JP3509837B2 - Hematite particle powder for a non-magnetic underlayer of a magnetic recording medium using iron-based metal magnetic particle powder, non-magnetic underlayer of a magnetic recording medium using the hematite particle powder, and the non-magnetic underlayer Magnetic recording medium and method for producing said hematite particle powder - Google Patents

Hematite particle powder for a non-magnetic underlayer of a magnetic recording medium using iron-based metal magnetic particle powder, non-magnetic underlayer of a magnetic recording medium using the hematite particle powder, and the non-magnetic underlayer Magnetic recording medium and method for producing said hematite particle powder

Info

Publication number
JP3509837B2
JP3509837B2 JP29745396A JP29745396A JP3509837B2 JP 3509837 B2 JP3509837 B2 JP 3509837B2 JP 29745396 A JP29745396 A JP 29745396A JP 29745396 A JP29745396 A JP 29745396A JP 3509837 B2 JP3509837 B2 JP 3509837B2
Authority
JP
Japan
Prior art keywords
magnetic
particle powder
hematite
needle
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29745396A
Other languages
Japanese (ja)
Other versions
JPH09170003A (en
Inventor
一之 林
敬介 岩崎
泰幸 田中
弘子 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP29745396A priority Critical patent/JP3509837B2/en
Publication of JPH09170003A publication Critical patent/JPH09170003A/en
Application granted granted Critical
Publication of JP3509837B2 publication Critical patent/JP3509837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Powder Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄を主成分とする金属
磁性粒子粉末を使用している磁気記録媒体の非磁性下地
層用に好適なヘマタイト粒子粉末、即ち、結合剤樹脂中
における分散性が優れており、しかも、可溶性ナトリウ
ム塩や可溶性硫酸塩の含有量が少なく、且つ、粉体pH
値が8以上である針状ヘマタイト粒子粉末を提供するも
のである。
FIELD OF THE INVENTION The present invention relates to a hematite particle powder suitable for a non-magnetic underlayer of a magnetic recording medium using a metal magnetic particle powder containing iron as a main component, that is, a dispersion in a binder resin. It has excellent properties, is low in the content of soluble sodium salts and soluble sulfates, and has a powder pH.
A needle-like hematite particle powder having a value of 8 or more is provided.

【0002】[0002]

【従来の技術】近年、ビデオ用、オーディオ用磁気記録
再生用機器の長時間記録化、小型軽量化が進むにつれ
て、磁気テープ、磁気ディスク等の磁気記録媒体に対す
る高性能化、即ち、高密度記録化、高出力特性、殊に周
波数特性の向上、低ノイズ化の要求が益々強まってい
る。
2. Description of the Related Art In recent years, as video recording and audio magnetic recording / reproducing devices have been recorded for a long time and have been reduced in size and weight, magnetic recording media such as magnetic tapes and magnetic disks have been improved in performance, that is, high density recording. There is an increasing demand for higher performance, higher output characteristics, especially improved frequency characteristics, and lower noise.

【0003】磁気記録媒体のこれら諸特性を向上させる
ために、磁性粒子粉末の高性能化及び磁性層の薄層化の
両面から、種々の試みがなされている。
Various attempts have been made in order to improve these characteristics of the magnetic recording medium, both from the viewpoint of improving the performance of the magnetic particle powder and reducing the thickness of the magnetic layer.

【0004】先ず、磁性粒子粉末の高性能化について述
べる。
First, the performance improvement of magnetic particle powder will be described.

【0005】磁気記録媒体に対する上記のような要求を
満足させる為に適した磁性粒子粉末の特性は、高い保磁
力と大きな飽和磁化とを有することである。
The characteristics of the magnetic particle powder suitable for satisfying the above requirements for the magnetic recording medium are that it has a high coercive force and a large saturation magnetization.

【0006】近年、高出力並びに高密度記録に適する磁
性粒子粉末として針状ゲータイト粒子又は針状ヘマタイ
ト粒子を還元性ガス中で加熱還元することにより得られ
る鉄を主成分とする針状金属磁性粒子粉末が広く知られ
ている。
In recent years, needle-shaped magnetic metal particles containing iron as a main component obtained by heating and reducing needle-shaped goethite particles or needle-shaped hematite particles as a magnetic particle powder suitable for high output and high density recording in a reducing gas. Powders are widely known.

【0007】鉄を主成分とする針状金属磁性粒子粉末
は、高い保磁力と大きな飽和磁化とを有するものである
が、磁気記録媒体用に使用される鉄を主成分とする針状
金属磁性粒子粉末は、1μm以下、殊に、0.01〜
0.3μm程度の非常に微細な粒子である為、腐蝕しや
すく、磁気特性が劣化し、殊に、飽和磁化及び保磁力の
減少をきたすという欠点がある。
The acicular metal magnetic particle powder containing iron as a main component has a high coercive force and a large saturation magnetization, but the acicular metal magnetic particle containing iron as a main component used for magnetic recording media. The particle powder is 1 μm or less, especially 0.01 to
Since they are very fine particles of about 0.3 μm, they are liable to corrode, magnetic properties are deteriorated, and in particular, saturation magnetization and coercive force are reduced.

【0008】従って、磁性粒子粉末として鉄を主成分と
する金属磁性粒子粉末を使用している磁気記録媒体の特
性を長期に亘って維持するためには、鉄を主成分とする
針状金属磁性粒子の腐蝕を極力抑制することが強く要求
される。
Therefore, in order to maintain the characteristics of the magnetic recording medium using the metal magnetic particle powder containing iron as the main component as the magnetic particle powder for a long period of time, the acicular metal magnetic material containing iron as the main component is used. It is strongly required to suppress the corrosion of particles as much as possible.

【0009】次に、磁気記録層の薄層化について述べ
る。
Next, the thinning of the magnetic recording layer will be described.

【0010】近時におけるビデオテープの高画像高画質
化に対する要求は益々強まっており、従来のビデオテー
プに比べ、記録されるキャリアー信号の周波数が益々高
くなっている。即ち、短波長領域に移行しており、その
結果、磁気テープの表面からの磁化深度が著しく浅くな
っている。
Recently, the demand for higher image quality of video tapes has been increasing, and the frequency of carrier signals recorded is higher than that of conventional video tapes. That is, the wavelength has shifted to the short wavelength region, and as a result, the depth of magnetization from the surface of the magnetic tape has become extremely shallow.

【0011】短波長信号に対して、磁気記録媒体の高出
力特性、殊に、S/N比を向上させる為には、磁気記録
層の薄層化が強く要求されている。この事実は、例え
ば、株式会社総合技術センター発行「磁性材料の開発と
磁粉の高分散化技術」(1982年)第312頁の「‥
‥塗布型テープにおける高密度記録のための条件は、短
波長信号に対して、低ノイズで高出力特性を保持できる
ことであるが、その為には保磁力Hcと残留磁化Brが
‥‥共に大きいことと塗布膜の厚みがより薄いことが必
要である。‥‥」なる記載の通りである。
In order to improve the high output characteristics of the magnetic recording medium, particularly the S / N ratio, for a short wavelength signal, there is a strong demand for a thin magnetic recording layer. This fact is explained, for example, in “Development of Magnetic Materials and Highly Dispersion Technology of Magnetic Powder”, published by Sogo Gijutsu Center Co., Ltd. (1982), p.
The condition for high-density recording on the coated tape is that it can maintain high output characteristics with low noise for short wavelength signals, but for that reason, both coercive force Hc and residual magnetization Br are large. And the thickness of the coating film needs to be thinner. "..." is as described.

【0012】磁気記録層の薄層化が進む中で、いくつか
の問題が生じている。第一に、磁気記録層の平滑化と厚
みむらの問題であり、周知の通り、磁気記録層を平滑で
厚みむらがないものとするためには、ベースフィルムの
表面もまた平滑でなければならない。この事実は、例え
ば、工学情報センター出版部発行「磁気テープ−ヘッド
走行系の摩擦摩耗発生要因とトラブル対策−総合技術資
料集(−以下、総合技術資料集という−)」(昭和62
年)第180及び181頁の「‥‥硬化後の磁性層表面
粗さは、ベースの表面粗さ(バック面粗さ)に強く依存
し両者はほぼ比例関係にあり、‥‥磁性層はベースの上
に塗布されているからベースの表面を平滑にすればする
ほど均一で大きなヘッド出力が得られS/Nが向上す
る。‥‥」なる記載の通りである。
[0012] As the magnetic recording layer becomes thinner, some problems occur. First, there is a problem of smoothing and uneven thickness of the magnetic recording layer. As is well known, in order to make the magnetic recording layer smooth and free from uneven thickness, the surface of the base film must also be smooth. . This fact is, for example, published by the Engineering Information Center, "Magnetic Tape-Factor Caused by Friction and Wear of Head Running System and Trouble Countermeasures-Comprehensive Technical Data Collection (-hereinafter referred to as General Technical Data Collection-)" (Showa 62).
Years) 180 and 181, "... The surface roughness of the magnetic layer after curing strongly depends on the surface roughness (back surface roughness) of the base, and both are in a substantially proportional relationship. As the surface of the base is made smoother, a uniform and large head output is obtained and the S / N is improved.

【0013】第二に、ベースフィルムもまた磁性層の薄
層化と同様に薄層化が進んでおり、その結果、ベースフ
ィルムの強度が問題となってきている。この事実は、例
えば、前出「磁性材料の開発と磁粉の高分散化技術」第
77頁の「‥‥高密度記録化が今の磁気テープに課せら
れた大きなテーマであるが、このことは、テープの長さ
を短くしてカセットを小型化していく上でも、また長時
間記録に対しても重要となってくる。このためにはフィ
ルムベースの厚さを減らすことが必要な訳である。‥‥
このように薄くなるにつれてテープのスティフネスが急
激に減少してしまうためレコーダーでのスムーズな走行
がむずかしくなる。ビデオテープの薄型化にともない長
手方向、幅方向両方向に渡ってのこのスティフネスの向
上が大いに望まれている。‥‥」なる記載の通りであ
る。
Secondly, the base film is also becoming thinner like the magnetic layer is becoming thinner, and as a result, the strength of the base film is becoming a problem. This fact is, for example, the big theme imposed on the present magnetic tapes by "... High density recording" on page 77 of "Development of magnetic materials and high dispersion technology of magnetic powder" mentioned above. However, it is important not only to reduce the length of the tape and downsize the cassette but also to record for a long time.To do this, it is necessary to reduce the thickness of the film base. ...
As the tape becomes thinner in this way, the stiffness of the tape decreases sharply, making it difficult for the recorder to run smoothly. With the thinning of video tapes, there is great demand for improvement in this stiffness in both longitudinal and width directions. "..." is as described.

【0014】第三に、磁性粒子の微粒子化と磁気記録層
の薄膜化とによって光透過率が大きくなるという問題で
ある。即ち、磁気テープ、特にビデオテープ等の磁気記
録媒体の走行の停止は、磁気記録媒体の光透過率の大き
い部分をビデオデッキによって検知することにより行わ
れている。磁気記録媒体の薄層化や磁気記録層中に分散
されている磁性粒子粉末の超微粒子化に伴って磁気記録
層全体の光透過率が大きくなるとビデオデッキによる検
知が困難となる為、磁気記録層にカーボンブラック等を
添加して光透過率を小さくすることが行われている。そ
のため、現行のビデオテープにおいては磁気記録層への
カーボンブラック等の添加は必須となっている。
Thirdly, there is a problem that the light transmittance is increased by making the magnetic particles finer and making the magnetic recording layer thinner. That is, the running of a magnetic recording medium such as a magnetic tape, particularly a video tape, is stopped by detecting a portion of the magnetic recording medium having a high light transmittance with a video deck. If the light transmittance of the entire magnetic recording layer increases as the magnetic recording medium becomes thinner and the magnetic particle powder dispersed in the magnetic recording layer becomes ultrafine, it becomes difficult for the video deck to detect the magnetic recording. Carbon black or the like is added to the layer to reduce the light transmittance. Therefore, it is essential to add carbon black or the like to the magnetic recording layer in the current video tape.

【0015】しかし、非磁性のカーボンブラック等の添
加は、高密度記録化を阻害するばかりでなく、薄層化を
も阻害しており、磁気テープの表面からの磁化深度を浅
くして、磁気テープの薄層化をより進めるためには、磁
気記録層に磁性粒子粉末以外の非磁性粒子粉末を添加す
ることは望ましくない。
However, the addition of non-magnetic carbon black and the like not only hinders high density recording but also hinders thinning of the magnetic tape. In order to make the tape thinner, it is not desirable to add non-magnetic particle powder other than magnetic particle powder to the magnetic recording layer.

【0016】そこで、非磁性支持体上にヘマタイト粒子
等の非磁性粒子粉末を結合剤中に分散させてなる非磁性
下地層を少なくとも一層設けることにより、光透過率を
改善するとともに表面性の悪化や電磁変換特性を劣化さ
せる等の問題を解決することが提案され、実用化されて
いる。(特公平6−93297号公報、特開昭62−1
59338号公報、特開昭63−187418号公報、
特開平4−167225号公報、特開平4−32591
5公報、特開平5−73882号公報、特開平5−18
2177号公報、特開平5−347017号公報、特開
平6−60362号公報等)
Therefore, by providing at least one nonmagnetic underlayer in which a nonmagnetic particle powder such as hematite particles is dispersed in a binder on a nonmagnetic support, the light transmittance is improved and the surface property is deteriorated. It has been proposed and put into practical use to solve problems such as deterioration of electromagnetic conversion characteristics and electromagnetic characteristics. (Japanese Patent Publication No. 6-93297, JP-A-62-1)
59338, JP-A-63-187418,
JP-A-4-167225, JP-A-4-32591
5, JP-A-5-73882, JP-A-5-18
2177, JP-A-5-347017, JP-A-6-60362, etc.)

【0017】[0017]

【発明が解決しようとする課題】非磁性粒子を結合剤樹
脂中に分散させて表面平滑性と強度に優れている磁気記
録媒体の非磁性下地層を提供することができるととも
に、当該非磁性下地層の上に磁気記録層を設けた場合
に、光透過率が小さく、平滑で厚みむらのない薄層の磁
気記録層を得ることができ、しかも、磁気記録層中に分
散されている鉄を主成分とする金属磁性粒子粉末の腐蝕
を抑制することができる非磁性下地層用非磁性粒子粉末
は、現在最も要求されているところであるが、このよう
な非磁性粒子粉末は未だ得られていない。
Non-magnetic particles can be dispersed in a binder resin to provide a non-magnetic underlayer of a magnetic recording medium having excellent surface smoothness and strength. When a magnetic recording layer is provided on the ground layer, it is possible to obtain a thin magnetic recording layer having a low light transmittance, a smooth and uniform thickness, and moreover, iron dispersed in the magnetic recording layer Nonmagnetic particle powders for nonmagnetic underlayers capable of suppressing corrosion of metallic magnetic particle powders as the main component are currently most demanded, but such nonmagnetic particle powders have not yet been obtained. .

【0018】即ち、前出特開昭63−187418号公
報等に記載されている通り、非磁性下地層用非磁性粒子
粉末としてヘマタイト粒子粉末を用いた場合には、非磁
性下地層の表面平滑性と強度を向上させることができ、
当該非磁性下地層の上に磁気記録層を設けた場合に、磁
気記録層の光透過率を小さく、平滑で厚みむらのない薄
層にすることができることが報告されているが、磁気記
録媒体の製造後、磁気記録層中に分散されている鉄を主
成分とする金属磁性粒子粉末の腐蝕が生起し、大幅な磁
気特性の減少をきたすという問題が指摘されている。
That is, as described in JP-A-63-187418, etc., when hematite particle powder is used as the nonmagnetic particle powder for the nonmagnetic underlayer, the surface of the nonmagnetic underlayer is smoothed. It can improve the sex and strength,
It has been reported that, when a magnetic recording layer is provided on the non-magnetic underlayer, the light transmittance of the magnetic recording layer can be reduced to form a smooth and thin layer without uneven thickness. It has been pointed out that, after the manufacture of the magnetic recording medium, the metal magnetic particle powder containing iron as a main component dispersed in the magnetic recording layer is corroded, resulting in a significant decrease in magnetic characteristics.

【0019】そこで、本発明は、非磁性下地層の表面平
滑性と強度を向上させることができ、当該非磁性下地層
の上に磁気記録層を設けた場合に、磁気記録層の光透過
率を小さく、平滑で厚みむらのない薄層にすることがで
きるとともに、磁気記録層中に分散されている鉄を主成
分とする金属磁性粒子粉末の腐蝕に伴う磁気特性の劣化
を抑制することができる非磁性下地層用非磁性粒子粉末
を得ることを技術的課題とする。
Therefore, the present invention can improve the surface smoothness and strength of the non-magnetic underlayer, and when the magnetic recording layer is provided on the non-magnetic underlayer, the light transmittance of the magnetic recording layer is improved. Can be made into a small layer that is smooth and has no unevenness in thickness, and can suppress deterioration of magnetic properties due to corrosion of the metal magnetic particle powder mainly composed of iron dispersed in the magnetic recording layer. A technical task is to obtain a non-magnetic particle powder for a non-magnetic underlayer that can be obtained.

【0020】[0020]

【課題を解決する為の手段】前記技術的課題は、次の通
りの本発明によって達成できる。
The above technical problems can be achieved by the present invention as follows.

【0021】即ち、本発明は、平均長軸径が0.3μm
以下、粒子の長軸径の分布が幾何標準偏差値で1.50
以下、BET比表面積値が35m2 /g以上であって、
粉体pH値が8以上、且つ、可溶性ナトリウム塩の含有
量がNa換算で300ppm以下、可溶性硫酸塩の含有
量がSO4 換算で150ppm以下である高密度化され
た針状ヘマタイト粒子粉末からなることを特徴とする鉄
を主成分とする金属磁性粒子粉末を使用している磁気記
録媒体の非磁性下地層用ヘマタイト粒子粉末、必要によ
り、粒子表面がアルミニウムの水酸化物、アルミニウム
の酸化物、ケイ素の水酸化物及びケイ素の酸化物の少な
くとも1種で被覆されている前記針状ヘマタイト粒子粉
末からなることを特徴とする鉄を主成分とする金属磁性
粉末を使用している磁気記録媒体の非磁性下地層用ヘマ
タイト粒子粉末、非磁性支持体上に形成される非磁性粒
子粉末と結合剤樹脂とを含む塗膜組成物からなる磁気記
録媒体の非磁性下地層において、非磁性粒子粉末が前記
いずれかの針状ヘマタイト粒子粉末からなることを特徴
とする鉄を主成分とする金属磁性粒子粉末を使用してい
る磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末、
非磁性支持体と該非磁性支持体上に形成される非磁性粒
子粉末と結合剤樹脂とを含む塗膜組成物からなる非磁性
下地層と該非磁性下地層の上に形成される鉄を主成分と
する金属磁性粒子粉末と結合剤樹脂とを含む塗膜組成物
からなる磁気記録層とからなる磁気記録媒体において、
前記非磁性粒子粉末が前記いずれかの針状ヘマタイト粒
子粉末からなることを特徴とする磁気記録媒体である。
That is, in the present invention, the average major axis diameter is 0.3 μm.
Below, the distribution of the major axis diameter of the particles is 1.50 in terms of geometric standard deviation.
Below, the BET specific surface area value is 35 m 2 / g or more,
Powder acicular hematite particle powder having a pH value of 8 or more, a soluble sodium salt content of 300 ppm or less in terms of Na and a soluble sulfate content of 150 ppm or less in terms of SO 4 Hematite particle powder for a non-magnetic underlayer of a magnetic recording medium using a metal magnetic particle powder containing iron as a main component, where necessary, the particle surface is a hydroxide of aluminum, an oxide of aluminum, A magnetic recording medium using a metal magnetic powder containing iron as a main component, characterized in that the acicular hematite particle powder is coated with at least one of a hydroxide of silicon and an oxide of silicon. A non-magnetic underlayer of a magnetic recording medium comprising a hematite particle powder for a non-magnetic underlayer and a coating film composition containing a non-magnetic particle powder formed on a non-magnetic support and a binder resin. Hematite particles for a non-magnetic underlayer of a magnetic recording medium using a metal magnetic particle powder containing iron as a main component, characterized in that the non-magnetic particle powder comprises any of the acicular hematite particle powders described above. Powder,
A non-magnetic underlayer composed of a coating composition containing a non-magnetic support, a non-magnetic particle powder formed on the non-magnetic support and a binder resin, and iron as a main component formed on the non-magnetic underlayer. In a magnetic recording medium comprising a magnetic recording layer comprising a coating composition containing a metal magnetic particle powder and a binder resin, wherein
The magnetic recording medium is characterized in that the non-magnetic particle powder comprises any of the acicular hematite particle powders described above.

【0022】また、本発明は、粒子表面が焼結防止剤で
被覆されている針状ゲータイト粒子又は該針状ゲータイ
ト粒子を加熱脱水して得られた針状ヘマタイト粒子を5
50℃以上の温度で加熱して高密度化された針状ヘマタ
イト粒子を得、該高密度化された針状ヘマタイト粒子を
含むスラリーを湿式粉砕した後、該スラリーをpH値1
3以上、温度80℃以上で加熱処理し、次いで、濾別、
水洗、乾燥するか、または、必要により、濾別、水洗し
て得られる針状ヘマタイト粒子を水中に再分散させて水
懸濁液とし、該水懸濁液中にアルミニウム化合物、ケイ
素化合物又は当該両化合物を含む水溶液を添加混合する
ことにより前記いずれかの針状ヘマタイト粒子を得るこ
とを特徴とする鉄を主成分とする金属磁性粒子粉末を使
用している磁気記録媒体の非磁性下地層用ヘマタイト粒
子粉末の製造法である。
In the present invention, needle-shaped goethite particles whose surface is coated with a sintering inhibitor, or needle-shaped hematite particles obtained by heating and dehydrating the needle-shaped goethite particles are used.
The needle-like hematite particles densified by heating at a temperature of 50 ° C. or higher are obtained, and the slurry containing the densified needle-like hematite particles is wet-milled, and then the slurry has a pH value of 1
Heat treatment at a temperature of 3 ° C or higher and a temperature of 80 ° C or higher, followed by filtration,
It is washed with water, dried, or, if necessary, the needle-like hematite particles obtained by filtering and washing with water are redispersed in water to obtain a water suspension, and an aluminum compound, a silicon compound or the For a non-magnetic underlayer of a magnetic recording medium using a metal magnetic particle powder containing iron as a main component, characterized in that acicular hematite particles are obtained by adding and mixing an aqueous solution containing both compounds This is a method for producing hematite particle powder.

【0023】次に、本発明実施にあたっての諸条件につ
いて述べる。
Next, various conditions for carrying out the present invention will be described.

【0024】本発明に係る針状ヘマタイト粒子粉末につ
いて述べる。
The acicular hematite particle powder according to the present invention will be described.

【0025】本発明に係る針状ヘマタイト粒子粉末は、
平均長軸径が0.3μm以下、粒子の長軸径の分布が幾
何標準偏差値で1.50以下、BET比表面積値が35
2/g以上であって、粉体pH値が8以上、且つ、可
溶性ナトリウム塩の含有量がNa換算で300ppm以
下、可溶性硫酸塩の含有量がSO4 換算で150ppm
以下である高密度化された針状粒子である。
The acicular hematite particle powder according to the present invention is
The average major axis diameter is 0.3 μm or less, the distribution of the major axis diameter of particles is 1.50 or less in geometric standard deviation, and the BET specific surface area value is 35.
m 2 / g or more, powder pH value of 8 or more, soluble sodium salt content of 300 ppm or less in terms of Na, soluble sulfate content of 150 ppm in terms of SO 4
The following are densified needle-shaped particles.

【0026】ここで、針状粒子とは、軸比(平均長軸
径:平均短軸径、以下、単に「軸比」という。)が2:
1以上、好ましくは3:1以上の粒子が好ましく、ビヒ
クル中での分散性を考慮すれば、その上限値は、20:
1以下、好ましくは10:1以下の粒子が好ましい。粒
子の形状は、針状はもちろん、紡錘状、米粒状等であっ
てもよい。
Here, the acicular particles have an axial ratio (average major axis diameter: average minor axis diameter, hereinafter simply referred to as "axial ratio") of 2:
Particles of 1 or more, preferably 3: 1 or more are preferable, and in consideration of dispersibility in a vehicle, the upper limit thereof is 20:
Particles of 1 or less, preferably 10: 1 or less are preferred. The shape of the particles may be needle-like, spindle-like, rice-like or the like.

【0027】軸比が2未満の場合には、所望の塗膜強度
が得られ難くなる。
If the axial ratio is less than 2, it becomes difficult to obtain the desired coating strength.

【0028】針状ヘマタイト粒子の平均長軸径が0.3
μmを越える場合には、粒子サイズが大きすぎる為、塗
膜の表面平滑性を害するので好ましくない。平均長軸径
の下限値は0.005μmであり、0.005μm未満
の場合には、ビヒクル中における分散が困難となる。
ヒクル中における分散性及び塗膜の表面平滑性を考慮す
れば0.02〜0.2μmが好ましい。
The average major axis diameter of the acicular hematite particles is 0.3.
If it exceeds μm, the particle size is too large and
It is not preferable because it impairs the surface smoothness of the film. Average major axis diameter
Lower limit of 0.005μm, less than 0.005μm
In the case of, dispersion in the vehicle becomes difficult. Considering the dispersibility in the vehicle and the surface smoothness of the coating film, 0.02 to 0.2 μm is preferable.

【0029】針状ヘマタイト粒子の平均短軸径が0.0
025μm未満の場合には、ビヒクル中における分散が
困難となる為に好ましくない。平均短軸径が0.15μ
mを越える場合には、粒子サイズが大きすぎる為、塗膜
の表面平滑性を害するので好ましくない。ビヒクル中に
おける分散性及び塗膜の表面平滑性を考慮すれば0.0
1〜0.10μmが好ましい。
The average minor axis diameter of the acicular hematite particles is 0.0
When it is less than 025 μm, it becomes difficult to disperse it in the vehicle, which is not preferable. Average minor axis diameter is 0.15μ
When it exceeds m, the particle size is too large and the surface smoothness of the coating film is impaired, which is not preferable. 0.0 considering the dispersibility in the vehicle and the surface smoothness of the coating film.
1 to 0.10 μm is preferable.

【0030】本発明における針状ヘマタイト粒子の高密
度化の程度は、BET法により測定した比表面積SBET
値と電子顕微鏡写真に示されている粒子から計測された
長軸径及び短軸径から算出した表面積STEM 値との比で
示した。
The degree of densification of the acicular hematite particles in the present invention is determined by the specific surface area S BET measured by the BET method.
The ratio is represented by the ratio between the value and the surface area S TEM value calculated from the major axis diameter and the minor axis diameter measured from the particles shown in the electron micrograph.

【0031】針状ヘマタイト粒子のBET /STEM の値
が0.5未満の場合には、針状ヘマタイト粒子の高密度
化が達成されてはいるが、粒子及び粒子相互間の焼結に
より癒着し、粒子径が増大しており、塗膜の表面平滑性
が十分ではない。SBET /STEMの値が2.5を越える
場合には、高密度化が十分ではなく、粒子表面に多数の
ポアが存在し、ビヒクル中における分散性が不十分とな
る。塗膜の表面平滑性及びビヒクル中における分散性を
考慮するとSBET /STEM の値は0.7〜2.0が好ま
しく、より好ましくは0.8〜1.6である。
When the S BET / S TEM value of the needle-like hematite particles is less than 0.5, although the densification of the needle-like hematite particles has been achieved, it is possible to sinter the particles and the particles with each other. Cohesion occurs, the particle size is increased, and the surface smoothness of the coating film is not sufficient. When the value of S BET / S TEM exceeds 2.5, the densification is not sufficient, a large number of pores are present on the particle surface, and the dispersibility in the vehicle becomes insufficient. Considering the surface smoothness of the coating film and the dispersibility in the vehicle, the value of S BET / S TEM is preferably 0.7 to 2.0, more preferably 0.8 to 1.6.

【0032】針状ヘマタイト粒子の長軸径の粒度分布は
幾何標準偏差値で1.50以下である。1.50を越え
る場合には、存在する粗大粒子が塗膜の表面平滑性に悪
影響を与える為に好ましくない。塗膜の表面平滑性を考
慮すれば、好ましくは1.40以下、より好ましくは
1.35以下である。工業的な生産性を考慮すれば得ら
れる針状ヘマタイト粒子の長軸径の粒度分布の下限値
は、幾何標準偏差値で1.01である。
The particle size distribution of the major axis diameter of the acicular hematite particles is 1.50 or less in geometric standard deviation. When it exceeds 1.50 , coarse particles present adversely affect the surface smoothness of the coating film, which is not preferable. Considering the surface smoothness of the coating film, it is preferably 1.40 or less, more preferably 1.35 or less. Taking industrial productivity into consideration, the lower limit of the particle size distribution of the major axis diameter of the needle-like hematite particles obtained is 1.01 in geometric standard deviation.

【0033】針状ヘマタイト粒子のBET比表面積値は
35m2 /g以上である。35m2/g未満の場合に
は、針状ヘマタイト粒子が粗大であったり、粒子及び粒
子相互間で焼結が生じた粒子となっており、塗膜の表面
平滑性に悪影響を与える。好ましくは40m2 /g以
上、より好ましくは45m2 /g以上であり、その上限
値は150m2 /gである。ビヒクル中における分散性
を考慮すると好ましくは100m2 /g以下、より好ま
しくは80m2 /g以下である。
The BET specific surface area value of the acicular hematite particles is 35 m 2 / g or more. If it is less than 35 m 2 / g, the acicular hematite particles are coarse or particles are formed by sintering between particles, which adversely affects the surface smoothness of the coating film. It is preferably 40 m 2 / g or more, more preferably 45 m 2 / g or more, and its upper limit value is 150 m 2 / g. Considering the dispersibility in the vehicle, it is preferably 100 m 2 / g or less, more preferably 80 m 2 / g or less.

【0034】針状ヘマタイト粒子の粉体pH値は8以上
である。粉体pH値が8未満の場合には、非磁性下地層
の上に形成されている磁気記録層中に含まれる鉄を主体
とする金属磁性粒子粉末を徐々に腐蝕させ、磁気特性の
劣化を引き起こす。鉄を主成分とする金属磁性粒子粉末
の腐蝕防止効果を考慮すると、粉体pH値は8.5以上
が好ましく、より好ましくは粉体pH値が9.0以上で
ある。その上限値は粉体pH値が12以下、好ましくは
粉体pH値11以下、より好ましくは粉体pH値10.
5以下である。
The powder pH value of the acicular hematite particles is 8 or more. When the powder pH value is less than 8, the metallic magnetic particle powder mainly composed of iron contained in the magnetic recording layer formed on the non-magnetic underlayer is gradually corroded to deteriorate the magnetic characteristics. cause. Considering the corrosion prevention effect of the metal magnetic particle powder containing iron as a main component, the powder pH value is preferably 8.5 or more, more preferably the powder pH value is 9.0 or more. The upper limit is a powder pH value of 12 or less, preferably a powder pH value of 11 or less, more preferably a powder pH value of 10.
It is 5 or less.

【0035】針状ヘマタイト粒子の可溶性ナトリウム塩
の含有量はNa換算で300ppm以下である。300
ppmを越える場合には、非磁性下地層の上に形成され
ている磁気記録層中に含まれる鉄を主体とする金属磁性
粒子粉末を徐々に腐蝕させ、磁気特性の劣化を引き起こ
す。また、ビヒクル中における針状ヘマタイト粒子の分
散特性が害されやすくなったり、磁気記録媒体の保存状
態、特に湿度の高い環境下においては白華現象を生じる
場合がある。鉄を主成分とする金属磁性粒子粉末の腐蝕
防止効果を考慮すると、好ましくは250ppm以下、
より好ましくは200ppm以下、更により好ましくは
150ppm以下である。生産性等の工業性を考慮すれ
ば、その下限値は0.01ppm程度である。
The content of the soluble sodium salt in the acicular hematite particles is 300 ppm or less in terms of Na. 300
If it exceeds ppm, the metallic magnetic particle powder mainly composed of iron contained in the magnetic recording layer formed on the non-magnetic underlayer is gradually corroded to cause deterioration of magnetic characteristics. Further, the dispersive properties of the needle-like hematite particles in the vehicle are likely to be impaired, and the white flower phenomenon may occur in the storage state of the magnetic recording medium, particularly in an environment with high humidity. Considering the anticorrosion effect of the metallic magnetic particle powder containing iron as a main component, it is preferably 250 ppm or less,
It is more preferably 200 ppm or less, still more preferably 150 ppm or less. In consideration of industrial properties such as productivity, the lower limit value is about 0.01 ppm.

【0036】針状ヘマタイト粒子の可溶性硫酸塩の含有
量はSO4 換算で150ppm以下である。150pp
mを越える場合には、非磁性下地層の上に形成されてい
る磁気記録層中に含まれる鉄を主体とする金属磁性粒子
粉末を徐々に腐蝕させ、磁気特性の劣化を引き起こす。
また、ビヒクル中における針状ヘマタイト粒子の分散特
性が害されやすくなったり、磁気記録媒体の保存状態、
特に湿度の高い環境下においては白華現象を生じる場合
がある。鉄を主成分とする金属磁性粒子粉末の腐蝕防止
効果を考慮すると、好ましくは70ppm以下、より好
ましくは50ppm以下である。生産性等の工業性を考
慮すれば、その下限値は0.01ppm程度である。
The content of the soluble sulfate in the acicular hematite particles is 150 ppm or less in terms of SO 4 . 150 pp
When it exceeds m, the metal magnetic particle powder mainly composed of iron contained in the magnetic recording layer formed on the non-magnetic underlayer is gradually corroded to cause deterioration of magnetic characteristics.
In addition, the dispersibility of the needle-like hematite particles in the vehicle is likely to be impaired, the storage state of the magnetic recording medium,
Especially in an environment of high humidity, a white flower phenomenon may occur. Considering the anticorrosion effect of the metal magnetic particle powder containing iron as the main component, it is preferably 70 ppm or less, more preferably 50 ppm or less. In consideration of industrial properties such as productivity, the lower limit value is about 0.01 ppm.

【0037】本発明に係る針状ヘマタイト粒子は、必要
により、アルミニウムの水酸化物、アルミニウムの酸化
物、ケイ素の水酸化物及びケイ素の酸化物の少なくとも
1種で粒子表面が被覆されていてもよい。粒子表面が被
覆物で被覆されている針状ヘマタイト粒子は、ビヒクル
中に分散させる場合に、結合剤樹脂とのなじみがよく、
容易に所望の分散度が得られ易い。
The needle-like hematite particles according to the present invention may have the particle surface coated with at least one of aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide, if necessary. Good. Needle-shaped hematite particles whose surface is coated with a coating have good compatibility with the binder resin when dispersed in a vehicle,
It is easy to obtain the desired degree of dispersion.

【0038】上記被覆物の量は、針状ヘマタイト粒子に
対しアルミニウムの水酸化物やアルミニウムの酸化物は
Al換算で、ケイ素の水酸化物やケイ素の酸化物はSi
O2換算で0.01〜50重量%が好ましい。0.01
重量%未満である場合には、添加による分散性向上効果
が殆どなく、50.00重量%を越える場合には、被覆
効果が飽和するため、必要以上に添加する意味がない。
ビヒクル中の分散性と生産性を考慮すれば、0.05〜
20重量%がより好ましい。
The amount of the above coating is such that aluminum hydroxide or aluminum oxide is converted to Al for the acicular hematite particles, and silicon hydroxide or silicon oxide is Si.
It is preferably 0.01 to 50% by weight in terms of O2. 0.01
When it is less than 5% by weight, the effect of improving dispersibility by addition is scarce, and when it exceeds 50.00% by weight, the coating effect is saturated, so there is no point in adding more than necessary.
Considering dispersibility in vehicle and productivity, 0.05-
20% by weight is more preferred.

【0039】本発明に係る磁気記録媒体の非磁性下地層
は、非磁性支持体上に針状ヘマタイト粒子粉末と結合剤
樹脂と溶剤とを含む非磁性塗料を塗布し塗膜を形成した
後、乾燥することにより得られる。
The non-magnetic underlayer of the magnetic recording medium according to the present invention is formed by applying a non-magnetic coating material containing acicular hematite particles, a binder resin and a solvent on a non-magnetic support to form a coating film. Obtained by drying.

【0040】非磁性支持体としては、現在、磁気記録媒
体に汎用されているポリエチレンテレフタレート、ポリ
エチレン、ポリプロピレン、ポリカーボネート、ポリエ
チレンナフタレート、ポリアミド、ポリアミドイミド、
ポリイミド等の合成樹脂フィルム、アルミニウム、ステ
ンレス等金属の箔や板および各種の紙を使用することが
でき、その厚みは、その材質により種々異なるが、通常
好ましくは1.0〜300μm、より好ましくは2.0
〜200μmである。磁気ディスクの場合、非磁性支持
体としてはポリエチレンテレフタレートが通常用いら
れ、その厚みは、通常50〜300μm、好ましくは6
0〜200μmである。磁気テープの場合は、ポリエチ
レンテレフタレートの場合、その厚みは、通常3〜10
0μm、好ましくは4〜20μm、ポリエチレンナフタ
レートの場合、その厚みは、通常3〜50μm、好まし
くは4〜20μm、ポリアミドの場合、その厚みは、通
常2〜10μm、好ましくは3〜7μmである。
As the non-magnetic support, polyethylene terephthalate, polyethylene, polypropylene, polycarbonate, polyethylene naphthalate, polyamide, polyamide imide, which are currently widely used for magnetic recording media,
A synthetic resin film such as polyimide, a foil or plate of metal such as aluminum or stainless steel, and various kinds of paper can be used, and the thickness thereof is different depending on the material thereof, but is usually preferably 1.0 to 300 μm, and more preferably 2.0
Is about 200 μm. In the case of a magnetic disk, polyethylene terephthalate is usually used as the non-magnetic support, and its thickness is usually 50 to 300 μm, preferably 6
It is 0 to 200 μm. In the case of magnetic tape, the thickness of polyethylene terephthalate is usually 3 to 10
0 μm, preferably 4 to 20 μm. In the case of polyethylene naphthalate, its thickness is usually 3 to 50 μm, preferably 4 to 20 μm, and in the case of polyamide, its thickness is usually 2 to 10 μm, preferably 3 to 7 μm.

【0041】本発明における非磁性支持体上に塗膜組成
物を塗布して乾燥させた後の下地層の塗膜厚さは、0.
2〜10.0μmの範囲である。0.2μm未満の場合
には、非磁性支持体の表面粗さを改善することができな
いばかりか、強度も不十分である。薄層の磁気記録媒体
を得るためには上限値は10.0μm程度が好ましく、
より好ましくは0.5〜5.0μmの範囲である。
The coating thickness of the underlayer after coating the coating composition on the non-magnetic support in the present invention and drying it is 0.
It is in the range of 2 to 10.0 μm. If it is less than 0.2 μm, not only the surface roughness of the non-magnetic support cannot be improved, but also the strength is insufficient. In order to obtain a thin magnetic recording medium, the upper limit is preferably about 10.0 μm,
The range is more preferably 0.5 to 5.0 μm.

【0042】結合剤樹脂としては、現在、磁気記録媒体
の製造にあたって汎用されている塩化ビニル酢酸ビニル
共重合体、ウレタン樹脂、塩化ビニル酢酸ビニルマレイ
ン酸共重合体、ウレタンエラストマー、ブタジエンアク
リロニトリル共重合体、ポリビニルブチラール、ニトロ
セルロース等セルロース誘導体、ポリエステル樹脂、ポ
リブタジエン等の合成ゴム系樹脂、エポキシ樹脂、ポリ
アミド樹脂、ポリイソシアネート、電子線硬化型アクリ
ルウレタン樹脂等とその混合物を使用することができ
る。また、各結合剤樹脂には−OH、−COOH、−S
3 M、−OPO22 、−NH2 等の極性基(但し、
MはH、Na、Kである。)が含まれていてもよい。
As the binder resin, a vinyl chloride / vinyl acetate copolymer, a urethane resin, a vinyl chloride / vinyl acetate / maleic acid copolymer, a urethane elastomer, a butadiene acrylonitrile copolymer, which are currently widely used in the production of magnetic recording media, are used. , Polyvinyl butyral, cellulose derivatives such as nitrocellulose, polyester resins, synthetic rubber resins such as polybutadiene, epoxy resins, polyamide resins, polyisocyanates , electron beam curable acrylic urethane resins and the like, and mixtures thereof can be used. In addition, each binder resin contains -OH, -COOH, -S.
Polar groups such as O 3 M, —OPO 2 M 2 and —NH 2 (however,
M is H, Na, K. ) May be included.

【0043】針状ヘマタイト粒子粉末と結合剤樹脂との
配合割合は、結合剤樹脂100重量部に対し、針状ヘマ
タイト粒子が5〜2000重量部、好ましくは100〜
1000重量部である。
The mixing ratio of the acicular hematite particles to the binder resin is 5 to 2000 parts by weight of acicular hematite particles, preferably 100 to 100 parts by weight of the binder resin.
It is 1000 parts by weight.

【0044】尚、非磁性下地層に、通常の磁気記録媒体
の製造に用いられる潤滑剤、研磨剤、帯電防止剤等を、
必要により、添加してもよい。
The non-magnetic underlayer contains a lubricant, an abrasive, an antistatic agent, etc., which are commonly used in the production of magnetic recording media.
You may add as needed.

【0045】本発明に係る針状ヘマタイト粒子を含有す
る非磁性下地層は、塗膜の光沢度が190〜280%、
好ましくは195〜280%、より好ましくは200〜
280%、塗膜表面粗度Raが2.0〜10.0nm、
好ましくは2.0〜9.0nm、より好ましくは2.0
〜8.0nmである。
The non-magnetic underlayer containing the acicular hematite particles according to the present invention has a gloss of 190 to 280%,
Preferably 195-280%, more preferably 200-
280%, coating film surface roughness Ra is 2.0 to 10.0 nm,
Preferably 2.0 to 9.0 nm, more preferably 2.0.
~ 8.0 nm.

【0046】磁気記録媒体は、非磁性支持体上に形成さ
れた非磁性下地層の上に、鉄を主成分とする金属磁性粒
子粉末と結合剤樹脂と溶剤とを含む塗膜組成物を塗布し
塗布膜を形成した後、乾燥して磁気記録層を形成するこ
とにより得られる。
In the magnetic recording medium, a coating composition containing metallic magnetic particle powder containing iron as a main component, a binder resin and a solvent is coated on a nonmagnetic underlayer formed on a nonmagnetic support. It is obtained by forming a coating film and then drying to form a magnetic recording layer.

【0047】鉄を主成分とする針状金属磁性粒子は、平
均長軸径が0.01〜0.50μm、好ましくは0.0
3〜0.30μmであって、軸比が3:1以上、好まし
くは5:1以上の粒子であり、ビヒクル中での分散性を
考慮すれば、その上限値は、15:1以下、好ましくは
10:1以下の粒子であり、粒子の形状は、針状はもち
ろん、紡錘状、米粒状等であってもよい。
The acicular metal magnetic particles containing iron as a main component have an average major axis diameter of 0.01 to 0.50 μm, preferably 0.0.
Particles having an axial ratio of 3 to 0.30 μm and a ratio of 3: 1 or more, preferably 5: 1 or more, and in consideration of dispersibility in a vehicle, the upper limit thereof is 15: 1 or less, preferably Is a particle of 10: 1 or less, and the shape of the particle may be not only needle-like but also spindle-like, rice grain-like, or the like.

【0048】その組成は、鉄を50〜99重量%、好ま
しくは60〜95重量%含有している粒子であり、必要
により、鉄以外のCo、Al、Ni、P、Si、B、N
d、La、Y等を含有していてもよい。
The composition is particles containing iron in an amount of 50 to 99% by weight, preferably 60 to 95% by weight, and if necessary, Co, Al, Ni, P, Si, B, N other than iron.
It may contain d, La, Y or the like.

【0049】鉄を主成分とする針状金属磁性粒子粉末の
磁気特性は、高密度記録化等の特性を考慮すれば、保磁
力は1200〜3200Oeが好ましく、より好ましく
は1500〜3200Oeであり、飽和磁化は100〜
170emu/gが好ましく、より好ましくは130〜
150emu/gである。
Regarding the magnetic characteristics of the acicular metal magnetic particle powder containing iron as a main component, the coercive force is preferably 1200 to 3200 Oe, more preferably 1500 to 3200 Oe in consideration of characteristics such as high density recording. , Saturation magnetization is 100 ~
170 emu / g is preferable, and more preferably 130-
It is 150 emu / g.

【0050】磁気記録層における結合剤樹脂には、前記
非磁性下地層を形成するのに用いた結合剤樹脂を使用す
ることができる。
As the binder resin in the magnetic recording layer, the binder resin used for forming the non-magnetic underlayer can be used.

【0051】非磁性下地層上に塗膜組成物を塗布して乾
燥させた後の磁気記録層の塗膜厚さは、0.01〜5.
0μmの範囲である。0.01μm未満の場合には、均
一な塗布が困難で塗りむら等の現象が出やすくなるため
好ましくない。5.0μmを越える場合には、反磁界の
影響のため、所望の電磁変換特性が得られにくくなる。
好ましくは0.05〜1.0μmの範囲である。
The coating thickness of the magnetic recording layer after coating the coating composition on the non-magnetic underlayer and drying is 0.01 to 5.
It is in the range of 0 μm. If it is less than 0.01 μm, it is not preferable because it is difficult to apply it uniformly and the phenomenon such as uneven coating is likely to occur. When it exceeds 5.0 μm, it is difficult to obtain desired electromagnetic conversion characteristics due to the influence of the demagnetizing field.
It is preferably in the range of 0.05 to 1.0 μm.

【0052】磁気記録層における鉄を主成分とする針状
金属磁性粒子粉末と結合剤樹脂との配合割合は、結合剤
樹脂100重量部に対し、鉄を主成分とする針状金属磁
性粒子粉末が200〜2000重量部、好ましくは30
0〜1500重量部である。
In the magnetic recording layer, the acicular metal magnetic particle powder containing iron as the main component and the binder resin are mixed in such a ratio that 100 parts by weight of the binder resin is mixed with the acicular metal magnetic particle powder containing iron as the main component. Is 200 to 2000 parts by weight, preferably 30
0 to 1500 parts by weight.

【0053】磁気記録層中には、通常用いられる潤滑
剤、研磨剤、帯電防止剤等を添加してもよい。
Lubricants, abrasives, antistatic agents and the like which are usually used may be added to the magnetic recording layer.

【0054】本発明に係る針状ヘマタイト粒子を含有す
る非磁性下地層を有する磁気記録媒体は、保磁力が90
0〜3500Oe、好ましくは1000〜3500O
e、より好ましくは1500〜3500Oe、角形比
(残留磁束密度Br/飽和磁束密度Bm)が0.85〜
0.95、好ましくは0.86〜0.95、塗膜の光沢
度が200〜300%、好ましくは210〜300%、
塗膜表面粗度Raが10.0nm以下、好ましくは2.
0〜9.0nm、より好ましくは2.0〜8.0nm、
塗膜の線吸収係数が1.10〜2.00μm-1好ましく
は1.20〜2.00μm-1、保磁力の変化率(%)で
示す腐蝕性が10.0%以下、好ましくは9.5%以
下、Bmの変化率(%)で示す腐蝕性が10.0%以
下、好ましくは9.5%以下である。
The magnetic recording medium having a non-magnetic underlayer containing acicular hematite particles according to the present invention has a coercive force of 90.
0-3500 Oe, preferably 1000-3500 Oe
e, more preferably 1500 to 3500 Oe, and the squareness ratio (residual magnetic flux density Br / saturated magnetic flux density Bm) is 0.85 to
0.95, preferably 0.86-0.95, the gloss of the coating film is 200-300%, preferably 210-300%,
The coating film surface roughness Ra is 10.0 nm or less, preferably 2.
0-9.0 nm, more preferably 2.0-8.0 nm,
The linear absorption coefficient of the coating film is 1.10 to 2.00 μm −1, preferably 1.20 to 2.00 μm −1 , and the corrosiveness indicated by the change rate (%) of coercive force is 10.0% or less, preferably 9 The corrosiveness is 0.5% or less, and the corrosiveness indicated by the change rate (%) of Bm is 10.0% or less, preferably 9.5% or less.

【0055】本発明に係る針状ヘマタイト粒子粉末の製
造法について述べる。
The method for producing the acicular hematite particle powder according to the present invention will be described.

【0056】本発明に係る針状ヘマタイト粒子粉末は、
第一鉄塩水溶液に当量以上の水酸化アルカリ水溶液を
加えて得られる水酸化第一鉄コロイドを含む懸濁液をp
H11以上にて80℃以下の温度で酸素含有ガスを通気
して酸化反応を行うことにより針状ゲータイト粒子を生
成させる方法、第一鉄塩水溶液と炭酸アルカリ水溶液
とを反応させて得られるFeCO3 を含む懸濁液を、必
要により熟成した後、酸素含有ガスを通気して酸化反応
を行うことにより紡錘状を呈したゲータイト粒子を生成
させる方法、第一鉄塩水溶液に当量未満の水酸化アル
カリ水溶液又は炭酸アルカリ水溶液を添加して得られる
水酸化第一鉄コロイドを含む第一鉄塩水溶液に酸素含有
ガスを通気して酸化反応を行うことにより針状ゲータイ
ト核粒子を生成させ、次いで、該針状ゲータイト核粒子
を含む第一鉄塩水溶液に、該第一鉄塩水溶液中のFe2+
に対し当量以上の水酸化アルカリ水溶液を添加した後、
酸素含有ガスを通気して前記針状ゲータイト核粒子を成
長させる方法及び第一鉄水溶液と当量未満の水酸化ア
ルカリ又は炭酸アルカリ水溶液を添加して得られる水酸
化第一鉄コロイドを含む第一鉄塩水溶液に酸素含有ガス
を通気して酸化反応を行うことにより針状ゲータイト核
粒子を生成させ、次いで、酸性乃至中性領域で前記針状
ゲータイト核粒子を成長させる方法等、通常の方法によ
り得られた針状ゲータイト粒子を前駆体粒子とし、該針
状ゲータイト粒子を加熱脱水することにより得られる。
The acicular hematite particle powder according to the present invention is
Add a suspension containing ferrous hydroxide colloid obtained by adding an equivalent amount or more of an aqueous alkali hydroxide solution to the ferrous salt solution.
A method of generating needle-shaped goethite particles by aerating an oxygen-containing gas at a temperature of H11 or higher and a temperature of 80 ° C. or lower to generate acicular goethite particles, and FeCO 3 obtained by reacting a ferrous salt aqueous solution with an alkaline carbonate aqueous solution. A suspension containing aging, after aging if necessary, a method of generating goethite particles in the form of spindles by aerating an oxygen-containing gas to carry out an oxidation reaction, and an alkali hydroxide less than the equivalent amount in the ferrous salt aqueous solution. A needle-shaped goethite core particle is produced by aerating an oxygen-containing gas through an aqueous ferrous salt solution containing a ferrous hydroxide colloid obtained by adding an aqueous solution or an aqueous solution of alkali carbonate to generate acicular goethite core particles, and then In a ferrous salt aqueous solution containing acicular goethite core particles, Fe 2+ in the ferrous salt aqueous solution is added.
After adding an equivalent or more alkaline hydroxide aqueous solution to,
Method of growing acicular goethite core particles by aerating oxygen-containing gas and ferrous iron colloid obtained by adding less than equivalent amount of an aqueous solution of ferrous hydroxide or an aqueous solution of alkali carbonate A needle-shaped goethite nucleus particle is generated by aerating an oxygen-containing gas in a salt solution to carry out an oxidation reaction, and then obtained by a usual method such as a method of growing the needle-shaped goethite nucleus particle in an acidic or neutral region. The obtained acicular goethite particles are used as precursor particles, and the acicular goethite particles are heated and dehydrated.

【0057】尚、ゲータイト粒子の生成反応中に、粒子
の長軸径、短軸径、軸比等の諸特性向上の為に通常添加
されているNi、Zn、P、Si、Al等の異種元素が
添加されていても支障はない。得られる針状ゲータイト
粒子粉末は、通常、可溶性ナトリウム塩をNa換算で3
00〜1500ppm、可溶性硫酸塩をSO4 換算で1
00〜3000ppm含有しており、BET比表面積値
は50〜250m2 /g程度である。
It should be noted that during the formation reaction of goethite particles, different kinds of Ni, Zn, P, Si, Al and the like, which are usually added to improve various characteristics such as major axis diameter, minor axis diameter and axial ratio of the particles. There is no problem even if an element is added. The acicular goethite particle powder obtained usually has a soluble sodium salt content of 3 in terms of Na.
0 to 1500 ppm, soluble sulfate 1 in SO 4 conversion
The BET specific surface area value is about 50 to 250 m 2 / g.

【0058】本発明に係る高密度化された針状ヘマタイ
ト粒子粉末は、上記針状ゲータイト粒子粉末、または、
該針状ゲータイト粒子粉末を加熱脱水して得られる低密
度針状ヘマタイト粒子を550℃以上で高温加熱処理す
ることにより得られる。針状ゲータイト粒子の粒子形態
を保持継承した高密度化針状ヘマタイト粒子を得るため
には、後者の加熱脱水して得られる針状ヘマタイト粒子
を用いることが好ましい。
The densified needle-like hematite particle powder according to the present invention is the above-mentioned needle-like goethite particle powder, or
It is obtained by subjecting the acicular goethite particle powder to heat dehydration to obtain low-density acicular hematite particles at a high temperature of 550 ° C. or higher. In order to obtain densified needle-like hematite particles that retain and inherit the particle morphology of needle-like goethite particles, it is preferable to use the latter needle-like hematite particles obtained by heating and dehydrating.

【0059】高密度化のための高温加熱処理に先立っ
て、あらかじめ焼結防止剤で被覆処理しておくことが必
要である。粒子表面が焼結防止剤で被覆されている針状
ゲータイト粒子粉末は、通常、可溶性ナトリウム塩をN
a換算で500〜2000ppm、可溶性硫酸塩をSO
4 換算で300〜3000ppm含有しており、BET
比表面積値は50〜250m2 /g程度である。焼結防
止剤による被覆処理は、針状ゲータイト粒子又は該針状
ゲータイト粒子を加熱脱水して得られる針状ヘマタイト
粒子を含む水懸濁液中に焼結防止剤を添加し、混合攪拌
した後、濾別、水洗、乾燥すればよい。
Prior to the high temperature heat treatment for increasing the density, it is necessary to perform a coating treatment with a sintering inhibitor in advance. Needle-shaped goethite particle powders whose surface is coated with a sintering inhibitor usually contain soluble sodium salt in N
500 to 2000 ppm in terms of a, soluble sulfate is SO
BET content of 300-3000ppm in 4 conversion
The specific surface area value is about 50 to 250 m 2 / g. The coating treatment with the sintering inhibitor is carried out by adding the sintering inhibitor to an aqueous suspension containing needle-shaped goethite particles or needle-shaped hematite particles obtained by heating and dehydrating the needle-shaped goethite particles, and after mixing and stirring. It may be filtered, washed with water, and dried.

【0060】焼結防止剤としては、通常使用されるヘキ
サメタリン酸ナトリウム、ポリリン酸、オルトリン酸等
のリン化合物、3号水ガラス、オルトケイ酸ナトリウ
ム、メタケイ酸ナトリウム、コロイダルシリカ等のケイ
素化合物、ホウ酸等のホウ素化合物、酢酸アルミニウ
ム、硫酸アルミニウム、塩化アルミニウム、硝酸アルミ
ニウム等のアルミニウム塩や、アルミン酸ソーダ等のア
ルミン酸アルカリ塩、アルミナゾル等のアルミニウム化
合物、硫酸チタニル等のチタン化合物を使用することが
できる。
As the sintering inhibitor, a commonly used phosphorus compound such as sodium hexametaphosphate, polyphosphoric acid, orthophosphoric acid, No. 3 water glass, sodium orthosilicate, sodium metasilicate, silicon compound such as colloidal silica, boric acid, etc. Such as boron compounds, aluminum acetate, aluminum sulfate, aluminum chloride, aluminum nitrate, and other aluminum salts, sodium aluminate and other aluminate salts, alumina sol and other aluminum compounds, and titanyl sulfate and other titanium compounds can be used. .

【0061】低密度の針状ヘマタイト粒子は、粒子表面
に焼結防止剤が被覆されている針状ゲータイト粒子を2
50〜400℃の温度範囲で低温加熱すればよい。低密
針状ヘマタイト粒子粉末は、通常、可溶性ナトリウム
塩をNa換算で500〜2000ppm、可溶性硫酸塩
をSO4 換算で300〜4000ppm含有しており、
BET比表面積値は70〜350m2 /g程度である。
加熱温度が250℃未満の場合には、脱水反応に長時間
を要する。加熱温度が400℃を越える場合には、脱水
反応が急激に生起し、粒子の形状が崩れやすくなった
り、粒子相互間の焼結を引き起こすことになり好ましく
ない。加熱処理して得られる針状ヘマタイト粒子は、
ゲータイト粒子からH2 Oが脱水され、脱水孔を多数
有する低密度粒子であり、BET比表面積値が前駆体粒
子である針状ゲータイト粒子の1.2〜2倍程度とな
る。
The low-density acicular hematite particles are obtained by combining acicular hematite particles whose surface is coated with an antisintering agent.
It may be heated at a low temperature in the temperature range of 50 to 400 ° C. The low-density acicular hematite particle powder usually contains a soluble sodium salt of 500 to 2000 ppm in terms of Na and a soluble sulfate of 300 to 4000 ppm in terms of SO 4 ,
The BET specific surface area value is about 70 to 350 m 2 / g.
When the heating temperature is lower than 250 ° C, it takes a long time for the dehydration reaction. If the heating temperature exceeds 400 ° C., a dehydration reaction rapidly occurs, the shape of the particles is likely to collapse, and sintering between particles is not preferable, which is not preferable. Acicular hematite particles obtained by heat treatment, the needle
H 2 O is dehydrated from the granular goethite particles, which is a low-density particle having a large number of dehydration pores, and has a BET specific surface area value of about 1.2 to 2 times that of the acicular goethite particle that is the precursor particle.

【0062】次いで、低密度針状ヘマタイト粒子粉末
は、550℃以上で高温加熱して高密度化された針状ヘ
マタイト粒子とする。加熱温度の上限値は好ましくは8
50℃である。高密度針状ヘマタイト粒子粉末は、通
常、可溶性ナトリウム塩をNa換算で500〜4000
ppm、可溶性硫酸塩をSO4 換算で300〜5000
ppm含有しており、BET比表面積値は35〜150
2 /g程度である。加熱温度が550℃未満の場合に
は、高密度化が不十分であるため針状ヘマタイト粒子の
粒子内部及び粒子表面に脱水孔が多数存在しており、そ
の結果、ビヒクル中における分散性が不十分であり、非
磁性下地層を形成した時、表面平滑な塗膜が得られにく
い。加熱温度が850℃を越える場合には、針状ヘマタ
イト粒子の高密度化は十分なされているが、粒子及び粒
子相互間の焼結が生じるため、粒子径が増大し、同様に
表面平滑な塗膜は得られにくい。
Next, the low-density acicular hematite particle powder is heated at a high temperature of 550 ° C. or higher to obtain acicular hematite particles having a high density. The upper limit of the heating temperature is preferably 8
It is 50 ° C. The high-density acicular hematite particle powder is usually a soluble sodium salt of 500 to 4000 in terms of Na.
ppm, soluble sulfate of 300 to 5000 in terms of SO 4
ppm content, BET specific surface area value is 35-150
It is about m 2 / g. When the heating temperature is lower than 550 ° C., the densification is insufficient and a large number of dehydration pores are present inside and on the surface of the acicular hematite particles, resulting in poor dispersibility in the vehicle. It is sufficient, and it is difficult to obtain a coating film having a smooth surface when the nonmagnetic underlayer is formed. When the heating temperature exceeds 850 ° C., the needle-shaped hematite particles have been sufficiently densified, but since the particles and the particles are sintered, the particle size increases, and It is difficult to obtain a coating film with a smooth surface.

【0063】高密度化された針状ヘマタイト粒子は、乾
式で粗粉砕をして粗粒をほぐした後、スラリー化し、次
いで、湿式粉砕することにより更に粗粒をほぐす。湿式
粉砕は、少なくとも44μm以上の粗粒が無くなるよう
にボールミル、サンドグラインダー、ダイノーミル、コ
ロイドミル等を用いて行えばよい。湿式粉砕の程度は4
4μm以上の粗粒が10%以下、好ましくは5%以下、
より好ましくは0%である。44μm以上の粗粒が10
%を越えて残存していると、次工程におけるアルカリ水
溶液中の処理効果が得られ難い。
The densified needle-like hematite particles are coarsely pulverized by a dry method to loosen the coarse particles, then made into a slurry, and then wet pulverized to further loosen the coarse particles. The wet pulverization may be performed using a ball mill, a sand grinder, a dyno mill, a colloid mill or the like so that coarse particles of at least 44 μm or more are eliminated. Wet grinding degree is 4
10% or less of coarse particles of 4 μm or more, preferably 5% or less,
It is more preferably 0%. 10 coarse particles of 44 μm or more
If the amount of the residual component exceeds the range of%, it is difficult to obtain the treatment effect in the alkaline aqueous solution in the next step.

【0064】粗粒を除去した針状ヘマタイト粒子を含む
スラリーは、該スラリーに水酸化ナトリウム等のアルカ
リ水溶液を添加してpH値を13以上に調整した後、8
0℃以上の温度で加熱処理する。
A slurry containing needle-like hematite particles from which coarse particles have been removed is adjusted to a pH value of 13 or more by adding an alkaline aqueous solution such as sodium hydroxide to the slurry, and then 8
Heat treatment is performed at a temperature of 0 ° C. or higher.

【0065】針状ヘマタイト粒子粉末を含むpH値が1
3以上ののアルカリ性懸濁液の濃度は、50〜250g
/lが好ましい。
PH value including acicular hematite particles powder is 1
The concentration of the alkaline suspension of 3 or more is 50 to 250 g.
/ L is preferred.

【0066】針状ヘマタイト粒子粉末を含むアルカリ性
懸濁液中のpH値が13未満の場合には、針状ヘマタイ
ト粒子の粒子表面に存在する焼結防止剤に起因する固体
架橋を効果的に取りはずすことができず、粒子内部及び
粒子表面に存在する可溶性ナトリウム塩、可溶性硫酸塩
等の洗い出しができない。その上限は、pH値が14程
度である。針状ヘマタイト粒子表面に存在する焼結防止
剤に起因する固体架橋の取りはずしや可溶性ナトリウム
塩、可溶性硫酸塩等の洗い出しの効果、更には、アルカ
リ性水溶液処理中に針状ヘマタイト粒子表面に付着した
ナトリウム等のアルカリを除去するための洗浄効果を考
慮すれば、pH値は13.1〜13.8の範囲が好まし
い。
[0066] When the pH value of the alkaline suspension containing the acicular hematite particles is less than 13, a solid cross-linked due to the acicular Hematai <br/> sintering inhibitor present on the particle surfaces of the bets particles Cannot be removed effectively, and the soluble sodium salts, soluble sulfates, etc. present inside and on the surface of the particles cannot be washed out. The upper limit of the pH value is about 14. Removal of solid cross-links caused by the sintering inhibitor present on the surface of acicular hematite particles and the effect of washing out soluble sodium salts, soluble sulfates, etc., and sodium adhering to the surface of acicular hematite particles during alkaline aqueous solution treatment. Considering the cleaning effect for removing the alkali such as the above, the pH value is preferably in the range of 13.1 to 13.8.

【0067】針状ヘマタイト粒子粉末を含むpH値が1
3以上のアルカリ性水溶液の加熱温度は、80℃以上が
好ましく、より好ましくは90℃以上ある。80℃未満
の場合には、針状ヘマタイト粒子表面に存在する焼結防
止剤に起因する固体架橋を効果的に取りはずすことが困
難となる。加熱温度の上限値は103℃が好ましく、よ
り好ましくは100℃である。103℃を越える場合に
は、固体架橋は効果的に取りはずすことはできるが、オ
ートクレーブ等が必要となったり、常圧下おいては、被
処理液が沸騰するなど工業的に有利でなくなる。
PH value including acicular hematite particles powder is 1
The heating temperature of the alkaline aqueous solution of 3 or more is preferably 80 ° C. or higher, more preferably 90 ° C. or higher. If the temperature is lower than 80 ° C., it becomes difficult to effectively remove solid crosslinks due to the sintering inhibitor present on the surface of the acicular hematite particles. The upper limit of the heating temperature is preferably 103 ° C, more preferably 100 ° C. When the temperature exceeds 103 ° C, the solid crosslinks can be effectively removed, but it becomes industrially unfavorable such as the need for an autoclave or the boiling of the liquid to be treated under normal pressure.

【0068】アルカリ水溶液中で加熱処理した針状ヘマ
タイト粒子は、常法により、濾別、水洗することによ
り、粒子内部及び粒子表面から洗い出した可溶性ナトリ
ウム塩や可溶性硫酸塩やアルカリ水溶液処理中に針状
マタイト粒子表面に付着したナトリウム等のアルカリを
除去し、次いで、乾燥する。
The needle-shaped hematite particles which have been heat-treated in an alkaline aqueous solution are separated by filtration and washed with water by a conventional method to obtain soluble sodium salts and soluble sulfates washed out from inside and on the surface of the particles and needles during the alkaline aqueous solution treatment. Jo f <br/> alkali to remove such as sodium adhered to hematite particle surface and then dried.

【0069】水洗法としては、デカンテーションによっ
て洗浄する方法、フィルターシックナーを使用して希釈
法で洗浄する方法、フィルタープレスに通水して洗浄す
る方法等の工業的に通常使用されている方法を使用すれ
ばよい。
As the washing method with water, there are commonly used methods such as decantation, diluting with a filter thickener, and washing with water passing through a filter press. You can use it.

【0070】尚、高密度針状ヘマタイト粒子の粒子内部
に含有されている可溶性ナトリウム塩や可溶性硫酸塩を
水洗して洗い出しておけば、それ以降の工程、例えば、
後出する被覆処理工程において針状ヘマタイト粒子の粒
子表面に可溶性ナトリウム塩や可溶性硫酸塩が付着して
も水洗により容易に除去することができる。
If the soluble sodium salt or soluble sulfate contained in the particles of the high-density needle-like hematite particles is washed out with water and washed out, the subsequent steps, for example,
Even if soluble sodium salts or soluble sulfates adhere to the particle surfaces of the acicular hematite particles in the coating treatment step described later, they can be easily removed by washing with water.

【0071】本発明に係る針状ヘマタイト粒子は、必要
により、アルカリ水溶液中で加熱処理した後、常法によ
り濾別、水洗し、次いで、アルミニウムの水酸化物、ア
ルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸
化物の少なくとも1種により被覆される。
The needle-like hematite particles according to the present invention are, if necessary, heat-treated in an alkaline aqueous solution, filtered by a conventional method and washed with water, and then aluminum hydroxide, aluminum oxide, silicon water. It is coated with at least one of an oxide and an oxide of silicon.

【0072】被覆処理は、針状ヘマタイト粒子を水溶液
中に分散して得られる水懸濁液に、アルミニウム化合
物、ケイ素化合物又は当該両化合物を添加して混合攪拌
することにより、または、必要により、pH値を調整す
ることにより、前記針状ヘマタイト粒子の粒子表面に、
アルミニウムの水酸化物、アルミニウムの酸化物、ケイ
素の水酸化物及びケイ素の酸化物を被着すればよく、次
いで、濾別、水洗、乾燥、粉砕する。必要により、更
に、脱気・圧密処理等を施してもよい。
The coating treatment is carried out by adding an aluminum compound, a silicon compound or both compounds to an aqueous suspension obtained by dispersing acicular hematite particles in an aqueous solution and mixing and stirring, or if necessary, By adjusting the pH value, on the particle surface of the acicular hematite particles,
Aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide may be applied and then filtered, washed with water, dried and pulverized. If necessary, deaeration / consolidation may be further performed.

【0073】本発明におけるアルミニウム化合物として
は、前出焼結防止剤と同じものが使用できる。
As the aluminum compound in the present invention, the same one as the above-mentioned sintering inhibitor can be used.

【0074】アルミニウム化合物の添加量は、針状ヘマ
タイト粒子粉末に対しAl換算で0.01〜50.00
重量%である。0.01重量%未満である場合には、ビ
ヒクル中における分散が不十分であり、50.00重量
%を越える場合には、被覆効果が飽和するため、必要以
上に添加する意味がない。
The amount of the aluminum compound added is 0.01 to 50.00 in terms of Al based on the acicular hematite particle powder.
% By weight. When it is less than 0.01% by weight, the dispersion in the vehicle is insufficient, and when it exceeds 50.00% by weight, the coating effect is saturated, so that it is meaningless to add more than necessary.

【0074】本発明におけるケイ素化合物としては、前
出焼結防止剤と同じものが使用できる。
As the silicon compound in the present invention, the same one as the above-mentioned sintering inhibitor can be used.

【0076】ケイ素化合物の添加量は、針状ヘマタイト
粒子粉末に対しSiO2 換算で0.01〜50.00重
量%である。0.01重量%未満である場合には、ビヒ
クル中における分散が不十分であり、50.00重量%
を越える場合には、被覆効果が飽和するため、必要以上
に添加する意味がない。
The amount of the silicon compound added is 0.01 to 50.00% by weight in terms of SiO 2 with respect to the acicular hematite particle powder. If the amount is less than 0.01% by weight, the dispersion in the vehicle is insufficient and the amount is 50.00% by weight.
If it exceeds, the coating effect will be saturated and it is meaningless to add more than necessary.

【0077】アルミニウム化合物とケイ素化合物とを併
せて使用する場合には、針状ヘマタイト粒子粉末に対
し、Al換算量とSiO2 換算量との総和で0.01〜
50.00重量%が好ましい。
When the aluminum compound and the silicon compound are used in combination, the total amount of Al and SiO 2 is 0.01 to 0.01 with respect to the acicular hematite particle powder.
50.00% by weight is preferred.

【0078】[0078]

【作用】本発明において最も重要な点は、結合剤樹脂中
における分散性が優れており、しかも、可溶性ナトリウ
ムの含有量がNa換算で300ppm以下、可溶性硫酸
塩の含有量がSO4 換算で150ppm以下であって、
且つ、粉体pH値が8以上の高密度針状ヘマタイト粒子
を、非磁性下地層用の非磁性粒子粉末として使用した場
合には、該結合剤樹脂中における分散性が優れているこ
とに起因して、非磁性下地層の表面平滑性と強度を向上
させることができ、当該非磁性下地層の上に磁気記録層
を設けた場合に、磁気記録層の光透過率を小さくし、平
滑で厚みむらのない薄膜にすることができるとともに、
磁気記録層中に分散させている鉄を主成分とする金属磁
性粒子粉末の腐蝕に伴う磁気特性の劣化を抑制すること
ができるという事実である。
The most important point in the present invention is that the dispersibility in the binder resin is excellent, the soluble sodium content is 300 ppm or less in terms of Na, and the soluble sulfate content is 150 ppm in terms of SO 4. Below,
In addition, when high-density acicular hematite particles having a powder pH value of 8 or more are used as the non-magnetic particle powder for the non-magnetic underlayer, the dispersibility in the binder resin is excellent. Then, the surface smoothness and strength of the non-magnetic underlayer can be improved, and when the magnetic recording layer is provided on the non-magnetic underlayer, the light transmittance of the magnetic recording layer is reduced to be smooth. It is possible to make a thin film without uneven thickness,
The fact is that deterioration of magnetic properties due to corrosion of the metal magnetic particle powder containing iron as a main component dispersed in the magnetic recording layer can be suppressed.

【0079】非磁性下地層の表面平滑性と非磁性支持体
の強度をより向上させることができた理由について、本
発明者は、高密度針状ヘマタイト粒子相互を強固に架橋
して凝集させる原因となっている可溶性ナトリウム塩や
可溶性硫酸塩を十分水洗除去することができたことに起
因して、凝集物が解きほぐされて、実質的に独立してい
る粒子とすることができ、その結果、ビヒクル中におけ
る分散性が優れた針状ヘマタイト粒子粉末が得られるこ
とによるものと考えている。
With respect to the reason that the surface smoothness of the non-magnetic underlayer and the strength of the non-magnetic support could be further improved, the inventors of the present invention have strongly considered that the high density needle-like hematite particles are strongly cross-linked and aggregated. Due to the fact that the soluble sodium salts and soluble sulfates that have become, can be sufficiently removed by washing with water, the aggregates can be disentangled to form substantially independent particles. It is believed that this is because needle-like hematite particles having excellent dispersibility in the vehicle can be obtained.

【0080】この事実について、以下に説明する。This fact will be described below.

【0081】前駆体として使用する針状ゲータイト粒子
粉末は、前述した通り、各種製造法により製造される。
The acicular goethite particle powder used as the precursor is manufactured by various manufacturing methods as described above.

【0082】いずれの方法においても針状ゲータイト粒
子を製造する主な原料が硫酸第一鉄である場合には当然
反応母液中に硫酸塩〔SO4 --〕が多量に存在するので
ある。
[0082] The main raw materials sulfate naturally reaction mother liquor in the case of the ferrous sulfate to produce the acicular goethite particles in any of the methods [SO 4 -] is the abundant.

【0083】特に、酸性溶液中からゲータイト粒子を生
成する場合には、同時に、Na2 SO4 等水可溶性硫酸
塩を生じるとともに、反応母液にはK+ 、NH4 + 、N
+等アルカリ金属を含んでいるので、アルカリ金属や
硫酸塩を含む沈澱を生じ易く、この沈澱はRFe3 (S
4 )(OH)6 (R=K+ 、NH4 + 、Na+ )で示
される。これら沈澱物は難溶性の含硫酸塩で常法による
水洗によっては除去することができない。この難溶性塩
はその後の加熱処理工程において可溶性ナトリウム塩や
可溶性硫酸塩になるが、この可溶性ナトリウム塩や可溶
性硫酸塩は、高密度化のための高温加熱処理工程におい
て針状ヘマタイト粒子の形状の変形、粒子相互間の焼結
を防止するために必須である焼結防止剤によって、針状
ヘマタイト粒子相互を架橋しながら粒子内部及び粒子表
面に強固に結合されることにより、針状ヘマタイト粒子
相互間の凝集が一層強まる。その結果、殊に、粒子内部
や凝集物内部に閉じ込められた可溶性硫酸塩や可溶性ナ
トリウム塩は、常法による水洗によって除去することが
極めて困難となる。
Particularly, when goethite particles are produced from an acidic solution, water-soluble sulfates such as Na 2 SO 4 are simultaneously produced, and K + , NH 4 + , N are added to the reaction mother liquor.
Since it contains an alkali metal such as a + , a precipitate containing an alkali metal or a sulfate is liable to be formed. This precipitate is RFe 3 (S
It is represented by O 4 ) (OH) 6 (R = K + , NH 4 + , Na + ). These precipitates are sparingly soluble sulfate-containing salts and cannot be removed by washing with water by a conventional method. This sparingly soluble salt becomes soluble sodium salt or soluble sulfate in the subsequent heat treatment step, but this soluble sodium salt or soluble sulfate salt forms a needle-like hematite particle in the high temperature heat treatment step for densification. By the sintering inhibitor, which is essential to prevent deformation and sintering between particles, the needle-like hematite particles are strongly bonded to each other inside the particle while cross-linking the needle-like hematite particles with each other. The cohesion between them is further strengthened. As a result, it becomes extremely difficult to remove the soluble sulfate and the soluble sodium salt, which are trapped inside the particles and inside the aggregate, by washing with water by a conventional method.

【0084】硫酸第一鉄と水酸化ナトリウムとを用いて
アルカリ性水溶液中で針状ゲータイト粒子を生成する場
合には、同時に生成される硫酸塩はNa2 SO4 であ
り、また、母液中にNaOHが存在し、これらは共に可
溶性であるため針状ゲータイト粒子を十分水洗すれば本
質的にはNa2 SO4 およびNaOHを除去できるはず
である。しかし、一般には針状ゲータイト粒子の結晶性
が小さい為、水洗効率が悪く、常法により水洗した場
合、なお、粒子中に可溶性硫酸塩〔SO4 --〕、可溶性
ナトリウム塩〔Na+ 〕等水可溶性分を含んでいる。そ
して、この水可溶性分は、前述した通り、焼結防止剤に
よって針状ヘマタイト粒子相互を架橋しながら粒子内部
及び粒子表面に強固に結合されることにより、針状ヘマ
タイト粒子相互間の凝集が一層強まる。その結果、殊
に、粒子内部や凝集物内部に閉じ込められた可溶性硫酸
塩や可溶性ナトリウム塩は、常法による水洗によって除
去することが極めて困難となる。
When acicular goethite particles are produced in an alkaline aqueous solution using ferrous sulfate and sodium hydroxide, the sulfate produced simultaneously is Na 2 SO 4 , and the mother liquor contains NaOH. Since they are both soluble, it should be possible to essentially remove Na 2 SO 4 and NaOH by sufficiently washing the acicular goethite particles with water. However, in general since the small crystalline needles goethite particles, poor washing efficiency, when washed with water by a conventional method, should be noted that the soluble sulphate in the particle [SO 4 -], a soluble sodium salt [Na +] and the like Contains water-soluble components. And, as described above, the water-soluble component is strongly bonded to the inside of the particles and the surface of the particles while cross-linking the needle-shaped hematite particles with each other by the sintering inhibitor, so that the aggregation between the needle-shaped hematite particles is further enhanced. Get stronger. As a result, it becomes extremely difficult to remove the soluble sulfate and the soluble sodium salt, which are trapped inside the particles and inside the aggregate, by washing with water by a conventional method.

【0085】上述した通り、可溶性ナトリウム塩や可溶
性硫酸塩が焼結防止剤を介在して粒子内部や粒子表面及
び凝集物内部に強く結合されている高密度針状ヘマタイ
ト粒子は、湿式粉砕して粗粒をほぐした後、スラリーの
pH値を13以上に調整し、80℃以上の温度で加熱処
理すると、アルカリ性水溶液が高密度針状ヘマタイト粒
子の粒子内部まで十分浸透し、その結果、粒子内部や粒
子表面及び凝集物内部に強く結合している焼結防止剤の
結合力が徐々に弱まり、粒子内部や粒子表面及び凝集物
内部から解離され、同時に水可溶性ナトリウム塩や水可
溶性硫酸塩も水洗除去しやすくなるものと考えられる。
As described above, the high density needle-like hematite particles in which the soluble sodium salt or the soluble sulfate salt is strongly bound to the inside of the particle, the surface of the particle and the inside of the agglomerate through the sintering inhibitor are included. After wet pulverizing to loosen coarse particles, the pH value of the slurry is adjusted to 13 or more, and heat treatment is performed at a temperature of 80 ° C. or more, the alkaline aqueous solution sufficiently penetrates into the inside of the high-density needle-like hematite particles, As a result, the binding force of the sintering inhibitor strongly bonded to the inside of the particle, the surface of the particle, and the inside of the agglomerate is gradually weakened, and is dissociated from the inside of the particle, the surface of the agglomerate, and the inside of the agglomerate. It is considered that the soluble sulfate can be easily removed by washing with water.

【0086】磁気記録層中に分散されている鉄を主成分
とする金属磁性粒子粉末の腐蝕に伴う磁気特性の劣化が
抑制される理由について、本発明者は、金属の腐蝕を促
進する可溶性ナトリウム塩や可溶性硫酸塩等の可溶性分
が高密度針状ヘマタイト粒子中に少ないこと及び針状
マタイト粒子自体の粉体pH値が8以上と高いことに起
因して鉄を主成分とする金属磁性粒子粉末の腐蝕の進行
が抑制できたものと考えている。
For the reason that deterioration of magnetic properties due to corrosion of metal magnetic particle powder containing iron as a main component dispersed in the magnetic recording layer is suppressed, the present inventor has found that soluble sodium which promotes corrosion of metal is used. iron-based powder pH value of that soluble components such as salts or soluble sulfates is less dense acicular hematite particles and acicular f <br/> hematite particles themselves due to 8 or more and high It is considered that the progress of corrosion of the metal magnetic particle powder can be suppressed.

【0087】事実、本発明者は、後出の実施例及び比較
例に示す通り、湿式粉砕後の高密度化された針状ヘマタ
イト粒子を80℃以上の温度、pH値が13未満のアル
カリ水溶液で加熱処理した場合、湿式粉砕後の高密度化
された針状ヘマタイト粒子を80℃未満の温度、pH値
が13以上のアルカリ水溶液で加熱処理した場合、高密
度化された針状ヘマタイト粒子を湿式粉砕をすることな
く粗粒を含んだままで80℃以上の温度下、pH値13
以上のアルカリ性水溶液中で加熱処理した場合のいずれ
の場合にも、本発明の効果が得られないことから、可溶
性分が少ないことと、粉体pH値が8以上であることの
相乗効果により鉄を主成分とする金属磁性粒子粉末の腐
蝕の進行が抑制できるという現象を確認している。
As a matter of fact, the present inventor, as shown in the examples and comparative examples below, showed that the densified needle-like hematite particles after the wet pulverization had a temperature of 80 ° C. or higher and a pH value. When heat-treated with an alkaline aqueous solution of less than 13, the densified needle-like hematite particles after wet grinding were densified when heat-treated with an alkaline aqueous solution having a temperature of less than 80 ° C. and a pH value of 13 or more. Needle-like hematite particles were subjected to a pH value of 13 at a temperature of 80 ° C. or higher without wet pulverization and containing coarse particles.
The effect of the present invention cannot be obtained in any of the cases where heat treatment is carried out in the above alkaline aqueous solution. Therefore, due to the synergistic effect that the soluble content is small and the powder pH value is 8 or more, iron It has been confirmed that the progress of corrosion of the metal magnetic particle powder containing as a main component can be suppressed.

【0088】[0088]

【発明の実施の形態】本発明の代表的な実施の形態は、
次の通りである。
BEST MODE FOR CARRYING OUT THE INVENTION A typical embodiment of the present invention is as follows.
It is as follows.

【0089】尚、フルイ残量は、湿式粉砕後のスラリー
濃度を別途に求めておき、固形分100gに相当する量
のスラリーを325メッシュ(目開き44μm)のフル
イに通し、フルイに残った固形分の量を定量することに
よって求めた。
As for the remaining amount of the sieve, the slurry concentration after the wet pulverization was separately obtained, and an amount of the slurry corresponding to 100 g of the solid content was passed through a 325-mesh sieve (opening 44 μm) to remove the solid remaining in the sieve. It was determined by quantifying the amount of minutes.

【0090】粒子の平均長軸径、平均短軸径は、電子顕
微鏡写真(×30000)を縦方向及び横方向にそれぞ
れ4倍に拡大した写真(×120000)に示される粒
子約350個について長軸径、短軸径をそれぞれ測定
し、その平均値で示した。軸比は、平均長軸径と平均短
軸径との比である。
The average major axis diameter and the average minor axis diameter of the particles are long for about 350 particles shown in a photograph (× 120,000) obtained by magnifying an electron micrograph (× 30000) four times in the longitudinal direction and the transverse direction. The shaft diameter and the minor axis diameter were measured, and the average value was shown. The axial ratio is the ratio of the average major axis diameter to the average minor axis diameter.

【0091】粒子の長軸径の幾何標準偏差値(σg)
は、下記の方法により求めた値で示した。即ち、上記拡
大写真に示される粒子の長軸径を測定した値を、その測
定値から計算して求めた粒子の実際の長軸径と個数から
統計学的手法に従って対数正規確率紙上に横軸に粒子の
長軸径を、縦軸に所定の長軸径区間のそれぞれに属する
粒子の累積個数(積算フルイ下)を百分率でプロットす
る。そして、このグラフから粒子の個数が50%及び8
4.13%のそれぞれに相当する長軸径の値を読みと
り、幾何標準偏差値(σg)=積算フルイ下84.13
%における長軸径/積算フルイ下50%における長軸径
(幾何平均径)に従って算出した値で示した。幾何標準
偏差値が1に近い程、粒子の長軸径の粒度分布が優れて
いることを意味する。
Geometric standard deviation value (σg) of major axis diameter of particles
Is shown by the value obtained by the following method. That is, the value obtained by measuring the major axis diameter of the particles shown in the enlarged photograph, the horizontal axis on the lognormal probability paper according to a statistical method from the actual major axis diameter and the number of particles calculated from the measured values. The major axis diameter of the particles is plotted on the vertical axis, and the cumulative number of particles belonging to each of the predetermined major axis diameter sections (under integrated sieve) is plotted on the vertical axis as a percentage. And from this graph, the number of particles is 50% and 8
The value of the major axis diameter corresponding to each 4.13% is read, and the geometric standard deviation value (σg) = under the integrated sieve 84.13.
The major axis diameter in% / the major axis diameter (geometric mean diameter) at 50% under the integrated sieve is shown as a value calculated. The closer the geometric standard deviation value is to 1, the better the particle size distribution of the major axis diameter of the particles.

【0092】比表面積はBET法により測定した値で示
した。
The specific surface area is shown by the value measured by the BET method.

【0093】針状ヘマタイト粒子の高密度化の程度は、
前述した通り、SBET /STEM で示した。ここで、S
BET は、上記BET法により測定した比表面積の値であ
る。STEM は、前記電子顕微鏡写真から測定した粒子の
平均長軸径lcm、平均短軸径wcmを用いて粒子を直
方体と仮定して下記式に従って算出した値である。 STEM (m2 /g)=〔(4lw+2w2 )/(lw2 ・ρp )〕×10-4 (但し、ρp はヘマタイトの真比重であり、5.2g/
cm3 を用いた。)
The degree of densification of acicular hematite particles is
As described above, it is shown by S BET / S TEM . Where S
BET is the value of the specific surface area measured by the BET method. S TEM is a value calculated according to the following formula, assuming that the particles are rectangular parallelepipeds using the average major axis diameter 1 cm and the average minor axis diameter wcm of the particles measured from the electron micrograph. S TEM (m 2 / g) = [(4lw + 2w 2 ) / (lw 2 · ρ p )] × 10 −4 (where ρ p is the true specific gravity of hematite, 5.2 g /
cm 3 was used. )

【0094】針状ヘマタイト粒子表面に存在するAl量
及びSiO2 量は蛍光X線分析により測定した。
The amount of Al and the amount of SiO 2 present on the surface of the acicular hematite particles were measured by fluorescent X-ray analysis.

【0095】粉体pH値は、試料5gを300mlの三
角フラスコに秤り取り、煮沸した純水100mlを加
え、加熱して煮沸状態を約5分間保持した後、栓をして
常温まで放冷し、減量に相当する水を加えて再び栓をし
て1分間振り混ぜ、5分間静置した後、得られた上澄み
液のpHをJIS Z 8802−7に従って測定し、
得られた値を粉体pH値とした。
The powder pH value was obtained by weighing 5 g of the sample in a 300 ml Erlenmeyer flask, adding 100 ml of boiled pure water, heating and maintaining the boiled state for about 5 minutes, then capping and allowing to cool to room temperature. Then, water corresponding to the weight reduction was added, the stopper was plugged again, the mixture was shaken for 1 minute, left standing for 5 minutes, and then the pH of the obtained supernatant was measured according to JIS Z 8802-7.
The obtained value was defined as the powder pH value.

【0096】可溶性ナトリウム塩の含有量及び可溶性硫
酸塩の含有量は、上記粉体pH値の測定用に作製した上
澄み液をNo.5Cの濾紙を用いて濾過し、濾液中のN
+及びSO4 2-を誘導結合プラズマ発光分光分析装置
(セイコー電子工業株式会社製)を用いて測定した。
The content of the soluble sodium salt and the content of the soluble sulfate were the same as those of the supernatant prepared for measuring the powder pH value. After filtering with 5C filter paper, the N
a + and SO 4 2− were measured by using an inductively coupled plasma emission spectroscopic analyzer (manufactured by Seiko Instruments Inc.).

【0097】塗料粘度は、得られた塗料の25℃におけ
る塗料粘度を、E型粘度計EMD−R(株式会社東京計
器製)を用いて測定し、ずり速度D=1.92l/se
cにおける値を示した。
The paint viscosity was measured by measuring the paint viscosity of the obtained paint at 25 ° C. using an E-type viscometer EMD-R (manufactured by Tokyo Keiki Co., Ltd.), and a shear rate D = 1.92 l / se.
The value in c is shown.

【0098】非磁性下地層及び磁気記録層の塗膜表面の
光沢度は、「グロスメーターUGV−5D」(スガ試験
機株式会社製)を用いて塗膜の45°光沢度を測定して
求めた。
The glossiness of the coating film surface of the non-magnetic underlayer and the magnetic recording layer was determined by measuring the 45 ° glossiness of the coating film using "Glossmeter UGV-5D" (manufactured by Suga Test Instruments Co., Ltd.). It was

【0099】表面粗度Raは、「Surfcom−57
5A」(東京精密株式会社製)を用いて塗布膜の中心線
平均粗さを測定した。
The surface roughness Ra is "Surfcom-57".
5A "(manufactured by Tokyo Seimitsu Co., Ltd.) was used to measure the center line average roughness of the coating film.

【0100】塗膜強度は、「オートグラフ」(株式会社
島津製作所製)を用いて塗膜のヤング率を測定して求め
た。ヤング率は市販ビデオテープ「AV T−120
(日本ビクター株式会社製)」との相対値で表した。相
対値が高いほど良好であることを示す。
The coating film strength was determined by measuring the Young's modulus of the coating film using "Autograph" (manufactured by Shimadzu Corporation). Young's modulus is a commercial video tape "AV T-120
(Manufactured by Victor Company of Japan, Ltd.) ”. The higher the relative value, the better.

【0101】磁気特性は、「振動試料型磁力計VSM−
3S−15」(東英工業株式会社製)を使用し、外部磁
場10kOeまでかけて測定した。
The magnetic characteristics are as follows: "Vibration sample magnetometer VSM-
3S-15 "(manufactured by Toei Industry Co., Ltd.) was used, and the external magnetic field was measured up to 10 kOe .

【0102】磁気記録層中の鉄を主成分とする金属磁性
粒子粉末の腐蝕に伴う磁気記録媒体の磁気特性の経時変
化は、磁気記録媒体を温度60℃、関係湿度90%の環
境下に14日間放置し、放置前後の保磁力値及び飽和磁
束密度値を測定し、その変化量を放置前の値で除した値
を変化率として百分率で示した。
The change with time of the magnetic characteristics of the magnetic recording medium due to the corrosion of the metal magnetic particle powder containing iron as the main component in the magnetic recording layer was observed under the conditions of the temperature of 60 ° C. and the relative humidity of 90%. The sample was allowed to stand for a day, the coercive force value and the saturation magnetic flux density value before and after standing were measured, and the value obtained by dividing the amount of change by the value before standing was shown as a percentage change.

【0103】磁気シートの光透過率は、「光電分光光度
計UV−2100」(株式会社島津製作所製)を用いて
測定した線吸収係数で示した。線吸収係数は次式で定義
され、値が大きい程、光を透しにくいことを示す。 線吸収係数(μm-1)={ln(1/t)}/FT t:λ=900nmにおける光透過率(−) FT:測定に用いたフィルムの塗膜組成物層の厚み(μ
m)
The light transmittance of the magnetic sheet is shown by the linear absorption coefficient measured by using "photoelectric spectrophotometer UV-2100" (manufactured by Shimadzu Corporation). The linear absorption coefficient is defined by the following equation, and the larger the value, the more difficult it is for light to pass through. Linear absorption coefficient (μm −1 ) = {ln (1 / t)} / FT t: λ = light transmittance at 900 nm (−) FT: thickness of coating film composition layer of film used for measurement (μ
m)

【0104】磁気記録媒体を構成する非磁性支持体、非
磁性下地層及び磁気記録層の各層の厚みは、下記のよう
にして測定した。デジタル電子マイクロメーターK35
1C(安立電気株式会社製)を用いて、先ず、非磁性支
持体の膜厚(A)を測定する。次に、非磁性支持体と該
非磁性支持体上に形成された非磁性下地層との厚み
(B)(非磁性支持体の厚みと非磁性下地層の厚みとの
総和)を同様にして測定する。更に、非磁性下地層上に
磁気記録層を形成することにより得られた磁気記録媒体
の厚み(C)(非磁性支持体の厚みと非磁性下地層の厚
みと磁気記録層の厚みとの総和)を同様にして測定す
る。そして、非磁性下地層の厚みはB−Aで示し、磁気
記録層の厚みはC−Bで示した。
The thickness of each of the nonmagnetic support, the nonmagnetic underlayer and the magnetic recording layer constituting the magnetic recording medium was measured as follows. Digital electronic micrometer K35
First, the film thickness (A) of the non-magnetic support is measured using 1C (manufactured by Anritsu Electric Co., Ltd.). Next, the thickness (B) of the non-magnetic support and the non-magnetic underlayer formed on the non-magnetic support (total of the thickness of the non-magnetic support and the thickness of the non-magnetic underlayer) was measured in the same manner. To do. Furthermore, the thickness (C) of the magnetic recording medium obtained by forming the magnetic recording layer on the nonmagnetic underlayer (the sum of the thickness of the nonmagnetic support, the thickness of the nonmagnetic underlayer, and the thickness of the magnetic recording layer). ) Is similarly measured. The thickness of the non-magnetic underlayer is shown by BA, and the thickness of the magnetic recording layer is shown by CB.

【0105】<針状ヘマタイト粒子の製造>前記ゲータ
イト粒子の製造法で得られた針状ゲータイト粒子粉末
(平均長軸径0.220μm、平均短軸径0.0275
μm、軸比8.00:1、BET比表面積値125m2
/g、可溶性ナトリウム塩の含有量がNa換算で452
ppm、可溶性硫酸塩の含有量がSO4 換算で283p
pm、pH値7.1及び幾何標準偏差値1.27)75
0gを水中に懸濁させてスラリーとし、固形分濃度を5
g/lに調整した。このスラリー150lを加熱し、温
度を60℃とし、0.1NのNaOH水溶液を加えてス
ラリーのpH値を9.0に調整した。
<Production of Needle-like Hematite Particles> Needle-like goethite particle powder (average major axis diameter 0.220 μm, average minor axis diameter 0.0275) obtained by the above-described method for producing goethite particles.
μm, axial ratio 8.00: 1, BET specific surface area value 125 m 2
/ G, soluble sodium salt content is 452 in terms of Na
ppm, content of soluble sulfate is 283p in SO 4 conversion
pm, pH value 7.1 and geometric standard deviation value 1.27) 75
0 g was suspended in water to make a slurry, and the solid concentration was 5
It was adjusted to g / l. 150 l of this slurry was heated to a temperature of 60 ° C., and a 0.1 N NaOH aqueous solution was added to adjust the pH value of the slurry to 9.0.

【0106】次に、上記アルカリ性スラリー中に、焼結
防止剤として3号水ガラス22.5gを徐々に加え、添
加が終わった後、60分間熟成を行った。次に、このス
ラリーに0.1Nの酢酸溶液を加え、スラリーのpH値
を6.0に調整した。その後、常法により、濾別、水
洗、乾燥、粉砕を行い、ケイ素の酸化物が粒子表面に被
覆されている針状ゲータイト粒子粉末を得た。針状ゲー
タイト粒子粉末に含まれるSiO2 量は0.86wt%
であった。
Next, 22.5 g of No. 3 water glass as a sintering inhibitor was gradually added to the above alkaline slurry, and after the addition was completed, aging was carried out for 60 minutes. Next, 0.1N acetic acid solution was added to this slurry to adjust the pH value of the slurry to 6.0. Then, filtration, washing with water, drying, and pulverization were carried out by a conventional method to obtain acicular goethite particle powder in which the surface of the particle was covered with silicon oxide. The amount of SiO 2 contained in the acicular goethite particle powder is 0.86 wt%
Met.

【0107】得られた針状ゲータイト粒子粉末700g
を、ステンレス製回転炉に投入し、回転駆動させながら
空気中で300℃で60分間熱処理を行って脱水し、低
密度針状ヘマタイト粒子を得た。得られた低密度針状ヘ
マタイト粒子は、平均長軸径0.150μm、平均短軸
径0.0216μm、軸比6.94:1、BET比表面
積値(SBET )157.6m2 /g、密度の程度SBET
/STEM は4.13、可溶性ナトリウム塩の含有量はN
a換算で1183ppm、可溶性硫酸塩の含有量はSO
4 換算で1735ppm、粉体pH値6.3及び幾何標
準偏差値1.32であった。
700 g of the obtained acicular goethite particle powder
Was placed in a stainless steel rotary furnace and heat-treated in air at 300 ° C. for 60 minutes while being rotationally driven for dehydration to obtain low-density acicular hematite particles. The obtained low-density acicular hematite particles have an average major axis diameter of 0.150 μm, an average minor axis diameter of 0.0216 μm, an axial ratio of 6.94: 1, a BET specific surface area value (S BET ) of 157.6 m 2 / g, Degree of density S BET
/ S TEM is 4.13, soluble sodium salt content is N
1183ppm in terms of a, soluble sulfate content is SO
It was 1735 ppm in terms of 4 , a powder pH value of 6.3 and a geometric standard deviation value of 1.32.

【0108】次に、低密度針状ヘマタイト粒子粉末65
0gをセラミック製の回転炉に投入し、回転駆動させな
がら空気中650℃で10分間熱処理を行い、脱水孔の
封孔処理を行った。高密度化された針状ヘマタイト粒子
は、平均長軸径が0.148μm、平均短軸径が0.0
217μm、軸比が6.82:1、BET比表面積値
(SBET )が53.1m2 /g、高密度化の程度SBET
/STEM が1.40、可溶性ナトリウム塩の含有量がN
a換算で1386ppm、可溶性硫酸塩の含有量がSO
4 換算で2739ppm、粉体pH値が5.6及び幾何
標準偏差値が1.34であった。また、針状ヘマタイト
粒子中に含まれるSiO2 量が0.95wt%であっ
た。
Next, a low-density acicular hematite particle powder 65
0 g was put into a ceramic rotary furnace, and heat-treated in air at 650 ° C. for 10 minutes while being rotationally driven to seal the dehydration holes. The densified needle-like hematite particles have an average major axis diameter of 0.148 μm and an average minor axis diameter of 0.0
217 μm, axial ratio 6.82: 1, BET specific surface area value (S BET ) 53.1 m 2 / g, degree of densification S BET
/ S TEM is 1.40, soluble sodium salt content is N
1386ppm in terms of a, soluble sulfate content is SO
It was 2739 ppm in terms of 4 , the powder pH value was 5.6, and the geometric standard deviation value was 1.34. The amount of SiO2 contained in the acicular hematite particles was 0.95 wt%.

【0109】得られた高密度化針状ヘマタイト粒子粉末
600gをあらかじめ奈良式粉砕機で粗粉砕した後、純
水3.5lに投入し、ホモミキサー(特殊機化工業株式
会社製)を用いて60分間解膠した。
600 g of the obtained densified needle-like hematite particle powder was coarsely crushed in advance with a Nara crusher and then added to 3.5 l of pure water, using a homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.). Peptized for 60 minutes.

【0110】次に、得られた高密度化針状ヘマタイト粒
子のスラリーを横型SGM(ディスパマットSL:エス
シー・アディケム株式会社製)で循環しながら、軸回転
数2000rpmのもとで3時間混合・分散した。得ら
れたスラリー中の針状ヘマタイト粒子の325mesh
(目開き44μm)における篩残分は0%であった。
Next, while the obtained slurry of densified needle-like hematite particles was circulated in a horizontal SGM (Dispamat SL: manufactured by SDC Adchem Co., Ltd.), the mixture was mixed for 3 hours under a shaft rotation speed of 2000 rpm. Dispersed. 325 mesh of acicular hematite particles in the obtained slurry
The sieve residue at (opening 44 μm) was 0%.

【0111】得られた高密度化針状ヘマタイト粒子のス
ラリーの濃度を100g/lとし、スラリーを5lとし
た。このスラリーを攪拌しながら、6NのNaOH水溶
液を加えてスラリーのpH値を13.5に調整した。次
に、このスラリーを攪拌しながら加熱して95℃まで昇
温し、その温度で3時間保持した。
The concentration of the obtained densified needle-like hematite particles was 100 g / l and the slurry was 5 l. The pH value of the slurry was adjusted to 13.5 by adding a 6N NaOH aqueous solution while stirring the slurry. Next, this slurry was heated with stirring to raise the temperature to 95 ° C. and kept at that temperature for 3 hours.

【0112】次に、このスラリーをデカンテーション法
により水洗し、pH値が10.5のスラリーとした。正
確を期すため、この時点でのスラリー濃度を確認したと
ころ96g/lであった。
Next, this slurry was washed with water by a decantation method to obtain a slurry having a pH value of 10.5. For accuracy, the slurry concentration at this point was confirmed to be 96 g / l.

【0113】次に、ブフナーロートを用いて濾別し、純
水を通水して濾液の電導度が30μs以下になるまで水
洗し、その後、常法によって乾燥させた後、粉砕して、
目的の針状ヘマタイト粒子粉末を得た。得られた針状ヘ
マタイト粒子粉末は、長軸径が0.148μm、短軸径
が0.0220μm、軸比が6.73:1、粒子サイズ
(長軸径)の幾何標準偏差値σgが1.33、BET比
表面積値(SBET )が52.5m2 /g、高密度化の程
度(SBET /STEM )が1.40、粉体pH値が9.
2、可溶性ナトリウム塩の含有量がNa換算で144p
pm、可溶性硫酸塩の含有量がSO4 換算で20ppm
であった。
Next, it was filtered using a Buchner funnel, pure water was passed through to wash with water until the electric conductivity of the filtrate became 30 μs or less, and after that, it was dried by a conventional method and then pulverized,
The target acicular hematite particle powder was obtained. The obtained acicular hematite particle powder has a major axis diameter of 0.148 μm, a minor axis diameter of 0.0220 μm, an axial ratio of 6.73: 1, and a particle size (major axis diameter) geometric standard deviation value σg of 1. .33, BET specific surface area value (S BET ) 52.5 m 2 / g, degree of densification (S BET / S TEM ) 1.40, powder pH value 9.
2. Soluble sodium salt content is 144p in terms of Na
pm, content of soluble sulfate is 20ppm in SO 4 conversion
Met.

【0114】<非磁性下地層の製造>上記で得られた針
状ヘマタイト粒子粉末12gと結合剤樹脂溶液(スルホ
ン酸ナトリウム基を有する塩化ビニル−酢酸ビニル共重
合樹脂30重量%とシクロヘキサノン70重量%)及び
シクロヘキサノンとを混合して混合物(固形分率72
%)を得、この混合物を更にプラストミルで30分間混
練した。この混練物を取り出し、140mlガラス瓶に
1.5mmφガラスビーズ95g、結合剤樹脂溶液(ス
ルホン酸ナトリウム基を有するポリウレタン樹脂30重
量%、溶剤(メチルエチルケトン:トルエン=1:1)
70重量%)、シクロヘキサノン、メチルエチルケトン
及びトルエンとともに添加し、ペイントシェーカーで6
時間混合・分散を行って塗料組成物を得た。
<Production of Nonmagnetic Underlayer> 12 g of the acicular hematite particle powder obtained above and a binder resin solution (30% by weight of vinyl chloride-vinyl acetate copolymer resin having sodium sulfonate group and 70% by weight of cyclohexanone). ) And cyclohexanone are mixed to obtain a mixture (solid content of 72
%), And the mixture was further kneaded for 30 minutes with a plastomill. This kneaded product was taken out, and in a 140 ml glass bottle, 95 g of 1.5 mmφ glass beads, a binder resin solution (30% by weight of a polyurethane resin having a sodium sulfonate group, a solvent (methyl ethyl ketone: toluene = 1: 1)
70% by weight), cyclohexanone, methyl ethyl ketone and toluene, and added with a paint shaker to 6
The coating composition was obtained by time-wise mixing and dispersion.

【0115】得られたヘマタイト粒子を含む塗料の組成
は、下記の通りであった。 針状ヘマタイト粒子粉末 100重量部 スルホン酸ナトリウム基を有する 塩化ビニル−酢酸ビニル共重合樹脂 10重量部 スルホン酸ナトリウム基を有するポリウレタン樹脂 10重量部 シクロヘキサノン 44.6重量部 メチルエチルケトン 111.4重量部 トルエン 66.9重量部
The composition of the coating material containing the obtained hematite particles was as follows. Needle-like hematite particle powder 100 parts by weight Vinyl chloride-vinyl acetate copolymer resin having sodium sulfonate group 10 parts by weight Polyurethane resin having sodium sulfonate group 10 parts by weight Cyclohexanone 44.6 parts by weight Methyl ethyl ketone 111.4 parts by weight Toluene 66 9.9 parts by weight

【0116】得られた針状ヘマタイト粒子を含む塗料を
厚さ14μmのポリエチレンテレフタレートフィルム上
にアプリケーターを用いて55μmの厚さに塗布し、次
いで、乾燥させることにより非磁性下地層を形成した。
非磁性下地層の厚みは3.5μmであった。
The coating material containing the obtained acicular hematite particles was applied on a polyethylene terephthalate film having a thickness of 14 μm with an applicator to a thickness of 55 μm, and then dried to form a non-magnetic underlayer.
The thickness of the nonmagnetic underlayer was 3.5 μm.

【0117】得られた非磁性下地層の光沢は197%、
表面粗度Raは6.8nm、ヤング率(相対値)は12
0であった。
The gloss of the obtained non-magnetic underlayer was 197%,
Surface roughness Ra is 6.8 nm, Young's modulus (relative value) is 12
It was 0.

【0118】<磁気記録層の製造>鉄を主成分とする針
状金属磁性粒子粉末(平均長軸径0.15μm、平均短
軸径0.022μm、軸比6.8:1、保磁力1690
Oe、飽和磁化値131emu/g)12g、研磨剤
(商品名:AKP−30、住友化学(株)製)1.2
g、カーボンブラック(商品名:#3250B、三菱化
成(株)製)0.36g、結合剤樹脂溶液(スルホン酸
ナトリウム基を有する塩化ビニル−酢酸ビニル共重合樹
脂30重量%とシクロヘキサノン70重量%)及びシク
ロヘキサノンとを混合して混合物(固形分率78%)を
得、この混合物を更にプラストミルで30分間混練し
た。この混練物を取り出し、140mlガラス瓶に1.
5mmφガラスビーズ95g、結合剤樹脂溶液(スルホ
ン酸ナトリウム基を有するポリウレタン樹脂30重量
%、溶剤(メチルエチルケトン:トルエン=1:1)7
0重量%)、シクロヘキサノン、メチルエチルケトン及
びトルエンとともに添加し、ペイントシェーカーで6時
間混合・分散を行って磁性塗料を得た。その後、潤滑剤
及び硬化剤を加え、さらに、ペイントシェーカーで15
分間混合・分散した。
<Production of Magnetic Recording Layer> Acicular metal magnetic particle powder containing iron as a main component (average major axis diameter 0.15 μm, average minor axis diameter 0.022 μm, axial ratio 6.8: 1, coercive force 1690).
Oe, saturation magnetization value 131 emu / g) 12 g, abrasive (trade name: AKP-30, manufactured by Sumitomo Chemical Co., Ltd.) 1.2
g, carbon black (trade name: # 3250B, manufactured by Mitsubishi Kasei Co., Ltd.) 0.36 g, binder resin solution (30% by weight of vinyl chloride-vinyl acetate copolymer resin having sodium sulfonate group and 70% by weight of cyclohexanone) And cyclohexanone were mixed to obtain a mixture (solid content 78%), and this mixture was further kneaded for 30 minutes with a plastomill. Take out this kneaded product and put it in a 140 ml glass bottle.
95 g of 5 mmφ glass beads, binder resin solution (30 wt% of polyurethane resin having sodium sulfonate group, solvent (methyl ethyl ketone: toluene = 1: 1) 7
0% by weight), cyclohexanone, methyl ethyl ketone and toluene, and mixed and dispersed for 6 hours with a paint shaker to obtain a magnetic coating material. After that, add lubricant and hardener, and add 15 with a paint shaker.
Mixed and dispersed for minutes.

【0119】得られた磁性塗料の組成は下記の通りであ
った。 鉄を主成分とする金属磁性粒子粉末 100重量部 スルホン酸ナトリウム基を有する 塩化ビニル−酢酸ビニル共重合樹脂 10重量部 スルホン酸ナトリウム基を有するポリウレタン樹脂 10重量部 研磨剤(AKP−30) 10重量部 カーボンブラック(#3250B) 3.0重量部 潤滑剤(ミリスチン酸:ステアリン酸ブチル=1:2) 3.0重量部 硬化剤(ポリイソシアネート) 5.0重量部 シクロヘキサノン 65.8重量部 メチルエチルケトン 164.5重量部 トルエン 98.7重量部
The composition of the obtained magnetic coating material was as follows. Metal magnetic particle powder containing iron as a main component 100 parts by weight Vinyl chloride-vinyl acetate copolymer resin having sodium sulfonate group 10 parts by weight Polyurethane resin having sodium sulfonate group 10 parts by weight Abrasive (AKP-30) 10 parts by weight Parts carbon black (# 3250B) 3.0 parts by weight lubricant (myristic acid: butyl stearate = 1: 2) 3.0 parts by weight curing agent (polyisocyanate) 5.0 parts by weight cyclohexanone 65.8 parts by weight methyl ethyl ketone 164 0.5 parts by weight Toluene 98.7 parts by weight

【0120】磁性塗料を前記非磁性下地層の上にアプリ
ケーターを用いて15μmの厚さに塗布した後、磁場中
において配向・乾燥し、次いで、カレンダー処理を行っ
た後、60℃で24時間硬化反応を行い0.5インチ幅
にスリットして磁気テープを得た。磁気記録層の厚みは
1.2μmであった。
A magnetic coating material was applied on the non-magnetic underlayer to a thickness of 15 μm using an applicator, oriented and dried in a magnetic field, calendered, and then cured at 60 ° C. for 24 hours. The reaction was performed and slitting was performed to a width of 0.5 inch to obtain a magnetic tape. The thickness of the magnetic recording layer was 1.2 μm.

【0121】得られた磁気テープのHcは1862O
e、角型比は0.86、光沢は235%、表面粗度Ra
は5.8nm、ヤング率(相対値)は133、線吸収係
数は1.23であった。磁気テープの磁気特性の経時変
化は、保磁力については6.8%、飽和磁束密度につい
ては5.8%であった。
The Hc of the obtained magnetic tape was 1862O.
e, squareness ratio 0.86, gloss 235%, surface roughness Ra
Was 5.8 nm, Young's modulus (relative value) was 133, and linear absorption coefficient was 1.23. The change with time of the magnetic characteristics of the magnetic tape was 6.8% for the coercive force and 5.8% for the saturation magnetic flux density.

【0122】[0122]

【実施例】次に、実施例並びに比較例を挙げる。EXAMPLES Next, examples and comparative examples will be given.

【0123】<針状ゲータイト粒子粉末の種類>針状ヘ
マタイト粒子を製造するための前駆体として下記の前駆
体1乃至7を準備した。
<Type of acicular goethite particle powder> The following precursors 1 to 7 were prepared as precursors for producing acicular hematite particles.

【0124】[0124]

【表1】 [Table 1]

【0125】<低密度針状ヘマタイト粒子粉末の製造> 実施例1〜15及び比較例1〜14 前駆体である針状ゲータイト粒子粉末の種類、焼結防止
剤の種類及び量、加熱脱水温度及び時間を種々変化させ
た以外は、前記本発明の実施の形態と同様にして低密度
針状ヘマタイト粒子を得た。
<Production of Low Density Needle Hematite Particle Powder> Examples 1 to 15 and Comparative Examples 1 to 14 Type of needle-shaped goethite particle powder as a precursor, type and amount of sintering inhibitor, heating dehydration temperature and Low-density needle-like hematite particles were obtained in the same manner as in the embodiment of the present invention except that the time was changed variously.

【0126】この時の主要製造条件及び諸特性を表2及
び表3に示す。
Main manufacturing conditions and various characteristics at this time are shown in Tables 2 and 3.

【0127】[0127]

【表2】 [Table 2]

【0128】[0128]

【表3】 [Table 3]

【0129】<高密度針状ヘマタイト粒子粉末の製造> 実施例16〜30及び比較例15〜27 被処理粒子粉末の種類、高密度化加熱処理の温度及び時
間を種々変化させた以外は、前記本発明の実施の形態と
同様にして高密度針状ヘマタイト粒子を得た。
<Production of High Density Needle-like Hematite Particles> Examples 16 to 30 and Comparative Examples 15 to 27 Except that the type of particle powder to be treated, the temperature and time of the densification heat treatment were variously changed. High-density needle-shaped hematite particles were obtained in the same manner as the embodiment of the present invention.

【0130】この時の主要製造条件及び諸特性を表4及
び表5に示す。
Main manufacturing conditions and various characteristics at this time are shown in Tables 4 and 5.

【0131】[0131]

【表4】 [Table 4]

【0132】[0132]

【表5】 [Table 5]

【0133】<針状ヘマタイト粒子のアルカリ水溶液中
における処理> 実施例31〜45及び比較例28〜35 針状ヘマタイト粒子粉末の種類、湿式粉砕の有無、アル
カリ水溶液中における加熱処理の有無、スラリーのpH
値、加熱温度及び加熱時間を種々変化させた以外は、前
記本発明の実施の形態と同様にして針状ヘマタイト粒子
を得た。
<Treatment of Needle Hematite Particles in Alkaline Aqueous Solution> Examples 31 to 45 and Comparative Examples 28 to 35 Types of acicular hematite particle powder, presence / absence of wet pulverization, presence / absence of heat treatment in alkaline aqueous solution, and slurry pH
Needle-shaped hematite particles were obtained in the same manner as in the embodiment of the present invention except that the value, heating temperature and heating time were changed variously.

【0134】この時の主要製造条件及び諸特性を表6及
び表7に示す。
Main manufacturing conditions and various characteristics at this time are shown in Tables 6 and 7.

【0135】[0135]

【表6】 [Table 6]

【0136】[0136]

【表7】 [Table 7]

【0137】<針状ヘマタイト粒子の表面被覆処理> 実施例46 アルカリ性水溶液中における加熱処理後にデカンテーシ
ョン法により水洗して得られた実施例31のpH値が1
0.5のスラリーは、スラリー濃度が96g/lであっ
た。このスラリー5lを再度加熱して60℃とし、この
スラリー中に1.0NのNaAlO2 溶液533ml
(針状ヘマタイト粒子に対しAl換算で3.0wt%に
相当する。)を加え、30分間保持した後、酢酸を用い
てpH値を8.5に調整した。次いで、前記本発明の実
施の形態と同様にして濾別、水洗、乾燥、粉砕して粒子
表面が被覆物により被覆されている針状ヘマタイト粒子
粉末を得た。
<Surface coating treatment of acicular hematite particles> Example 46 The pH value of Example 31 obtained by washing with water by a decantation method after heat treatment in an alkaline aqueous solution was 1
The 0.5 slurry had a slurry concentration of 96 g / l. 5 l of this slurry was heated again to 60 ° C., and 533 ml of 1.0 N NaAlO 2 solution was added to this slurry.
(Corresponding to 3.0 wt% in terms of Al based on the acicular hematite particles) was added and held for 30 minutes, and then the pH value was adjusted to 8.5 using acetic acid. Then, in the same manner as in the embodiment of the present invention, it was filtered, washed with water, dried and pulverized to obtain a needle-like hematite particle powder having a particle surface coated with a coating material.

【0138】この時の主要製造条件及び諸特性を表8に
示す。
Table 8 shows the main production conditions and various characteristics at this time.

【0139】実施例47〜60 針状ヘマタイト粒子粉末の種類、表面処理物の種類及び
量を種々変化させた以外は、実施例46と同様にして針
状ヘマタイト粒子を得た。
Examples 47 to 60 Needle-shaped hematite particles were obtained in the same manner as in Example 46, except that the type of acicular hematite particle powder and the type and amount of the surface-treated product were variously changed.

【0140】この時の主要製造条件及び諸特性を表8に
示す。
Table 8 shows the main production conditions and various characteristics at this time.

【0141】[0141]

【表8】 [Table 8]

【0142】<非磁性下地層の製造> 実施例61〜90及び比較例36〜50 実施例31〜60及び比較例1〜3、15〜18、2
3、28〜35で得られた針状ヘマタイト粒子を用いて
前記本発明の実施の形態と同様にして非磁性下地層を得
た。
<Production of Nonmagnetic Underlayer> Examples 61 to 90 and Comparative Examples 36 to 50 Examples 31 to 60 and Comparative Examples 1 to 15, 15 to 18 and 2
Using the acicular hematite particles obtained in Nos. 3, 28 to 35, a nonmagnetic underlayer was obtained in the same manner as in the embodiment of the present invention.

【0143】この時の主要製造条件及び諸特性を表9乃
至表11に示す。
Main manufacturing conditions and various characteristics at this time are shown in Tables 9 to 11.

【0144】[0144]

【表9】 [Table 9]

【0145】[0145]

【表10】 [Table 10]

【0146】[0146]

【表11】 [Table 11]

【0147】<鉄を主成分とする金属磁性粒子粉末を使
用している磁気記録媒体の製造> 実施例91〜120及び比較例51〜65 実施例61〜90及び比較例36〜50で得られた非磁
性下地層の種類、鉄を主成分とする針状金属磁性粒子粉
末の種類を種々変化させた以外は、前記本発明の実施の
形態と同様にして鉄を主成分とする金属磁性粉末を使用
している磁気記録媒体を製造した。
<Production of Magnetic Recording Medium Using Metallic Magnetic Particle Powder Containing Iron as Main Component> Examples 91 to 120 and Comparative Examples 51 to 65 Obtained in Examples 61 to 90 and Comparative Examples 36 to 50. Metal magnetic powder containing iron as a main component in the same manner as the embodiment of the present invention, except that the type of non-magnetic underlayer and the type of acicular metal magnetic particle powder containing iron as a main component were variously changed. A magnetic recording medium using is manufactured.

【0148】この時の主要製造条件及び諸特性を表12
乃至表14に示す。
Table 12 shows the main manufacturing conditions and various characteristics at this time.
Through Table 14.

【0149】[0149]

【表12】 [Table 12]

【0150】[0150]

【表13】 [Table 13]

【0151】[0151]

【表14】 [Table 14]

【0152】[0152]

【発明の効果】本発明に係る非磁性下地層用針状ヘマタ
イト粒子粉末は、前出実施例に示した通り、ビヒクル中
への分散が優れていることに起因して、ベースフィルム
としての強度と表面性に優れている非磁性下地層を得る
ことができ、磁気記録媒体とした場合において光透過率
が小さく、平滑で厚みむらのない薄膜の磁気記録層が得
られるとともに、針状ヘマタイト粒子中に含まれる可溶
性Na塩や可溶性硫酸塩が少なく、且つ、粉体pH値が
8以上であることに起因して、磁気記録層中の鉄を主成
分とする針状金属磁性粒子粉末の腐蝕に伴う磁気特性の
劣化を抑制することができ、磁気記録媒体としての特性
を長期に亘って維持することができる。
EFFECTS OF THE INVENTION The acicular hematite particle powder for a non-magnetic underlayer according to the present invention has excellent strength as a base film due to its excellent dispersion in the vehicle as shown in the above-mentioned Examples. And a non-magnetic underlayer having excellent surface properties can be obtained, and when used as a magnetic recording medium, a thin magnetic recording layer having a small light transmittance, a smooth and uniform thickness can be obtained, and acicular hematite particles Corrosion of the acicular metal magnetic particle powder containing iron as a main component in the magnetic recording layer due to the fact that the content of soluble Na salt and soluble sulfate is small and the powder pH value is 8 or more. It is possible to suppress the deterioration of the magnetic characteristics associated with the above, and it is possible to maintain the characteristics of the magnetic recording medium for a long period of time.

フロントページの続き (56)参考文献 特開 平6−195684(JP,A) 特開 平7−182654(JP,A) 特開 平7−296360(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 C01G 49/06 G11B 5/738 H01F 1/00 (54)【発明の名称】 鉄を主成分とする金属磁性粒子粉末を使用している磁気記録媒体の非磁性下地層用ヘマタイト粒 子粉末、該ヘマタイト粒子粉末を用いた磁気記録媒体の非磁性下地層、該非磁性下地層を用いた 磁気記録媒体並びに該ヘマタイト粒子粉末の製造法Continuation of the front page (56) Reference JP-A-6-195684 (JP, A) JP-A-7-182654 (JP, A) JP-A-7-296360 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) B22F 1/00 C01G 49/06 G11B 5/738 H01F 1/00 (54) [Title of Invention] Magnetic recording medium using metallic magnetic particle powder containing iron as a main component Hematite particle powder for non-magnetic underlayer, non-magnetic underlayer of magnetic recording medium using the hematite particle powder, magnetic recording medium using the non-magnetic underlayer, and method for producing the hematite particle powder

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平均長軸径が0.3μm以下、粒子の長
軸径の分布が幾何標準偏差値で1.50以下、BET比
表面積値が35m2 /g以上であって、粉体pH値が8
以上、且つ、可溶性ナトリウム塩の含有量がNa換算で
300ppm以下、可溶性硫酸塩の含有量がSO4 換算
で150ppm以下である高密度化された針状ヘマタイ
ト粒子粉末からなることを特徴とする鉄を主成分とする
金属磁性粒子粉末を使用している磁気記録媒体の非磁性
下地層用ヘマタイト粒子粉末。
1. A powder pH having an average major axis diameter of 0.3 μm or less, a distribution of major axis diameters of particles of 1.50 or less as a geometric standard deviation value, and a BET specific surface area value of 35 m 2 / g or more. Value is 8
Above, the iron is characterized by comprising a densified needle-like hematite particle powder having a soluble sodium salt content of 300 ppm or less in terms of Na and a soluble sulfate content of 150 ppm or less in terms of SO 4. Hematite particle powder for a non-magnetic underlayer of a magnetic recording medium, which uses metal magnetic particle powder containing as a main component.
【請求項2】 粒子表面がアルミニウムの水酸化物、ア
ルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸
化物の少なくとも1種で被覆されている請求項1記載の
針状ヘマタイト粒子粉末からなることを特徴とする鉄を
主成分とする金属磁性粒子粉末を使用している磁気記録
媒体の非磁性下地層用ヘマタイト粒子粉末。
2. The acicular hematite particle powder according to claim 1, wherein the particle surface is coated with at least one of aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide. A hematite particle powder for a non-magnetic underlayer of a magnetic recording medium, wherein the magnetic metal particle powder containing iron as a main component is used.
【請求項3】 非磁性支持体上に形成される非磁性粒子
粉末と結合剤樹脂とを含む塗膜組成物からなる磁気記録
媒体の非磁性下地層において、前記非磁性粒子粉末が請
求項1又は請求項2記載の針状ヘマタイト粒子粉末であ
ることを特徴とする鉄を主成分とする金属磁性粒子粉末
を使用している磁気記録媒体の非磁性下地層。
3. The nonmagnetic underlayer of a magnetic recording medium comprising a coating composition comprising a nonmagnetic particle powder and a binder resin formed on a nonmagnetic support, wherein the nonmagnetic particle powder is used. Alternatively, a non-magnetic underlayer of a magnetic recording medium using the magnetic metal particle powder containing iron as a main component, which is the acicular hematite particle powder according to claim 2.
【請求項4】 非磁性支持体と該非磁性支持体上に形成
される非磁性粒子粉末と結合剤樹脂とを含む塗膜組成物
からなる非磁性下地層と該非磁性下地層の上に形成され
る鉄を主成分とする金属磁性粒子粉末と結合剤樹脂とを
含む塗膜組成物からなる磁気記録層とからなる磁気記録
媒体において、前記非磁性粒子粉末が請求項1又は請求
項2記載の針状ヘマタイト粒子粉末であることを特徴と
する鉄を主成分とする金属磁性粒子粉末を使用している
磁気記録媒体。
4. A nonmagnetic underlayer comprising a coating composition containing a nonmagnetic support, nonmagnetic particle powder formed on the nonmagnetic support and a binder resin, and a nonmagnetic underlayer formed on the nonmagnetic underlayer. 3. A magnetic recording medium comprising a metal magnetic particle powder containing iron as a main component and a magnetic recording layer comprising a coating composition containing a binder resin, wherein the non-magnetic particle powder is the magnetic recording medium according to claim 1 or 2. A magnetic recording medium using a metallic magnetic particle powder containing iron as a main component, which is an acicular hematite particle powder.
【請求項5】 粒子表面が焼結防止剤で被覆されている
針状ゲータイト粒子又は該針状ゲータイト粒子を加熱脱
水して得られた針状ヘマタイト粒子を550℃以上の温
度で加熱して高密度化された針状ヘマタイト粒子を得、
該高密度化された針状ヘマタイト粒子を含むスラリーを
湿式粉砕した後、該スラリーをpH値13以上、温度8
0℃以上で加熱処理し、次いで、濾別、水洗、乾燥する
ことにより請求項1記載の針状ヘマタイト粒子を得るこ
とを特徴とする鉄を主成分とする金属磁性粒子粉末を使
用している磁気記録媒体の非磁性下地層用ヘマタイト粒
子粉末の製造法。
5. A needle-shaped goethite particle whose surface is coated with a sintering inhibitor or a needle-shaped hematite particle obtained by heating and dehydrating the needle-shaped goethite particle is heated at a temperature of 550 ° C. or higher to increase the temperature. Obtaining densified needle-like hematite particles,
After wet pulverizing the slurry containing the densified needle-like hematite particles, the slurry is subjected to a pH value of 13 or more and a temperature of 8
A metallic magnetic particle powder containing iron as a main component, characterized in that the needle-shaped hematite particles according to claim 1 are obtained by heating at 0 ° C or higher, then filtering, washing with water and drying. Manufacturing method of hematite particle powder for non-magnetic underlayer of magnetic recording medium.
【請求項6】 粒子表面が焼結防止剤で被覆されている
針状ゲータイト粒子又は該針状ゲータイト粒子を加熱脱
水して得られた針状ヘマタイト粒子を550℃以上の温
度で加熱して高密度化された針状ヘマタイト粒子を得、
該高密度化された針状ヘマタイト粒子を含むスラリーを
湿式粉砕した後、該スラリーをpH値13以上、温度8
0℃以上で加熱処理し、次いで、濾別、水洗して得られ
る針状ヘマタイト粒子を水中に再分散させて水懸濁液と
し、該水懸濁液中にアルミニウム化合物、ケイ素化合物
又は当該両化合物を含む水溶液を添加混合することによ
り請求項2記載の針状ヘマタイト粒子を得ることを特徴
とする鉄を主成分とする金属磁性粒子粉末を使用してい
る磁気記録媒体の非磁性下地層用ヘマタイト粒子粉末の
製造法。
6. A needle-shaped goethite particle having a particle surface coated with a sintering inhibitor or a needle-shaped hematite particle obtained by heating and dehydrating the needle-shaped goethite particle is heated at a temperature of 550 ° C. or higher to increase the temperature. Obtaining densified needle-like hematite particles,
After wet pulverizing the slurry containing the densified needle-like hematite particles, the slurry is subjected to a pH value of 13 or more and a temperature of 8
The needle-like hematite particles obtained by heating at 0 ° C. or higher, and then filtering and washing with water are redispersed in water to obtain an aqueous suspension, and an aluminum compound, a silicon compound, or both of them is added to the aqueous suspension. A non-magnetic underlayer of a magnetic recording medium using an iron-based metal magnetic particle powder, wherein the acicular hematite particles according to claim 2 are obtained by adding and mixing an aqueous solution containing a compound. Manufacturing method of hematite particle powder.
JP29745396A 1995-10-20 1996-10-18 Hematite particle powder for a non-magnetic underlayer of a magnetic recording medium using iron-based metal magnetic particle powder, non-magnetic underlayer of a magnetic recording medium using the hematite particle powder, and the non-magnetic underlayer Magnetic recording medium and method for producing said hematite particle powder Expired - Lifetime JP3509837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29745396A JP3509837B2 (en) 1995-10-20 1996-10-18 Hematite particle powder for a non-magnetic underlayer of a magnetic recording medium using iron-based metal magnetic particle powder, non-magnetic underlayer of a magnetic recording medium using the hematite particle powder, and the non-magnetic underlayer Magnetic recording medium and method for producing said hematite particle powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-297852 1995-10-20
JP29785295 1995-10-20
JP29745396A JP3509837B2 (en) 1995-10-20 1996-10-18 Hematite particle powder for a non-magnetic underlayer of a magnetic recording medium using iron-based metal magnetic particle powder, non-magnetic underlayer of a magnetic recording medium using the hematite particle powder, and the non-magnetic underlayer Magnetic recording medium and method for producing said hematite particle powder

Publications (2)

Publication Number Publication Date
JPH09170003A JPH09170003A (en) 1997-06-30
JP3509837B2 true JP3509837B2 (en) 2004-03-22

Family

ID=26561128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29745396A Expired - Lifetime JP3509837B2 (en) 1995-10-20 1996-10-18 Hematite particle powder for a non-magnetic underlayer of a magnetic recording medium using iron-based metal magnetic particle powder, non-magnetic underlayer of a magnetic recording medium using the hematite particle powder, and the non-magnetic underlayer Magnetic recording medium and method for producing said hematite particle powder

Country Status (1)

Country Link
JP (1) JP3509837B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207253B1 (en) * 1997-12-26 2001-03-27 Toda Kogyo Corporation Acicular hematite particles and magnetic recording medium
US6548160B2 (en) 1999-12-01 2003-04-15 Fuji Photo Film Co., Ltd. Magnetic recording media
DE60314383T2 (en) 2002-04-03 2008-02-21 Dowa Mining Co., Ltd. POWDER FOR THE LAYER OF A MAGNETIC TAGMING MEDIUM OF THE COATING TYPE
CN100359568C (en) 2002-04-03 2008-01-02 同和矿业株式会社 Powder for lower layer of coating type magnetic recording medium and magnetic recording medium using the same
JP2004083300A (en) 2002-08-23 2004-03-18 Kanto Denka Kogyo Co Ltd Iron oxide powder for forming substrate of coating type magnetic recording medium with multilayer structure and production method therefor
KR20060026124A (en) * 2003-07-04 2006-03-22 도와 고교 가부시키가이샤 Powder for lower layer of application type of layered magnetic recording medium and magnetic recording medium using the same
JP4594649B2 (en) * 2004-05-28 2010-12-08 ウチヤ・サーモスタット株式会社 Hydrogen generating medium and hydrogen production method
JP4296350B2 (en) 2004-08-23 2009-07-15 Dowaエレクトロニクス株式会社 Nonmagnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
JP4984115B2 (en) * 2005-06-27 2012-07-25 Dowaエレクトロニクス株式会社 Iron compound particle powder and magnetic recording medium using the same
US7641990B2 (en) 2005-06-27 2010-01-05 Dowa Electronics Materials Co., Ltd. Iron compound particles and magnetic recording medium using same
JP5418754B2 (en) * 2008-10-15 2014-02-19 戸田工業株式会社 Ferromagnetic metal particle powder, method for producing the same, and magnetic recording medium
JP5905205B2 (en) * 2011-03-31 2016-04-20 Dowaエレクトロニクス株式会社 Metallic magnetic powder and method for producing the same

Also Published As

Publication number Publication date
JPH09170003A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
JP3514068B2 (en) Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and method for producing the same, nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
JP3509838B2 (en) Titanium oxide particle powder for non-magnetic underlayer of magnetic recording medium using metal magnetic particle powder containing iron as a main component, base of magnetic recording medium having nonmagnetic underlayer using said titanium oxide particle powder, and Magnetic recording medium using substrate
US5750250A (en) Hematite particles and magnetic recording medium having a non-magnetic under-coat layer containing hematite (Fe2 O3) particles.
JP3509837B2 (en) Hematite particle powder for a non-magnetic underlayer of a magnetic recording medium using iron-based metal magnetic particle powder, non-magnetic underlayer of a magnetic recording medium using the hematite particle powder, and the non-magnetic underlayer Magnetic recording medium and method for producing said hematite particle powder
JP2000123354A (en) Particulate powder for nonmagnetic underlayer of magnetic recording medium, its production and magnetic recording medium
US6248437B1 (en) Magnetic recording medium containing non-magnetic hematite particles as an undercoat layer
JP3427883B2 (en) Non-magnetic particle powder for non-magnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
JP4305589B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
JP3832539B2 (en) Magnetic recording medium
JP3512056B2 (en) Hematite particle powder for non-magnetic underlayer of magnetic recording medium and magnetic recording medium
US6207253B1 (en) Acicular hematite particles and magnetic recording medium
JP4870860B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
US6124022A (en) Acicular hematite particles for non-magnetic undercoat layer of magnetic recording medium, and magnetic recording medium using the same
JP3661734B2 (en) Needle-like hematite particle powder for nonmagnetic underlayer of magnetic recording medium using metal magnetic particle powder containing iron as main component, and magnetic recording medium having nonmagnetic underlayer using the acicular hematite particle powder
JP4732556B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
JP3690456B2 (en) Acicular hematite particle powder for non-magnetic underlayer of magnetic recording medium and magnetic recording medium
JPH11353637A (en) Acicular hematite particle powder for nonmagnetic base layer and magnetic recording medium having nonmagnetic base layer using the acicular hematite particle powder
JP3763333B2 (en) Acicular hematite particle powder for non-magnetic underlayer of magnetic recording medium and magnetic recording medium
JP3656700B2 (en) Magnetic recording medium
US6153296A (en) Acicular hematite particles and magnetic recording medium
JP3965660B2 (en) Needle-like hematite particle powder for nonmagnetic underlayer of magnetic recording medium using metal magnetic particle powder containing iron as main component, and magnetic recording medium having nonmagnetic underlayer using the acicular hematite particle powder
JP3661735B2 (en) Magnetic recording medium
JP3632727B2 (en) Acicular hematite particle powder for non-magnetic underlayer of magnetic recording medium and magnetic recording medium
JP3661733B2 (en) Magnetic recording medium
JP3654406B2 (en) Magnetic recording medium

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term