JP2000133721A - Short-circuit protecting circuit - Google Patents

Short-circuit protecting circuit

Info

Publication number
JP2000133721A
JP2000133721A JP10318314A JP31831498A JP2000133721A JP 2000133721 A JP2000133721 A JP 2000133721A JP 10318314 A JP10318314 A JP 10318314A JP 31831498 A JP31831498 A JP 31831498A JP 2000133721 A JP2000133721 A JP 2000133721A
Authority
JP
Japan
Prior art keywords
voltage
circuit
output
overcurrent detection
overcurrent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10318314A
Other languages
Japanese (ja)
Other versions
JP4225615B2 (en
Inventor
Shinichi Akita
晋一 秋田
Kosuke Hama
浩介 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP31831498A priority Critical patent/JP4225615B2/en
Publication of JP2000133721A publication Critical patent/JP2000133721A/en
Application granted granted Critical
Publication of JP4225615B2 publication Critical patent/JP4225615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce variation of overcurrent sensing level, when supply voltage is gradually dropped by providing an overcurrent sensing MOS transistor, which has sufficiently low threshold voltage relative to the other components and in which the gate is controlled by voltage across the terminals of an overcurrent sensing resistor. SOLUTION: The threshold voltage of an overcurrent sensing nMOS transistor N1 is set lower than that of the other components. Also, the overcurrent sensing nMOS transistor N1 is set not to perform p-control diffusion. If such an overcurrent sensing nMOS transistor N1 is used, the difference between operating points of output pMOS transistor P1 and shunt pMOS transistor can be reduced. Accordingly, since an overcurrent sensing level will not rise significantly even when supply voltage VDD is gradually dropped, a simple and economy constant-voltage power supply is obtained, which has a structure similar to a common short-circuit sensing circuit and a necessary and sufficient overcurrent protection cut-off capability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、短絡保護回路に関
し、特に、半導体集積回路の定電圧電源回路等に用い
る、定電圧電源回路の入出力特性を損なうことのない、
また電源電圧の変動による動作値のばらつきの小さな短
絡保護回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a short-circuit protection circuit, and more particularly to a short-circuit protection circuit for use in a constant-voltage power supply circuit of a semiconductor integrated circuit without impairing the input / output characteristics of the constant-voltage power supply circuit.
In addition, the present invention relates to a short-circuit protection circuit having a small variation in an operation value due to a variation in power supply voltage.

【0002】[0002]

【従来の技術】図6に、従来の定電圧電源回路およびそ
の短絡保護回路の一例を示す。図6の従来例では、その
ソースを電源VDDに接続し、ゲート電位が誤差増幅器
OP1の出力により制御される出力pMOSトランジス
タP1のドレインから過電流検知抵抗R3を経て出力端
子1より出力電圧Voutが取り出される。出力電圧V
outは、出力端子1と接地間に接続された分圧抵抗R
1、R2により分圧され、その反転入力端子が接地され
ている誤差増幅器OP1の非反転入力端子に供給され
る。このようにして出力pMOSトランジスタP1が負
帰還制御され、一定範囲の負荷変動に対して、出力電圧
Voutが一定値に制御される。
2. Description of the Related Art FIG. 6 shows an example of a conventional constant voltage power supply circuit and its short-circuit protection circuit. 6, the source is connected to the power supply VDD, and the output voltage Vout is output from the output terminal 1 via the overcurrent detection resistor R3 from the drain of the output pMOS transistor P1 whose gate potential is controlled by the output of the error amplifier OP1. Taken out. Output voltage V
out is a voltage dividing resistor R connected between the output terminal 1 and the ground.
1, the voltage is divided by R2 and supplied to the non-inverting input terminal of the error amplifier OP1 whose inverting input terminal is grounded. In this way, the output pMOS transistor P1 is subjected to negative feedback control, and the output voltage Vout is controlled to a constant value with respect to a certain range of load fluctuation.

【0003】また、図6の従来例では出力端子1にソー
スが接続され、そのドレインが過電流信号出力抵抗R4
を経て電源VDDに接続される過電流検知nMOSトラ
ンジスタN1のゲート電位を出力pMOSトランジスタ
P1のドレイン電位で制御し、nMOSトランジスタN
1のドレイン電位を過電流信号Vlimとして出力し、
この過電流信号Vlimにより、電源VDDにそのソー
スを接続し出力pMOSトランジスタP1のゲートにそ
のドレインを接続する過電流遮断pMOSトランジスタ
P3のゲート電位を制御することにより、出力pMOS
トランジスタP1の電流を制限している。
In the prior art shown in FIG. 6, a source is connected to an output terminal 1 and its drain is connected to an overcurrent signal output resistor R4.
, The gate potential of the overcurrent detection nMOS transistor N1 connected to the power supply VDD is controlled by the drain potential of the output pMOS transistor P1, and the nMOS transistor N
1 is output as an overcurrent signal Vlim,
The overcurrent signal Vlim controls the gate potential of the overcurrent blocking pMOS transistor P3 whose source is connected to the power supply VDD and whose drain is connected to the gate of the output pMOS transistor P1, so that the output pMOS
The current of the transistor P1 is limited.

【0004】以下、この過電流検知nMOSトランジス
タN1及び過電流遮断pMOSトランジスタP3の動作
について説明する。電源VDDから供給される電源電圧
Vddが高く、出力電圧Voutとの電位差が過電流検
知nMOSトランジスタN1のしきい値電圧Vthに比
べ十分に大きいとき、出力pMOSトランジスタP1を
流れる電流≒負荷電流Ioが増大し、 Io≧Vth/R3 になると、過電流検知nMOSトランジスタN1がオン
し、過電流信号Vlimの電位はほぼ出力電圧Vout
に降下する。この電圧降下により、過電流遮断pMOS
トランジスタP3をオンとし、出力pMOSトランジス
タP1のゲート電位を電源電圧Vddに引き上げること
により、これをオフに制御し過電流保護すなわち短絡保
護を行っている。
The operation of the overcurrent detection nMOS transistor N1 and the overcurrent cutoff pMOS transistor P3 will be described below. When the power supply voltage Vdd supplied from the power supply VDD is high and the potential difference from the output voltage Vout is sufficiently larger than the threshold voltage Vth of the overcurrent detection nMOS transistor N1, the current flowing through the output pMOS transistor P1 divided by the load current Io When Io ≧ Vth / R3, the overcurrent detection nMOS transistor N1 turns on, and the potential of the overcurrent signal Vlim becomes almost equal to the output voltage Vout.
Descends. This voltage drop causes an overcurrent cutoff pMOS
By turning on the transistor P3 and raising the gate potential of the output pMOS transistor P1 to the power supply voltage Vdd, it is turned off to perform overcurrent protection, that is, short-circuit protection.

【0005】しかし、図6の従来例では、過電流を検知
するために出力pMOSトランジスタP1のドレインと
出力端子1間に過電流検知抵抗R3が挿入されているた
め、その電圧降下により定電圧電源としての入出力電圧
特性が犠牲となり、特に電池駆動の携帯用機器等では、
電池電圧が降下してくると、電池電圧が設定電圧以上あ
るにもかかわらず定電圧出力を維持できなくなり、機器
の使用可能時間が短くなる問題点がある。
However, in the conventional example shown in FIG. 6, an overcurrent detection resistor R3 is inserted between the drain of the output pMOS transistor P1 and the output terminal 1 to detect an overcurrent. Input / output voltage characteristics are sacrificed, especially in battery-powered portable devices, etc.
When the battery voltage drops, the constant voltage output cannot be maintained even though the battery voltage is higher than the set voltage, and there is a problem that the usable time of the device is shortened.

【0006】このような過電流検知抵抗R3による電圧
降下を避けるために、図1に示す構成の短絡保護回路が
良く用いられる。図6の短絡保護回路と比較すると、図
6と同様に誤差増幅器OP1の出力により負帰還制御さ
れ電圧レギュレーションを行う出力pMOSトランジス
タP1のドレインが直接出力端子1に接続され、過電流
検知抵抗R3は、出力pMOSトランジスタP1と電源
VDDと出力端子1の間に並列に設けられた分流pMO
SトランジスタP2のドレインと出力端子1間に接続さ
れている。分流pMOSトランジスタP2は、例えば出
力pMOSトランジスタP1の1/10のサイズに設定
され、電源VDDにソースを接続し、出力pMOSトラ
ンジスタP1と同じゲート電位で制御される。
In order to avoid such a voltage drop due to the overcurrent detection resistor R3, a short-circuit protection circuit having the configuration shown in FIG. 1 is often used. Compared with the short-circuit protection circuit of FIG. 6, the drain of the output pMOS transistor P1 that performs negative feedback control and voltage regulation by the output of the error amplifier OP1 is directly connected to the output terminal 1, as in FIG. Shunt pMO provided in parallel between output pMOS transistor P1, power supply VDD and output terminal 1
It is connected between the drain of the S transistor P2 and the output terminal 1. The shunt pMOS transistor P2 is set, for example, to 1/10 the size of the output pMOS transistor P1, has its source connected to the power supply VDD, and is controlled by the same gate potential as the output pMOS transistor P1.

【0007】従って、出力pMOSトランジスタP1及
び分流pMOSトランジスタP2を流れる電流をそれぞ
れI1,I2とするとき、出力電圧Voutに比べ電源
電圧Vddが十分に高く、出力pMOSトランジスタP
1及び分流pMOSトランジスタP2が共に飽和領域に
あるとき、両pMOSトランジスタのソースドレイン間
電圧は過電流検知抵抗R3による電圧降下I2・R3だ
け相違するが、I1及びI2は共に専らゲート電位に依
存するため、両者は比例関係、すなわち上記例ではI1
≒10・I2の関係にある。従って、I2・R3≧Vt
h、すなわち、 I1=10・I2 ≧10・Vth/R3 ・・・(1) となったとき、過電流検知nMOSトランジスタN1が
オンとなり、図6の短絡保護回路と同様にして、出力p
MOSトランジスタP1を保護遮断する。このようにし
て、図1の回路では過電流検知抵抗R3により入出力特
性を犠牲にすることなく、定電圧電源回路の過電流保護
すなわち短絡保護を行うことができる。
Therefore, when the currents flowing through the output pMOS transistor P1 and the shunt pMOS transistor P2 are I1 and I2, respectively, the power supply voltage Vdd is sufficiently higher than the output voltage Vout and the output pMOS transistor P2
When both 1 and the shunt pMOS transistor P2 are in the saturation region, the source-drain voltages of both pMOS transistors differ by the voltage drop I2 · R3 due to the overcurrent detection resistor R3, but both I1 and I2 depend exclusively on the gate potential. Therefore, both are in a proportional relationship, that is, in the above example, I1
≒ 10 · I2. Therefore, I2 · R3 ≧ Vt
h, that is, when I1 = 10 · I2 ≧ 10 · Vth / R3 (1), the overcurrent detection nMOS transistor N1 is turned on, and the output p is set in the same manner as in the short circuit protection circuit of FIG.
The MOS transistor P1 is protected and cut off. Thus, in the circuit of FIG. 1, the overcurrent protection of the constant voltage power supply circuit, that is, the short-circuit protection can be performed without sacrificing the input / output characteristics by the overcurrent detection resistor R3.

【0008】また、図2に示す回路も良く用いられる。
図2の回路は、過電流検知nMOSトランジスタN1の
バックゲートが接地されている点以外は図1の回路と同
様である。図2の回路では出力電圧Voutが高電位に
あるとき、すなわち通常の動作時には、接地電位にある
バックゲートの効果により、過電流検知nMOSトラン
ジスタN1のしきい値電圧Vthが増大し(1)式の1
0・Vth/R3、すなわち過電流検知レベルが高くな
るが、例えば接地事故などにより、Voutが降下し接
地電位となった場合は、バックゲートとソースの電位が
等しくなるのでしきい値電圧Vthは通常の値となる。
よって、接地事故に対し十分保護できるよう過電流検知
抵抗R3の値を定めておくことにより、通常動作時には
これより大きな瞬時負荷を許容できるので比較的小容量
の定電圧電源で大きな負荷を駆動できる利点がある。
The circuit shown in FIG. 2 is often used.
The circuit of FIG. 2 is the same as the circuit of FIG. 1 except that the back gate of the overcurrent detection nMOS transistor N1 is grounded. In the circuit of FIG. 2, when the output voltage Vout is at a high potential, that is, during a normal operation, the threshold voltage Vth of the overcurrent detection nMOS transistor N1 increases due to the effect of the back gate at the ground potential, and the equation (1) Of 1
0 · Vth / R3, that is, the overcurrent detection level increases. However, when Vout drops to the ground potential due to, for example, a grounding accident, the threshold voltage Vth becomes equal because the potentials of the back gate and the source become equal. Normal value.
Therefore, by setting the value of the overcurrent detection resistor R3 so as to sufficiently protect against a grounding accident, a larger instantaneous load can be tolerated in a normal operation, so that a large load can be driven by a relatively small-capacity constant-voltage power supply. There are advantages.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、図1及
び図2の短絡保護回路では、電源電圧Vddが降下して
きた場合に過電流検知レベルが大きく変動してしまうと
いう問題点があった。図3は、ゲート電圧を一定とした
場合のMOSトランジスタのソースドレイン間電圧とド
レイン電流の関係を示す特性図である。上記問題点を、
図1の短絡保護回路で説明すると、電源電圧Vddと出
力電圧Voutの差、すなわち出力pMOSトランジス
タP1のソースドレイン間電圧Vdslがピンチオフ電
圧Vpに近くなると、図3に見られるように、出力pM
OSトランジスタP1の動作点O1は飽和領域にある
が、分流pMOSトランジスタP2の動作点O2は、そ
のソースドレイン間電圧Vds2が過電流検知抵抗R3
による電圧降下のため、次式のように、 Vds2=Vds1−I2・R3<Vp ピンチオフ電圧Vp以下となるため非飽和領域に入り、
I1とI2の比例関係が崩れ、上記例では、I1》10
・I2となってしまう。このため過電流検知nMOSト
ランジスタN1は、I2≧Vth/R3でオンとなる
が、図3に示すように、このときのI1の値、すなわち
過電流検知レベルは(1)式の検知レベル10・Vth
/R3に比べ大きく上昇する。
However, the short-circuit protection circuits shown in FIGS. 1 and 2 have a problem that the overcurrent detection level fluctuates greatly when the power supply voltage Vdd drops. FIG. 3 is a characteristic diagram showing the relationship between the source-drain voltage and the drain current of a MOS transistor when the gate voltage is fixed. With the above problems,
1, the difference between the power supply voltage Vdd and the output voltage Vout, that is, when the source-drain voltage Vdsl of the output pMOS transistor P1 approaches the pinch-off voltage Vp, as shown in FIG.
Although the operating point O1 of the OS transistor P1 is in the saturation region, the operating point O2 of the shunt pMOS transistor P2 is such that its source-drain voltage Vds2 is equal to the overcurrent detection resistance R3.
Vds2 = Vds1−I2 · R3 <Vp Since the voltage drop is smaller than the pinch-off voltage Vp, it enters the unsaturated region,
The proportional relationship between I1 and I2 is broken, and in the above example, I1 >> 10
・ It becomes I2. Thus, the overcurrent detection nMOS transistor N1 is turned on when I2 ≧ Vth / R3. As shown in FIG. 3, the value of I1 at this time, that is, the overcurrent detection level is equal to the detection level 10 · Vth
/ R3 greatly increases.

【0010】更に、電源電圧Vddが降下し、Vds1
<Vpとなると、出力pMOSトランジスタP1の動作
点O1も非飽和領域に入るが、非飽和領域でのドレイン
電流はソースドレイン間電圧に依存するため、やはりI
1とI2の比例関係が崩れ、上記例では、I1>10・
I2となり、過電流検知レベルは出力pMOSトランジ
スタP1が飽和領域にある場合に比べ下がるものの、
(1)式の検知レベルに比べなお大きな値となる。
Further, the power supply voltage Vdd drops, and Vds1
When <Vp, the operating point O1 of the output pMOS transistor P1 also enters the unsaturated region, but the drain current in the unsaturated region depends on the source-drain voltage.
The proportional relationship between 1 and I2 breaks down, and in the above example, I1> 10 ·
I2, and the overcurrent detection level is lower than when the output pMOS transistor P1 is in the saturation region.
The value is still larger than the detection level of Expression (1).

【0011】図4(a)は、図1の短絡保護回路の負荷
電流・出力電圧特性を示すグラフ図で、Ia、Ibまた
Icはそれぞれ上記した、電源電圧Vddが十分高い場
合、電源電圧Vddと出力電圧Voutの差がピンチオ
フ電圧に近づいた場合、また同差がピンチオフ電圧以下
となった場合の過電流検知レベルを表す。図2の短絡保
護回路においても、図1の回路と同様に、それぞれ図4
(b)Ia、Ib、Ic及びIa’、Ib’Ic’で示
すように通常動作時と短絡時の過電流検知レベルは異な
るものの、どちらも電源電圧Vddが十分高い時の過電
流検知レベルIa、Ia’に比べ電源電圧Vddの降下
時の過電流検知レベルIb、Ib’またIc、Ic’は
大きな値となってしまう。
FIG. 4A is a graph showing the load current-output voltage characteristics of the short-circuit protection circuit of FIG. 1. Ia, Ib and Ic indicate the above-described power supply voltage Vdd when the power supply voltage Vdd is sufficiently high. Represents the overcurrent detection level when the difference between the output voltage and the output voltage Vout approaches the pinch-off voltage, and when the difference becomes equal to or less than the pinch-off voltage. In the short-circuit protection circuit of FIG. 2, as in the circuit of FIG.
(B) As shown by Ia, Ib, Ic and Ia ', Ib'Ic', the overcurrent detection levels at the time of normal operation and at the time of short circuit are different, but both are at the overcurrent detection level Ia when the power supply voltage Vdd is sufficiently high. , Ia ′, the overcurrent detection levels Ib, Ib ′ and Ic, Ic ′ when the power supply voltage Vdd drops become large values.

【0012】このため、図1や図2の短絡保護回路にお
いては、過電流検知抵抗による入出力特性の損失は改善
されるが、電源電圧の降下時にも十分な保護遮断を行え
るよう過電流検知抵抗R3の値を設定すると、電源電圧
が十分にある場合の動作電流値が制限され、必要以上に
許容負荷の大きい定電圧電源を用いなければならない問
題点があった。
For this reason, in the short-circuit protection circuits of FIGS. 1 and 2, the loss of the input / output characteristics due to the overcurrent detection resistor is improved, but the overcurrent detection is performed so that sufficient protection can be performed even when the power supply voltage drops. When the value of the resistor R3 is set, the operating current value when the power supply voltage is sufficient is limited, and there is a problem that a constant-voltage power supply having a larger allowable load than necessary must be used.

【0013】本発明はかかる問題点を解決するためにな
されたものであり、定電圧電源回路の入出力特性を犠牲
にすることなく、且つ電源電圧が降下してきた場合にも
過電流検知レベルの変動の少ない短絡保護回路を具現
し、簡素で経済的な定電圧電源を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and does not sacrifice the input / output characteristics of a constant voltage power supply circuit. It is an object of the present invention to provide a simple and economical constant-voltage power supply that implements a short-circuit protection circuit with little fluctuation.

【0014】[0014]

【課題を解決するための手段】本発明の短絡保護回路
は、電源と出力端子間に設けられ、ゲート電位が出力端
子電圧に応じて負帰還制御される出力MOSトランジス
タを有する定電圧電源回路における短絡保護回路におい
て、過電流検知抵抗を介してこの出力MOSトランジス
タと並列に該電源と該出力端子間に接続され、ゲートが
該出力MOSトランジスタのゲートに接続された分流M
OSトランジスタと、他の素子より十分に小さなしきい
値電圧をもち前記過電流検知抵抗の端子間電圧によりゲ
ートが制御される過電流検知MOSトランジスタを有
し、この端子間電圧が前記しきい値電圧を越えた場合に
前記出力MOSトランジスタのドレイン電流を制限する
手段とを備えたことを特徴とする。
According to the present invention, there is provided a short-circuit protection circuit in a constant voltage power supply circuit having an output MOS transistor provided between a power supply and an output terminal and having a gate potential negatively controlled in accordance with the output terminal voltage. In the short-circuit protection circuit, a shunt M connected between the power supply and the output terminal in parallel with the output MOS transistor via an overcurrent detection resistor and having a gate connected to the gate of the output MOS transistor
An OS transistor and an overcurrent detection MOS transistor having a threshold voltage sufficiently smaller than that of other elements and having a gate controlled by a voltage between terminals of the overcurrent detection resistor, wherein the voltage between the terminals is equal to the threshold voltage; Means for limiting the drain current of the output MOS transistor when the voltage is exceeded.

【0015】また、前記過電流検知MOSトランジスタ
のバックゲートが接地されていることを特徴とする。
Further, a back gate of the overcurrent detecting MOS transistor is grounded.

【0016】さらに、前記過電流検知MOSトランジス
タは、しきい値電圧調整のためのチャンネル領域への拡
散およびイオン注入を行わないで形成されていることを
特徴とする。
Further, the overcurrent detection MOS transistor is formed without performing diffusion and ion implantation into a channel region for adjusting a threshold voltage.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て従来例について参照した図1、図2等の図面を参照し
て説明する。通常、ICチップ上等のnMOSトランジ
スタの形成に当たっては、しきい値電圧の調整のためp
ウェルからなるチャンネル領域に図5(a)に示すよう
なp−コントロール拡散が行われるが、本発明の一実施
形態では、前記した課題を解決するために、図1及び図
2の短絡保護回路において、過電流検知nMOSトラン
ジスタN1として、図5(b)に示す様な上記p−コン
トロール拡散を行わないnMOSトランジスタを用いる
こととした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS. Normally, when forming an nMOS transistor on an IC chip or the like, p
The p-control diffusion as shown in FIG. 5A is performed in the channel region composed of the well. In one embodiment of the present invention, in order to solve the above-described problem, the short-circuit protection circuit shown in FIGS. In the above, an nMOS transistor which does not perform the p-control diffusion as shown in FIG. 5B is used as the overcurrent detection nMOS transistor N1.

【0018】このため、本発明の過電流検知nMOSト
ランジスタN1のしきい値電圧Vthは、他の素子に比
べて低い値となる。図3に示したように、過電流検知n
MOSトランジスタN1がオンとなるときの出力pMO
SトランジスタP1と分流pMOSトランジスタP2の
動作点O1、O2の横軸上の離隔は、両者のソースドレ
イン間電圧の差により定まり、これが過電流検知nMO
SトランジスタN1のしきい値電圧に達したとき、過電
流遮断が行われる。
Therefore, the threshold voltage Vth of the overcurrent detection nMOS transistor N1 of the present invention has a lower value than other elements. As shown in FIG.
Output pMO when MOS transistor N1 is turned on
The separation on the horizontal axis between the operating points O1 and O2 of the S transistor P1 and the shunt pMOS transistor P2 is determined by the difference between the source-drain voltages of the two, and this is the overcurrent detection nMO.
When the threshold voltage of the S transistor N1 is reached, overcurrent cutoff is performed.

【0019】従って、しきい値電圧の低い過電流検知n
MOSトランジスタN1を用いた本実施例によれば、過
電流検知時点での出力pMOSトランジスタP1と分流
pMOSトランジスタP2の動作点の相異を小さく押さ
えることができ、電源電圧Vddが降下してきた場合に
も過電流検知レベルが大きく上昇することがないので、
図1、図2を参照して説明した従来の短絡検知回路と同
等の構成で、特に図2に示す構成において、必要十分な
過電流保護遮断能力を備えた、簡素で経済的な定電圧電
源回路を提供することができる。
Therefore, overcurrent detection n with a low threshold voltage
According to the present embodiment using the MOS transistor N1, the difference between the operating points of the output pMOS transistor P1 and the shunt pMOS transistor P2 at the time of overcurrent detection can be suppressed to a small value, and when the power supply voltage Vdd decreases. Since the overcurrent detection level does not greatly increase,
A simple and economical constant-voltage power supply having a configuration equivalent to the conventional short-circuit detection circuit described with reference to FIGS. 1 and 2 and particularly having the necessary and sufficient overcurrent protection cutoff capability in the configuration shown in FIG. A circuit can be provided.

【0020】また、前記したように、本実施例のしきい
値電圧の低い過電流検知nMOSトランジスタN1は、
該トランジスタのチャンネル領域についてのみしきい値
電圧調整のためのp−コントロール拡散の工程を省くこ
とによって得ることができるので、ICチップの製造工
程を特に変更することなく安価で簡便に製造することが
できる。
Further, as described above, the overcurrent detection nMOS transistor N1 having a low threshold voltage according to the present embodiment comprises:
Since it can be obtained by omitting the p-control diffusion process for adjusting the threshold voltage only for the channel region of the transistor, it is possible to manufacture the IC chip inexpensively and easily without particularly changing the manufacturing process. it can.

【0021】以上、p−コントロール拡散を省略して形
成したしきい値電圧の低いMOSトランジスタを用いた
本発明の一実施形態について説明したが、本発明はこの
実施形態に限られるものではなく、例えば、チャンネル
領域にn−拡散を行ったしきい値電圧の低いMOSトラ
ンジスタを用いてもまったく同様に本発明の効果が得ら
れる等各種の応用が可能である。
The embodiment of the present invention using the MOS transistor having a low threshold voltage formed without the p-control diffusion has been described above. However, the present invention is not limited to this embodiment. For example, various applications are possible, such as obtaining the effect of the present invention in exactly the same manner even if a MOS transistor having a low threshold voltage and n-diffused in a channel region is used.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
必要十分な過電流保護遮断能力を備えた、簡素で経済的
な定電圧電源回路を提供することができ、特に電池駆動
機器に応用することにより、その使用可能時間の延伸が
図れる。
As described above, according to the present invention,
It is possible to provide a simple and economical constant-voltage power supply circuit having a necessary and sufficient overcurrent protection / interruption capability. In particular, by applying the present invention to a battery-driven device, the usable time can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】短絡保護回路の一例を示す回路図である。FIG. 1 is a circuit diagram illustrating an example of a short-circuit protection circuit.

【図2】短絡保護回路の他の例を示す回路図である。FIG. 2 is a circuit diagram showing another example of the short-circuit protection circuit.

【図3】ゲート電圧を一定とした時のpMOSトランジ
スタのソースドレイン間電圧とドレイン電流の関係を示
す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between a source-drain voltage and a drain current of a pMOS transistor when a gate voltage is fixed.

【図4】(a)従来の短絡保護回路の遮断特性の一例を
示す特性図である。 (b)従来の短絡保護回路の遮断特性の他の例を示す特
性図である。
FIG. 4A is a characteristic diagram showing an example of a breaking characteristic of a conventional short-circuit protection circuit. (B) is a characteristic diagram showing another example of the cutoff characteristic of the conventional short-circuit protection circuit.

【図5】(a)一般のnMOSトランジスタの形成を示
す断面図である。 (b)本発明のしきい値電圧の低いnMOSトランジス
タの形成の一例を示す断面図である。
FIG. 5A is a cross-sectional view showing the formation of a general nMOS transistor. (B) is a cross-sectional view showing one example of the formation of an nMOS transistor having a low threshold voltage according to the present invention.

【図6】従来の短絡保護回路の一例を示す回路図であ
る。
FIG. 6 is a circuit diagram showing an example of a conventional short-circuit protection circuit.

【符号の説明】[Explanation of symbols]

1 出力端子 P1 出力pMOSトランジスタ P2 分流pMOSトランジスタ P3 過電流遮断pMOSトランジスタ N1 過電流検知nMOSトランジスタ OP1 誤差増幅器 R1、R2 分圧抵抗 R3 過電流検知抵抗 R4 過電流信号出力抵抗 VDD 電源 Reference Signs List 1 output terminal P1 output pMOS transistor P2 shunt pMOS transistor P3 overcurrent cutoff pMOS transistor N1 overcurrent detection nMOS transistor OP1 error amplifier R1, R2 voltage dividing resistor R3 overcurrent detection resistor R4 overcurrent signal output resistor VDD power supply

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/822 H02H 9/02 Fターム(参考) 5F038 AR09 BB04 BB05 BH02 BH07 BH12 DF01 DF17 EZ13 EZ20 5F048 AB07 AB08 AB10 AC03 AC10 BA01 BB18 BD04 BE03 BE09 BG12 CC01 CC12 CC13 CC16 CC18 5G013 AA02 AA16 BA01 CA07 5H410 BB04 CC02 DD02 EA11 EB37 FF03 FF05 FF21 FF25 LL06 LL13 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) H01L 21/822 H02H 9/02 F term (Reference) 5F038 AR09 BB04 BB05 BH02 BH07 BH12 DF01 DF17 EZ13 EZ20 5F048 AB07 AB08 AB10 AC03 AC10 BA01 BB18 BD04 BE03 BE09 BG12 CC01 CC12 CC13 CC16 CC18 5G013 AA02 AA16 BA01 CA07 5H410 BB04 CC02 DD02 EA11 EB37 FF03 FF05 FF21 FF25 LL06 LL13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電源と出力端子間に設けられ、ゲート電
位が出力電圧に応じて負帰還制御される出力MOSトラ
ンジスタを有する定電圧電源回路における短絡保護回路
において、 過電流検知抵抗を介してこの出力MOSトランジスタと
並列に該電源と該出力端子間に接続され、ゲートが該出
力MOSトランジスタのゲートに接続された分流MOS
トランジスタと、 他の素子より十分に小さなしきい値電圧をもち前記過電
流検知抵抗の端子間電圧によりゲートが制御される過電
流検知MOSトランジスタを有し、この端子間電圧が前
記しきい値電圧を越えた場合に前記出力MOSトランジ
スタのドレイン電流を制限する手段とを備えたことを特
徴とする短絡保護回路。
1. A short-circuit protection circuit in a constant voltage power supply circuit having an output MOS transistor provided between a power supply and an output terminal and having a gate potential negatively controlled in accordance with an output voltage, via an overcurrent detection resistor. A shunt MOS connected between the power supply and the output terminal in parallel with the output MOS transistor, and having a gate connected to the gate of the output MOS transistor
A transistor and an overcurrent detection MOS transistor having a threshold voltage sufficiently smaller than that of other elements and having a gate controlled by a voltage between terminals of the overcurrent detection resistor, wherein the voltage between the terminals is equal to the threshold voltage. Means for limiting the drain current of the output MOS transistor when the voltage exceeds the threshold.
【請求項2】 前記過電流検知MOSトランジスタのバ
ックゲートが接地されていることを特徴とする請求項1
に記載の短絡保護回路。
2. The overcurrent detection MOS transistor according to claim 1, wherein a back gate is grounded.
2. The short-circuit protection circuit according to 1.
【請求項3】 前記過電流検知MOSトランジスタは、
しきい値電圧調整のためのチャンネル領域への拡散及び
イオン注入を行わないで形成されていることを特徴とす
る請求項1に記載の短絡保護回路。
3. The overcurrent detection MOS transistor according to claim 1,
2. The short-circuit protection circuit according to claim 1, wherein the short-circuit protection circuit is formed without performing diffusion and ion implantation into a channel region for adjusting a threshold voltage.
JP31831498A 1998-10-22 1998-10-22 Short circuit protection circuit Expired - Lifetime JP4225615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31831498A JP4225615B2 (en) 1998-10-22 1998-10-22 Short circuit protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31831498A JP4225615B2 (en) 1998-10-22 1998-10-22 Short circuit protection circuit

Publications (2)

Publication Number Publication Date
JP2000133721A true JP2000133721A (en) 2000-05-12
JP4225615B2 JP4225615B2 (en) 2009-02-18

Family

ID=18097824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31831498A Expired - Lifetime JP4225615B2 (en) 1998-10-22 1998-10-22 Short circuit protection circuit

Country Status (1)

Country Link
JP (1) JP4225615B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100380264C (en) * 2001-04-19 2008-04-09 精工电子有限公司 Voltage control circuit
US7855537B2 (en) 2006-11-07 2010-12-21 Nec Electronics Corporation Voltage supply circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100380264C (en) * 2001-04-19 2008-04-09 精工电子有限公司 Voltage control circuit
US7855537B2 (en) 2006-11-07 2010-12-21 Nec Electronics Corporation Voltage supply circuit

Also Published As

Publication number Publication date
JP4225615B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
US7602162B2 (en) Voltage regulator with over-current protection
US8547079B2 (en) Voltage regulator capable of enabling overcurrent protection in a state in which an output current is large
US5739712A (en) Power amplifying circuit having an over-current protective function
US7440249B2 (en) Undervoltage detection circuit
US20030011351A1 (en) Internal power supply for an integrated circuit having a temperature compensated reference voltage generator
US20010043112A1 (en) Soi voltage-tolerant body-coupled pass transistor
US20050180236A1 (en) Precharge circuit for DC/DC boost converter startup
JPH1014099A (en) Overcurrent detecting circuit
JP2005235947A (en) Electrostatic discharge protective circuit
EP0674389B1 (en) Overload protection circuit for MOS power drivers
US20120153924A1 (en) Voltage Regulator Soft-Start Circuit
US8493097B2 (en) Current-sensing circuit
JP2002366237A (en) Voltage regulator
US8004807B2 (en) Overvoltage protection circuit with reduced sensitivity to process variations
US6917503B2 (en) Programmable current limiting using a shunt resistor
KR100904111B1 (en) Voltage control circuit
JP2005293067A (en) Voltage regulator
US7116537B2 (en) Surge current prevention circuit and DC power supply
JP4225615B2 (en) Short circuit protection circuit
JPH0637553A (en) Dynamic limiting circuit for amplifier
JP3963597B2 (en) Short circuit protection circuit
US10848142B2 (en) Constant resistance input pass switch with overvoltage protection
US10691151B2 (en) Devices and methods for dynamic overvoltage protection in regulators
JP2008171070A (en) Power supply device and electronic device using it
JPH05241671A (en) Reference voltage generator and semiconductor with function preventing excess current

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141205

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term