) Needle-like hematite particle powder for nonmagnetic underlayer of magnetic recording medium using metal magnetic particle powder containing iron as main component, and magnetic recording medium having nonmagnetic underlayer using the acicular hematite particle powder

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term