JP2000130887A - Lamination type heat exchanger - Google Patents

Lamination type heat exchanger

Info

Publication number
JP2000130887A
JP2000130887A JP10302825A JP30282598A JP2000130887A JP 2000130887 A JP2000130887 A JP 2000130887A JP 10302825 A JP10302825 A JP 10302825A JP 30282598 A JP30282598 A JP 30282598A JP 2000130887 A JP2000130887 A JP 2000130887A
Authority
JP
Japan
Prior art keywords
tank
heat exchanger
heat exchange
refrigerant
side tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10302825A
Other languages
Japanese (ja)
Inventor
Tomohiro Chiba
朋広 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP10302825A priority Critical patent/JP2000130887A/en
Priority to DE69911139T priority patent/DE69911139T2/en
Priority to EP19990308314 priority patent/EP0995961B1/en
Publication of JP2000130887A publication Critical patent/JP2000130887A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of a temperature distribution in passing air by a method wherein a lower front side tank and a lower rear side tank are partitioned at substantially central part of lengthwise direction of the tanks and each end parts communicate with each other through a header, forming a heat exchanging medium flow passage, while a heat exchanging medium introducing and discharging port unit is formed at the opposite side of the header. SOLUTION: A lower front side tank 11a and a lower rear side tank 11b are provided with partitions 8, 9 at substantially central part of them and are defined into two chambers 27, 28 and two chambers 29, 30 in the lengthwise direction of them respectively. The refrigerant introducing port unit 36 is opened in the chamber 29 of the lower rear side tank 11b and the refrigerant discharging port unit 37 is opened in the chamber 27 of the lower front side tank 11a while the chambers 30, 28 are communicated with each other through a header 31. According to this method, mainly liquid refrigerant is conducted to flow through tubes constituting heat exchanging units 34, 35 opposed to the opening units of the unit to improve a heat exchanging efficiency whereby the generation of a temperature distribution of passing air can be eliminated and the outlet temperature of the air can be unified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、たとえば車両用空
調装置に用いられる積層型熱交換器に関し、より詳しく
はユニット内に収容されて使用される積層型熱交換器に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated heat exchanger used for, for example, a vehicle air conditioner, and more particularly to a laminated heat exchanger housed and used in a unit.

【0002】[0002]

【従来の技術】従来から、車両用空調装置等に用いられ
る積層型熱交換器としては、たとえば、実開平7−12
778号公報に記載のような提案がなされている。該提
案に係る熱交換器を図6に示す。図6において100は
積層型熱交換器を示している。熱交換器100は、矢印
で示す通風方向に対して下流側に位置する。上後側タン
ク101と下後側タンク103、および通風方向に対し
て上流側に位置する上前側タンク105と下前側タンク
107とを有している。熱交換媒体が流通する熱交換媒
体流路102、106は複数のチューブ(図示略)によ
り形成されており、該チューブ間にフィン(図示略)を
配設することにより、下流側熱交換部104、上流側熱
交換部108が形成されている。また、上後側タンク1
01には熱交換器100内部へ気液混合状態の熱交換媒
体(冷媒)を導入するための冷媒導入口109が設けら
れており、上前側タンク105には冷媒導出口110が
設けられている。そして、タンク101、105は、た
とえばヘッダ等により形成される冷媒流路111を介し
て連通されている。
2. Description of the Related Art Conventionally, as a laminated heat exchanger used in a vehicle air conditioner or the like, for example, a conventional heat exchanger 7-12 is disclosed.
A proposal such as that described in Japanese Patent Publication No. 778 has been made. FIG. 6 shows a heat exchanger according to the proposal. In FIG. 6, reference numeral 100 denotes a stacked heat exchanger. The heat exchanger 100 is located downstream with respect to the ventilation direction indicated by the arrow. It has an upper rear tank 101 and a lower rear tank 103, and an upper front tank 105 and a lower front tank 107 positioned upstream with respect to the ventilation direction. The heat exchange medium flow paths 102 and 106 through which the heat exchange medium flows are formed by a plurality of tubes (not shown). By disposing fins (not shown) between the tubes, the downstream heat exchange section 104 is provided. , An upstream heat exchange section 108 is formed. The upper rear tank 1
01 has a refrigerant inlet 109 for introducing a heat exchange medium (refrigerant) in a gas-liquid mixed state into the heat exchanger 100, and a refrigerant outlet 110 is provided in the upper front tank 105. . The tanks 101 and 105 are in communication with each other via a coolant channel 111 formed by, for example, a header.

【0003】また、上後側タンク101内は仕切り11
2により、一方、上前タンク105は仕切り113によ
り仕切られている。
The upper rear tank 101 has a partition 11 inside.
On the other hand, the upper front tank 105 is partitioned by a partition 113.

【0004】上記のような積層型熱交換器100におい
ては、導入口109から導入された冷媒は図6に示すよ
うな流路を形成して、導出口110から熱交換器100
外へ導出されるようになっている。
In the above-described stacked heat exchanger 100, the refrigerant introduced from the inlet 109 forms a flow path as shown in FIG.
It is to be led out.

【0005】しかし、上記提案による熱交換器100に
おいては、たとえば導入口109からタンク101内へ
流入した気液二相の冷媒は、重力により液相を多く含む
冷媒(以下、単に液冷媒という。)はタンク101の冷
媒流通方向の比較的上流側に連通する流路102内へ流
入し易い。また、タンク103から流路102内へ流入
する場合には、慣性力の差によりタンク103の冷媒流
通方向の下流側に連通する流路102内へ液冷媒が流入
し易い。このため、図7に示すように下流側熱交換部1
04において、液冷媒の流通量の比較的少ない部分が他
の部分よりも高温になる高温部114が発生するおそれ
がある。また、上記同様の理由から上流側熱交換部10
8においても高温部115が発生するおそれがある。上
記提案による熱交換器100においては、高温部11
4、115が略同一の領域、つまり熱交換部104、1
08の中央部に発現するため、熱交換器100の空気出
口部における通過空気に著しい温度分布が発生するおそ
れがある。
However, in the heat exchanger 100 proposed above, for example, the gas-liquid two-phase refrigerant flowing into the tank 101 from the inlet 109 is a refrigerant containing a large amount of liquid phase due to gravity (hereinafter, simply referred to as a liquid refrigerant). ) Easily flows into the flow path 102 communicating with the tank 101 relatively upstream in the refrigerant flow direction. Further, when flowing from the tank 103 into the flow path 102, the liquid refrigerant easily flows into the flow path 102 communicating with the downstream side of the tank 103 in the refrigerant flow direction due to a difference in inertial force. For this reason, as shown in FIG.
In 04, there is a possibility that a high-temperature portion 114 in which a portion having a relatively small flow rate of the liquid refrigerant has a higher temperature than other portions may occur. Further, for the same reason as described above, the upstream heat exchange section 10
8, the high-temperature portion 115 may be generated. In the heat exchanger 100 according to the above proposal, the high-temperature section 11
4 and 115 are substantially the same area, that is, the heat exchange sections 104 and 1
08, there is a possibility that a remarkable temperature distribution may occur in the passing air at the air outlet of the heat exchanger 100.

【0006】上記のような問題を解決するために、特開
平9−170850号公報に記載の提案においては、熱
交換器内の冷媒流路を工夫することにより、上流側熱交
換部、下流側熱交換部における高温部の領域を互いにず
らすことにより熱交換器の通過空気の温度の均一化が図
られている。
[0006] In order to solve the above problems, in the proposal described in Japanese Patent Application Laid-Open No. 9-170850, the upstream heat exchange section and the downstream heat exchange section are devised by devising a refrigerant flow path in the heat exchanger. The temperature of the air passing through the heat exchanger is made uniform by shifting the regions of the high-temperature part in the heat exchange part from each other.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、熱交換
器の実際の使用局面においては、熱交換器は通常、対向
する面の略中央部(熱交換器の熱交換部の略中央部に対
応する部分)に空気を通過させるための開口部が形成さ
れたユニットに収納されている。また、上記開口部は、
熱交換器の熱交換部よりも狭くなっているのが一般的で
ある。このため、熱交換部を通過する通過空気の風速
は、中央部においては速くなるのに対し、端部側ほど遅
くなる。この結果、中央部における熱交換が不十分とな
り、熱交換部の中央部の通過空気温度が熱交換部の端部
側よりも高くなる。したがって、特開平9−17085
0号公報記載の提案のように、ユニットの開口部に高温
部が形成される場合には、通過空気の熱交換が不十分と
なり温度分布の発生を防止することは困難になる。つま
り、特開平9−170850号公報記載の提案は、熱交
換部通過空気の風速が該熱交換部の全域で均一である場
合には、温度分布を解消することができるものの、実際
の使用に際し、通過空気の風速が不均一となる場合には
有効に温度分布を解消できなくなるおそれがある。
However, in the actual use phase of the heat exchanger, the heat exchanger usually has a substantially central portion of the facing surface (corresponding to a substantially central portion of the heat exchange portion of the heat exchanger). Part) is housed in a unit in which an opening for passing air is formed. In addition, the opening,
Generally, it is narrower than the heat exchange part of the heat exchanger. For this reason, the wind speed of the passing air passing through the heat exchanging portion is higher in the central portion, but lower at the end portions. As a result, the heat exchange at the central portion becomes insufficient, and the temperature of the passing air at the central portion of the heat exchange portion becomes higher than at the end of the heat exchange portion. Therefore, Japanese Patent Application Laid-Open No. 9-17085
When a high-temperature portion is formed in the opening of the unit as in the proposal described in Japanese Patent Publication No. 0, heat exchange of passing air is insufficient, and it is difficult to prevent the occurrence of a temperature distribution. In other words, the proposal described in Japanese Patent Application Laid-Open No. 9-170850 can solve the temperature distribution when the wind speed of the air passing through the heat exchange section is uniform over the entire area of the heat exchange section. If the wind speed of the passing air becomes uneven, the temperature distribution may not be effectively eliminated.

【0008】本発明の課題は、実際の使用状態におい
て、通過空気の温度分布の発生を防止することのできる
高性能の熱交換器を提供することにある。
An object of the present invention is to provide a high-performance heat exchanger capable of preventing the occurrence of a temperature distribution of passing air in an actual use state.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明の積層型熱交換器は、チューブとフィンとが
交互に積層され、前記チューブの上端に通風方向に対し
て上流側にある上前側タンクと、下流側にある上後側タ
ンクとが形成されるとともに、前記チューブの下端に、
下前側タンクと下後側タンクとが形成される積層型熱交
換器において、前記下前側タンクおよび下後側タンクを
タンクの長手方向の略中央部において仕切るとともに、
前記下前側タンクと下後側タンクの一端部同士を熱交換
媒体流路を形成するヘッダで連通し、反ヘッダ側に熱交
換媒体導入出口部を形成したことを特徴とするものから
なる。
In order to solve the above-mentioned problems, a laminated heat exchanger according to the present invention has tubes and fins alternately laminated, and is provided at an upper end of the tube at an upstream side with respect to a ventilation direction. A certain upper front tank and an upper rear tank located downstream are formed, and at the lower end of the tube,
In the laminated heat exchanger in which the lower front tank and the lower rear tank are formed, the lower front tank and the lower rear tank are partitioned at substantially the center in the longitudinal direction of the tank,
One end of the lower front tank and one end of the lower rear tank communicate with each other via a header forming a heat exchange medium flow path, and a heat exchange medium introduction / exit portion is formed on the side opposite to the header.

【0010】上記チューブとフィンにより形成される積
層部の最外層には、熱交換媒体導入出用のサイドタンク
を設けることが好ましい。本発明においては、熱交換媒
体導入出口部は下前側タンクおよび下後側タンクに形成
されるので、サイドタンクを設ける場合には、該サイド
タンクと下前側タンクおよび下後側タンクを連通すれば
よい。
It is preferable to provide a side tank for introducing and discharging a heat exchange medium in the outermost layer of the laminated portion formed by the tubes and the fins. In the present invention, since the heat exchange medium introduction / exit portion is formed in the lower front tank and the lower rear tank, if a side tank is provided, the side tank can communicate with the lower front tank and the lower rear tank. Good.

【0011】上記のような積層型熱交換器においては、
熱交換部の略中央部、つまり、ユニットの開口部に対応
する領域の熱交換部を形成するチューブ内は液冷媒が多
く流通することになるので、上記中央部に高温部が形成
されることはない。このため、通過空気の風速の速い上
記中央部における熱交換効率を向上できるので、熱交換
器通過後の通過空気の温度分布を解消することができ温
度の均一化を達成できる。さらに、上記のような熱交換
器においては、高温部は熱交換器の熱交換部の端部に形
成されることになるが、該部分は使用時にユニットで遮
閉され、空気が通過しにくい部分であるため、熱交換器
内の冷媒温度が低い場合着霜のおそれがあったが、該部
分に高温部を形成することにより着霜のおそれを解消す
ることもできる。
In the above-described stacked heat exchanger,
Since a large amount of liquid refrigerant flows through the tube forming the heat exchange part in the substantially central part of the heat exchange part, that is, the area corresponding to the opening of the unit, a high-temperature part is formed in the central part. There is no. For this reason, the heat exchange efficiency in the above-mentioned central portion where the wind speed of the passing air is high can be improved, so that the temperature distribution of the passing air after passing through the heat exchanger can be eliminated and the temperature can be made uniform. Further, in the heat exchanger as described above, the high-temperature portion is formed at the end of the heat exchange portion of the heat exchanger, but this portion is blocked by the unit during use, and it is difficult for air to pass through. Since it was a part, there was a risk of frost formation when the refrigerant temperature in the heat exchanger was low. However, the formation of a high-temperature part in this part can eliminate the possibility of frost formation.

【0012】[0012]

【発明の実施の形態】以下に、本発明の望ましい実施の
形態について図面を参照して説明する。図1ないし図5
は、本発明の一実施態様に係る熱交換器を示している。
図において、1は熱交換器を示している。熱交換器1
は、チューブ2とフィン3とが交互に積層された積層型
熱交換器を示している。チューブ2とフィン3により形
成される積層部の両端にはサイドプレート12、13が
設けられている。サイドプレート12側には、熱交換媒
体(冷媒)導入出用の流路を形成するサイドタンク4が
設けられている。サイドタンク4には、冷媒導入出用の
フランジ5が設けられており、該フランジ5には、膨張
弁14が接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. 1 to 5
Shows a heat exchanger according to an embodiment of the present invention.
In the figure, reference numeral 1 denotes a heat exchanger. Heat exchanger 1
Shows a laminated heat exchanger in which tubes 2 and fins 3 are alternately laminated. Side plates 12 and 13 are provided at both ends of the laminated portion formed by the tubes 2 and the fins 3. On the side plate 12 side, a side tank 4 that forms a flow path for introducing and discharging a heat exchange medium (refrigerant) is provided. The side tank 4 is provided with a flange 5 for introducing and discharging the refrigerant, and an expansion valve 14 is connected to the flange 5.

【0013】チューブ2は、図2に示すように成形プレ
ート6、7を接合したものから形成されている。成形プ
レート6(7)には、連結用凸部15、16、17、1
8(19、20、21、22)が形成されている。ま
た、成形プレート6(7)には、膨出部23、24(2
5、26)が形成されている。膨出部内には、チューブ
内圧強度を保つために、互いに接触するリブを形成した
り、インナーフィン等の別部材を設けてもよい。そし
て、成形用プレート6、7を接合して隣接するチューブ
2の連結用凸部15と19、16と20、17と21、
18と22を連結することにより、チューブ2の上下端
に上タンク10、下タンク11が形成されるようになっ
ている。上タンク10は、通風方向に対して上流側に位
置する上前側タンク10aと下流側に位置する上後側タ
ンク10bとからなっている。また、下タンク11は、
通風方向に対して上流側に位置する下前側タンク11a
と下流側に位置する下後側タンク11bとからなってい
る。そして、上前側タンク10aと下前側タンク11a
は膨出部24、26により形成される冷媒流路32を介
して連通されている。また、上後側タンク10bと下後
側タンク11bは膨出部23、25により形成される冷
媒流路33を介して連通されている。そして、流路3
2、フィン3、タンク10a、11aにより上流側熱交
換部34が形成されるとともに、流路33、フィン3、
タンク10b、11bにより下流側熱交換部35が形成
されている。
The tube 2 is formed by joining forming plates 6 and 7 as shown in FIG. The connecting plates 15, 16, 17, 1 are formed on the forming plate 6 (7).
8 (19, 20, 21, 22) are formed. Also, the bulging portions 23, 24 (2
5, 26) are formed. In order to maintain the internal pressure strength of the tube, ribs that contact each other may be formed, or another member such as an inner fin may be provided in the bulging portion. Then, the connecting plates 15 are connected to the adjacent tubes 2 by joining the forming plates 6 and 7, and the connecting convex portions 15 and 19, 16 and 20, 17 and 21,
By connecting 18 and 22, an upper tank 10 and a lower tank 11 are formed at the upper and lower ends of the tube 2. The upper tank 10 includes an upper front tank 10a located on the upstream side in the ventilation direction and an upper rear tank 10b located on the downstream side. Also, the lower tank 11
Lower front tank 11a located upstream with respect to the ventilation direction
And a lower rear tank 11b located on the downstream side. The upper front tank 10a and the lower front tank 11a
Are communicated with each other through a refrigerant channel 32 formed by the bulging portions 24 and 26. The upper rear tank 10b and the lower rear tank 11b are connected to each other via a refrigerant flow path 33 formed by the bulging portions 23 and 25. And channel 3
2, the fin 3, the tanks 10a and 11a form an upstream heat exchange section 34, and the flow path 33, the fin 3,
A downstream heat exchange section 35 is formed by the tanks 10b and 11b.

【0014】下前側タンク11a、下後側タンク11b
の略中央部には仕切り8、9が設けられており、タンク
11a、11b内は長手方向において2室に区画されて
いる。下前側タンク11aは、室27、28の2室に、
下後側タンク11b内は室29、30の2室に区画され
ている。また、下後側タンク11bの室29には冷媒導
入口部36が開口されており、下前側タンク11aの室
27には冷媒導出口部37が開口されている。また、室
30と室28はヘッダ31を介して連通されている。
Lower front tank 11a, lower rear tank 11b
Partitions 8 and 9 are provided substantially at the center of the tank, and the inside of the tanks 11a and 11b is partitioned into two chambers in the longitudinal direction. The lower front tank 11a is provided in two chambers 27 and 28,
The inside of the lower rear tank 11b is divided into two chambers 29 and 30. A refrigerant inlet 36 is opened in the chamber 29 of the lower rear tank 11b, and a refrigerant outlet 37 is opened in the chamber 27 of the lower front tank 11a. The room 30 and the room 28 are communicated via a header 31.

【0015】本実施態様の積層型熱交換器1において
は、膨張弁14からフランジ5およびサイドタンク4の
導入側流路から導入口部36を介して下後側タンク11
bの室29に導入された冷媒は、室29に連通するチュ
ーブ2→タンク10b→タンク10bと室30を連通す
るチューブ2→室30→ヘッダ31→室28→室28と
タンク10aを連通するチューブ2→タンク10a→タ
ンク10aと室27を連通するチューブ2→室27→導
出口部37→サイドタンク4の導出側流路のような順路
で熱交換器1内を流通するようになっている(図3)。
In the laminated heat exchanger 1 of this embodiment, the lower rear tank 11 is connected to the expansion valve 14 through the flange 5 and the inlet side flow path of the side tank 4 through the inlet 36.
The refrigerant introduced into the chamber 29 of b is connected to the tube 2 communicating with the chamber 29 → the tank 10b → the tube 2 communicating the tank 10b with the chamber 30 → the chamber 30 → the header 31 → the chamber 28 → the chamber 28 and the tank 10a. The tube 2 → the tank 10a → the tube 2 connecting the tank 10a and the chamber 27 → the chamber 27 → the outlet port 37 → the heat exchanger 1 is circulated in the same route as the outlet side flow path of the side tank 4. (Fig. 3).

【0016】また、膨張弁14により減圧された冷媒は
気相冷媒と液相冷媒が混合する気液混合状態になってい
る。このため、室29内に流入した冷媒は、慣性力の差
により室29の導入口36付近に連通するチューブ2内
には気冷媒が多く流入し、導入口36から離れた位置に
連通するチューブ2内には液冷媒が多く流入する。これ
と同様の現象は、上記室28→上前側タンク10aへ至
る流路においても同様に現れる。また、タンク10b内
に流入した冷媒は該タンク10bと室30を連通するチ
ューブ2内へ流出することになるが、この場合は重力に
より冷媒流路上流側に連通するチューブ2内に液冷媒が
多く流出し、冷媒流路下流側に連通するチューブ2内に
気冷媒が多く流出する。これと同様の現象は、タンク1
0a→室27へ至る流路においても同様に現れる。この
ため、上流側熱交換部34、下流側熱交換部35には、
図4に示すような部分に高温部38、39、40、41
が形成されることになる。
The refrigerant decompressed by the expansion valve 14 is in a gas-liquid mixed state in which a gas-phase refrigerant and a liquid-phase refrigerant are mixed. For this reason, the refrigerant flowing into the chamber 29 has a large amount of gas refrigerant flowing into the tube 2 communicating with the vicinity of the inlet 36 of the chamber 29 due to a difference in inertia force, and a tube communicating with a position distant from the inlet 36. A large amount of liquid refrigerant flows into 2. The same phenomenon also appears in the flow path from the chamber 28 to the upper front tank 10a. Further, the refrigerant flowing into the tank 10b flows out into the tube 2 communicating the tank 10b and the chamber 30, but in this case, the liquid refrigerant flows into the tube 2 communicating with the upstream side of the refrigerant flow path due to gravity. A large amount of gas refrigerant flows out into the tube 2 communicating with the downstream side of the refrigerant flow path. A similar phenomenon is seen in tank 1
It also appears in the flow path from 0a to the chamber 27. Therefore, the upstream heat exchange unit 34 and the downstream heat exchange unit 35
The high temperature parts 38, 39, 40, 41
Is formed.

【0017】ところで、熱交換器1は通常使用される場
合(たとえば、車両用空調装置に組み込まれる場合)
は、対向する面に空気通過用の開口部42、43が形成
されたユニット44に収納されることになる。上記開口
部42、43は図5に示すように、熱交換器1の熱交換
部34、35よりも小さくなっている。このため、熱交
換器1を通過する通過空気の風速は上記風向と直交する
方向に対してばらつきが生じる。つまり、開口部42、
43に対応する熱交換部34、35の略中央部において
は風速が速くなるのに対し、上記中央部から離れた端部
側においては風速が遅くなる。このため、上記中央部を
通過する通過空気の熱交換が不十分となり、端部側の通
過空気よりも高温になり易い。
Incidentally, when the heat exchanger 1 is normally used (for example, when it is incorporated in a vehicle air conditioner).
Are housed in a unit 44 having openings 42 and 43 for air passage formed on opposite surfaces. The openings 42 and 43 are smaller than the heat exchange parts 34 and 35 of the heat exchanger 1 as shown in FIG. For this reason, the wind speed of the passing air passing through the heat exchanger 1 varies in a direction perpendicular to the wind direction. That is, the opening 42,
The wind speed increases at substantially the central portions of the heat exchange portions 34 and 35 corresponding to 43, while the wind speed decreases at the end portions away from the central portion. For this reason, the heat exchange of the passing air passing through the central portion becomes insufficient, and the temperature tends to be higher than the passing air at the end portion.

【0018】しかし、本実施態様の熱交換器1において
は、ユニット44の開口部42、43に対応する熱交換
部34、35を構成するチューブ2内は主に液冷媒が流
通することになり、上記中央部には高温部38、39、
40、41は形成されなくなるので、上記中央部の通過
空気を効率よく熱交換できる。したがって、熱交換器1
の出口部における通過空気の温度分布を解消でき、吹き
出し温度の均一化を達成することができる。
However, in the heat exchanger 1 of this embodiment, the liquid refrigerant mainly flows through the tubes 2 constituting the heat exchange portions 34 and 35 corresponding to the openings 42 and 43 of the unit 44. , The high temperature parts 38, 39,
Since 40 and 41 are not formed, the air passing through the central portion can be efficiently heat-exchanged. Therefore, heat exchanger 1
Can eliminate the temperature distribution of the passing air at the outlet portion, and can achieve uniform blowing temperature.

【0019】また、熱交換器1をユニット44に収納し
た場合には、熱交換部34、35の端部側はユニット4
4により遮閉されているので上記端部側は通過空気の風
速が遅くなるため着霜が起こり易くなるが、本実施態様
においては、上記端部側に高温部が形成されることにな
るので、着霜を防止することもできる。
When the heat exchanger 1 is housed in the unit 44, the ends of the heat exchangers 34 and 35 are
4, the end portion has a low velocity of the passing air, so that frost formation is likely to occur. However, in this embodiment, a high-temperature portion is formed at the end portion. Also, frost formation can be prevented.

【0020】[0020]

【発明の効果】以上説明したように、本発明の積層型熱
交換器によるときは、ユニットの開口部に対応する熱交
換部を構成するチューブ内に主に液冷媒を流通させ上記
熱交換部の熱交換効率を向上することができるので、通
過空気の温度分布を解消し吹き出し温度を均一化するこ
とができる。
As described above, in the case of the laminated heat exchanger of the present invention, the liquid refrigerant mainly flows through the tubes constituting the heat exchange section corresponding to the opening of the unit, and the heat exchange section is provided. Since the heat exchange efficiency of the air can be improved, the temperature distribution of the passing air can be eliminated and the blowing temperature can be made uniform.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様に係る積層型熱交換器の斜
視図である。
FIG. 1 is a perspective view of a laminated heat exchanger according to an embodiment of the present invention.

【図2】図1の積層型熱交換器のチューブの分解斜視図
である。
FIG. 2 is an exploded perspective view of a tube of the laminated heat exchanger of FIG.

【図3】図1の積層型熱交換器の冷媒の流路を示す斜視
図である。
FIG. 3 is a perspective view illustrating a flow path of a refrigerant in the stacked heat exchanger of FIG. 1;

【図4】図1の積層型熱交換器の熱交換部の高温部の位
置を示す斜視図である。
FIG. 4 is a perspective view showing a position of a high temperature part of a heat exchange part of the stacked heat exchanger of FIG.

【図5】図1の積層型熱交換器をユニットに収納した状
態を示す透視図である。
FIG. 5 is a perspective view showing a state in which the stacked heat exchanger of FIG. 1 is housed in a unit.

【図6】従来の提案に係る熱交換器の冷媒の流路を示す
斜視図である。
FIG. 6 is a perspective view showing a refrigerant flow path of a heat exchanger according to a conventional proposal.

【図7】図6の熱交換器の熱交換部の高温部の位置を示
す斜視図である。
FIG. 7 is a perspective view showing a position of a high temperature part of a heat exchange part of the heat exchanger of FIG.

【符号の説明】[Explanation of symbols]

1 積層型熱交換器 2 チューブ 3 フィン 4 サイドタンク 5 フランジ 6、7 成形プレート 8、9 仕切り 10 上タンク 10a 上前側タンク 10b 上後側タンク 11 下タンク 11a 下前側タンク 11b 下後側タンク 12、13 サイドプレート 14 膨張弁 15、16、17、18、19、20、21、22 連
結用凸部 23、24、25、26 膨出部 27、28、29、30 室 31 ヘッダ 32、33 冷媒流路 34 上流側熱交換部 35 下流側熱交換部 36 冷媒導入口部 37 冷媒導出口部 38、39、40、41 高温部 42、43 開口部 44 ユニット
Reference Signs List 1 laminated heat exchanger 2 tube 3 fin 4 side tank 5 flange 6, 7 forming plate 8, 9 partition 10 upper tank 10a upper front tank 10b upper rear tank 11 lower tank 11a lower front tank 11b lower rear tank 12, 13 side plate 14 expansion valve 15, 16, 17, 18, 19, 20, 21, 22 connecting projection 23, 24, 25, 26 bulging part 27, 28, 29, 30 chamber 31 header 32, 33 refrigerant flow Path 34 Upstream heat exchange section 35 Downstream heat exchange section 36 Refrigerant inlet 37 Refrigerant outlet 38, 39, 40, 41 High temperature section 42, 43 Opening 44 unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チューブとフィンとが交互に積層され、
前記チューブの上端に通風方向に対して上流側にある上
前側タンクと、下流側にある上後側タンクとが形成され
るとともに、前記チューブの下端に、下前側タンクと下
後側タンクとが形成される積層型熱交換器において、前
記下前側タンクおよび下後側タンクをタンクの長手方向
の略中央部において仕切るとともに、前記下前側タンク
と下後側タンクの一端部同士を熱交換媒体流路を形成す
るヘッダで連通し、反ヘッダ側に熱交換媒体導入出口部
を形成したことを特徴とする積層型熱交換器。
1. A tube and a fin are alternately laminated,
At the upper end of the tube, an upper front tank on the upstream side with respect to the ventilation direction and an upper rear tank on the downstream side are formed, and at the lower end of the tube, a lower front tank and a lower rear tank are provided. In the laminated heat exchanger to be formed, the lower front tank and the lower rear tank are partitioned at a substantially central portion in the longitudinal direction of the tank, and one end of the lower front tank and the lower rear tank are flowed through a heat exchange medium flow. A stacked heat exchanger characterized in that the heat exchanger communicates with a header forming a passage and a heat exchange medium introduction / exit portion is formed on the side opposite to the header.
【請求項2】 前記チューブとフィンにより形成される
積層部の最外層に、熱交換媒体導入出用のサイドタンク
を設けるとともに、該サイドタンクと下前側タンクおよ
び下後側タンクとが連通されている、請求項1の積層型
熱交換器。
2. A side tank for introducing and discharging a heat exchange medium is provided on an outermost layer of a laminated portion formed by the tubes and fins, and the side tank is communicated with a lower front tank and a lower rear tank. The stacked heat exchanger of claim 1, wherein:
JP10302825A 1998-10-23 1998-10-23 Lamination type heat exchanger Pending JP2000130887A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10302825A JP2000130887A (en) 1998-10-23 1998-10-23 Lamination type heat exchanger
DE69911139T DE69911139T2 (en) 1998-10-23 1999-10-21 Multi-flow heat exchanger in stacked construction
EP19990308314 EP0995961B1 (en) 1998-10-23 1999-10-21 Stacked type multi-flow heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10302825A JP2000130887A (en) 1998-10-23 1998-10-23 Lamination type heat exchanger

Publications (1)

Publication Number Publication Date
JP2000130887A true JP2000130887A (en) 2000-05-12

Family

ID=17913555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10302825A Pending JP2000130887A (en) 1998-10-23 1998-10-23 Lamination type heat exchanger

Country Status (1)

Country Link
JP (1) JP2000130887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340442A (en) * 2001-05-18 2002-11-27 Japan Climate Systems Corp Heat exchanger
JP2003028540A (en) * 2001-07-12 2003-01-29 Japan Climate Systems Corp Heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340442A (en) * 2001-05-18 2002-11-27 Japan Climate Systems Corp Heat exchanger
JP2003028540A (en) * 2001-07-12 2003-01-29 Japan Climate Systems Corp Heat exchanger
JP4511083B2 (en) * 2001-07-12 2010-07-28 株式会社日本クライメイトシステムズ Heat exchanger

Similar Documents

Publication Publication Date Title
JP3960233B2 (en) Heat exchanger
JP4761790B2 (en) Evaporator
WO2008041698A1 (en) Heat exchanger
JP2006132920A (en) Heat exchanger
JP2006526130A (en) Heat exchanger plate
JP2005083677A (en) Evaporator
JP2000266492A (en) Laminated heat exchanger
JP2001147095A (en) Heat exchanger
US7174953B2 (en) Stacking-type, multi-flow, heat exchanger
JP2004347160A (en) Heat exchanger
JP2002147990A (en) Heat exchanger
WO2005052488A1 (en) Heat exchanger
JP2000130887A (en) Lamination type heat exchanger
JP4264997B2 (en) Refrigerant evaporator
US5718284A (en) Laminated heat exchanger
JPH04371798A (en) Heat exchanger
JP2001215096A (en) Heat exchanger
JP2007187435A (en) Heat exchanger
JP5674376B2 (en) Evaporator
EP0995961B1 (en) Stacked type multi-flow heat exchanger
JPH11230693A (en) Heat exchanger
EP1310757B1 (en) Stacked-type multi-flow heat exchangers
JP2005061778A (en) Evaporator
JPH11257877A (en) Lamination-type heat exchanger
JPH1163727A (en) Laminated evaporator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061027