JP2000133613A - Manufacture of semiconductor thin film - Google Patents

Manufacture of semiconductor thin film

Info

Publication number
JP2000133613A
JP2000133613A JP32407199A JP32407199A JP2000133613A JP 2000133613 A JP2000133613 A JP 2000133613A JP 32407199 A JP32407199 A JP 32407199A JP 32407199 A JP32407199 A JP 32407199A JP 2000133613 A JP2000133613 A JP 2000133613A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
energy
energy beam
convex lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32407199A
Other languages
Japanese (ja)
Other versions
JP3201395B2 (en
Inventor
Tsutomu Hashizume
勉 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP32407199A priority Critical patent/JP3201395B2/en
Publication of JP2000133613A publication Critical patent/JP2000133613A/en
Application granted granted Critical
Publication of JP3201395B2 publication Critical patent/JP3201395B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate the beam irradiation overlapping parts on a semiconductor thin film, which are generated by repeating the scanning of energy beams, and to irradiate uniformly the energy beam extending over the whole surface of the thin film, by a method wherein the energy beam from a beam source is transmitted to a convex lens and a concave lens to deform the energy beam into a plate shape. SOLUTION: A semiconductor thin film is deposited on a substrate 26 and a high-output energy beam is irradiated on this thin film, whereby when an expansion of a crystal grain diameter in the thin film or a crystallization of the thin film is conducted, first, the high-output energy beam from a laser unit 21 is expanded in the widthwise direction of the thin film so that the energy beam can be irradiated extending over the whole surface of the thin film on the sample 26 by a concave lens 22 and a convex lens 23 and is deformed into tabular parallel beams. The deformed beam is formed in a width equal to that of the parallel beams by a convex lens 25 and in a state that an energy density is increased, the beam is scanned in the longitudinal direction of the thin film while being irradiated extending over the whole surface of the thin film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体薄膜の製造
方法に関わり、特に基板上に半導体薄膜を堆積し、この
半導体薄膜に高エネルギービームを連続的に照射しなが
ら繰り返し操作する結晶化処理工程の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor thin film, and more particularly to a crystallization process for depositing a semiconductor thin film on a substrate and repeatedly operating the semiconductor thin film while continuously irradiating the semiconductor thin film with a high energy beam. Regarding improvement.

【0002】[0002]

【従来の技術】周知の如く、従来の2次元半導体装置の
素子を微細化してこれを高集積化及び高速化するには限
界があり、これを越える手段として多層に素子を形成す
るいわゆる3次元半導体装置が提案された。そして、こ
れを実現するため、基板上の多結晶あるいは非晶質半導
体に高エネルギービームを照射しながら走査して、粗大
粒の多結晶若しくは単結晶の半導体層を形成する結晶化
処理方法がいくつか提案されている。
2. Description of the Related Art As is well known, there is a limit in miniaturizing the elements of a conventional two-dimensional semiconductor device to achieve high integration and high speed. Semiconductor devices have been proposed. In order to realize this, there are several crystallization methods for forming a coarse-grained polycrystalline or single-crystal semiconductor layer by scanning a polycrystalline or amorphous semiconductor on a substrate while irradiating it with a high energy beam. Or has been proposed.

【0003】従来の方法でよく用いられている高エネル
ギービームの走査方法を図1に示す。このうち図1aは
特によく用いられているビームの走査方法である。ある
方向へ(X方向)への操作と、これと垂直な方向(Y方
向)の比較的遅い送りとからなっている。しかしこの方
法では、ビームの未照射領域を形成しないように、実線
で表わせられるX軸の正方向に繰り返し照射すると、図
1aに示すようにビームの重複した照射領域12が発生
する。このため、1回のみのビーム照射領域11と、重
複した照射領域12にあるシリコ層が受けるエネルギー
量が異なるため、その照射領域によって結晶化率または
屈折率などの物性値が異なるシリコン層が形成されてし
まう。さらに、ビーム強度が大きいときには、照射の重
複部分では、高エネルギーが集中して、半導体薄膜が蒸
発してしまうなどの大きな指傷を受けた。
FIG. 1 shows a high energy beam scanning method often used in the conventional method. Among them, FIG. 1A shows a particularly frequently used beam scanning method. It consists of an operation in a certain direction (X direction) and a relatively slow feed in a direction perpendicular to this (Y direction). However, in this method, when the irradiation is repeatedly performed in the positive direction of the X axis represented by a solid line so as not to form an unirradiated region of the beam, an overlapped irradiation region 12 of the beam is generated as shown in FIG. 1A. For this reason, since the amount of energy received by the single-layer beam irradiation region 11 and the amount of energy received by the silicon layers in the overlapping irradiation region 12 are different, a silicon layer having different physical properties such as a crystallization rate or a refractive index depending on the irradiation region is formed. Will be done. Furthermore, when the beam intensity was large, high energy was concentrated at the overlapping portion of the irradiation, and a large finger injury such as evaporation of the semiconductor thin film occurred.

【0004】一方、図1bに示すのはX軸に正の方向の
走査速度と負の方向の走査速度を同じくして、操作の無
駄をなくすために考えられた走査方法である。しかしこ
の場合もビームのX軸方向の照射で、アニールが重複す
る領域12があり、半導体薄膜のエネルギー吸収量の違
いによるシリコン層(半導体薄膜)の膜質の違いや、エ
ネルギー集中によるビーム損傷を避けることは困難とな
っていた。
On the other hand, FIG. 1B shows a scanning method which is considered to eliminate the waste of operation by making the scanning speed in the positive direction and the scanning speed in the negative direction on the X axis equal. However, also in this case, there is a region 12 where the annealing overlaps due to irradiation of the beam in the X-axis direction, thereby avoiding a difference in film quality of the silicon layer (semiconductor thin film) due to a difference in energy absorption amount of the semiconductor thin film and a beam damage due to energy concentration. Things were getting harder.

【0005】[0005]

【発明が解決しようとする課題】図1aの方法ではビー
ムが照射している地点のX座標を時間の関数で表わす
と、ビームがXの負の方向の速度が必ず0となり、ここ
でビームが停滞することになる。このため、半導体薄膜
の一地点に高エネルギーが集中して、半導体薄膜が蒸発
してしまうなどの大きな損傷を受けた。
In the method of FIG. 1A, when the X coordinate of the point irradiated by the beam is represented as a function of time, the speed of the beam in the negative direction of X is always 0, and the beam is now in a negative direction. It will stagnate. For this reason, high energy was concentrated at one point of the semiconductor thin film, and the semiconductor thin film was greatly damaged such as being evaporated.

【0006】一方、図1bに示すのはX軸に正の方向の
走査速度と負の方向の走査速度を同じくして、操作の無
駄をなくすために考えられた走査方法である。第2図の
方法の場合もビームのX軸方向の速度が必ず0になる地
点があり、半導体薄膜の一地点に高エネルギーが集中す
ることによる損傷を避けることは困難となっていた。
On the other hand, FIG. 1B shows a scanning method considered to eliminate the waste of operation by making the scanning speed in the positive direction and the scanning speed in the negative direction on the X axis the same. In the case of the method shown in FIG. 2 as well, there is a point where the velocity of the beam in the X-axis direction always becomes zero, and it has been difficult to avoid damage due to concentration of high energy at one point of the semiconductor thin film.

【0007】さらに、図1aの場合も、図1bの場合も
ビームをX紬方向に繰り返し走査するために照射領域が
重複する部分12が生じるため、重複する部分12とそ
うでない部分11の間で、シリコン層(半導体層)が受
けるエネルギー量が異なり、結晶化率、または屈折率な
どの物性が異なるシリコン層(半導体薄膜)が生じた。
Further, in both the case of FIG. 1A and the case of FIG. 1B, since the beam is repeatedly scanned in the X-axis direction, a portion 12 where the irradiation area overlaps occurs. Thus, a silicon layer (semiconductor thin film) having different physical properties such as a crystallization rate or a refractive index due to different amounts of energy received by the silicon layer (semiconductor layer) was produced.

【0008】本発明の目的は、かかる従来の欠点を取り
除き、基板上の半導体薄膜上で高出力のエネルギービー
ムが一点に集中して損傷を及ぼすことを防止し、均一な
物性で良質の半導体薄膜結晶層を従来に比べ簡便に製造
することができ、3次元半導体装置の素子形成用基板の
作成等に有用な半導体薄膜結晶層の製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the conventional drawbacks, prevent a high-power energy beam from concentrating on a semiconductor thin film on a substrate and causing damage thereto, and provide a semiconductor thin film of uniform physical properties and good quality. It is an object of the present invention to provide a method of manufacturing a semiconductor thin film crystal layer, which can manufacture a crystal layer more easily than before, and is useful for forming a substrate for forming an element of a three-dimensional semiconductor device.

【0009】[0009]

【課題を解決するための手段】本発明は、基板上に半導
体薄膜を堆積し、この半導体薄膜に高出力エネルギービ
ームを連続的に照射し、上記薄膜の結晶粒径拡大若しく
は結晶化をはかる半導体薄膜の製造方法において、上記
ビームの形状を板状に変形して、ビームを走査すると同
時に半導体薄膜にビームを照射することを特徴とする。
According to the present invention, a semiconductor thin film is deposited on a substrate, and the semiconductor thin film is continuously irradiated with a high-power energy beam to expand the crystal grain size or crystallize the thin film. In the method of manufacturing a thin film, the shape of the beam is deformed into a plate shape, and the semiconductor thin film is irradiated with the beam while scanning the beam.

【0010】[0010]

【作用】本発明の骨子は、エネルギービームの形状が板
状になっていることにある。
The gist of the present invention is that the energy beam has a plate shape.

【0011】すなわち本発明は、絶縁体基板上に半導体
薄膜を堆積し、この薄膜にレーザービームなどの高出力
エネルギービームを連続的に照射して、上記薄膜の結晶
粒径増大化もしくは単結晶化をはかる半導体薄膜結晶層
の製造方法に於て、ビーム源のエネルギービームを凸レ
ンズと凹レンズに透過させて、板状に変形したものであ
る。
That is, according to the present invention, a semiconductor thin film is deposited on an insulating substrate, and the thin film is continuously irradiated with a high-power energy beam such as a laser beam to increase the crystal grain size of the thin film or to form a single crystal. In the method of manufacturing a semiconductor thin film crystal layer, the energy beam of the beam source is transmitted through a convex lens and a concave lens to be deformed into a plate shape.

【0012】これによって、図1aや図1bで示され
た、ビームの走査の繰り返しによって生じる、シリコン
層(半導体薄膜)のビーム照射の重複部分がなくなり、
シリコン層(半導体薄膜)全面にわたって均一なエネル
ギー照射ができる。
As a result, the overlap of the beam irradiation of the silicon layer (semiconductor thin film) caused by the repetition of the beam scanning shown in FIGS. 1A and 1B is eliminated.
Uniform energy irradiation can be performed over the entire surface of the silicon layer (semiconductor thin film).

【0013】[0013]

【実施例】以下、本発明の詳細を図示の実施例によって
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the illustrated embodiments.

【0014】第2図は本発明の一実施例に使用したレー
ザーアニール装置を示す概略構成図である。図中21は
レーザー発振部、22は凹レンズ、23は凸レンズ、2
4は鏡、25は凸レンズ、26は試料である。
FIG. 2 is a schematic structural view showing a laser annealing apparatus used in one embodiment of the present invention. In the figure, 21 is a laser oscillation section, 22 is a concave lens, 23 is a convex lens, 2
4 is a mirror, 25 is a convex lens, and 26 is a sample.

【0015】次に、上記装置を用いた半導体薄膜結晶層
の製造方法について説明する。まず図3aに示すが如く
1辺25〔cm〕正方形のガラス基板(絶縁体基板)3
1表面全面に100(nm)のシリコン層(半導体薄
膜)32を形成する。レーザーの発振波長はXeClエ
キシマレーザーの308〔nm〕とした。レーザービー
ムの大きさは、1辺5〔mm〕の正方形であり、エネル
ギー強度は500〔mJ/パルス〕であり、レーザーの
パルス幅は約50〔ns〕であり、発振周波数は120
〔Hz〕とした。また、レーザービームの走査方法とし
て、鏡24をY軸方向に1〔mm/s〕の速度で動作し
てレーザービームを走査した。X軸方向のレーザービー
ムの幅は凹レンズ22と凸レンズ23の距離を変化させ
て調節する。さらに、レーザー発信部出口でのレーザー
ビームのエネルギー密度は、2000〔mJ/(cm
・パルス)〕であるが、凸レンズ23を透過直後では、
ビームの幅が50倍となるため、400〔mJ/cm
・パルス)〕と50分の1となる。アニール効果を減少
させないため、凸レンズ25でエネルギー密度を再び2
000〔mJ/(cm・パルス)〕に高める。エネル
ギー密度は、試料と凸レンズ25の距離で調整できる。
この距離を少なくするには曲率の大きい凸レンズを使用
すれば実現できる。これにより、図2に示すが如くレー
ザービームの走査方向はY軸方向のみとなるため、図1
の照射例でみられたようなシリコン層(半導体薄膜)の
アニールの重複を防止でき、これにより均一な物性で良
質なシリコン層(半導体薄膜)を得られるアニールが可
能となった。即ち、レーザービームの大きさが5mmで
凸レンズを透過直後のビーム幅が50倍となるため、2
5cmの幅になり、この幅は基板の幅25cmに相当す
る。凸レンズ25を透過後のビームの幅は第2図のよう
に基板の幅に相当するので、エネルギー線が平行ビーム
のまま基板に照射されることになる。
Next, a method of manufacturing a semiconductor thin film crystal layer using the above apparatus will be described. First, as shown in FIG. 3A, a glass substrate (insulator substrate) 3 having a square of 25 cm on a side is used.
A 100 (nm) silicon layer (semiconductor thin film) 32 is formed on the entire surface of one surface. The oscillation wavelength of the laser was 308 [nm] of a XeCl excimer laser. The size of the laser beam is a square having a side of 5 [mm], the energy intensity is 500 [mJ / pulse], the pulse width of the laser is about 50 [ns], and the oscillation frequency is 120 [ns].
[Hz]. As a laser beam scanning method, the laser beam was scanned by operating the mirror 24 at a speed of 1 [mm / s] in the Y-axis direction. The width of the laser beam in the X-axis direction is adjusted by changing the distance between the concave lens 22 and the convex lens 23. Further, the energy density of the laser beam at the exit of the laser transmitting section is 2000 mJ / (cm 2
Pulse)], but immediately after passing through the convex lens 23,
Since the beam width becomes 50 times, 400 [mJ / cm 2
Pulse)] and 1/50. In order not to reduce the annealing effect, the energy density is again reduced to 2 by the convex lens 25.
000 [mJ / (cm 2 · pulse)]. The energy density can be adjusted by the distance between the sample and the convex lens 25.
This distance can be reduced by using a convex lens having a large curvature. As a result, as shown in FIG. 2, the scanning direction of the laser beam is only in the Y-axis direction.
In this case, it is possible to prevent the annealing of the silicon layer (semiconductor thin film) from being repeated as seen in the irradiation example of (1), thereby enabling the annealing to obtain a high-quality silicon layer (semiconductor thin film) with uniform physical properties. That is, since the laser beam size is 5 mm and the beam width immediately after passing through the convex lens is 50 times, 2
This results in a width of 5 cm, which corresponds to a substrate width of 25 cm. Since the width of the beam transmitted through the convex lens 25 corresponds to the width of the substrate as shown in FIG. 2, the substrate is irradiated with the energy beam as a parallel beam.

【0016】これに対して、従来のようにX軸方向のビ
ームを繰り返すアニールのように、照射の重なり部分が
ある場合には、シリコン層の物性のばらつきや、重なり
部分でのビーム損傷が認められた。なお本発明は上述し
た実施例に限定されるものではない。実施例では、ガラ
ス基板(絶縁体基板)全面にシリコン層を形成し、シリ
コン層の全領域をアニールする例を示したが、シリコン
層の必要な部分だけをアニールしたい場合にはその必要
な大きさの幅にビームの大きさを調整した板状のビーム
で照射すればよい。また、シリコンの溶融再結晶化によ
る結晶成長だけでなく、他の半導体や金属などにも適用
することが可能である。さらに、イオン注入層の活性化
に本発明を適用し、アニール領域を均一にすることも可
能である。
On the other hand, when there is an overlapping portion of the irradiation as in the conventional annealing in which the beam in the X-axis direction is repeated, variations in the physical properties of the silicon layer and beam damage at the overlapping portion are observed. Was done. The present invention is not limited to the embodiments described above. In the embodiment, the silicon layer is formed on the entire surface of the glass substrate (insulator substrate), and the entire region of the silicon layer is annealed. However, if only the necessary portion of the silicon layer is to be annealed, the required size is required. Irradiation may be performed with a plate-shaped beam whose beam size is adjusted to the width of the beam. Further, the present invention can be applied not only to crystal growth by melt recrystallization of silicon but also to other semiconductors and metals. Furthermore, the present invention can be applied to the activation of the ion-implanted layer to make the annealing region uniform.

【0017】[0017]

【発明の効果】本発明によれば、ビームの繰り返し走査
によって生じる照射領域の重複部分がなくなるので速度
が0に近い付近、すなわちビームの走査方向の反転領域
が、アニール領域にないため、ビームが停留することが
なくなり、また照射の重複部分がなくなるので、アニー
ル領域におけるシリコン層(半導体薄膜)の物性のばら
つきがなくなり、さらにビーム損傷を未然に防止するこ
とができる。このため均一で良質の半導体薄膜結晶層を
積層することができ、3次元半導体装置の素子形成基板
として実用上十分な特性をもたせることが可能となる。
According to the present invention, there is no overlapping portion of the irradiation region caused by the repeated scanning of the beam, so that the speed is close to 0, that is, the inverted region in the scanning direction of the beam is not in the annealing region. Since there is no stagnation and there is no overlapping portion of irradiation, there is no variation in the physical properties of the silicon layer (semiconductor thin film) in the annealed region, and further, beam damage can be prevented. For this reason, a uniform and high-quality semiconductor thin film crystal layer can be laminated, and it is possible to provide practically sufficient characteristics as an element formation substrate of a three-dimensional semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】a、bはエネルギービームの走査方法の例を示
す模式図。
FIGS. 1A and 1B are schematic diagrams illustrating an example of an energy beam scanning method.

【図2】本発明の1実施例方法に使用したレーザーアニ
ール装置を示す概略構成図。
FIG. 2 is a schematic configuration diagram showing a laser annealing apparatus used in the method of one embodiment of the present invention.

【図3】上記実施例にかかわるシリコン薄膜結晶層の製
造工程を示す断面図である。
FIG. 3 is a cross-sectional view showing a step of manufacturing a silicon thin-film crystal layer according to the above embodiment.

【図4】本発明の実施例である。FIG. 4 is an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

21…レーザー発振部 22…凹レンズ 23…凸レンズ 24…鏡 25…凸レンズ 26…試料 31…ガラス基板(絶縁体基板) 32…シリコン層(半導体薄膜) Reference Signs List 21 laser oscillation part 22 concave lens 23 convex lens 24 mirror 25 convex lens 26 sample 31 glass substrate (insulator substrate) 32 silicon layer (semiconductor thin film)

【手続補正書】[Procedure amendment]

【提出日】平成11年11月26日(1999.11.
26)
[Submission Date] November 26, 1999 (1999.11.
26)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】[0009]

【課題を解決するための手段】本発明は、 基板上に半
導体薄膜を堆積し、該半導体薄膜に高出力エネルギービ
ームを照射して、前記半導体薄膜の結晶粒径の拡大又は
結晶化を行う半導体薄膜の製造方法において、ビーム源
からの前記高出力エネルギービームをレンズにより前記
半導体薄膜の全幅を照射できるよう前記半導体薄膜の幅
方向に拡大させ且つ板状の平行ビームに変形させ、当該
変形させたビームを凸レンズにより前記平行ビームの幅
と等しくなるような幅で、且つエネルギー密度を高めた
状態で前記半導体薄膜の全幅にわたって照射しながら前
記半導体薄膜の長手方向に走査することを特徴とする。
According to the present invention, a semiconductor thin film is deposited on a substrate, and the semiconductor thin film is irradiated with a high-power energy beam to enlarge or crystallize the crystal grain size of the semiconductor thin film. In the method for manufacturing a thin film, the high output energy beam from the beam source is expanded in the width direction of the semiconductor thin film so as to be able to irradiate the entire width of the semiconductor thin film by a lens, and is deformed into a plate-shaped parallel beam, and the deformed. Scanning is performed in the longitudinal direction of the semiconductor thin film while irradiating the beam with a convex lens with a width equal to the width of the parallel beam and over the entire width of the semiconductor thin film with an increased energy density.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上に半導体薄膜を堆積し、この半導体
薄膜に高出力エネルギービームを連続的に照射し、上記
薄膜の結晶粒径拡大若しくは結晶化をはかる半導体薄膜
の製造方法において、 上記ビームの形状を板状に変形して、ビームを走査する
と同時に半導体薄膜にビームを照射することを特徴とす
る半導体薄膜の製造方法。
1. A method of manufacturing a semiconductor thin film, comprising: depositing a semiconductor thin film on a substrate, continuously irradiating the semiconductor thin film with a high-power energy beam, and expanding or crystallizing the crystal grain size of the thin film. A method for manufacturing a semiconductor thin film, wherein the semiconductor thin film is irradiated with a beam while scanning the beam while deforming the shape of the semiconductor thin plate into a plate shape.
JP32407199A 1999-11-15 1999-11-15 Semiconductor thin film manufacturing method Expired - Lifetime JP3201395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32407199A JP3201395B2 (en) 1999-11-15 1999-11-15 Semiconductor thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32407199A JP3201395B2 (en) 1999-11-15 1999-11-15 Semiconductor thin film manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2087977A Division JP3033120B2 (en) 1990-04-02 1990-04-02 Manufacturing method of semiconductor thin film

Publications (2)

Publication Number Publication Date
JP2000133613A true JP2000133613A (en) 2000-05-12
JP3201395B2 JP3201395B2 (en) 2001-08-20

Family

ID=18161832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32407199A Expired - Lifetime JP3201395B2 (en) 1999-11-15 1999-11-15 Semiconductor thin film manufacturing method

Country Status (1)

Country Link
JP (1) JP3201395B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256879A (en) * 2011-06-07 2012-12-27 Ultratech Inc Ultra-high-speed laser annealing with reduced pattern density effect in manufacture of integrated circuit
JP2013510443A (en) * 2009-11-03 2013-03-21 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク System and method for partial dissolution membrane treatment with non-periodic pulses
US8889569B2 (en) 2009-11-24 2014-11-18 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral soldification
US9087696B2 (en) 2009-11-03 2015-07-21 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse partial melt film processing
US9646831B2 (en) 2009-11-03 2017-05-09 The Trustees Of Columbia University In The City Of New York Advanced excimer laser annealing for thin films

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510443A (en) * 2009-11-03 2013-03-21 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク System and method for partial dissolution membrane treatment with non-periodic pulses
US9087696B2 (en) 2009-11-03 2015-07-21 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse partial melt film processing
US9646831B2 (en) 2009-11-03 2017-05-09 The Trustees Of Columbia University In The City Of New York Advanced excimer laser annealing for thin films
US8889569B2 (en) 2009-11-24 2014-11-18 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral soldification
JP2012256879A (en) * 2011-06-07 2012-12-27 Ultratech Inc Ultra-high-speed laser annealing with reduced pattern density effect in manufacture of integrated circuit

Also Published As

Publication number Publication date
JP3201395B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
JP3033120B2 (en) Manufacturing method of semiconductor thin film
US8796159B2 (en) Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions
US8598588B2 (en) Systems and methods for processing a film, and thin films
US8476144B2 (en) Method for providing a continuous motion sequential lateral solidification for reducing or eliminating artifacts in edge regions, and a mask for facilitating such artifact reduction/elimination
EP1063049B1 (en) Apparatus with an optical system for laser heat treatment and method for producing semiconductor devices by using the same
TW564465B (en) Method and apparatus for making a poly silicon film, process for manufacturing a semiconductor device
EP1537938A2 (en) Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
WO2007022302A2 (en) High throughput crystallization of thin films
KR20040082312A (en) Laser irradiation apparatus, laser irradiation method, and method for manufacturing a semiconductor device
JP2004311906A (en) Laser processing device and laser processing method
JPH07249592A (en) Laser treatment method of semiconductor device
US7651931B2 (en) Laser beam projection mask, and laser beam machining method and laser beam machine using same
US20090038536A1 (en) Crystallization apparatus, crystallization method, device, optical modulation element, and display apparatus
WO2011148788A1 (en) Laser annealing method and device
JP3201395B2 (en) Semiconductor thin film manufacturing method
JP2006156676A (en) Laser anneal method
JP3201381B2 (en) Semiconductor thin film manufacturing method
JP4769491B2 (en) Crystallization method, thin film transistor manufacturing method, thin film transistor, and display device
JPH0531354A (en) Laser irradiation apparatus
JP3201382B2 (en) Semiconductor thin film manufacturing method
JP2000012460A (en) Method and device for preparing thin film
JP2002057105A (en) Method and device for manufacturing semiconductor thin film, and matrix circuit-driving device
JPH11345768A (en) Manufacture of semiconductor thin film
JPH03289128A (en) Manufacture of semiconductor thin film crystal layer
JP2006086447A (en) Method and apparatus for manufacturing semiconductor thin film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9