JP2000136786A - Vacuum pump - Google Patents

Vacuum pump

Info

Publication number
JP2000136786A
JP2000136786A JP10311288A JP31128898A JP2000136786A JP 2000136786 A JP2000136786 A JP 2000136786A JP 10311288 A JP10311288 A JP 10311288A JP 31128898 A JP31128898 A JP 31128898A JP 2000136786 A JP2000136786 A JP 2000136786A
Authority
JP
Japan
Prior art keywords
intake
screw
exhaust port
suction
working chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10311288A
Other languages
Japanese (ja)
Inventor
Kiyozumi Fukui
清純 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Teijin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Seiki Co Ltd filed Critical Teijin Seiki Co Ltd
Priority to JP10311288A priority Critical patent/JP2000136786A/en
Publication of JP2000136786A publication Critical patent/JP2000136786A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/086Carter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/101Geometry of the inlet or outlet of the inlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum pump with excellent suction characteristics and a great exhaust speed. SOLUTION: A pump housing 11 has grooves 11f, 11g defining enlarged suction passages 31, 32 radially outwardly of large lead suction port side screw portions 21c, 22c. The ends of the enlarged suction passages 31, 32 at their exhaust port sides are located near a junction A between large and small lead screw portions. When operating chambers 24, 25 communicated with a suction port 11a with the rotation of male and female screw rotors 21, 22 is increased in volume, these perform suction operation through the enlarged suction passages 31, 32 and when the operating chambers 24, 25 communicated with the suction port 11a is maximized in volume, these ends are partitioned with the engaged portions of both exhaust port side screw portions 21d, 22d.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スクリュー式の真
空ポンプに係り、特に大気圧から10-4レベルの低・中
真空域に好適で、半導体の製造が200mmウェハーから
300mmウェハーへ、更に大型へと移行するのに伴って
必要とされる大容量の容積型真空ポンプの吸入特性の改
善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a screw-type vacuum pump, and is particularly suitable for a low-to-medium vacuum region from atmospheric pressure to a level of 10.sup.-4 , and is used for manufacturing semiconductors from 200 mm wafers to 300 mm wafers. The present invention relates to the improvement of the suction characteristics of a large-capacity positive-displacement vacuum pump required in connection with the transition to.

【0002】[0002]

【従来の技術】半導体製造等に頻繁に使用される10-4
〜10-1Torr程度の低・中真空領域を得るスクリューポ
ンプは、1〜10Torr近辺から排気速度が落ちてくるの
が通例で、この落ち込みを見越して大容量のポンプを用
いるか、多くは、真空チャンバーとスクリューポンプの
間にメカニカルブースタを配設して必要な排気速度を得
ていた。
2. Description of the Related Art 10 -4 which is frequently used in semiconductor manufacturing and the like.
In general, a screw pump for obtaining a low / medium vacuum region of about 10 -1 Torr has a pumping speed falling from about 1 to 10 Torr, and a large-capacity pump is used in anticipation of this drop. A mechanical pump was provided between the vacuum chamber and the screw pump to obtain the required pumping speed.

【0003】スクリューポンプにおいては、吸気端に開
放されたねじ溝(作動室)の半径方向から吸気をさせる
ようにしたものが知られている。
[0003] There is known a screw pump in which suction is performed from a radial direction of a screw groove (working chamber) opened to an intake end.

【0004】[0004]

【発明が解決しようとする課題】しかし、スクリューロ
ータを用いる構造上、そのような半径方向からの吸入を
行うための通路(以下、吸気路という)の設置範囲には
制限があり、吸入端のねじの1リードのうち吸入開始か
らの一部の区間のねじ溝部分と、吸入が終わる直前の一
部の区間のねじ溝部分(作動室)とが吸気路に連通でき
ず、吸入効率の大幅な向上が期待できなかった。
However, due to the structure using a screw rotor, the installation range of such a passage for performing suction in the radial direction (hereinafter referred to as an intake passage) is limited. The thread groove part of one section from the start of suction of one lead of the screw and the thread groove part (working chamber) of some section just before the end of suction cannot communicate with the intake passage, and the suction efficiency is greatly increased. No improvement could be expected.

【0005】本発明は、かかる従来の課題に鑑みてなさ
れたもので、吸入特性に優れた大容量の容積型真空ポン
プを提供するものである。
The present invention has been made in view of such conventional problems, and provides a large capacity positive displacement vacuum pump having excellent suction characteristics.

【0006】[0006]

【課題を解決するための手段】上記課題解決のため、本
発明は、吸気口及び排気口を有するポンプハウジング
と、互いに噛み合ながら回転するようそれぞれ前記ポン
プハウジング内に回転自在に収納された雌雄のスクリュ
ーロータと、を備え、前記ポンプハウジングと各スクリ
ューロータとの間に両スクリューロータの噛合部分で互
いに仕切られ両スクリューロータの回転により吸気口側
から排気口側に移送される複数の作動室を形成した真空
ポンプにおいて、前記雌雄のスクリューロータが、それ
ぞれ螺旋状の歯のリードが大きい吸気口側スクリュー部
及び該吸気口側スクリュー部より螺旋状の歯のリードが
小さい排気口側スクリュー部を結合してなり、前記ポン
プハウジングが、前記吸気口側スクリュー部の放射外方
に前記作動室に連通する拡大吸気路を形成する溝部を有
するとともに、該拡大吸気路の排気口側の端部が、前記
吸気口側スクリュー部と前記排気口側スクリュー部の結
合点近傍に位置し、前記雌雄のスクリューロータの回転
に伴って前記吸気口に連通した作動室の容積が増大する
とき、該作動室が前記拡大吸気路を通して吸気動作をな
し、前記吸気口に連通した作動室の容積が最大に達する
とき、該作動室の先端部が前記排気口側スクリュー部同
士の噛合部分によって仕切られるようにしたものであ
る。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a pump housing having an intake port and an exhaust port, and male and female rotatably housed in the pump housing so as to rotate while meshing with each other. A plurality of working chambers, which are separated from each other by a meshing portion of the two screw rotors between the pump housing and the respective screw rotors and are transferred from the intake port side to the exhaust port side by rotation of the two screw rotors. In the vacuum pump formed, the male and female screw rotors each include an inlet-side screw portion having a larger helical tooth lead and an outlet-side screw portion having a helical tooth lead smaller than the inlet-side screw portion. And the pump housing communicates with the working chamber at a radially outer side of the inlet-side screw portion. And a groove forming an enlarged intake path, and an end on the exhaust port side of the enlarged intake path is located near a connection point between the intake port side screw section and the exhaust port side screw section, and the male and female screws are When the volume of the working chamber connected to the intake port increases with the rotation of the rotor, the working chamber performs the suction operation through the enlarged intake path, and when the volume of the working chamber connected to the intake port reaches a maximum. The distal end portion of the working chamber is partitioned by a meshing portion between the exhaust port side screw portions.

【0007】この発明では、一端で吸気口に連通し他端
でスクリューロータ噛合い部分によって仕切られる作動
室が、吸気動作完了時に小リードの排気口側スクリュー
部の噛合い部によって仕切られるようにすることで、吸
気動作完了直前までのコンダクタンスが大きくなる。し
たがって、吸気効率が格段に向上する。また、リードの
異なる歯を併用することで圧縮比を高めているので、排
気速度を大きくすることができる。そして、前記拡大吸
気路の展開形状が、前記吸気動作中の複数の作動室に及
ぶ略三角形状を有すると、更に吸気効率を高めることが
できる。
According to the present invention, the working chamber partitioned at one end by the screw rotor meshing portion at the other end and by the screw rotor meshing portion is partitioned by the meshing portion of the exhaust port side screw portion of the small lead when the suction operation is completed. By doing so, the conductance immediately before the completion of the intake operation is increased. Therefore, the intake efficiency is significantly improved. In addition, since the compression ratio is increased by using teeth having different leads in combination, the exhaust speed can be increased. If the expanded shape of the enlarged intake passage has a substantially triangular shape extending over a plurality of working chambers during the intake operation, the intake efficiency can be further increased.

【0008】[0008]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面に基づいて説明する。
Preferred embodiments of the present invention will be described below with reference to the drawings.

【0009】図1及び図2は本発明の一実施形態に係る
スクリュー型の真空ポンプを示す図である。まず、その
構成を説明すると、11はポンプハウジングで、吸気口
11a及び排気口11bを有している。21,22は、
互いに噛み合ながら回転するようそれぞれポンプハウジ
ング11内に回転自在に収納された雌雄のスクリューロ
ータであり、雌スクリューロータ21は雌ねじ形状をな
す螺旋状の歯21a及び螺旋溝21bを、雄スクリュー
ロータ22は雌ねじ形状をなす螺旋状の歯22a及び螺
旋溝22bを、それぞれ有している。なお、図1中にお
いては、各スクリューロータ21,22の歯21a,2
2aのねじ山に相当する部位を中心線より上の上半部に
斜めの実線で示し、下半部をハッチングなしの断面で表
わしている。
FIG. 1 and FIG. 2 are views showing a screw type vacuum pump according to an embodiment of the present invention. First, the configuration will be described. Reference numeral 11 denotes a pump housing having an intake port 11a and an exhaust port 11b. 21 and 22
Male and female screw rotors are rotatably housed in the pump housing 11 so as to rotate while meshing with each other. The female screw rotor 21 has spiral teeth 21 a and spiral grooves 21 b having female screw shapes, and a male screw rotor 22. Has a spiral tooth 22a and a spiral groove 22b, each of which has a female screw shape. In FIG. 1, the teeth 21a, 21 of the screw rotors 21, 22 are shown.
The portion corresponding to the thread 2a is shown by an oblique solid line in the upper half above the center line, and the lower half is shown by a cross-section without hatching.

【0010】15は雌雄のスクリューロータを駆動する
駆動手段で、雄スクリューロータ22の一端部に連結さ
れた電動モータ16(一部のみ図示している)と、雌雄
の各スクリューロータにそれぞれ固定されて互いに噛み
合う同期歯車17a,17bとを含んで構成されてい
る。なお、同期歯車17a,17bは、雌雄スクリュー
ロータ21,22を同期回転させる機能を有している。
Reference numeral 15 denotes drive means for driving the male and female screw rotors, which are fixed to the electric motor 16 (only a part is shown) connected to one end of the male screw rotor 22 and the male and female screw rotors. And synchronous gears 17a and 17b meshing with each other. The synchronous gears 17a and 17b have the function of rotating the male and female screw rotors 21 and 22 synchronously.

【0011】雌雄のスクリューロータ21,22は、螺
旋状の歯21a,22aのリード(ねじのリード)が大
きい吸気口側スクリュー部21c,22c、及び、その
吸気口側スクリュー部21c,22cより螺旋状の歯2
1a,22aのリードが小さい排気口側スクリュー部2
1d,22dを結合して構成されている。ねじの巻数は
全体で少なくとも2以上、好ましくは4〜5であり、リ
ードの大きい吸気口側スクリュー部21c,22cの巻
数は1巻にわずかに満たないようにしている。そして、
螺旋溝22bの溝幅を規定する螺旋状の歯21a,22
aのそれぞれのピッチ(隣り合う歯のロータ軸方向間
隔)は吸気口側スクリュー部21c,22cでは大き
く、排気口側スクリュー部21d,22dでは小さくな
っている。
The male and female screw rotors 21 and 22 are formed by the inlet-side screw portions 21c and 22c in which the leads (screw leads) of the helical teeth 21a and 22a are large, and the spiral from the inlet-side screw portions 21c and 22c. Tooth 2
Exhaust port side screw part 2 with small leads 1a and 22a
1d and 22d are combined. The number of turns of the screw is at least 2 or more, preferably 4 to 5 as a whole, and the number of turns of the inlet-side screw portions 21c and 22c having a large lead is set to be slightly less than one turn. And
Helical teeth 21a, 22 defining the groove width of the spiral groove 22b
The pitch a (the distance between adjacent teeth in the rotor axial direction) is large in the inlet-side screw portions 21c and 22c and small in the exhaust-side screw portions 21d and 22d.

【0012】また、吸気口側スクリュー部21c,22
c同士の噛合部分及び排気口側スクリュー部21d,2
2d同士の噛合部分の噛合い隙間、並びに、ポンプハウ
ジング11と各スクューロータ21,22の間のクリア
ランスは、それぞれ例えば50μm程度に設定されてお
り、ポンプハウジング11と各スクリューロータ21,
22との間には、雌スクリューロータ21のスクリュー
部21c,21dと雄スクリューロータ22のスクリュ
ー部22c,22dとの噛合部分で互いに仕切られる複
数の作動室24,25が形成され、各作動室24,25
は両スクリューロータ21,22の回転により吸気口1
1a側から排気口11b側に移送されるようになってい
る。
Further, the inlet side screw portions 21c, 22
c and the exhaust-port-side screw portions 21d, 2
The meshing gap between the meshing portions of the 2d and the clearance between the pump housing 11 and each of the scut rotors 21 and 22 are set to, for example, about 50 μm, respectively.
A plurality of working chambers 24 and 25 are formed between the working chambers 22 and 22 at a meshing portion between the screw portions 21 c and 21 d of the female screw rotor 21 and the screw portions 22 c and 22 d of the male screw rotor 22. 24, 25
Is the intake port 1 by the rotation of both screw rotors 21 and 22.
The air is transferred from the side 1a to the exhaust port 11b.

【0013】ここで、小リードの排気口側スクリュー部
21d,22dは、それ自身がさらに大小のリード部か
ら構成されてもよい。つまり、排気口に向かうに従って
リードが小さくなる複数段のねじ構造であってもよい。
Here, the exhaust port side screw portions 21d and 22d of the small lead may themselves be constituted by larger and smaller lead portions. In other words, a multi-stage screw structure in which the leads become smaller toward the exhaust port may be used.

【0014】また、吸気口11aはポンプハウジング1
1と両スクリューロータ21,22の吸気口側端面全域
の間に形成された吸気室23に連通し、この吸気室23
に開口する作動室24,25の全てと連通するようにな
っている。そして、ロータ21,22が回転するとき、
各作動室24,25は吸気口11aに連通している吸入
側の移送区間でその容積を増加させながら吸気口11a
を通して外部からの気体を吸入する作用をなした後、吸
気口11aから遮断され、最終的には排気口11bに連
通する小リードスクリュー部21d、22dの吐出側の
移送区間でスクリューロータ21,22の吐出側端面に
至るまでその容積を減少させて前記気体を吐き出す作用
をなすようになっている。
The intake port 11a is connected to the pump housing 1
1 and an intake chamber 23 formed between the entire end surfaces of the screw rotors 21 and 22 on the intake port side.
Are communicated with all of the working chambers 24 and 25 that open to the outside. When the rotors 21 and 22 rotate,
Each of the working chambers 24 and 25 increases its volume in a transfer section on the suction side communicating with the suction port 11a while increasing its volume.
After the action of sucking gas from the outside through the inlet port 11a, the screw rotors 21 and 22 are finally shut off at the discharge side transfer sections of the small lead screw portions 21d and 22d which are shut off from the intake port 11a and communicate with the exhaust port 11b. The volume of the gas is reduced to reach the discharge-side end surface of the gas discharge port, and the gas is discharged.

【0015】図2に歯すじ展開図を示すように、雌雄の
スクリューロータ21,22は直線Cを噛み合い中心と
して図中の矢印R1,R2の方向に回転し、各作動室2
4は、両スクリューロータ21,22の回転に伴ってそ
の容積を増加させながら吸気作用をなす。一方、作動室
25も同様に、両スクリューロータ21,22の回転に
伴ってその容積を増加させながら吸気作用をなす。そし
て、吸気口11aに連通した各作動室24,25の容積
が最大に達するとき、その大容積の作動室24,25の
先端部が小リードの排気口側スクリュー部21d,22
d同士の噛合部分Pm(図2参照)によって仕切られる
ようになっている。
2, the male and female screw rotors 21 and 22 rotate in the directions of arrows R1 and R2 in FIG.
Numeral 4 increases the volume of the screw rotors 21 and 22 in accordance with the rotation of the screw rotors 21 and 22 to perform the suction operation. On the other hand, similarly, the working chamber 25 also performs the suction operation while increasing its volume with the rotation of the screw rotors 21 and 22. When the volume of each of the working chambers 24 and 25 communicating with the intake port 11a reaches the maximum, the distal ends of the large-volume working chambers 24 and 25 are connected to the exhaust port side screw portions 21d and 22 of the small lead.
d are partitioned by a meshing portion Pm (see FIG. 2).

【0016】また、吸気完了時の作動室24,25と、
排気口側スクリュー部21d,22dとポンプハウジン
グ11の間で両端を閉止されて移送される吐出側の作動
室24,25との容積比は、少なくとも4対1に設定さ
れており、好ましくは10:1程度かそれより大きな容
積比に設定されている。
Further, the working chambers 24 and 25 when the intake is completed,
The volume ratio between the discharge-side working chambers 24 and 25 that are closed and transferred at both ends between the exhaust-port-side screw portions 21d and 22d and the pump housing 11 is set to at least 4 to 1, and preferably 10 to 10. : The volume ratio is set to about 1 or larger.

【0017】一方、ポンプハウジング11の内壁には、
吸気口側スクリュー部21c,22cと排気口側スクリ
ュー部21d,22dとの結合点A(軸方向の位置)よ
り吸気口11a側に位置する溝部11f、11gが形成
されている。
On the other hand, on the inner wall of the pump housing 11,
Grooves 11f, 11g are formed on the intake port 11a side from the connection point A (position in the axial direction) between the intake port side screw sections 21c, 22c and the exhaust port side screw sections 21d, 22d.

【0018】これらの溝部11f,11gは、図3及び
図4に示すように、吸気口側スクリュー部21c,22
cの放射外方に位置し、それぞれ作動室24,25に連
通する拡大吸気路31,32を形成する。そして、雌雄
のスクリューロータ21,22の回転に伴って吸気口1
1aに連通した作動室24,25の容積が増大すると
き、その作動室24,25が吸気室23の他に拡大吸気
路31,32を通しても吸気動作をなすようになってい
る。
As shown in FIGS. 3 and 4, these grooves 11f and 11g are provided on the inlet side screw portions 21c and 22c.
The enlarged intake passages 31 and 32 which are located radially outward of c and communicate with the working chambers 24 and 25 respectively are formed. Then, with the rotation of the male and female screw rotors 21 and 22, the intake port 1
When the volumes of the working chambers 24 and 25 communicating with 1a increase, the working chambers 24 and 25 perform the suction operation not only through the suction chamber 23 but also through the enlarged suction passages 31 and 32.

【0019】これら拡大吸気路31,32は、図2に示
すスクリューロータ21,22のねじ展開図において、
ハッチングを入れた三角形の部分に開口するよう形成さ
れている。すなわち、吸気口11aに連通した作動室2
4,25の容積が最大に達するとき、作動室24,25
の先端部分が小リードの排気口側スクリュー部同士の噛
合部分Pmによって仕切られるとともに、拡大吸気路3
1,32の排気口側端部が大リードの吸気口側スクリュ
ー部21c,22cと小リードの排気口側スクリュー部
21d,22dとの結合点A(ねじ状の歯21a,22
aの屈曲位置)の近傍に位置するようになされている。
These enlarged intake passages 31 and 32 correspond to the screw development diagrams of the screw rotors 21 and 22 shown in FIG.
It is formed to open to the hatched triangular portion. That is, the working chamber 2 communicating with the intake port 11a
When the volume of 4,25 reaches a maximum, the working chambers 24,25
Of the small lead is partitioned by a meshing portion Pm between the small-lead exhaust-port-side screw portions.
At the exhaust port side ends of the first and second connection points A (the screw-shaped teeth 21a, 22), the large lead intake port side screw portions 21c, 22c and the small lead exhaust port side screw portions 21d, 22d are joined.
(a bending position of a).

【0020】なお、図1において、26a,26bは雌
スクリューロータ21とポンプハウジング11との間に
介装された軸受、27a,27bは雄スクリューロータ
22とポンプハウジング11の間に介装された軸受、2
8a,28bは軸受26a,26bより内方で雌スクリ
ューロータ21の両端軸部とポンプハウジング11との
間に介装されたシール部材、29a,29bは軸受27
a,27bより内方で雄スクリューロータ22の両端軸
部とポンプハウジング11との間に介装されたシール部
材である。
In FIG. 1, 26a and 26b are bearings interposed between the female screw rotor 21 and the pump housing 11, and 27a and 27b are interposed between the male screw rotor 22 and the pump housing 11. Bearing, 2
Reference numerals 8a and 28b denote seal members provided between the shafts at both ends of the female screw rotor 21 and the pump housing 11 inside the bearings 26a and 26b, and reference numerals 29a and 29b denote bearings 27.
a sealing member interposed between the shafts at both ends of the male screw rotor 22 and the pump housing 11 inwardly of a and 27b.

【0021】このように構成された本実施形態の真空ポ
ンプでは、ロータ21,22が回転すると、一部の作動
室24,25が吸気口11aに連通した状態でその吸気
側開口面積を増し、それら作動室24,25のコンダク
タンスが最大に達する。
In the vacuum pump of the present embodiment having the above-described structure, when the rotors 21 and 22 rotate, the working-side chambers 24 and 25 increase their suction-side opening area while communicating with the suction port 11a. The conductance of the working chambers 24 and 25 reaches a maximum.

【0022】図5(a)はこの状態を一つの螺旋溝21
b,22bに着目して描いた模式図であり、図中左端側
の広幅部分が吸気口側スクリュー部21c,22cにお
ける大リード、大ピッチの移送区間、右端側の狭幅部分
が排気口側スクリュー部21d,22dにおける小リー
ド、小ピッチの移送区間、ハッチング部分53a,53
bはスクリューロータ21,22の噛合い部分、図中の
括弧付き数字(1)〜(3)は前後して同一螺旋溝21
b,22b内を移送される3つの作動室24又は25を
示している。
FIG. 5A shows this state in one spiral groove 21.
The wide part on the left end side in the drawing is a large lead and large pitch transfer section in the inlet side screw parts 21c and 22c, and the narrow part on the right end side is the exhaust side. Small leads, small-pitch transfer sections in the screw portions 21d, 22d, hatched portions 53a, 53
b is a meshing portion of the screw rotors 21 and 22, and numerals (1) to (3) in parentheses in the figure are the same spiral groove 21 before and after.
b, 22b show three working chambers 24 or 25 being transferred.

【0023】スクリューの吸入口側端面および拡大吸気
路31,32を通して吸気完了し最大容積に達した両作
動室24,25(図5中の作動室(1))は、図5
(b)に示すように、吸入側の端部で吸気口側スクリュ
ー部21c,22c同士の噛合部分53aによって吸気
口11aから遮断されるとともに、ほぼ同時に拡大吸気
路31,32とも遮断され、排気側の端部で排気口側ス
クリュー部21d,22d同士の噛合部分53bによっ
て先行する作動室2とは仕切られる。
The two working chambers 24 and 25 (the working chamber (1) in FIG. 5) which have reached the maximum volume after the suction has been completed through the suction port side end face of the screw and the enlarged suction paths 31 and 32 are shown in FIG.
As shown in (b), at the end on the suction side, it is cut off from the inlet 11a by the meshing portion 53a of the screw portions 21c, 22c between the inlet ports, and at the same time, the enlarged suction passages 31, 32 are also cut off. The working chamber 2 is separated from the preceding working chamber 2 by an engagement portion 53b between the exhaust port side screw portions 21d and 22d at the end on the side.

【0024】次いで、両作動室24,25(図5中の作
動室(1))は先端側から徐々に吸気口側スクリュー部
21d,22dに入り、両作動室24,25の容積が減
少すると(図5中の作動室(2)(3)の状態)、その
内部の圧力が吸気側と吐出側の作動室24,25の容積
比(例えば少なくとも4対1、好ましくは10対1程度
かそれより大きい比率)に応じて高まる。その後、作動
室24,25は、更に排気口11b側に移送される。そ
して、各作動室24,25が噛み合い中心C付近の排気
口11bに連通すると、その作動室24,25(図5
(c)の作動室(3))がロータ21,22回転に伴っ
て容積を減少しながら排気作用をなし、歯21a,22
aの端部が噛合い部付近の排気口11bに到達すると排
気が完了する。
Next, the working chambers 24 and 25 (working chamber (1) in FIG. 5) gradually enter the inlet side screw portions 21d and 22d from the tip side, and when the volumes of the working chambers 24 and 25 decrease. (The state of the working chambers (2) and (3) in FIG. 5), and the internal pressure is the volume ratio of the working chambers 24 and 25 on the intake side and the discharge side (for example, at least about 4: 1, preferably about 10: 1). Higher ratio). Thereafter, the working chambers 24 and 25 are further transferred to the exhaust port 11b side. When the working chambers 24 and 25 communicate with the exhaust port 11b near the meshing center C, the working chambers 24 and 25 (FIG. 5)
The working chamber (3) of (c) performs an exhausting action while reducing the volume as the rotors 21 and 22 rotate, and the teeth 21a and 22
When the end of “a” reaches the exhaust port 11b near the meshing portion, the exhaust is completed.

【0025】このような運転状態においては、一端で吸
気口11aに連通し他端でスクリューロータ21,22
の噛合い部分によって仕切られる作動室24,25が、
吸気完了時には小リードの排気口側スクリュー部21
d,22dの噛合い部Pm(図5(a)中の左端の噛合
部分53b)によって仕切られるので、吸気完了直前ま
での作動室24,25への気体流入のための開口面積が
大きくなるので、作動室24,25の吸排気量(コンダ
クタンス)が増加することになる。
In such an operation state, one end communicates with the intake port 11a and the other end communicates with the screw rotors 21 and 22.
The working chambers 24 and 25 partitioned by the meshing portions of
When the intake is completed, the small lead exhaust side screw section 21
Since the partitioning is made by the meshing portion Pm of d and 22d (the meshing portion 53b at the left end in FIG. 5A), the opening area for gas flow into the working chambers 24 and 25 immediately before the completion of the intake becomes large. In addition, the intake and exhaust volumes (conductance) of the working chambers 24 and 25 increase.

【0026】また、リードの異なる歯21a,22aを
併用することでスクリューロータ21,22による移送
中に圧縮作用をさせ、排気速度を大きくすることができ
る。
Further, by using the teeth 21a and 22a having different leads in combination, a compression action can be performed during the transfer by the screw rotors 21 and 22, and the exhaust speed can be increased.

【0027】さらに、拡大吸気路31,32の形状は、
その展開形状において、吸気側のロータ端面を底辺とす
る台形や三角形等の任意形状でよいが、その開口端が特
に図2に示すように吸気動作中の複数の作動室24,2
5に及ぶ略三角形状を有することによって、吸気効率を
十分に高めることができる。
Further, the shapes of the enlarged intake passages 31, 32 are as follows:
The developed shape may be an arbitrary shape such as a trapezoid or a triangle having the bottom side at the end face of the rotor on the intake side, and the open end thereof has a plurality of working chambers 24, 2 during the intake operation, particularly as shown in FIG.
By having approximately five triangular shapes, the intake efficiency can be sufficiently increased.

【0028】[0028]

【発明の効果】本発明によれば、大リードの歯間の作動
室を、吸気完了時に小リードの排気口側スクリュー部の
噛合い部によって仕切きるとともに、通常の吸気口とは
別に、各作動室の吸気完了直前まで作動室に連通する拡
大吸気路を設けているので、吸入特性に優れ、しかも大
小のリードの併用により圧縮比が高くなり高排気速度で
所要の到達真空度を得ることのできる真空ポンプを提供
することができる。
According to the present invention, the working chamber between the teeth of the large reed is partitioned by the meshing portion of the screw portion on the exhaust port side of the small reed when the intake is completed. The expanded intake passage communicating with the working chamber until just before the completion of the intake of the working chamber is provided, so it has excellent suction characteristics, and the compression ratio is increased by using large and small reeds, so that the required ultimate vacuum degree can be obtained at a high exhaust speed. The vacuum pump which can be provided can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る真空ポンプを示すそ
の正面断面図である。
FIG. 1 is a front sectional view showing a vacuum pump according to an embodiment of the present invention.

【図2】そのスクリューロータの螺旋歯及び螺旋溝を示
す展開図である。
FIG. 2 is a development view showing spiral teeth and spiral grooves of the screw rotor.

【図3】その拡大吸気路の形状を示す要部斜視図であ
る。
FIG. 3 is a perspective view of a main part showing a shape of the enlarged intake passage.

【図4】その吸気、移送及び排気作用の説明図である。FIG. 4 is an explanatory view of the intake, transfer and exhaust operations.

【図5】一実施形態におけるスクリューロータの歯すじ
展開図である。
FIG. 5 is a development view of tooth traces of the screw rotor in one embodiment.

【符号の説明】[Explanation of symbols]

11 ポンプハウジング 11a 吸気口 11b 排気口 11f,11g 溝部 21 雌スクリューロータ 21a,22a 螺旋状の歯 21ao,22ao 特定回転位置の歯 21b,22b 螺旋溝 21c,22c 吸気口側スクリュー部 21d,22d 排気口側スクリュー部 22 雄スクリューロータ 23 吸気室 24,25 作動室 24f,25f 後続の作動室 31,32 拡大吸気路 51 広幅部分 52 狭幅部分 53a、53b 噛合部分 A 結合点 P1 吸気開始位置 P2 吸気完了位置 Pm 噛合部分 11 Pump Housing 11a Inlet 11b Exhaust 11f, 11g Groove 21 Female Screw Rotor 21a, 22a Helical Teeth 21ao, 22ao Teeth at Specific Rotation Position 21b, 22b Helical Grooves 21c, 22c Inlet Screws 21d, 22d Exhaust Side screw part 22 Male screw rotor 23 Intake chamber 24,25 Working chamber 24f, 25f Subsequent working chamber 31,32 Enlarged intake path 51 Wide part 52 Narrow part 53a, 53b Meshing part A Joining point P1 Intake start position P2 Intake completion Position Pm Meshing part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】吸気口及び排気口を有するポンプハウジン
グと、 互いに噛み合ながら回転するようそれぞれ前記ポンプハ
ウジング内に回転自在に収納された雌雄のスクリューロ
ータと、を備え、 前記ポンプハウジングと各スクリューロータとの間に両
スクリューロータの噛合部分で互いに仕切られ両スクリ
ューロータの回転により吸気口側から排気口側に移送さ
れる複数の作動室を形成した真空ポンプにおいて、 前記雌雄のスクリューロータが、それぞれ螺旋状の歯の
リードが大きい吸気口側スクリュー部及び該吸気口側ス
クリュー部より螺旋状の歯のリードが小さい排気口側ス
クリュー部を結合してなり、 前記ポンプハウジングが、前記吸気口側スクリュー部の
放射外方に前記作動室に連通する拡大吸気路を形成する
溝部を有するとともに、 該拡大吸気路の排気口側の端部が、前記吸気口側スクリ
ュー部と前記排気口側スクリュー部の結合点近傍に位置
し、 前記雌雄のスクリューロータの回転に伴って前記吸気口
に連通した作動室の容積が増大するとき、該作動室が前
記拡大吸気路を通して吸気動作をなし、 前記吸気口に連通した作動室の容積が最大に達すると
き、該作動室の先端部が前記排気口側スクリュー部同士
の噛合部分によって仕切られるようにしたことを特徴と
する真空ポンプ。
A pump housing having an intake port and an exhaust port; and male and female screw rotors rotatably housed in the pump housing so as to rotate while meshing with each other. In a vacuum pump that forms a plurality of working chambers that are separated from each other by a meshing portion of the two screw rotors and that are transferred from the intake port side to the exhaust port side by rotation of the two screw rotors, the male and female screw rotors are Each of the pump housing is formed by coupling an inlet-side screw portion having a larger helical tooth lead and an outlet-side screw portion having a helical tooth lead smaller than the inlet-side screw portion. Having a groove forming an enlarged intake passage communicating with the working chamber outside of the screw portion; An end on the exhaust port side of the enlarged intake path is located near a connection point between the intake port side screw portion and the exhaust port side screw portion, and communicates with the intake port with rotation of the male and female screw rotors. When the volume of the working chamber increases, the working chamber performs a suction operation through the enlarged intake path, and when the volume of the working chamber connected to the intake port reaches a maximum, the tip of the working chamber is connected to the exhaust port. A vacuum pump characterized in that it is partitioned by a meshing portion between side screw portions.
【請求項2】前記拡大吸気路の展開形状が、前記吸気動
作中の複数の作動室に及ぶ略三角形状を有する請求項1
に記載の真空ポンプ。
2. The expanded shape of the enlarged intake passage has a substantially triangular shape extending over a plurality of working chambers during the intake operation.
The vacuum pump according to 1.
JP10311288A 1998-10-30 1998-10-30 Vacuum pump Pending JP2000136786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10311288A JP2000136786A (en) 1998-10-30 1998-10-30 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10311288A JP2000136786A (en) 1998-10-30 1998-10-30 Vacuum pump

Publications (1)

Publication Number Publication Date
JP2000136786A true JP2000136786A (en) 2000-05-16

Family

ID=18015338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10311288A Pending JP2000136786A (en) 1998-10-30 1998-10-30 Vacuum pump

Country Status (1)

Country Link
JP (1) JP2000136786A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211556A (en) * 2002-12-26 2004-07-29 Toyota Industries Corp Vacuum pump
JP2013525690A (en) * 2010-05-04 2013-06-20 オーリコン レイボルド バキューム ゲーエムベーハー Screw type vacuum pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211556A (en) * 2002-12-26 2004-07-29 Toyota Industries Corp Vacuum pump
JP2013525690A (en) * 2010-05-04 2013-06-20 オーリコン レイボルド バキューム ゲーエムベーハー Screw type vacuum pump

Similar Documents

Publication Publication Date Title
JPH08144977A (en) Compound dry vacuum pump
JP2001207984A (en) Evacuation device
EP1479913A2 (en) Roots pump
JP2009074554A (en) Multi-stage helical screw rotor
US7744356B2 (en) Screw vacuum pump with male and female screw rotors having unequal leads
TW202314121A (en) Compressor
KR20060047511A (en) Screw fluid machine
JPH0368237B2 (en)
JP2000136786A (en) Vacuum pump
US2642003A (en) Blower intake port
TW201013052A (en) Screw compressor
JP2924997B2 (en) Screw machine
CN212454832U (en) Compressor air supplement mechanism and compressor
JP2003161277A (en) Multi-stage dry vacuum pump
JPH01113183U (en)
JPH11230067A (en) Fluid machine
CN112780553A (en) Rotor subassembly, compressor and air conditioner
JP2007263122A (en) Evacuating apparatus
CN113167275A (en) Screw compressor
JP3580890B2 (en) Oilless vacuum pump device and operation control method thereof
JP2008014288A (en) Scroll compressor
JP2002070776A (en) Composite vacuum pump
JP2007298043A (en) Vacuum exhaust device
JP2684911B2 (en) Water ring vacuum pump
JP2005256845A (en) Evacuating apparatus