JP2000135556A - Light aluminum composite material - Google Patents
Light aluminum composite materialInfo
- Publication number
- JP2000135556A JP2000135556A JP34227098A JP34227098A JP2000135556A JP 2000135556 A JP2000135556 A JP 2000135556A JP 34227098 A JP34227098 A JP 34227098A JP 34227098 A JP34227098 A JP 34227098A JP 2000135556 A JP2000135556 A JP 2000135556A
- Authority
- JP
- Japan
- Prior art keywords
- fine hollow
- aluminum
- composite material
- hollow particles
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Rod-Shaped Construction Members (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は軽量で且つ断熱性に
優れた軽量アルミニウム複合材で、エクステリア製品、
ベランダ、サンルーム、窓枠、ドアや建造物の壁材、屋
根材、床材、その他機械部品、プラスチック金型等に使
用することができる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightweight aluminum composite material which is lightweight and has excellent heat insulating properties.
It can be used for verandas, solariums, window frames, doors and building wall materials, roofing materials, flooring materials, other machine parts, plastic molds and the like.
【0002】[0002]
【従来の技術】アルミニウムは建築材料として各種の部
位に使用されてきた。加工が容易で軽量である割りには
強度も比較的あり、生産性、加工性も容易であるため特
に重用されてきた。2. Description of the Related Art Aluminum has been used in various parts as a building material. Since it is easy to process and lightweight, it has relatively high strength, and has high productivity and workability.
【0003】アルミニウムは軽量で且つ加工し易い素材
であるが、アルミニウムをさらに軽量化し、断熱性、比
圧縮強度、衝撃吸収能を高め、耐火性、耐熱性、加工
性、剛性を損なわず、しかも原料コストを下げることが
求められていた。[0003] Aluminum is a material that is lightweight and easy to process. However, aluminum is further reduced in weight, heat insulation, specific compressive strength and shock absorption are enhanced, and fire resistance, heat resistance, workability and rigidity are not impaired. There was a need to reduce raw material costs.
【0004】このためアルミニウム中に耐熱性微細中空
粒子を分散させて軽量アルミニウムを製造することはす
でに知られている。又シラスバルーンとアルミニウムと
の均一分散混合系で表面に薄い金属被覆層を有する軽量
複合材料も既に知られている。[0004] For this reason, it is already known to produce lightweight aluminum by dispersing heat-resistant fine hollow particles in aluminum. Also, a lightweight composite material having a thin metal coating layer on the surface in a uniformly dispersed mixed system of a shirasu balloon and aluminum is already known.
【0005】このような軽量アルミニウム複合材は、比
重がアルミニウムよりも小さくなるにもかかわらず機械
的性質などに優れているため建築材料、機械部品材料、
日用品材料などに多くの用途が期待できた。[0005] Such a lightweight aluminum composite material is excellent in mechanical properties and the like despite its specific gravity being smaller than that of aluminum, so that it is used for building materials, machine parts materials, and the like.
Many applications could be expected for materials for daily necessities.
【0006】しかしアルミニウムに耐熱性微細中空粒子
を混入すると、従来の微細中空粒子では耐圧強度が低い
ため微細中空粒子の大半が破壊し、均一な軽量アルミニ
ウム複合材を生産することができなかった。However, when heat-resistant fine hollow particles are mixed with aluminum, most of the conventional fine hollow particles have low compressive strength, so that most of the fine hollow particles are broken, and a uniform lightweight aluminum composite material cannot be produced.
【0007】従来の耐熱性微細中空粒子とは、シラスバ
ルーン、ガラスバルーン、シリカバルーンなどで、その
耐圧強度はシラスバルーンが80kgf/cm2、ガラ
スバルーン、シリカバルーンなども300kgf/cm
2以下である。Conventional heat-resistant fine hollow particles include shirasu balloons, glass balloons, silica balloons, and the like. The pressure resistance of shirasu balloons is 80 kgf / cm 2 , and that of glass balloons and silica balloons is 300 kgf / cm 2 .
2 or less.
【0008】アルミニウムと耐熱性微細中空粒子からな
る軽量アルミニウム複合材を製造する方法は、プレパッ
ク法による加圧法と減圧法及びプレミックス法による溶
融混合法と粉末混合法がある。いずれの方法においても
充填する耐熱性微細中空粒子の耐圧強度は600kgf
/cm2以上でなければ破壊率が高くなり、複合材とし
ての効果を出すことができなかった。Methods for producing a lightweight aluminum composite material comprising aluminum and heat-resistant fine hollow particles include a pressurizing method and a depressurizing method by a prepack method, a melt mixing method by a premix method, and a powder mixing method. In any method, the pressure resistance of the heat-resistant fine hollow particles to be filled is 600 kgf.
If it is not more than / cm 2 , the destruction rate is high and the effect as a composite material cannot be obtained.
【0009】[0009]
【発明が解決しようとする課題】このためアルミニウム
と複合材を成形製造することのできる耐熱性、耐圧性の
高い微細中空粒子が望まれていたのである。本発明はか
かる課題を解決するため特に耐熱性、耐圧性の高いセラ
ミック微細中空粒子を使用して容易にアルミニクムとの
複合材を製造できる軽量アルミニウム複合材を提供する
ことを目的とするものである。For this reason, there has been a demand for fine hollow particles having high heat resistance and high pressure resistance, which can be produced by molding a composite material with aluminum. An object of the present invention is to provide a lightweight aluminum composite material which can easily produce a composite material with aluminum using a ceramic fine hollow particle having high heat resistance and high pressure resistance in order to solve such a problem. .
【0010】[0010]
【課題を解決するための手段】本発明になる軽量アルミ
ニウム複合材は、圧縮強度600kgf/cm2以上で
嵩比重0.3〜0.5g/cm3、融点1500℃以上
のセラミック微細中空粒子に溶融アルミニウムを加えて
均一に浸透分散して成形するものである。The lightweight aluminum composite material according to the present invention is formed into ceramic fine hollow particles having a compressive strength of 600 kgf / cm 2 or more, a bulk specific gravity of 0.3 to 0.5 g / cm 3 and a melting point of 1500 ° C. or more. In this method, molten aluminum is added, and the mixture is uniformly permeated and dispersed to form.
【0011】[0011]
【発明の実施の形態】セラミック微細中空粒子とアルミ
ニウムによる軽量アルミニウム複合材は、プレパック法
又はプレミックス法によって製造することができる。BEST MODE FOR CARRYING OUT THE INVENTION A lightweight aluminum composite made of fine ceramic hollow particles and aluminum can be produced by a prepacking method or a premixing method.
【0012】プレパック法は鋳型に予めセラミック微細
中空粒子を充填しこれに溶融アルミニウムを外力を用い
て浸透分散させる方法である。外力は加圧法又は減圧法
があり、ダイキャスト機にセラミック充填装置を付設し
てダイキャスト成形することも可能である。The prepacking method is a method in which ceramic fine hollow particles are filled in a mold in advance, and molten aluminum is permeated and dispersed therein using external force. The external force includes a pressurizing method and a depressurizing method. It is also possible to attach a ceramic filling device to a die casting machine and perform die casting.
【0013】プレミックス法は、溶融アルミニウム微細
中空粒子を直接混合して、セラミック微細中空粒子の均
一分散した溶融状の軽量アルミニウム複合材を作成し、
これを圧延あるいは押出成形によって長尺材を製造する
方法である。In the premix method, molten aluminum fine hollow particles are directly mixed to form a molten lightweight aluminum composite material in which ceramic fine hollow particles are uniformly dispersed.
This is a method for producing a long material by rolling or extrusion.
【0014】本発明において使用するアルミニウムは、
純アルミニウムでもアルミニウム合金でも使用すること
ができる。The aluminum used in the present invention is:
Either pure aluminum or an aluminum alloy can be used.
【0015】本発明に使用するセラミック微細中空粒子
は、従来の微細中空粒子に比較して特に圧縮強度が高い
ものであり軽量アルミニウム複合材製造過程で生ずる高
い応力、剪断力に対して耐え得ることができるものであ
る。さらに成形することによって軽量であるにもかかわ
らず緻密な軽量アルミニウム複合材とすることができる
のである。The fine hollow ceramic particles used in the present invention have particularly high compressive strength as compared with conventional fine hollow particles, and can withstand high stress and shear force generated in the process of manufacturing a lightweight aluminum composite material. Can be done. Furthermore, the compact lightweight aluminum composite material can be obtained by molding.
【0016】セラミック微細中空粒子あるいは微細中空
粒子の圧縮強度とは耐水圧強度と同意語であり、圧縮強
度の測定は、微細中空粒子を水中で加圧し水に加えられ
た圧力が微細中空粒子に伝わり微細中空粒子が破壊する
圧力を圧縮強度とするのである。The compressive strength of the ceramic fine hollow particles or the fine hollow particles is synonymous with the water pressure resistance. The compressive strength is measured by pressurizing the fine hollow particles in water and applying the pressure applied to the water to the fine hollow particles. The pressure at which the fine hollow particles are transmitted and destroyed is defined as the compressive strength.
【0017】優れた性能を示すことのできる軽量アルミ
ニウム複合材は、攪拌・混練工程が充分できなければな
らず、均一な製品で品質の良い軽量アルミニウム複合材
には特に重要である。本発明におけるが如き組成物に対
して充分な攪拌・混練を行なう場合セラミック微細中空
粒子に加わる応力及び剪断力は、約600kgf/cm
2前後になるため、従来の微細中空粒子には、このよう
な高圧に耐え得るものが無かったので、かかる軽量アル
ミニウム複合材として使用し充分な性能が得られるもの
は皆無であった。即ち大部分が破壊してしまうからであ
る。A lightweight aluminum composite material that can exhibit excellent performance must be able to sufficiently perform the stirring and kneading steps, and is particularly important for a lightweight aluminum composite material having a uniform product and good quality. When the composition is sufficiently stirred and kneaded as in the present invention, the stress and shear force applied to the ceramic fine hollow particles are about 600 kgf / cm.
Since it is around 2, none of the conventional fine hollow particles can withstand such high pressure, and none of them can be used as such a lightweight aluminum composite material to obtain sufficient performance. That is, most of them are destroyed.
【0018】次にセラミック微細中空粒子を軽量アルミ
ニウム複合材に使用する場合重要なことは熱伝導率であ
る。微細中空粒子はその粒径によるが一般に0.1(k
cal/mhr℃)前後であり、充填した微細中空粒子
の半分が破壊されたものである場合熱伝導率は大体0.
2(kcal/mhr℃)に低下する。破壊されない完
全な微細中空粒子が使用された場合にのみ優れた効果が
得られるのである。本発明に使用するセラミック微細中
空粒子は従来の微細中空粒子であるシラスバルーン、ガ
ラスマイクロバルーン、シリカバルーンなどに比較して
格段に圧縮強度が高いものであり、軽量アルミニウム複
合材の微細中空粒子は100%完全な球状で残存するた
め軽量アルミニウム複合材は耐熱性で軽量強靭となるの
である。従来の微細中空粒子の圧縮強度は80〜300
kgf/cm2である。When the fine ceramic hollow particles are used in a lightweight aluminum composite, an important factor is thermal conductivity. The fine hollow particles are generally 0.1 (k
cal / mhr ° C), and when half of the filled fine hollow particles are broken, the thermal conductivity is approximately 0.
2 (kcal / mhr ° C). Excellent effects can only be obtained when completely fine hollow particles which are not destroyed are used. The ceramic fine hollow particles used in the present invention have significantly higher compressive strength than conventional fine hollow particles such as shirasu balloon, glass micro balloon, silica balloon, etc. Since 100% is perfectly spherical and remains, the lightweight aluminum composite is heat resistant and lightweight and tough. Conventional fine hollow particles have a compressive strength of 80 to 300.
kgf / cm 2 .
【0019】本発明に使用するセラミック微細中空粒子
の融点は1500℃以上である。セラミック微細中空粒
子はその材質に起因するのは当然であるが一般的に融点
の高いもの程圧縮強度も高くなる。圧縮強度を600k
gf/cm2以上とするならばその融点は1500℃以
上になる。当然アルミニウムよりはるかに融点は高いの
である。The melting point of the ceramic fine hollow particles used in the present invention is 1500 ° C. or more. Naturally, the fine ceramic hollow particles are caused by their material, but generally, the higher the melting point, the higher the compressive strength. Compressive strength 600k
If gf / cm 2 or more, the melting point will be 1500 ° C. or more. Naturally, the melting point is much higher than aluminum.
【0020】以上により本発明において使用するセラミ
ック微細中空粒子はシリカ50〜60%、アルミナ40
〜45%、その他1.5〜2.5%からなるセラミック
組成物を発泡生成せしめたものを使用し、その物性は圧
縮強度700kgf/cm2、融点1600℃、嵩比重
0.3〜0.5g/cm3、熱伝導率0.1(kcal
/mhr℃)で完全な中空粒子のみで構成されている。
セラミック微細中空粒子の粒径は、5〜350μmの範
囲のものを使用し、細目5〜75μm、中目75〜15
0μm、荒目150〜350μmとして粒度調整により
混合使用する。嵩比重は粒度の細かいものは重く、荒い
ものは軽くなる。このため嵩比重の範囲は0.3〜0.
5g/cm3となる。As described above, the ceramic fine hollow particles used in the present invention are 50 to 60% of silica and 40% of alumina.
, A foamed ceramic composition consisting of 1.5% to 2.5% and a compression strength of 700 kgf / cm 2 , a melting point of 1600 ° C., and a bulk density of 0.3 to 0.3%. 5 g / cm 3 , thermal conductivity 0.1 (kcal
/ Mhr ° C) and consists only of completely hollow particles.
The particle diameter of the ceramic fine hollow particles is in the range of 5 to 350 μm, and is fine 5 to 75 μm, medium 75 to 15 μm.
It is mixed and used by adjusting the particle size to 0 μm and coarse 150-350 μm. The bulk specific gravity is heavy for fine particles and light for rough ones. For this reason, the range of the bulk specific gravity is 0.3-0.
It becomes 5 g / cm 3 .
【0021】[0021]
【実施例】以下本発明の実施例について詳述する。Embodiments of the present invention will be described below in detail.
【0022】実施例 圧縮強度700kgf/cm2、
嵩比重0.3〜0.5g/cm3、融点1600℃、熱
伝導率0.1(kcal/mhr℃)で完全中空粒子の
みで構成されているセラミック微細中空粒子を、内径5
0mmで高さ200mmの黒鉛製鋳型に全容積の70容
量%充填した。この鋳型を所定の温度に予熱し、溶融純
アルミニウムを鋳込み注入し、真空排気装置により鋳型
内の圧力を所定の値まで減圧した。この減圧度は700
mmHg以上であつた。得られた軽量アルミニウム複合
材の比重は1.06あった。Example The compressive strength was 700 kgf / cm 2 ,
Ceramic fine hollow particles having a bulk specific gravity of 0.3 to 0.5 g / cm 3 , a melting point of 1600 ° C., and a thermal conductivity of 0.1 (kcal / mhr ° C.) and composed of only completely hollow particles, having an inner diameter of 5
A graphite mold having a height of 0 mm and a height of 200 mm was filled with 70% by volume of the total volume. The mold was preheated to a predetermined temperature, molten pure aluminum was poured and poured, and the pressure in the mold was reduced to a predetermined value by a vacuum exhaust device. This degree of decompression is 700
mmHg or more. The specific gravity of the obtained lightweight aluminum composite material was 1.06.
【0023】[0023]
【発明の効果】従来の耐熱性微細中空粒子とアルミニウ
ムからなる複合材は耐熱性微細中空粒子の耐圧強度が低
いため微細中空粒子の大半が破壊してしまい、比重も
1.36が限界であった。According to the conventional composite material comprising heat-resistant fine hollow particles and aluminum, most of the fine hollow particles are destroyed due to the low pressure resistance of the heat-resistant fine hollow particles, and the specific gravity is limited to 1.36. Was.
【0024】本発明においては、セラミック微細中空粒
子を、容積の70容量%にしてもセラミック微細中空粒
子の破壊はほとんどなく、ここで得られた軽量アルミニ
ウム複合材の比重は、従来成し得なかった1.06とい
う非常に軽い数値で、その物性値も実用上全く充分であ
るということを明らかにすることができた。In the present invention, even if the ceramic fine hollow particles are 70% by volume of the volume, the ceramic fine hollow particles hardly break, and the specific gravity of the lightweight aluminum composite material obtained here cannot be conventionally achieved. With a very light value of 1.06, it was possible to clarify that the physical properties were quite sufficient for practical use.
【図1】軽量アルミニウム複合材部分拡大断面図FIG. 1 is a partially enlarged cross-sectional view of a lightweight aluminum composite material.
1.セラミック微細中空粒子 2 アルミニウム 1. Ceramic hollow particles 2 Aluminum
Claims (1)
嵩比重0.3〜0.5g/cm3、融点1500℃以上
のセラミック微細中空粒子に溶融アルミニウムを加えて
均一に浸透分散させたことを特徴とする軽量アルミニウ
ム複合材。The present invention is characterized in that molten aluminum is added to ceramic fine hollow particles having a compressive strength of 600 kgf / cm 2 or more, a bulk specific gravity of 0.3 to 0.5 g / cm 3 , and a melting point of 1500 ° C. or more, and is uniformly permeated and dispersed. And lightweight aluminum composite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34227098A JP2000135556A (en) | 1998-10-27 | 1998-10-27 | Light aluminum composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34227098A JP2000135556A (en) | 1998-10-27 | 1998-10-27 | Light aluminum composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000135556A true JP2000135556A (en) | 2000-05-16 |
Family
ID=18352428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34227098A Pending JP2000135556A (en) | 1998-10-27 | 1998-10-27 | Light aluminum composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000135556A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109811172A (en) * | 2019-03-04 | 2019-05-28 | 东北大学 | Two kinds of particles coordinate system based on different wetting for foamed aluminium method and device |
CN114505465A (en) * | 2020-11-16 | 2022-05-17 | 鞍钢股份有限公司 | Preparation method of composite foam steel |
CN115319060A (en) * | 2022-09-14 | 2022-11-11 | 哈尔滨工业大学 | Preparation method of high-strength double-wall core-shell structure glass bead reinforced aluminum-based porous composite material |
-
1998
- 1998-10-27 JP JP34227098A patent/JP2000135556A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109811172A (en) * | 2019-03-04 | 2019-05-28 | 东北大学 | Two kinds of particles coordinate system based on different wetting for foamed aluminium method and device |
CN109811172B (en) * | 2019-03-04 | 2020-07-14 | 东北大学 | Method and device for preparing foamed aluminum based on cooperation of two particles with different wettabilities |
CN114505465A (en) * | 2020-11-16 | 2022-05-17 | 鞍钢股份有限公司 | Preparation method of composite foam steel |
CN114505465B (en) * | 2020-11-16 | 2024-01-09 | 鞍钢股份有限公司 | Preparation method of composite foam steel |
CN115319060A (en) * | 2022-09-14 | 2022-11-11 | 哈尔滨工业大学 | Preparation method of high-strength double-wall core-shell structure glass bead reinforced aluminum-based porous composite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107311680B (en) | Lightweight corundum-mullite castable and preparation method thereof | |
US20040251573A1 (en) | Process for the production of a shaped article from a lightweight-aggregate granulate and a binder | |
CN106633652A (en) | Preparation method of bicontinuous-phase alumina/epoxy resin composite material | |
US9181136B2 (en) | Method for producing hollow bodies having enclosed freely displaceable particles | |
JP2000135556A (en) | Light aluminum composite material | |
CN114057448A (en) | Polyethylene powder light foam concrete and preparation method thereof | |
JP2002193684A (en) | Porous sound absorbing ceramic compact and its manufacturing method | |
KR102219180B1 (en) | Method for manufacturing an aluminum alloys clad section member, and an aluminum alloys clad section member manufactured by using the same | |
US3132956A (en) | Acoustical tile, methods, and compositions | |
CN110256063A (en) | A kind of preparation method of mullite/leucite porous ceramic composite | |
US5962351A (en) | Method of producing β-spodumene bodies | |
JP2002226285A (en) | Lightweight ceramic member and method for manufacturing the same | |
JP2660383B2 (en) | Fine ceramics sintered body having fine voids and method for producing the same | |
CN108623174B (en) | Preparation method of aerogel composite glass | |
CN108623173B (en) | Preparation method of aerogel composite glass | |
CN108623172B (en) | Preparation method of aerogel composite glass | |
JPH0223503B2 (en) | ||
RU2069204C1 (en) | Blend for producing quartz ceramics | |
CN108623325B (en) | Preparation method of aerogel composite material | |
CN108623171B (en) | Method for manufacturing aerogel composite glass | |
JPH0769743A (en) | Thermally insulating castable | |
JPS6296375A (en) | Porous ceramic and manufacture | |
JP2000290085A (en) | Production of inorganic porous body | |
KR950006206B1 (en) | Process for the preparation of multiple foamed glass | |
JP2014005495A (en) | Metal material having hollow structure |