JP2000136798A - Noise reducing method and device of two-stage axial blower - Google Patents

Noise reducing method and device of two-stage axial blower

Info

Publication number
JP2000136798A
JP2000136798A JP31184698A JP31184698A JP2000136798A JP 2000136798 A JP2000136798 A JP 2000136798A JP 31184698 A JP31184698 A JP 31184698A JP 31184698 A JP31184698 A JP 31184698A JP 2000136798 A JP2000136798 A JP 2000136798A
Authority
JP
Japan
Prior art keywords
phase difference
noise
stage
axial flow
rotors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31184698A
Other languages
Japanese (ja)
Inventor
Kenichiro Tsuyuki
木 健一郎 露
Masahiro Tsuruta
田 政 博 鶴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP31184698A priority Critical patent/JP2000136798A/en
Publication of JP2000136798A publication Critical patent/JP2000136798A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/007Axial-flow pumps multistage fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps

Abstract

PROBLEM TO BE SOLVED: To reduce interference noise by performing a frequency analysis of generated noise, selecting a phase difference between rotary blades of a front stage and a rear stage with minimized interference noise, and controlling the rotary blades of respective air blowers on the basis of the phase difference in a two-stage type axial blower by longitudinally juxtaposing two axial blowers in a duct. SOLUTION: At operation starting time, first of all, servomotors 1, 2 of axial blowers of a front stage and a rear stage are rotated up to respective origin positions by an origin signal from a sequencer 13 to be stopped. Next, for example, the motor 2 of the rear stage is rotated and stopped on the basis of a previously inputted correction angle to correct dislocation of an installing angle generated at installing time of rotary blades of the respective axial blowers. Next, a rotating speed, the rotational direction and a phase difference of the respective motors 1, 2 are set to start air blowing operation to at this time, and perform a frequency analysis on an output signal of a noise meter arranged in the vicinity of an intake port. When a predominant component is not minimized by a preset phase difference, it is changed to a phase difference for minimizing inteference noise to perform operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トンネルの工事
中、または供用後の坑内換気、あるいはその他の場所で
換気のために使用するダクト内にそれぞれ電動機で回転
翼を駆動する複数の軸流送風機を前後に並設した2段式
軸流送風機の騒音低減方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plurality of axial-flow blowers, each of which drives a rotary blade by an electric motor in a duct used for ventilation in a pit during construction of a tunnel or after operation, or in other places. The present invention relates to a method and a device for reducing noise of a two-stage axial flow blower in which the front and rear are arranged side by side.

【0002】[0002]

【従来の技術】従来、トンネル工事等で換気に使用され
ている軸流送風機は、吐出圧力を高めるために複数台連
結して使用されていることが多く、そのために大きな騒
音が発生している。そして、この対策としては、送風機
の吸気側、吐出側に消音器を設置することが行われて来
ている。
2. Description of the Related Art Conventionally, an axial blower used for ventilation in tunnel construction or the like is often used by connecting a plurality of blowers in order to increase discharge pressure, and therefore, a large noise is generated. . As a countermeasure, silencers have been installed on the intake side and the discharge side of the blower.

【0003】また、従来の誘導電動機とインバータとの
組合わせによる回転制御は、主として、送風距離や坑内
汚染物質濃度の変化に応じての送風量の制御を目的に行
われており、騒音低減を目的とした回転制御は行われて
いなかった。
[0003] In addition, the conventional rotation control using a combination of an induction motor and an inverter is mainly performed for the purpose of controlling the amount of air blown in accordance with a change in the air blown distance or the concentration of contaminants in the mine, thereby reducing noise. The intended rotation control was not performed.

【0004】すなわち、従来の軸流送風機では、吐出圧
力を高めるために2つの回転翼(動翼)を近接して互い
に逆回転させたり、回転翼の後流側に固定翼(静翼)を
近接して設けたりしているが、これらの翼間で干渉によ
って大きな回転騒音を発生するという問題があった。そ
して、このような送風機が発生する騒音には、回転騒音
である翼間で発生する干渉騒音と、主流の乱れや翼後流
の渦などから発生する乱流騒音とがあるが、トンネル換
気用送風機では、干渉騒音が特に大きい。
That is, in a conventional axial flow blower, two rotating blades (moving blades) are brought close to each other and rotated in opposite directions to increase the discharge pressure, or a fixed blade (static blade) is provided downstream of the rotating blades. Although they are provided close to each other, there is a problem that a large rotation noise is generated due to interference between these blades. The noise generated by such a blower includes interference noise generated between blades, which is rotational noise, and turbulent noise generated due to turbulence in the main flow and vortices in the wake of the blade. In the blower, the interference noise is particularly large.

【0005】このため、送風機の吸気側、吐出側に消音
器を設置するという対策がこれまで行われてきたが、消
音器によって十分な騒音低減効果を得ようとすると、圧
力損失が大きくなって送風性能が低下するという問題が
あった。
For this reason, measures have been taken to install silencers on the intake side and discharge side of the blower. However, if a sufficient noise reduction effect is to be obtained by the silencer, pressure loss increases. There was a problem that the blowing performance was reduced.

【0006】[0006]

【発明が解決しようとする課題】したがって、本発明
は、トンネル工事中、または供用後の坑内換気、あるい
はその他の場所で換気のために連結して使用している2
台の軸流送風機に関し、坑内及び周辺の環境を保全する
ために、発生する騒音、特に干渉騒音を消音器を設置せ
ずに低減する2段式軸流送風機の騒音低減方法及び装置
を提供することを目的とする。
Accordingly, the present invention has been used in conjunction with ventilation for underground ventilation during tunnel construction or after service, or elsewhere.
Provided is a noise reduction method and apparatus for a two-stage axial blower, which reduces generated noise, particularly interference noise, without installing a muffler, in order to protect the underground and surrounding environment. The purpose is to:

【0007】[0007]

【課題を解決するための手段】本発明の騒音低減方法に
よれば、ダクト内にそれぞれ電動機で回転翼を駆動する
2台の軸流送風機を前後に並設した2段式軸流送風機の
騒音低減方法において、前記前段及び後段送風機の回転
翼をそれぞれサーボモータで駆動し、発生騒音の周波数
分析を行って回転翼の翼枚数、回転数及び両回転翼間距
離に対応して干渉騒音が最小となる前段と後段の回転翼
の位相差を選択し、その位相差で両回転翼を制御運転す
る。
According to the noise reduction method of the present invention, the noise of a two-stage axial flow fan in which two axial flow fans each driving a rotary wing by an electric motor in a duct are arranged in front and behind. In the reduction method, the rotor blades of the front and rear blowers are each driven by a servomotor, and the frequency of the generated noise is analyzed to minimize interference noise corresponding to the number of rotor blades, the number of rotations, and the distance between both rotors. The phase difference between the preceding and subsequent rotors is selected, and both rotors are controlled and operated based on the phase difference.

【0008】また、本発明の騒音低減装置によれば、ダ
クト内にそれぞれ電動機で回転翼を駆動する2台の軸流
送風機を前後に並設した2段式軸流送風機の騒音低減装
置において、前記前段及び後段送風機の回転翼をそれぞ
れサーボモータで駆動し、回転翼の翼枚数、回転数及び
両回転翼間距離に対応して干渉騒音を低減するように前
段と後段の回転翼の位相差を制御する制御装置を設け、
その制御装置には前記サーボモータをそれぞれ駆動する
サーボドライバを有し、一方のモータの回転信号をその
サーボドライバから他方のサーボドライバに伝達して所
定の位相差になるよう制御する機能を有している。
According to the noise reduction device of the present invention, there is provided a noise reduction device for a two-stage axial flow fan in which two axial flow blowers, each of which drives a rotary blade by a motor in a duct, are arranged in front and rear. The rotors of the front and rear blowers are each driven by a servomotor, and the phase difference between the front and rear rotors to reduce interference noise in accordance with the number of rotor blades, the number of rotations, and the distance between both rotors. A control device for controlling the
The control device has a servo driver for driving each of the servo motors, and has a function of transmitting a rotation signal of one of the motors from the servo driver to the other servo driver to control the rotation signal to a predetermined phase difference. ing.

【0009】本発明は上記のように構成され、制御装置
に予め回転翼の翼枚数、回転数、両回転翼間距離に対応
して干渉騒音最小となるような前段と後段の回転翼の目
標位相差を入力しておき、制御装置の指示によって一
方、例えば前段のサーボモータを回転し、その回転を例
えばエンコーダで検出して、前記目標位相差になるよう
に他方(後段)のサーボモータをサーボドライバを介し
て制御する。したがって、設定されたどの回転数におい
ても両回転翼は干渉騒音最小となる位相差により高精度
で運転され、騒音が低減される。
The present invention is constructed as described above, and the control device is provided with a target for the front and rear rotor blades so that interference noise is minimized in advance in accordance with the number of blades, the number of rotations, and the distance between the rotor blades. A phase difference is input, and one of the servomotors, for example, at the preceding stage is rotated by an instruction of the control device, and the rotation is detected by, for example, an encoder, and the other (at the later stage) servomotor is set to the target phase difference. Control via a servo driver. Therefore, at any set rotational speed, both rotors are operated with high accuracy by the phase difference that minimizes the interference noise, and the noise is reduced.

【0010】ここに、干渉騒音最小となるような目標位
相差は、例えば、吸気口付近に騒音計を設置して騒音計
の出力信号を周波数分析することで、その卓越成分(回
転翼干渉音)の大きさを求め、前段と後段の回転翼の位
相差と騒音の卓越成分の大きさとの関係を調べてそれが
最小となる位相差を求める。
The target phase difference at which the interference noise is minimized can be determined by, for example, installing a sound level meter near the intake port and analyzing the frequency of the output signal of the sound level meter to find the dominant component (rotor blade interference sound). ) Is determined, the relationship between the phase difference between the front and rear rotor blades and the magnitude of the dominant component of noise is examined, and the phase difference that minimizes this is determined.

【0011】なお、2段の回転翼が互いに逆回転する場
合でも、回転翼間に発生した干渉騒音がダクト内を伝播
する際に、減衰が最大になるように回転数、位相を制御
することができる。
Even when the two-stage rotating blades rotate in opposite directions, when the interference noise generated between the rotating blades propagates in the duct, the rotation speed and the phase are controlled so as to maximize the attenuation. Can be.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。図1において、ダクト4内には前段
回転翼5と後段回転翼6とが対向して設けられ、それぞ
れその前後に設けられたサーボモータ1、2で駆動され
ている。そして、制御装置3が設けられ、それらのサー
ボモータ1、2と、サーボモータに直結されたエンコー
ダ14、15とのそれぞれに配線されている。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, a front-stage rotary blade 5 and a rear-stage rotary blade 6 are provided in a duct 4 so as to face each other, and are driven by servomotors 1 and 2 provided before and after that, respectively. Then, a control device 3 is provided and wired to each of the servo motors 1 and 2 and the encoders 14 and 15 directly connected to the servo motor.

【0013】また、図2に示す実施形態では、それぞれ
後流側に設けられたサーボモータ1、2で駆動される前
後段の回転翼5、6が直列に配設されており、それぞれ
その後流には固定翼7、8が設けられている。制御装置
3の配設は、前記実施形態と同様である。
In the embodiment shown in FIG. 2, the front and rear rotating blades 5 and 6 driven by servomotors 1 and 2 provided on the downstream side, respectively, are arranged in series. Are provided with fixed wings 7 and 8. The arrangement of the control device 3 is the same as in the above embodiment.

【0014】図3には、制御装置3の制御ブロック図が
示されている。シーケンサ13からの指令によってサー
ボドライバ9を介して高精度でサーボモータ1が回転制
御されており、その回転がエンコーダ14によって検出
され、その信号は信号変換器11及び切替器12を経由
して後段のサーボドライバ10に伝達されている。後段
のサーボドライバ10では、その前段の回転信号と、予
めシーケンサ13に入力された目標の位相に関する信号
を基に、後段のサーボモータ2の回転を制御している。
FIG. 3 shows a control block diagram of the control device 3. The rotation of the servomotor 1 is controlled with high accuracy via the servo driver 9 by a command from the sequencer 13, and the rotation is detected by the encoder 14, and its signal is sent to the subsequent stage via the signal converter 11 and the switch 12. To the servo driver 10. The servo driver 10 at the subsequent stage controls the rotation of the servo motor 2 at the subsequent stage based on the rotation signal at the previous stage and the signal relating to the target phase previously input to the sequencer 13.

【0015】図4には、操作、制御機能のフローチャー
トが示されている。まず、ステップS1で運転操作が開
始されると、はじめにシーケンサ13からの原点信号に
よって前段・後段のモータ1、2は、各々の現点位置ま
で回転して停止する(ステップS2)。次にステップS
3において、回転翼5、6の取り付け時に生じた取付け
角のずれを補正するために、予めシーケンサ13に入力
された補正角に基づいて例えば後段のモータ2が回転
し、停止する。続いて、ステップS4にて前段・後段の
モータ1、2の回転数、回転方向を設定し、ステップS
5にて位相差を設定した後、ステップS6に進み、送風
機はその回転数、回転方向、位相差で運転される。
FIG. 4 shows a flowchart of the operation and control functions. First, when the driving operation is started in step S1, first, the motors 1 and 2 at the preceding and subsequent stages rotate to their current point positions and stop by the origin signal from the sequencer 13 (step S2). Next, step S
In 3, for example, the motor 2 at the subsequent stage rotates and stops based on the correction angle previously input to the sequencer 13 in order to correct the deviation of the mounting angle caused when the rotating blades 5 and 6 are mounted. Subsequently, in step S4, the number of rotations and the direction of rotation of the first and second motors 1 and 2 are set.
After setting the phase difference in step 5, the process proceeds to step S6, and the blower is operated at its rotation speed, rotation direction, and phase difference.

【0016】そして、送風機の発生騒音は、吸気口付近
に設置された騒音計によって測定され、ステップS7に
て、そのときの騒音計の出力信号を周波数分析すること
で、卓越成分(図5及び図6を参照)の大きさが求めら
れる。次に、ステップS8にて、前・後段の回転翼5、
6の位相差と騒音の卓越成分の大きさとの関係を図示す
るなどして(図7参照)、位相差による干渉騒音の変化
を調べ、設定した位相差によって卓越成分が最小となっ
ているか否かを判断する。
Then, the noise generated by the blower is measured by a sound level meter installed near the intake port, and in step S7, the output signal of the sound level meter at that time is subjected to frequency analysis to obtain a dominant component (FIG. 5 and FIG. 5). (See FIG. 6). Next, in step S8, the front and rear rotors 5,
The change of the interference noise due to the phase difference is examined by, for example, illustrating the relationship between the phase difference 6 and the magnitude of the dominant component of the noise (see FIG. 7), and whether or not the dominant component is minimized by the set phase difference. Judge.

【0017】ここで、卓越成分が最小であることが確認
された場合は、ステップS9に進み、その位相差を保持
して定常運転を行う。また、設定した位相差では卓越し
た成分が最小となっていない場合は、ステップS10に
て前記ステップS5で与えた位相差とは異なる位相差を
設定し、ステップS6に戻って回転数、回転方向は変え
ずに運転を行う。
Here, if it is confirmed that the dominant component is the minimum, the process proceeds to step S9, and the steady operation is performed while maintaining the phase difference. If the predominant component is not minimized in the set phase difference, a phase difference different from the phase difference given in step S5 is set in step S10, and the process returns to step S6 to return to the rotation speed and the rotation direction. Operate without changing.

【0018】こうして、位相差を例えば一定間隔で与え
るなどしてこの過程を繰り返し、干渉騒音が最小となる
位相差を求め、ステップS9に進み、その位相差を保持
して送風機を運転し、騒音の卓越成分を最小にすること
ができる。
In this way, this process is repeated by giving a phase difference, for example, at regular intervals, to obtain a phase difference that minimizes the interference noise, and the process proceeds to step S9. The blower is operated while maintaining the phase difference, and the noise is reduced. Can be minimized.

【0019】[0019]

【実験例】図5〜図7には、騒音計によって干渉騒音の
音圧レベル(あるいは騒音レベル)を測定し、その騒音
計の出力信号を周波数分析した実験例が示されている。
図5及び図6は、横軸に周波数(kHz)、縦軸に音圧
レベル(dB)が採られ、図中に卓越成分(回転翼干渉
音)が▽印で示されている。そして、図5は、卓越成分
が最大の前・後段回転翼5、6の位相差85度での周波
数分析の例、図6は、卓越成分が最小の位相差55度の
周波数分析の例である。
Experimental Examples FIGS. 5 to 7 show experimental examples in which the sound pressure level (or noise level) of interference noise is measured by a sound level meter and the output signal of the sound level meter is subjected to frequency analysis.
5 and 6, frequency (kHz) is plotted on the horizontal axis and sound pressure level (dB) is plotted on the vertical axis, and the dominant component (rotor blade interference sound) is indicated by a triangle in the figures. FIG. 5 is an example of a frequency analysis at a phase difference of 85 degrees between the front and rear rotors 5 and 6 having the largest dominant component, and FIG. 6 is an example of a frequency analysis having a phase difference of 55 degrees having the smallest dominant component. is there.

【0020】このような位相差による卓越成分の変化が
図7に示されている。図7には、横軸に前・後段の回転
翼5、6の位相差(deg)、縦軸に卓越成分の音圧レ
ベル(dB)が採られ、位相差による卓越成分の最大
値、最小値が示されており、図より干渉音を最小にする
位相差を見出だし、目標位相差を容易に設定することが
できる。
FIG. 7 shows a change in a dominant component due to such a phase difference. In FIG. 7, the horizontal axis represents the phase difference (deg) between the front and rear rotors 5 and 6, and the vertical axis represents the sound pressure level (dB) of the dominant component. The values are shown, and the phase difference that minimizes the interference sound is found from the figure, and the target phase difference can be easily set.

【0021】[0021]

【発明の効果】本発明は、以上説明したように構成さ
れ、以下の効果を奏する。 (1) 従来、大型の消音器を用いなければ低減が困難
であった軸流送風機の干渉騒音を容易に低レベルに抑制
することができる。 (2) 送風機自体でその発生騒音を低減でき、送風性
能を低下させることがないので、さらに、消音器を併用
し、従来、消音器のみでは得られなかった低騒音化も可
能となる。 (3) サーボモータを使用することによって装置の小
形化、軽量化、及び省電力化が可能である。 (4) 翼車やケーシングなどの構造を変更することな
く、電動機のサーボモータ化によって騒音低減が行える
ので、汎用の装置に対して適用できる。
The present invention is configured as described above and has the following effects. (1) Conventionally, interference noise of an axial blower, which was difficult to reduce without using a large-sized silencer, can be easily suppressed to a low level. (2) Since the noise generated by the blower itself can be reduced and the blowing performance is not deteriorated, the use of a silencer is also possible, so that the noise can be reduced which could not be obtained by the conventional silencer alone. (3) The use of a servomotor makes it possible to reduce the size, weight, and power consumption of the device. (4) Since the noise can be reduced by changing the electric motor to a servomotor without changing the structure of the impeller, the casing, and the like, the present invention can be applied to general-purpose devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態(回転翼間の干渉騒音低
減)を示す構成図。
FIG. 1 is a configuration diagram showing one embodiment of the present invention (reduction of interference noise between rotating blades).

【図2】本発明の別の実施形態(回転翼と固定翼間の干
渉騒音低減)を示す構成図。
FIG. 2 is a configuration diagram showing another embodiment of the present invention (reduction of interference noise between a rotating wing and a fixed wing).

【図3】本発明の制御装置の制御ブロック図。FIG. 3 is a control block diagram of the control device of the present invention.

【図4】本発明の制御装置の操作・機能を示すフローチ
ャート図。
FIG. 4 is a flowchart showing operations and functions of the control device of the present invention.

【図5】発生騒音の周波数分析の例(干渉音最大)を示
すグラフ。
FIG. 5 is a graph showing an example of frequency analysis of generated noise (maximum interference sound).

【図6】発生騒音の周波数分析の例(干渉音最小)を示
すグラフ。
FIG. 6 is a graph showing an example of frequency analysis of generated noise (minimum interference sound).

【図7】前後段の回転翼の位相差による干渉音の音圧レ
ベルの変化を示すグラフ。
FIG. 7 is a graph showing a change in the sound pressure level of the interference sound due to the phase difference between the front and rear rotors.

【符号の説明】[Explanation of symbols]

1・・・サーボモータ(前段) 2・・・サーボモータ(後段) 3・・・制御装置 4・・・ダクト 5・・・回転翼(前段) 6・・・回転翼(後段) 7・・・固定翼(前段) 8・・・固定翼(後段) 9・・・サーボドライバ(前段) 10・・・サーボドライバ(後段) 11・・・信号変換器 12・・・切替器 13・・・シーケンサ 14・・・エンコーダ(前段) 15・・・エンコーダ(後段) DESCRIPTION OF SYMBOLS 1 ... Servo motor (front stage) 2 ... Servo motor (back stage) 3 ... Control device 4 ... Duct 5 ... Rotating blade (front stage) 6 ... Rotating blade (back stage) 7 ... · Fixed wing (front stage) 8 ··· Fixed wing (back stage) 9 ··· Servo driver (front stage) 10 ··· Servo driver (back stage) 11 ··· Signal converter 12 ··· Switching device 13 ··· Sequencer 14: Encoder (front stage) 15: Encoder (back stage)

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年10月20日(1999.10.
20)
[Submission date] October 20, 1999 (1999.10.
20)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】[0007]

【課題を解決するための手段】本発明によれば、ダクト
内にそれぞれサーボモータで回転翼を駆動する2台の軸
流送風機を前後に併設した2段式軸流送風機の騒音低減
方法において、シーケンサからの指令でサーボドライバ
を介してサーボモータが制御され、そしてサーボモータ
の回転がエンコーダによって検出され、予めシーケンサ
に入力されて補正角に基づいて取付け角のずれを補正
し、次いで回転数、回転方向を設定し、位相差を設定
し、その回転数、回転方向、位相差で運転して吸気口付
近に設置した騒音計によって発生騒音を測定し、その騒
音計の出力信号を周波数分析して卓越成分の大きさを求
め、回転翼の位相差と騒音の卓越成分の大きさとの関係
から設定した位相差によって卓越成分が最小になってい
るか否かを判断し、卓越成分が最小になるように位相差
を求めて運転するようになっている。
According to the present invention, there is provided a noise reduction method for a two-stage axial flow blower in which two axial flow blowers, each of which drives a rotary wing by a servomotor in a duct, are provided in front and behind. The servo motor is controlled via a servo driver by a command from the sequencer, and the rotation of the servo motor is detected by the encoder, and is input to the sequencer in advance to correct the deviation of the mounting angle based on the correction angle, and then the rotation speed, Set the rotation direction, set the phase difference, operate at the rotation speed, rotation direction, and phase difference, measure the noise generated by a sound level meter installed near the intake, and analyze the frequency of the output signal of the sound level meter. The magnitude of the dominant component is determined by using the phase difference set from the relationship between the phase difference of the rotor and the dominant component of the noise, and it is determined whether the dominant component is minimized. Component is adapted to be operated by obtaining a phase difference so as to minimize.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】また本発明によれば、ダクト内にそれぞれ
サーボモータで回転翼を駆動する2台の軸流送風機を前
後に併設した2段式軸流送風機の騒音低減方法におい
て、回転翼の翼枚数、回転数及び両回転翼間距離に対応
して回転騒音を低減するように前段と後段の回転翼の位
相差を制御する制御装置を設け、その制御装置はシーケ
ンサからの信号により前記サーボモータをそれぞれ駆動
するサーボドライバを備え、前記サーボモータにはそれ
ぞれエンコーダが直結され、吸気口付近に騒音計を設置
し、前記制御装置は騒音計の出力信号を周波数分析して
卓越成分の大きさを求めて前後の回転翼の位相差と卓越
成分の大きさとの関係で設定した位相差によって卓越成
分が最小となっているか否かを判断する機能を有してい
る。
According to the present invention, there is provided a noise reduction method for a two-stage axial flow fan in which two axial flow blowers, each of which drives a rotary blade by a servomotor in a duct, are arranged in front and rear. A control device is provided to control the phase difference between the front and rear rotor blades so as to reduce the rotation noise in accordance with the rotation speed and the distance between the two rotor blades, and the control device controls the servo motor by a signal from the sequencer. An encoder is directly connected to each of the servo motors, an encoder is directly connected to the servo motor, and a noise meter is installed near the intake port. The control device analyzes the frequency of the output signal of the noise meter to determine the magnitude of the dominant component. It has a function of determining whether or not the dominant component is minimized based on the phase difference set based on the relationship between the phase difference between the front and rear rotor blades and the magnitude of the dominant component.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ダクト内にそれぞれ電動機で回転翼を駆
動する2台の軸流送風機を前後に並設した2段式軸流送
風機の騒音低減方法において、前記前段及び後段送風機
の回転翼をそれぞれサーボモータで駆動し、発生騒音の
周波数分析を行って回転翼の翼枚数、回転数及び両回転
翼間距離に対応して回転騒音が最小となる前段と後段の
回転翼の位相差を選択し、その位相差で両回転翼を制御
運転することを特徴とする2段式軸流送風機の騒音低減
方法。
1. A noise reduction method for a two-stage axial flow fan in which two axial flow fans each of which drives a rotary blade by a motor in a duct are arranged side by side. Driven by a servo motor, frequency analysis of the generated noise is performed, and the phase difference between the preceding and succeeding rotor blades that minimizes the rotating noise is selected according to the number of blades, the number of rotations, and the distance between both rotor blades. A noise reduction method for a two-stage axial blower, wherein both rotors are controlled and operated with the phase difference.
【請求項2】 ダクト内にそれぞれ電動機で回転翼を駆
動する2台の軸流送風機を前後に並設した2段式軸流送
風機の騒音低減装置において、前記前段及び後段送風機
の回転翼をそれぞれサーボモータで駆動し、回転翼の翼
枚数、回転数及び両回転翼間距離に対応して回転騒音を
低減するように前段と後段の回転翼の位相差を制御する
制御装置を設け、その制御装置には前記サーボモータを
それぞれ駆動するサーボドライバを有し、一方のモータ
の回転信号をそのサーボドライバから他方のサーボドラ
イバに伝達して所定の位相差になるよう制御する機能を
有していることを特徴とする2段式軸流送風機の騒音低
減装置。
2. A noise reduction device for a two-stage axial flow fan in which two axial flow fans driven by an electric motor in a duct are respectively arranged in front and rear, wherein the rotors of the front and rear fans are respectively arranged. A control device that is driven by a servomotor and controls the phase difference between the front and rear rotors so as to reduce the rotational noise in accordance with the number of rotor blades, the number of rotations, and the distance between the two rotors is provided. The apparatus has a servo driver for driving each of the servo motors, and has a function of transmitting a rotation signal of one of the motors from the servo driver to the other servo driver and controlling the rotation signal to have a predetermined phase difference. A noise reduction device for a two-stage axial flow fan.
JP31184698A 1998-11-02 1998-11-02 Noise reducing method and device of two-stage axial blower Pending JP2000136798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31184698A JP2000136798A (en) 1998-11-02 1998-11-02 Noise reducing method and device of two-stage axial blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31184698A JP2000136798A (en) 1998-11-02 1998-11-02 Noise reducing method and device of two-stage axial blower

Publications (1)

Publication Number Publication Date
JP2000136798A true JP2000136798A (en) 2000-05-16

Family

ID=18022122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31184698A Pending JP2000136798A (en) 1998-11-02 1998-11-02 Noise reducing method and device of two-stage axial blower

Country Status (1)

Country Link
JP (1) JP2000136798A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148645A1 (en) * 2006-06-19 2007-12-27 Panasonic Corporation Outdoor unit for air conditioner
CN101864981A (en) * 2010-05-21 2010-10-20 中国矿业大学 Local cooling method and cooling fan for mine
JP2014202121A (en) * 2013-04-04 2014-10-27 株式会社Ihi Noise reduction device
US9052882B2 (en) 2011-11-21 2015-06-09 Fujitsu Limited Blower control device, blower control method, and computer-readable recording medium
CN108266808A (en) * 2018-03-20 2018-07-10 广东美的制冷设备有限公司 Cabinet air-conditioner and air conditioner
CN114321024A (en) * 2021-12-31 2022-04-12 广东美的白色家电技术创新中心有限公司 Control method and control device of noise reduction device, storage medium and noise reduction device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148645A1 (en) * 2006-06-19 2007-12-27 Panasonic Corporation Outdoor unit for air conditioner
JP2008025983A (en) * 2006-06-19 2008-02-07 Matsushita Electric Ind Co Ltd Outdoor unit for air conditioner
CN101864981A (en) * 2010-05-21 2010-10-20 中国矿业大学 Local cooling method and cooling fan for mine
CN101864981B (en) * 2010-05-21 2012-04-04 中国矿业大学 Local cooling method and cooling fan for mine
US9052882B2 (en) 2011-11-21 2015-06-09 Fujitsu Limited Blower control device, blower control method, and computer-readable recording medium
JP2014202121A (en) * 2013-04-04 2014-10-27 株式会社Ihi Noise reduction device
CN108266808A (en) * 2018-03-20 2018-07-10 广东美的制冷设备有限公司 Cabinet air-conditioner and air conditioner
CN114321024A (en) * 2021-12-31 2022-04-12 广东美的白色家电技术创新中心有限公司 Control method and control device of noise reduction device, storage medium and noise reduction device
CN114321024B (en) * 2021-12-31 2024-03-26 广东美的白色家电技术创新中心有限公司 Control method and control device of noise reduction device, storage medium and noise reduction device

Similar Documents

Publication Publication Date Title
AU2007231891B2 (en) An apparatus for controlling an air distribution system
US10371171B2 (en) System and methods for reducing noise in an air moving system
Loew et al. The advanced noise control fan
JP2000136798A (en) Noise reducing method and device of two-stage axial blower
TW420895B (en) Method for controlling a DC brushless motor
JP2016067081A (en) Driving device for brushless dc motor and air ventilation blower having the same mounted therein
KR101685949B1 (en) Blade noise reduction system
JP2005265726A (en) Air flow measuring instrument and gas flow measuring method
US20220234749A1 (en) Systems and methods for driving fan blades of an engine
JP2001038128A (en) Method for controlling ventilating dust collector
JPH09159255A (en) Inverter
JP6600813B2 (en) Blower
CN109253100B (en) Fan and rotating speed control method thereof
JPH0823277B2 (en) Method for controlling ventilation equipment in tunnel during excavation, and control device therefor
JP3337230B2 (en) Magnetic bearing type turbo molecular pump
JPH06213000A (en) Fan stall detecting device of engine
Yamasaki et al. Active control of fan noise
US20230272799A1 (en) Method and fan system for determination of a current operating point of a fan unit
US11841022B2 (en) Control system for electric fluid moving apparatus
JPH0777345A (en) Control device for ventilation device
JPH04301200A (en) Control method of surging of fluid machinery
JP2002161897A (en) Centrifugal fluid machinery
JPH06336993A (en) Jet fun
JPH04325797A (en) Magnetic bearing type turbo molecular pump
JPH08266937A (en) Centrifugal separator